JP2000193327A - Air conditioner equipment and control method thereof - Google Patents

Air conditioner equipment and control method thereof

Info

Publication number
JP2000193327A
JP2000193327A JP10369112A JP36911298A JP2000193327A JP 2000193327 A JP2000193327 A JP 2000193327A JP 10369112 A JP10369112 A JP 10369112A JP 36911298 A JP36911298 A JP 36911298A JP 2000193327 A JP2000193327 A JP 2000193327A
Authority
JP
Japan
Prior art keywords
temperature
compressor
refrigerant
condenser
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10369112A
Other languages
Japanese (ja)
Inventor
Takashi Okazaki
多佳志 岡崎
Seiji Inoue
誠司 井上
Yoshihiro Sumida
嘉裕 隅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10369112A priority Critical patent/JP2000193327A/en
Publication of JP2000193327A publication Critical patent/JP2000193327A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0401Refrigeration circuit bypassing means for the compressor

Abstract

PROBLEM TO BE SOLVED: To curtail power consumption with a miniaturization of the outdoor unit and at a lower cost by arranging the operation of a compressor and a liquid pump to carry out operation optimum for the environmental situation of any installing places. SOLUTION: This air conditioning equipment has a refrigerating cycle in which compressor 21, condenser 22, decompressing means 13 and evaporator 11 are connected sequentially with piping to circulate a refrigerant, compressor bypass piping 4 having an open-close valve 24, a liquid conveying device 23 connected between an outlet part of the condenser 22, and an inlet part of the decompressing means 13. A controller 70 controls the operation of the open- close valve 24, the compressor 21 and the liquid conveying device 23 and so, the temperature of a fluid to be cooled and the temperature of the fluid to be heated are detected by a first temperature detection means 71 and a second temperature detection means 72. When the temperature difference is below a specified value, the open-close valve 24 is closed to operate the compressor 21 and when it is larger than the specified value, the open-close valve 24 is opened to operate the liquid conveying device 23.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、外気温度に関係な
く年間を通して運転される空気調和機に関するものであ
り、特に圧縮機によって冷凍サイクルを動作させる運転
と、液体搬送装置によって熱輸送サイクルを動作させる
運転とを備えた空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner which is operated year-round regardless of the outside air temperature, and more particularly to an operation for operating a refrigeration cycle by a compressor and an operation of a heat transport cycle by a liquid transfer device. The present invention relates to an air conditioner having an operation to be performed.

【0002】[0002]

【従来の技術】近年、携帯電話をはじめとする移動体通
信の普及によって、電算機室や移動体通信の中継電子機
器を納めた基地局(シェルタ)に代表されるような電子
機器の発熱を除去する分野が急速に広がっており、これ
らの場所では年間を通して冷房運転を行なう空気調和機
が必要となっている。
2. Description of the Related Art In recent years, with the spread of mobile communications such as mobile phones, heat generated by electronic devices such as a computer room and a base station (shelter) containing relay electronic devices for mobile communications has been reduced. The field of removal is rapidly expanding, and these places require air conditioners that perform cooling operation throughout the year.

【0003】これらの用途では、冬季や夜間のように外
気温度が低い場合には、換気によって冷房することも可
能であるが、外気を取り込む際に、霧,雨,雪,塵埃な
どの侵入を防ぐ装置が必要となり、しかも外気温度の変
動によって室内温度も変動するため安定した冷房が行え
ない。この様な条件では、室内温度と外気温度との温度
差を利用して、室内から室外へ液体搬送装置である液ポ
ンプにより冷媒を介して熱を搬送する熱輸送サイクルに
よる空気調和機を用いることができる。通常、夏季には
外気温度が室内温度よりも高くなるため、液ポンプによ
って冷媒を搬送する構成では冷房が行なえず、圧縮機を
備えた冷凍サイクルによって室内を冷房する構成を兼ね
備えた空気調和機が必要となる。この圧縮機運転と液ポ
ンプ運転を併用した空気調和機は、液ポンプの消費電力
が圧縮機のそれと比較して1/10程度となるため、圧
縮機運転のみの空気調和機と比較して年間消費電力を大
幅に低減することができる。
[0003] In these applications, when the outside air temperature is low, such as in winter or at night, air can be cooled by ventilation. However, when the outside air is taken in, fog, rain, snow, dust, and the like enter. Therefore, a stable cooling cannot be performed because the indoor temperature fluctuates due to the fluctuation of the outside air temperature. Under such conditions, an air conditioner using a heat transport cycle that uses a temperature difference between the indoor temperature and the outside air temperature to transfer heat from a room to the outside through a refrigerant by a liquid pump as a liquid transfer device through a refrigerant is used. Can be. Usually, in the summer, the outside air temperature becomes higher than the indoor temperature, so that cooling cannot be performed with the configuration in which the refrigerant is conveyed by the liquid pump, and an air conditioner that also has a configuration that cools the room with a refrigeration cycle equipped with a compressor is available. Required. The air conditioner that uses both the compressor operation and the liquid pump operation consumes about 1/10 of the power of the liquid pump compared to that of the compressor. Power consumption can be significantly reduced.

【0004】従来、液ポンプを利用した空気調和機の例
としては、特開平10−82566号公報に掲載された
ように圧縮機運転と液ポンプ運転を併用したものがあ
る。図22は従来の圧縮機運転と液ポンプ運転とを有す
る空気調和機を示す構成図である。図において、1は基
礎床面、2は二重床、3は冷媒配管、4は圧縮機バイパ
ス配管、5は液ポンプバイパス配管、10は室内機、1
1は蒸発器、12は蒸発器側送風機、20は室外機、2
1は圧縮機、22は凝縮器、23は液ポンプ、24、2
5は開閉弁、26は凝縮器側送風機である。
[0004] Conventionally, as an example of an air conditioner using a liquid pump, there is an air conditioner using both a compressor operation and a liquid pump operation as disclosed in JP-A-10-82566. FIG. 22 is a configuration diagram showing a conventional air conditioner having a compressor operation and a liquid pump operation. In the drawing, 1 is a base floor, 2 is a double bed, 3 is a refrigerant pipe, 4 is a compressor bypass pipe, 5 is a liquid pump bypass pipe, 10 is an indoor unit, 1
1 is an evaporator, 12 is an evaporator-side blower, 20 is an outdoor unit, 2
1 is a compressor, 22 is a condenser, 23 is a liquid pump, 24, 2
Reference numeral 5 denotes an open / close valve, and reference numeral 26 denotes a condenser-side blower.

【0005】また、室外機20に制御装置30が設けら
れ、外気温度を検知する温度検出手段として外気温度セ
ンサー31を付属して備え、次のような制御が行われ
る。即ち、外気温度センサー31の検知温度が第1所定
値、例えば12℃以上になると圧縮機21を運転して液
ポンプ23を停止し且つ開閉弁24を閉じて開閉弁25
を開き、圧縮機21による冷房運転を実行する。この場
合、圧縮機21で断熱的に圧縮されて過熱状態となった
冷媒ガスは、凝縮器22で外気へ放熱・液化して冷媒液
となる。この後、高圧の冷媒液は、冷媒配管3を通って
室内機10へ流れ込み、膨張弁13で減圧されて気液混
合状態の低温低圧の湿り蒸気となる。さらに、冷媒は蒸
発器11で気化熱を吸収して冷媒ガスとなり、冷媒配管
3を通って圧縮機21へ戻る。この時、蒸発器11で室
内空気を冷却する。
A control device 30 is provided in the outdoor unit 20, and an outdoor air temperature sensor 31 is provided as a temperature detecting means for detecting the outdoor air temperature, and the following control is performed. That is, when the temperature detected by the outside air temperature sensor 31 becomes equal to or higher than a first predetermined value, for example, 12 ° C., the compressor 21 is operated to stop the liquid pump 23 and close the on-off valve 24 to close the on-off valve 25.
Is opened, and the cooling operation by the compressor 21 is executed. In this case, the refrigerant gas that has been adiabatically compressed by the compressor 21 and has been overheated is radiated and liquefied to the outside air by the condenser 22 to be a refrigerant liquid. Thereafter, the high-pressure refrigerant liquid flows into the indoor unit 10 through the refrigerant pipe 3, and is decompressed by the expansion valve 13 to become low-temperature low-pressure wet steam in a gas-liquid mixed state. Further, the refrigerant absorbs heat of vaporization in the evaporator 11 to become a refrigerant gas, and returns to the compressor 21 through the refrigerant pipe 3. At this time, the indoor air is cooled by the evaporator 11.

【0006】一方、外気温度センサー31の検知温度が
第2所定値(<第1所定値)、例えば7℃以下になると、
圧縮機21を停止して液ポンプ23を運転し且つ開閉弁
24を開いて開閉弁25を閉じ、液ポンプ23による冷
房運転を実行する。この場合、凝縮器22で凝縮した液
冷媒は、液ポンプ23により昇圧され冷媒配管3を通っ
て蒸発器11に流入する。蒸発器11に流入した液冷媒
は室内の熱負荷を受けて蒸発した後、冷媒配管3を流動
し、開閉弁24を通って凝縮器22へ戻ることで液ポン
プ運転のサイクルが形成される。
On the other hand, when the temperature detected by the outside air temperature sensor 31 falls below a second predetermined value (<first predetermined value), for example, 7 ° C. or less,
The compressor 21 is stopped, the liquid pump 23 is operated, the on-off valve 24 is opened, the on-off valve 25 is closed, and the cooling operation by the liquid pump 23 is executed. In this case, the liquid refrigerant condensed in the condenser 22 is pressurized by the liquid pump 23 and flows into the evaporator 11 through the refrigerant pipe 3. The liquid refrigerant that has flowed into the evaporator 11 receives the heat load in the room, evaporates, flows through the refrigerant pipe 3, and returns to the condenser 22 through the on-off valve 24, thereby forming a liquid pump operation cycle.

【0007】以上のように、この空気調和機では、圧縮
機21および液ポンプ23のバイパスのために2つの開
閉弁24,25を備えており、外気温度の検知値に基づ
いて制御装置30からの指令により開閉弁24,25を
開閉し、圧縮機21による冷房運転と液ポンプ23によ
る冷房運転とを切換える構成であった。液ポンプ運転時
には圧縮機運転に比べて運転動力が小さくなるため、年
間消費電力の大幅削減が可能となるというものであっ
た。
As described above, this air conditioner is provided with the two opening / closing valves 24 and 25 for bypassing the compressor 21 and the liquid pump 23, and the control device 30 receives the detected value of the outside air temperature from the control device 30. The open / close valves 24 and 25 are opened / closed in response to the above command, and the cooling operation by the compressor 21 and the cooling operation by the liquid pump 23 are switched. The operation power of the liquid pump is smaller than that of the compressor, so that the annual power consumption can be significantly reduced.

【0008】[0008]

【発明が解決しようとする課題】以上のように、従来の
圧縮機運転に液ポンプ運転を併用した空気調和機では、
両運転の冷媒回路の切換え用として2つの開閉弁24,
25およびそれらを開閉するための制御装置30を備え
ていた。これらの開閉弁24,25は、例えば電磁弁の
ように制御装置30からの指令によって開閉可能な大型
で高価なものが用いられるため、圧縮機運転のみの空気
調和機に比べて室外機20が大型化すると共にシステム
が高価になるという問題があった。
As described above, in an air conditioner using a liquid pump operation in combination with a conventional compressor operation,
Two on-off valves 24 for switching the refrigerant circuit of both operations,
25 and a control device 30 for opening and closing them. As these open / close valves 24 and 25, for example, large and expensive valves that can be opened / closed by a command from the control device 30 such as solenoid valves are used, the outdoor unit 20 is smaller than an air conditioner only operating a compressor. There is a problem that the system becomes expensive as the size increases.

【0009】また、従来の空気調和機では、外気温度の
みに基づいて両運転を切換えている。このため、外気温
度で判断すると液ポンプ運転であっても、室内温度が低
く外気温度との温度差が小さくなると、不必要に液ポン
プを動作させることになり、消費電力が増加してしま
う。またさらに、室内温度が外気温度よりも低くなると
いうような逆転する条件でも液ポンプ運転を行なうとい
う状況が生じ得る。この場合には、蒸発器と凝縮器の動
作が正常に行なわれず、液ポンプにガスを吸い込んだり
して液ポンプの破損に到る可能性もあった。
In a conventional air conditioner, both operations are switched based only on the outside air temperature. Therefore, if the room temperature is low and the temperature difference from the outside air temperature is small, the liquid pump will be operated unnecessarily, and the power consumption will increase, even if the liquid pump operation is determined based on the outside air temperature. Further, a situation may occur in which the liquid pump is operated even under the reverse condition that the room temperature becomes lower than the outside air temperature. In this case, the operation of the evaporator and the condenser is not performed normally, and there is a possibility that the liquid pump may be damaged by sucking gas into the liquid pump.

【0010】また、液ポンプ運転時の冷媒量は圧縮機運
転時のそれに比べて多くなるので、両運転それぞれに最
適な冷媒量とするために通常は圧縮機入口部に冷媒を貯
溜するアキュムレータを設置する。このアキュムレータ
を有する装置の場合、圧縮機運転時にはアキュムレータ
内に余剰冷媒が蓄積され、開閉弁の切換えのみで液ポン
プ運転を運転した場合、冷媒量不足の状態となってしま
う。冷媒量の不足は、液ポンプ入口が二相状態となって
冷媒循環量が不足し、所定の冷房能力が得られないとい
う状況を招いたり、キャビテーションが発生して液ポン
プ23が破損するという問題を引き起こしたりする。こ
こで、キャビテーションとは、流動する液中に気体があ
らわれて空洞を作る現象である。液ポンプ23内にキャ
ビテーションが発生すれば、一般に音響や振動がこれに
伴ない、予定の冷媒流量を出し得ず、運転効率は低下す
る。例えば液ポンプがロータリポンプである場合には、
液ポンプ内のロータなどの部材やその他の部分に腐食が
進行する。はなはだしい場合には騒音や振動のため連続
運転が不可能となる。特に液ポンプの小型化,高速化を
図るとロータ内の流速は更に早く、局所的には一層高真
空の部分があらわれ、キャビテーション発生の可能性は
一段と増大してくる。流れの最低圧部で発生した空洞
は、高圧部に移って気泡がつぶされる際に激しい衝撃作
用を起こして再び液中に溶け込むのであるが、この時生
じる衝撃圧力は非常に大きく、液ポンプ内壁に衝突して
騒音を発生すると共に、エネルギの損失を招く。このよ
うに液ポンプを組み込んだ装置において、キャビテーシ
ョンの発生防止は大きな課題となっている。
In addition, since the amount of refrigerant during the operation of the liquid pump is larger than that during operation of the compressor, an accumulator for storing the refrigerant at the inlet of the compressor is usually provided to optimize the amount of refrigerant for both operations. Install. In the case of the device having the accumulator, surplus refrigerant is accumulated in the accumulator during the operation of the compressor, and when the liquid pump operation is operated only by switching the open / close valve, the refrigerant amount becomes insufficient. The shortage of the refrigerant amount causes a situation in which the liquid pump inlet is in a two-phase state and the refrigerant circulation amount is insufficient, and a predetermined cooling capacity cannot be obtained, or cavitation occurs and the liquid pump 23 is damaged. Or cause. Here, cavitation is a phenomenon in which a gas appears in a flowing liquid to form a cavity. If cavitation is generated in the liquid pump 23, the sound and vibration generally accompany the cavitation, so that a predetermined refrigerant flow rate cannot be obtained, and the operation efficiency is reduced. For example, when the liquid pump is a rotary pump,
Corrosion progresses on members such as the rotor in the liquid pump and other parts. In extreme cases, noise and vibration make continuous operation impossible. In particular, when the size and speed of the liquid pump are reduced, the flow velocity in the rotor is further increased, and a portion with a higher vacuum appears locally, so that the possibility of cavitation is further increased. The cavity generated at the lowest pressure part of the flow causes a violent impact action when the air bubbles are crushed by moving to the high pressure part and melts back into the liquid, but the impact pressure generated at this time is extremely large, And generates noise and energy loss. As described above, in a device incorporating a liquid pump, prevention of cavitation is a major problem.

【0011】また、冷媒量不足の状態を回避するために
アキュムレータに蓄積された冷媒を回収する際、膨張弁
13を完全に閉止して圧縮機21を動作させるという冷
媒回収運転を行うと、圧縮機21の吸入圧力が急激に低
下するため、圧縮機21内に吸入された冷媒液が発泡し
て冷凍機油が吐出ガスと共に冷媒回路内へ流出し、圧縮
機内部の冷凍機油量が減少して潤滑不良により焼損に至
る危険性があった。また、冷媒回路内に流出した冷凍機
油が圧力損失の増大をもたらし、液ポンプ運転時の冷房
能力を低下させるという問題があった。即ち、圧縮機運
転と液ポンプ運転とを併用する空気調和機において、両
運転間の冷媒量の差を吸収するためにアキュムレータを
備えた装置では、圧縮機運転でアキュムレータに貯溜さ
れた冷媒を液ポンプ運転に切換える際に回収することが
必要であり、この回収をスムーズに行なうことも大きな
課題であった。
Further, when recovering the refrigerant accumulated in the accumulator in order to avoid the state of the shortage of the refrigerant amount, when the refrigerant recovery operation of completely closing the expansion valve 13 and operating the compressor 21 is performed, Since the suction pressure of the compressor 21 rapidly decreases, the refrigerant liquid sucked into the compressor 21 foams, and the refrigerating machine oil flows out into the refrigerant circuit together with the discharge gas, and the amount of the refrigerating machine oil inside the compressor decreases. There was a risk of burning due to poor lubrication. Further, there is a problem that the refrigerating machine oil flowing out into the refrigerant circuit causes an increase in pressure loss and lowers the cooling capacity during operation of the liquid pump. That is, in an air conditioner using both a compressor operation and a liquid pump operation, an apparatus provided with an accumulator for absorbing a difference in the amount of refrigerant between the two operations is capable of discharging the refrigerant stored in the accumulator during the compressor operation. It was necessary to collect the fuel when switching to the pump operation, and smooth recovery was also a major issue.

【0012】また、圧縮機21の吸入部にアキュムレー
タが設置されている場合、圧縮機運転時はアキュムレー
タ内が低温低圧となるため、液ポンプ運転切換え後にア
キュムレータへ冷媒が流入し、液ポンプ運転時に冷媒量
不足が生じるという問題があった。
Further, when an accumulator is provided at the suction portion of the compressor 21, the inside of the accumulator has a low temperature and a low pressure during the operation of the compressor. There is a problem that the amount of refrigerant is insufficient.

【0013】また、冬季など外気温度が低下する場合に
は、液ポンプ運転によって得られる冷房能力が増加する
ため、圧縮機21は長時間停止状態となり、時間の経過
に伴って圧縮機21は外気温度まで低下する。このよう
な場合、液ポンプ運転の冷媒回路から圧縮機21へ冷媒
ガスが徐々に凝縮するため、液ポンプ運転に必要な冷媒
量が確保されないだけでなく、圧縮機21の起動時に液
圧縮が生じて破損に至る危険性があった。
Further, when the outside air temperature decreases in winter, for example, the cooling capacity obtained by the operation of the liquid pump increases, so that the compressor 21 is stopped for a long time, and the compressor 21 is stopped over time as time elapses. Drops to temperature. In such a case, since the refrigerant gas is gradually condensed from the refrigerant circuit of the liquid pump operation to the compressor 21, not only the amount of refrigerant required for the liquid pump operation is not ensured, but also liquid compression occurs when the compressor 21 starts up. There was a risk of being damaged.

【0014】本発明は上記のような従来の課題を解決す
るためになされたもので、圧縮機運転と液ポンプ運転と
を備え、各運転の冷媒回路への切換えに伴う開閉弁の開
閉操作を簡素化することによって簡単で安価な構成の空
気調和機を得ることを目的とするものである。さらに、
圧縮機運転と液ポンプ運転のそれぞれにおいて、設置場
所の環境状況に適した動作を行なうことのできる空気調
和機を得るものである。また、圧縮機の吸入圧力を急激
に低下させることなく運転切換えをスムーズに行うこと
ができる空気調和機を得ることを目的とするものであ
る。また、圧縮機運転と液ポンプ運転とを備え、圧縮機
の吸入部にアキュムレータを備えた構成で、運転切換え
の際にアキュムレータに蓄積された冷媒をスムーズに回
収することができる空気調和機を得ることを目的とする
ものである。また、圧縮機運転と液ポンプ運転とを備
え、圧縮機が長時間停止状態の場合にも圧縮機内へ冷媒
が凝縮するのを防止して液体搬送装置運転に必要な冷媒
量を確保でき、常に安定して液体搬送装置を運転するこ
とができると共に、圧縮機再起動時の液圧縮を防止して
圧縮機の信頼性を向上することができる空気調和機を得
ることを目的とするものである。また、液ポンプでキャ
ビテーションが発生するのを防止できる空気調和機を得
ることを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described conventional problems, and includes a compressor operation and a liquid pump operation, and performs opening and closing operations of an on-off valve accompanying switching of each operation to a refrigerant circuit. An object of the present invention is to obtain an air conditioner having a simple and inexpensive configuration by simplification. further,
An object of the present invention is to provide an air conditioner capable of performing an operation suitable for an environmental condition of an installation place in each of a compressor operation and a liquid pump operation. It is another object of the present invention to provide an air conditioner capable of smoothly switching operation without rapidly reducing the suction pressure of a compressor. In addition, an air conditioner that includes a compressor operation and a liquid pump operation and has a configuration in which an accumulator is provided in a suction portion of the compressor and that can smoothly recover the refrigerant accumulated in the accumulator when the operation is switched is obtained. It is intended for that purpose. In addition, a compressor operation and a liquid pump operation are provided, and even when the compressor is in a stopped state for a long time, the refrigerant is prevented from condensing into the compressor, and the amount of refrigerant necessary for the operation of the liquid transfer device can be secured. It is an object of the present invention to provide an air conditioner that can stably operate a liquid transport device and that can prevent liquid compression at the time of restarting a compressor and improve reliability of the compressor. . It is another object of the present invention to provide an air conditioner that can prevent cavitation from occurring in a liquid pump.

【0015】[0015]

【課題を解決するための手段】本発明による空気調和機
は、圧縮機、凝縮器、減圧手段および蒸発器を順次配管
で接続して冷媒を循環させる冷凍サイクルと、前記蒸発
器の出口部と前記凝縮器の入口部とを開閉弁を介して接
続するバイパス配管と、前記凝縮器の出口部と前記減圧
手段の入口部との間で前記減圧手段と直列に接続される
液体搬送装置と、前記開閉弁の開閉動作と前記圧縮機の
運転/停止動作と前記液体搬送装置の運転/停止動作を
制御する制御装置と、前記蒸発器に流入する被冷却流体
の温度を検出する第1温度検出手段と、前記凝縮器に流
入する被加熱流体の温度を検出する第2温度検出手段
と、を備え、前記第1温度検出手段で検出した被冷却流
体の温度と前記第2温度検出手段で検出した被加熱流体
の温度との温度差が所定温度以下のときに前記開閉弁を
閉として前記圧縮機を運転し、前記被加熱流体の温度と
前記被冷却流体の温度との温度差が所定温度よりも大き
いときに前記開閉弁を開とし前記圧縮機を停止して前記
液体搬送装置を運転するように、前記制御装置によって
前記開閉弁と前記圧縮機と前記液体搬送装置のそれぞれ
の動作を制御することを特徴とするものである。
An air conditioner according to the present invention comprises a refrigeration cycle in which a compressor, a condenser, a pressure reducing means, and an evaporator are sequentially connected by piping to circulate a refrigerant, and an outlet of the evaporator. A bypass pipe connecting the inlet of the condenser via an on-off valve, and a liquid transfer device connected in series with the pressure reducing means between the outlet of the condenser and the inlet of the pressure reducing means, A control device for controlling the opening / closing operation of the on-off valve, the operation / stop operation of the compressor, and the operation / stop operation of the liquid transfer device; and a first temperature detection for detecting a temperature of the fluid to be cooled flowing into the evaporator. Means, and second temperature detecting means for detecting the temperature of the fluid to be heated flowing into the condenser, wherein the temperature of the fluid to be cooled detected by the first temperature detecting means and the temperature detected by the second temperature detecting means Temperature difference with the temperature of the heated fluid The compressor is operated with the on-off valve closed when the temperature is equal to or lower than a predetermined temperature, and the on-off valve is opened when a temperature difference between the temperature of the fluid to be heated and the temperature of the fluid to be cooled is larger than a predetermined temperature. The operation of the on-off valve, the compressor, and the liquid transfer device is controlled by the control device so that the compressor is stopped and the liquid transfer device is operated.

【0016】また、本発明による空気調和機は、圧縮
機、凝縮器、減圧手段および蒸発器を順次配管で接続し
て冷媒を循環させる冷凍サイクルと、前記蒸発器の出口
部と前記凝縮器の入口部とを前記凝縮器側から前記蒸発
器側への冷媒の流れを閉止する逆止弁を介して接続する
バイパス配管と、前記凝縮器の出口部と前記減圧手段の
入口部との間で前記減圧手段と直列に接続される液体搬
送装置と、前記圧縮機の運転/停止動作と前記液体搬送
装置の運転/停止動作を制御する制御装置と、前記蒸発
器に流入する被冷却流体の温度を検出する第1温度検出
手段と、前記凝縮器に流入する被加熱流体の温度を検出
する第2温度検出手段と、を備え、前記第1温度検出手
段で検出した被冷却流体の温度と前記第2温度検出手段
で検出した被加熱流体の温度との温度差が所定温度以下
のときに前記圧縮機を運転し、前記被加熱流体の温度と
前記被冷却流体の温度との温度差が所定温度よりも大き
いときに前記圧縮機を停止して前記液体搬送装置を運転
するように、前記制御装置によって前記圧縮機と前記液
体搬送装置を制御することを特徴とするものである。
Further, the air conditioner according to the present invention comprises a refrigeration cycle in which a compressor, a condenser, a decompression means and an evaporator are sequentially connected by pipes to circulate a refrigerant; A bypass pipe connecting an inlet with a check valve for closing the flow of refrigerant from the condenser side to the evaporator side, and between a condenser outlet and an inlet of the decompression means. A liquid transfer device connected in series with the pressure reducing means, a control device for controlling the operation / stop operation of the compressor and the operation / stop operation of the liquid transfer device, and a temperature of the fluid to be cooled flowing into the evaporator. Temperature detecting means for detecting the temperature of the fluid to be heated flowing into the condenser, and second temperature detecting means for detecting the temperature of the fluid to be heated flowing into the condenser. Heated flow detected by the second temperature detecting means When the temperature difference between the temperature of the fluid to be cooled and the temperature of the fluid to be cooled is greater than the predetermined temperature, the compressor is operated. The control device controls the compressor and the liquid transfer device so as to operate the liquid transfer device.

【0017】また、本発明による空気調和機は、圧縮
機、凝縮器、減圧手段および蒸発器を順次配管で接続し
て冷媒を循環させる冷凍サイクルと、前記蒸発器の出口
部と前記凝縮器の入口部とを第1開閉弁を介して接続す
るバイパス配管と、前記凝縮器の出口部と前記蒸発器の
入口部との間で前記減圧手段と並列に接続される液体搬
送手段と、前記液体搬送手段の接続された並列部の流路
を開閉する第2開閉弁と、前記第1,第2開閉弁の開閉
動作と前記圧縮機の運転/停止動作と前記液体搬送装置
の運転/停止動作を制御する制御装置と、前記蒸発器に
流入する被冷却流体の温度を検出する第1温度検出手段
と、前記凝縮器に流入する被加熱流体の温度を検出する
第2温度検出手段と、を備え、前記第1温度検出手段で
検出した被冷却流体の温度と前記第2温度検出手段で検
出した被加熱流体の温度との温度差が所定温度以下のと
きに前記第1,第2開閉弁を閉とし前記液体搬送装置を
停止して前記圧縮機を運転し、前記被加熱流体の温度と
前記被冷却流体の温度との温度差が所定温度よりも大き
いときに前記第1,第2開閉弁を開とし前記圧縮機を停
止して前記液体搬送装置を運転するように、前記制御装
置によって前記第1,第2開閉弁と前記圧縮機と前記液
体搬送装置のそれぞれの動作を制御することを特徴とす
るものである。
Further, the air conditioner according to the present invention comprises a refrigeration cycle in which a compressor, a condenser, a decompression means and an evaporator are sequentially connected by piping to circulate a refrigerant, and an outlet of the evaporator and the condenser. A bypass pipe connecting an inlet with a first on-off valve, a liquid transporting means connected in parallel with the pressure reducing means between an outlet of the condenser and an inlet of the evaporator, A second on-off valve for opening and closing the flow path of the parallel section to which the transfer means is connected, an on-off operation of the first and second on-off valves, a start / stop operation of the compressor, and a start / stop operation of the liquid transfer device A first temperature detecting means for detecting the temperature of the fluid to be cooled flowing into the evaporator, and a second temperature detecting means for detecting the temperature of the fluid to be heated flowing into the condenser. A fluid to be cooled detected by the first temperature detecting means When the temperature difference between the temperature and the temperature of the fluid to be heated detected by the second temperature detecting means is equal to or lower than a predetermined temperature, the first and second on-off valves are closed, the liquid transfer device is stopped, and the compressor is started. Operating the liquid transfer device by opening the first and second on-off valves and stopping the compressor when the temperature difference between the temperature of the fluid to be heated and the temperature of the fluid to be cooled is greater than a predetermined temperature. The operation of the first and second on-off valves, the compressor, and the liquid transfer device is controlled by the control device so as to operate the liquid transfer device.

【0018】また、本発明による空気調和機は、圧縮
機、凝縮器、減圧手段および蒸発器を順次配管で接続し
て冷媒を循環させる冷凍サイクルと、前記蒸発器の出口
部と前記凝縮器の入口部とを前記凝縮器側から前記蒸発
器側への冷媒の流れを閉止する逆止弁を介して接続する
バイパス配管と、前記凝縮器の出口部と前記蒸発器の入
口部との間で前記減圧手段と並列に接続される液体搬送
手段と、前記液体搬送手段の接続された並列部の流路を
開閉する開閉弁と、前記開閉弁の開閉動作と前記圧縮機
の運転/停止動作と前記液体搬送装置の運転/停止動作
を制御する制御装置と、前記蒸発器に流入する被冷却流
体の温度を検出する第1温度検出手段と、前記凝縮器に
流入する被加熱流体の温度を検出する第2温度検出手段
と、を備え、前記第1温度検出手段で検出した被冷却流
体の温度と前記第2温度検出手段で検出した被加熱流体
の温度との温度差が所定温度以下のときに前記開閉弁を
閉とし前記液体搬送装置を停止して前記圧縮機を運転
し、前記被加熱流体の温度と前記被冷却流体の温度との
温度差が所定温度よりも大きいときに前記開閉弁を開と
し前記圧縮機を停止して前記液体搬送装置を運転するよ
うに、前記制御装置によって前記開閉弁と前記圧縮機と
前記液体搬送装置のそれぞれの動作を制御することを特
徴とするものである。
Further, the air conditioner according to the present invention comprises a refrigeration cycle in which a compressor, a condenser, a decompression means and an evaporator are sequentially connected by piping to circulate a refrigerant, and an outlet of the evaporator and the condenser. A bypass pipe connecting an inlet with a check valve for closing the flow of refrigerant from the condenser side to the evaporator side, and between a condenser outlet and the evaporator inlet. A liquid transfer means connected in parallel with the pressure reducing means, an on-off valve for opening and closing a flow path of a parallel portion connected to the liquid transfer means, an on-off operation of the on-off valve, and a start / stop operation of the compressor. A control device for controlling the operation / stop operation of the liquid transfer device; first temperature detecting means for detecting the temperature of the fluid to be cooled flowing into the evaporator; and detecting the temperature of the fluid to be heated flowing into the condenser. And a second temperature detecting means that performs When the temperature difference between the temperature of the fluid to be cooled detected by the temperature detecting means and the temperature of the fluid to be heated detected by the second temperature detecting means is equal to or less than a predetermined temperature, the on-off valve is closed and the liquid transfer device is stopped. Operating the compressor, and when the temperature difference between the temperature of the fluid to be heated and the temperature of the fluid to be cooled is larger than a predetermined temperature, the on-off valve is opened to stop the compressor and the liquid transfer device The operation of the on-off valve, the compressor, and the liquid transfer device is controlled by the control device so as to operate.

【0019】また、本発明による空気調和機は、液体搬
送装置の出口部と蒸発器の入口部との間に第2減圧手段
を設けたことを特徴とするものである。
The air conditioner according to the present invention is characterized in that a second pressure reducing means is provided between the outlet of the liquid transfer device and the inlet of the evaporator.

【0020】また、本発明による空気調和機は、バイパ
ス配管の入口側接続部と圧縮機の入口部との間にアキュ
ムレータを設けたことを特徴とするものである。
Further, the air conditioner according to the present invention is characterized in that an accumulator is provided between the inlet side connection of the bypass pipe and the inlet of the compressor.

【0021】また、本発明による空気調和機は、バイパ
ス配管の入口側接続部とアキュムレータの入口部との間
に第3開閉弁を設けたことを特徴とするものである。
Further, the air conditioner according to the present invention is characterized in that a third on-off valve is provided between the inlet side connection of the bypass pipe and the inlet of the accumulator.

【0022】また、本発明による空気調和機は、圧縮機
の出口部とバイパス配管の出口側接続部との間に第4開
閉弁を設けたことを特徴とするものである。
Further, the air conditioner according to the present invention is characterized in that a fourth on-off valve is provided between the outlet of the compressor and the outlet-side connection of the bypass pipe.

【0023】また、本発明による空気調和機は、第4開
閉弁を、バイパス配管の出口側接続部から圧縮機の出口
部への冷媒の流れを閉止する逆止弁としたことを特徴と
するものである。
Further, the air conditioner according to the present invention is characterized in that the fourth on-off valve is a check valve for closing the flow of the refrigerant from the outlet side connection of the bypass pipe to the outlet of the compressor. Things.

【0024】また、本発明による空気調和機は、圧縮機
の出口部から減圧手段の入口部までの高圧配管と前記減
圧手段の出口部から前記圧縮機の入口部までの低圧配管
とを第5開閉弁を介した第2バイパス配管で接続したこ
とを特徴とするものである。
In the air conditioner according to the present invention, a high-pressure pipe from the outlet of the compressor to the inlet of the pressure reducing means and a low-pressure pipe from the outlet of the pressure reducing means to the inlet of the compressor are connected to the fifth. It is characterized by being connected by a second bypass pipe via an on-off valve.

【0025】また、本発明による空気調和機は、凝縮器
の出口部と液体搬送装置の入口部との間に液体貯溜手段
を設けたことを特徴とするものである。
The air conditioner according to the present invention is characterized in that liquid storage means is provided between the outlet of the condenser and the inlet of the liquid transfer device.

【0026】また、本発明による空気調和機は、凝縮器
の出口部と液体搬送装置の入口部との間を流れる冷媒を
過冷却する過冷却手段を備えたことを特徴とするもので
ある。
Further, the air conditioner according to the present invention is characterized in that the air conditioner is provided with supercooling means for supercooling the refrigerant flowing between the outlet of the condenser and the inlet of the liquid transfer device.

【0027】また、本発明による空気調和機は、過冷却
手段の冷熱源として、圧縮機運転でのアキュムレータ内
の冷媒液の蒸発潜熱を利用したことを特徴とするもので
ある。
Further, the air conditioner according to the present invention is characterized in that the latent heat of evaporation of the refrigerant liquid in the accumulator during the operation of the compressor is used as the cold heat source of the supercooling means.

【0028】また、本発明による空気調和機は、圧縮機
運転から液体搬送装置運転への運転切換え時に、減圧手
段または第2減圧手段の少なくともどちらか一方の減圧
の程度を変化させて、アキュムレータ内に貯溜した冷媒
を液体搬送装置運転の冷媒回路へ回収する冷媒回収運転
を行うことを特徴とするものである。
Further, the air conditioner according to the present invention changes the degree of pressure reduction of at least one of the pressure reducing means and the second pressure reducing means when the operation is switched from the operation of the compressor to the operation of the liquid transfer device, so that the inside of the accumulator is changed. A refrigerant recovery operation of recovering the refrigerant stored in the refrigerant circuit into the refrigerant circuit operated by the liquid transfer device.

【0029】また、本発明による空気調和機は、冷媒回
収運転を一定時間行なうことを特徴とするものである。
The air conditioner according to the present invention is characterized in that the refrigerant recovery operation is performed for a predetermined time.

【0030】また、本発明による空気調和機は、第1温
度検出手段で検出した被冷却流体の温度または第2温度
検出手段で検出した被加熱流体の温度に応じて冷媒回収
運転の時間または冷媒回収運転時の減圧手段の減圧の程
度を設定して前記冷媒回収運転を行うことにより、アキ
ュムレータから液体搬送装置運転での冷媒回路への回収
冷媒量を制御したことを特徴とするものである。
Further, the air conditioner according to the present invention provides a refrigerant recovery operation time or a refrigerant recovery operation depending on the temperature of the fluid to be cooled detected by the first temperature detecting means or the temperature of the fluid to be heated detected by the second temperature detecting means. The amount of refrigerant collected from the accumulator to the refrigerant circuit in the operation of the liquid transfer device is controlled by setting the degree of pressure reduction of the pressure reducing means during the recovery operation and performing the refrigerant recovery operation.

【0031】また、本発明による空気調和機は、減圧手
段とその下流側で蒸発器までの配管を、前記蒸発器を収
納する箱体内に配置したことを特徴とするものである。
Further, the air conditioner according to the present invention is characterized in that the pressure reducing means and the piping downstream of the means to the evaporator are arranged in a box housing the evaporator.

【0032】また、本発明による空気調和機は、蒸発器
と凝縮器のいずれか一方を収納する箱体を室内機とし、
前記蒸発器と前記凝縮器の他方と圧縮機と液体搬送装置
を収納する箱体を室外機とし、前記室外機1台に対して
前記室内機を複数台接続する構成としたことを特徴とす
るものである。
Further, in the air conditioner according to the present invention, the box housing one of the evaporator and the condenser is an indoor unit,
A box housing the other of the evaporator and the condenser, a compressor and a liquid transfer device is an outdoor unit, and a plurality of the indoor units are connected to one outdoor unit. Things.

【0033】また、本発明による空気調和機の制御方法
は、圧縮機、凝縮器、減圧手段および蒸発器に冷媒を循
環させてなる冷凍サイクルと、液体搬送装置で前記蒸発
器と前記凝縮器間に冷媒を循環させてなる熱輸送サイク
ルとを備える空気調和機において、前記蒸発器に流入す
る被冷却流体の温度を検出するステップと、前記凝縮器
に流入する被加熱流体の温度を検出するステップと、前
記被冷却流体の温度を検出するステップで検出した被加
熱流体の温度と前記被冷却流体の温度を検出するステッ
プで検出した被加熱流体の温度との温度差が所定温度以
下のときに前記冷凍サイクルを動作させるステップと、
前記被冷却流体の温度を検出するステップで検出した被
加熱流体の温度と前記被冷却流体の温度を検出するステ
ップで検出した被加熱流体の温度との温度差が所定温度
よりも大きいときに前記熱輸送サイクルを動作させるス
テップとを備えたことを特徴とするものである。
Further, the method for controlling an air conditioner according to the present invention includes a refrigeration cycle in which a refrigerant is circulated through a compressor, a condenser, a pressure reducing means, and an evaporator, Detecting the temperature of the fluid to be cooled flowing into the evaporator, and detecting the temperature of the fluid to be heated flowing into the condenser in an air conditioner including a heat transport cycle that circulates a refrigerant through the condenser. And when the temperature difference between the temperature of the fluid to be heated detected in the step of detecting the temperature of the fluid to be cooled and the temperature of the fluid to be heated detected in the step of detecting the temperature of the fluid to be cooled is equal to or less than a predetermined temperature. Operating the refrigeration cycle;
When the temperature difference between the temperature of the heated fluid detected in the step of detecting the temperature of the cooled fluid and the temperature of the heated fluid detected in the step of detecting the temperature of the cooled fluid is greater than a predetermined temperature, Operating a heat transport cycle.

【0034】[0034]

【発明の実施の形態】実施の形態1.以下、本発明の実
施の形態1による空気調和機として例えば冷房装置につ
いて説明する。この空気調和機は年間を通して冷房が必
要な場所に利用されるものであり、図1は本実施の形態
に係る空気調和機を示す構成図である。図において、3
aは冷媒配管のガス配管、3bは冷媒配管の液配管、4
は圧縮機バイパス配管、10は室内機、11は冷媒液を
蒸発ガス化させる蒸発器、12は蒸発器側送風機、13
は減圧手段で例えば電子式膨張弁、20は室外機、21
は冷媒ガスを圧縮する圧縮機、22は冷媒ガスを冷却液
化させる凝縮器、23は液体搬送装置で例えば液ポンプ
であり、内部を流れる液冷媒を循環させる機能を有す
る。また、24は圧縮機バイパス配管4に設けられた開
閉弁(第1開閉弁)、26は凝縮器側送風機、27は冷
媒液を貯溜するアキュムレータ、28はアキュムレータ
27の入口部と圧縮機バイパス配管4の入口側接続部と
の間に設けられた開閉弁(第3開閉弁)で例えば電磁
弁、29は圧縮機21の出口部と圧縮機バイパス配管4
の出口側接続部との間に設けられた開閉弁(第4開閉
弁)で例えば電磁弁である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Hereinafter, for example, a cooling device will be described as an air conditioner according to Embodiment 1 of the present invention. This air conditioner is used in places requiring cooling throughout the year, and FIG. 1 is a configuration diagram showing an air conditioner according to the present embodiment. In the figure, 3
a is a gas pipe of a refrigerant pipe, 3b is a liquid pipe of a refrigerant pipe, 4
Is a compressor bypass pipe, 10 is an indoor unit, 11 is an evaporator for evaporating the refrigerant liquid into gas, 12 is an evaporator-side blower, 13
Is a pressure reducing means, for example, an electronic expansion valve, 20 is an outdoor unit, 21
Is a compressor for compressing the refrigerant gas, 22 is a condenser for cooling and liquefying the refrigerant gas, and 23 is a liquid transfer device, for example, a liquid pump, which has a function of circulating the liquid refrigerant flowing inside. Reference numeral 24 denotes an on-off valve (first on-off valve) provided in the compressor bypass pipe 4, 26 denotes a condenser-side blower, 27 denotes an accumulator for storing a refrigerant liquid, and 28 denotes an inlet of the accumulator 27 and a compressor bypass pipe. An on-off valve (third on-off valve) provided between the inlet side connection portion of the compressor 4 and a solenoid valve, for example.
The opening / closing valve (fourth opening / closing valve) provided between the outlet side connecting portion and the solenoid valve is, for example, a solenoid valve.

【0035】さらに、70は制御装置で、例えばマイク
ロコンピュータで構成され、開閉弁24,28,29の
開閉動作、圧縮機21の運転/停止動作、液ポンプ23
の運転/停止動作、膨張弁23の開度制御動作、蒸発器
側送風機12および凝縮器側送風機26の運転/停止動
作などを制御している。この制御装置70は例えば室外
機20の側面に取り付けられている。また、71,72
は第1,第2温度検出手段であり、第1温度検出手段7
1は蒸発器11に流入する被冷却流体の温度、この場合
には室内温度を検出する室内温度センサであり、第2温
度検出手段72は凝縮器22に流入する被加熱流体の温
度、この場合には外気温度を検出する外気温度センサで
ある。なお、制御装置70から蒸発器側送風機12およ
び凝縮器側送風機26への制御信号線は省略している。
Reference numeral 70 denotes a control device, which is constituted by, for example, a microcomputer.
, The opening / closing operation of the expansion valve 23, the operation / stop operation of the evaporator-side blower 12 and the condenser-side blower 26, and the like. The control device 70 is attached to, for example, a side surface of the outdoor unit 20. Also, 71, 72
Denotes first and second temperature detecting means, and the first temperature detecting means 7
1 is an indoor temperature sensor for detecting the temperature of the fluid to be cooled flowing into the evaporator 11, in this case, the indoor temperature. The second temperature detecting means 72 is the temperature of the fluid to be heated flowing into the condenser 22, in this case. Is an outside air temperature sensor for detecting the outside air temperature. Note that control signal lines from the control device 70 to the evaporator-side blower 12 and the condenser-side blower 26 are omitted.

【0036】室内機10は、液配管3bから流入した湿
り蒸気を空調対象空間の空調負荷によって蒸発させて冷
媒ガスとする蒸発器11、被冷却流体である室内空気を
強制的に蒸発器11の外表面に送風する蒸発器側送風機
12、温度センサ71より構成されている。また、室外
機20は、圧縮機21,凝縮器22,被加熱流体である
外気を強制的に凝縮器22の外表面に送風する凝縮器側
送風機26,液ポンプ23,凝縮器22を出た高温高圧
の冷媒液を減圧して二相状態の湿り蒸気とする電子式膨
張弁13、過渡的現象や冷媒の過充填などの場合に圧縮
機21への液戻りを防止するためのアキュムレータ2
7、液ポンプ運転時にアキュムレータ27への冷媒の流
入を防止する電磁弁28、液ポンプ運転時に圧縮機21
をバイパスするための電磁弁24を備えた圧縮機用バイ
パス配管4、液ポンプ運転時に圧縮機21への冷媒の流
入を防止する電磁弁29、外気温度センサ72より構成
されている。この電子式膨張弁13は凝縮器22の出口
部と蒸発器11の入口部の間の配管に接続され、液ポン
プ23は凝縮器22の出口部と電子式膨張弁13の入口
部の間に、電子式膨張弁13と直列になるように接続さ
れている。電子式膨張弁13は開度が可変であり、その
開度を設定することにより、冷媒の減圧の程度が設定で
きる。なお、図1では室内機10が室外機20よりも低
所に設置されているが、この高低の位置関係については
特に制限はない。また、図では室内機10および室外機
20の設置時に取り付けやすいように、室内機10と室
外機20にそれぞれ冷媒流入口と冷媒流出口とを設け、
室内機10の流出口と室外機20の流入口をガス配管3
aで接続し、室外機20の流出口と室内機10の流入口
を液配管3bで接続するように構成している。
The indoor unit 10 evaporates the wet steam flowing in from the liquid pipe 3b by the air conditioning load in the space to be air-conditioned, and turns the evaporator 11 into a refrigerant gas. It comprises an evaporator-side blower 12 for blowing air to the outer surface, and a temperature sensor 71. Further, the outdoor unit 20 exits the compressor 21, the condenser 22, the condenser-side blower 26 for forcibly blowing outside air as the fluid to be heated to the outer surface of the condenser 22, the liquid pump 23, and the condenser 22. An electronic expansion valve 13 that decompresses a high-temperature and high-pressure refrigerant liquid to produce a two-phase wet vapor, and an accumulator 2 for preventing liquid from returning to the compressor 21 in the event of a transient phenomenon or refrigerant overfilling.
7. Solenoid valve 28 for preventing refrigerant from flowing into accumulator 27 during operation of liquid pump, compressor 21 during operation of liquid pump
A compressor bypass pipe 4 having an electromagnetic valve 24 for bypassing the compressor, an electromagnetic valve 29 for preventing refrigerant from flowing into the compressor 21 during operation of the liquid pump, and an outside air temperature sensor 72. The electronic expansion valve 13 is connected to a pipe between the outlet of the condenser 22 and the inlet of the evaporator 11, and the liquid pump 23 is connected between the outlet of the condenser 22 and the inlet of the electronic expansion valve 13. , Are connected in series with the electronic expansion valve 13. The opening of the electronic expansion valve 13 is variable, and the degree of pressure reduction of the refrigerant can be set by setting the opening. Although the indoor unit 10 is installed at a lower place than the outdoor unit 20 in FIG. Further, in the drawing, the indoor unit 10 and the outdoor unit 20 are provided with a refrigerant inlet and a refrigerant outlet, respectively, so that the indoor unit 10 and the outdoor unit 20 can be easily attached at the time of installation.
A gas pipe 3 is connected to the outlet of the indoor unit 10 and the inlet of the outdoor unit 20.
a, and the outlet of the outdoor unit 20 and the inlet of the indoor unit 10 are connected by the liquid pipe 3b.

【0037】液ポンプ23としては、ロータリポンプや
渦巻ポンプや軸流ポンプなどのポンプが用いられる。例
えば、図2は液ポンプ23の一例としてロータリポンプ
に属する歯車ポンプの構成を示す模式図であり、ケーシ
ング23aの内部にロータである2つの歯車23b,2
3cをかみ合わせて収納した構造である。液ポンプ23
の運転時には歯車23b,23cがケーシング23aと
隙間を保ちながら回転し、回転している歯が入口側で分
かれる時に歯の間に流入した液体が満たされる。液体は
ケーシング23a内面と2枚の歯に囲まれて出口側に送
られ、ここで再び歯がかみ合うために歯の間の液体が吐
き出される。液ポンプ23の運転時に2つの歯車23
b,23cのうちの一方を回転駆動することにより、液
体が入口側から出口側へ押し出される。
As the liquid pump 23, a pump such as a rotary pump, a volute pump, or an axial flow pump is used. For example, FIG. 2 is a schematic diagram showing a configuration of a gear pump belonging to a rotary pump as an example of the liquid pump 23. Two gears 23b and 2 serving as rotors are provided inside a casing 23a.
This is a structure in which 3c is engaged and housed. Liquid pump 23
During the operation of, the gears 23b and 23c rotate while maintaining a clearance from the casing 23a, and the liquid flowing between the teeth when the rotating teeth separate at the inlet side is filled. The liquid is sent to the outlet side surrounded by the inner surface of the casing 23a and the two teeth, where the liquid between the teeth is discharged to engage the teeth again. When the liquid pump 23 is operated, two gears 23
By rotating one of b and 23c, the liquid is pushed out from the inlet side to the outlet side.

【0038】ここでまず、圧縮機21を動作させる圧縮
機運転モードについて説明する。電子式膨張弁13の開
度を、例えば凝縮器22の出口部の過冷却度が一定値と
なるように設定し、電磁弁24を閉、電磁弁28,29
を開とし、圧縮機21を運転し液ポンプ23を停止状態
とする。この時冷媒は、圧縮機21→電磁弁29→凝縮
器22→液ポンプ23→電子式膨張弁13→液配管3b
→蒸発器11→ガス配管3a→電磁弁28→アキュムレ
ータ27→圧縮機21の順で冷媒回路内を循環し、冷凍
サイクルが構成される。圧縮機21によって高温高圧と
なった冷媒は、凝縮器22において凝縮器側送風機26
で取り込まれた外気と熱交換することによって冷媒は凝
縮され冷媒液となる。そして電子式膨張弁13で減圧さ
れ二相状態となって蒸発器11に流入する。蒸発器11
において冷媒は、室内空気を冷却し自らは蒸発して冷媒
ガスとなる。
First, a compressor operation mode for operating the compressor 21 will be described. The degree of opening of the electronic expansion valve 13 is set so that the degree of supercooling at the outlet of the condenser 22 becomes a constant value, the electromagnetic valve 24 is closed, and the electromagnetic valves 28 and 29 are set.
Is opened, the compressor 21 is operated, and the liquid pump 23 is stopped. At this time, the refrigerant flows from the compressor 21 → the solenoid valve 29 → the condenser 22 → the liquid pump 23 → the electronic expansion valve 13 → the liquid pipe 3b.
→ The evaporator 11 → the gas pipe 3 a → the solenoid valve 28 → the accumulator 27 → the compressor 21 circulates in the refrigerant circuit in this order to form a refrigeration cycle. The high-temperature and high-pressure refrigerant generated by the compressor 21 is supplied to the condenser-side blower 26 in the condenser 22.
The refrigerant is condensed into a refrigerant liquid by exchanging heat with the outside air taken in at step (1). Then, the pressure is reduced by the electronic expansion valve 13 to be in a two-phase state and flows into the evaporator 11. Evaporator 11
, The refrigerant cools the indoor air and evaporates itself to become a refrigerant gas.

【0039】上記のように冷媒を循環させることによ
り、室内側において、蒸発器11に送風された室内空気
は、蒸発器11において冷媒と熱交換することにより冷
却されて、再び室内へ吹出されて冷房が行われる。一
方、室外側において、凝縮器22に送風された外気は、
凝縮器22において冷媒に冷熱を与え自らは加熱されて
再び室外に吹出される。
By circulating the refrigerant as described above, the indoor air blown to the evaporator 11 on the indoor side is cooled by exchanging heat with the refrigerant in the evaporator 11, and is again blown into the room. Cooling is performed. On the other hand, on the outdoor side, the outside air blown to the condenser 22 is:
In the condenser 22, the refrigerant gives cold heat and is heated itself and blown out of the room again.

【0040】この時、液ポンプ23内を冷媒が流通する
構成としたが、液ポンプ23は例えば図2のような構成
であり、その運転を停止していてもケーシング23aと
歯車23b,23c間や中央部分の歯車23b,23c
間を通過する。この通過の際流動抵抗が生じるので電子
式膨張弁13の開度は、この圧縮機運転の冷媒回路に液
ポンプ23が含まれない場合と比較すると大きくする必
要がある。ただし、ケーシング23aと歯車23b,2
3cとの隙間の設定によって液ポンプ23内部を通過す
る時の流動抵抗は調節可能である。また、この圧縮機運
転モードで液ポンプ23を停止とせず圧縮機21と液ポ
ンプ23を同時に運転してもよい。この場合には、冷媒
回路内に液ポンプ23が含まれていても、液ポンプ23
内部を冷媒が通過する際の流動抵抗を減少でき、電子式
膨張弁13の開度を通常の圧縮機運転と同等にすること
ができ、電子式膨張弁13の開度の制御は液ポンプ運転
を併用しない場合のものを適用することができる。
At this time, the refrigerant is circulated in the liquid pump 23. However, the liquid pump 23 has, for example, a structure as shown in FIG. And gears 23b and 23c at the center
Pass through. Since flow resistance occurs during this passage, the opening of the electronic expansion valve 13 needs to be larger than that in the case where the liquid pump 23 is not included in the refrigerant circuit for operating the compressor. However, the casing 23a and the gears 23b, 2
The flow resistance when passing through the inside of the liquid pump 23 can be adjusted by setting the gap with 3c. Further, in this compressor operation mode, the compressor 21 and the liquid pump 23 may be operated simultaneously without stopping the liquid pump 23. In this case, even if the liquid pump 23 is included in the refrigerant circuit, the liquid pump 23
The flow resistance when the refrigerant passes through the inside can be reduced, the opening of the electronic expansion valve 13 can be made equal to the ordinary compressor operation, and the opening of the electronic expansion valve 13 is controlled by the liquid pump operation. Can be applied when not used together.

【0041】次に、液ポンプ運転モードについて説明す
る。電磁弁24を開、電磁弁28,29を閉とし、電子
式膨張弁13の開度を、例えば蒸発器11の出口部の過
熱度が一定値となるように設定して液ポンプ23を運転
し圧縮機21を停止状態にする。この時冷媒は、液ポン
プ23→電子式膨張弁13→液配管3b→蒸発器11→
ガス配管3a→電磁弁24→凝縮器22→液ポンプ23
の順で冷媒回路内を循環し、蒸発器11と凝縮器22間
で熱輸送サイクルが構成される。循環する冷媒は、凝縮
器22において凝縮器側送風機26で取り込まれた室外
空気と熱交換することによって凝縮され冷媒液となって
蒸発器11に流入する。ここで冷媒は、室内空気を冷却
し自らは蒸発し冷媒ガスとなる。このような動作によっ
て室内の冷房運転が行われる。圧縮機運転モードと液ポ
ンプ運転モードにおいて、電磁弁24,電磁弁28,電
磁弁29,圧縮機21,液ポンプ23,電子式膨張弁1
3の動作状態をまとめて表1に示す。
Next, the liquid pump operation mode will be described. The electromagnetic pump 24 is opened, the electromagnetic valves 28 and 29 are closed, and the opening degree of the electronic expansion valve 13 is set such that the degree of superheat at the outlet of the evaporator 11 becomes constant, for example, and the liquid pump 23 is operated. Then, the compressor 21 is stopped. At this time, the refrigerant is supplied from the liquid pump 23 → the electronic expansion valve 13 → the liquid pipe 3b → the evaporator 11 →
Gas pipe 3a → solenoid valve 24 → condenser 22 → liquid pump 23
, And a heat transport cycle is formed between the evaporator 11 and the condenser 22. The circulating refrigerant is condensed by exchanging heat with the outdoor air taken in by the condenser-side blower 26 in the condenser 22 to be condensed into a refrigerant liquid and flow into the evaporator 11. Here, the refrigerant cools the indoor air and evaporates itself to become a refrigerant gas. The indoor cooling operation is performed by such an operation. In the compressor operation mode and the liquid pump operation mode, the solenoid valve 24, the solenoid valve 28, the solenoid valve 29, the compressor 21, the liquid pump 23, the electronic expansion valve 1
Table 1 summarizes the operation states of No.3.

【0042】[0042]

【表1】 [Table 1]

【0043】圧縮機運転モードと液ポンプ運転モードの
切換えは、制御装置70によって行なう。この切換えの
制御手順について図3に基づいて説明する。例えば第1
温度センサ71で検出した室内温度と第2温度センサ7
2で検出した外気温度との温度差に基づいて運転モード
を切換える。以下、室内温度を外気温度との温度差をΔ
Tと記す。ST1では、第1温度センサ71で室内温度
を検出し、検出した室内温度と予め設定してある設定温
度とをST2で比較する。室内温度が設定温度以下の時
には空気調和機を運転する必要がないので、運転中の場
合には運転を停止する(ST3,ST4)。ST2の判
断で、室内温度が設定温度よりも高い時には冷房を行な
う必要がある。このため、ST5で第2温度センサ72
によって外気温度を検出し、室内温度と室外温度との温
度差ΔTを計算する。温度差ΔTが第1所定温度、例え
ば5℃と比較し(ST5)、5℃以下になった場合に
は、圧縮機運転モードによって切換えて冷房を行なう
(ST7,ST8)。温度差ΔTが第2所定温度、例え
ば10℃と比較し(ST9)、10℃以上になった場合
には、外気の冷熱を利用した液ポンプ運転モードに切換
える(ST9,ST10)。ここで、両運転モードを切
換える時のΔTの閾値を、圧縮機運転モードと液ポンプ
運転モードで同一の所定温度に設定してもよいが、上記
のように第1所定温度と第2所定温度とを異なるように
設定しておくと、圧縮機21と液ポンプ23の発停が頻
繁に繰り返されるのを防止することができる。また、凝
縮器22に流入する被加熱流体の温度として、外気温度
を検出する代わりに、凝縮器22の出口部から液ポンプ
23の入口部までの配管の温度を検知し、この配管温度
と室内温度との温度差で圧縮機運転モードと液ポンプ運
転モードを切換える構成としてもよい。これは、この部
分の配管を流通する冷媒の温度は、凝縮器22に流入す
る被加熱流体の温度とほぼ等しいとみなすことができる
からである。
Switching between the compressor operation mode and the liquid pump operation mode is performed by the control device 70. The switching control procedure will be described with reference to FIG. For example, the first
The room temperature detected by the temperature sensor 71 and the second temperature sensor 7
The operation mode is switched based on the temperature difference from the outside air temperature detected in step 2. Hereinafter, the difference between the indoor temperature and the outside air temperature is Δ
Recorded as T. In ST1, the first temperature sensor 71 detects the room temperature, and compares the detected room temperature with a preset set temperature in ST2. When the room temperature is equal to or lower than the set temperature, it is not necessary to operate the air conditioner. If the air conditioner is operating, the operation is stopped (ST3, ST4). If it is determined in ST2 that the room temperature is higher than the set temperature, it is necessary to perform cooling. Therefore, in ST5, the second temperature sensor 72
, The temperature difference ΔT between the indoor temperature and the outdoor temperature is calculated. The temperature difference ΔT is compared with a first predetermined temperature, for example, 5 ° C. (ST5), and when it becomes 5 ° C. or less, switching is performed depending on the compressor operation mode to perform cooling (ST7, ST8). The temperature difference ΔT is compared with a second predetermined temperature, for example, 10 ° C. (ST9), and when it becomes 10 ° C. or more, the operation mode is switched to the liquid pump operation mode using the cool air of the outside air (ST9, ST10). Here, the threshold value of ΔT when switching between the two operation modes may be set to the same predetermined temperature in the compressor operation mode and the liquid pump operation mode, but as described above, the first predetermined temperature and the second predetermined temperature may be set. Is set differently, it is possible to prevent the compressor 21 and the liquid pump 23 from being repeatedly started and stopped frequently. Also, instead of detecting the outside air temperature as the temperature of the fluid to be heated flowing into the condenser 22, the temperature of the pipe from the outlet of the condenser 22 to the inlet of the liquid pump 23 is detected, and this pipe temperature and the indoor temperature are detected. The configuration may be such that the compressor operation mode and the liquid pump operation mode are switched based on a temperature difference from the temperature. This is because the temperature of the refrigerant flowing through this part of the pipe can be regarded as substantially equal to the temperature of the fluid to be heated flowing into the condenser 22.

【0044】ところで、圧縮機運転モードと液ポンプ運
転モードを比較すると、液ポンプ運転モードでは、液配
管3bが完全に液で満たされることに加え、キャビテー
ションの発生防止のため液ポンプ23の入口部の過冷却
度を大きくする必要があることから、適正冷媒量は圧縮
機運転モード時と比較して液ポンプ運転モード時の方が
多くなる。従って、液ポンプ運転モード時は液ポンプ運
転モードに関与しない冷媒回路内に冷媒が滞留するのを
極力防止する必要がある。しかし、図1のように室外機
20にアキュムレータ27が設置されている場合、圧縮
機運転モード時はアキュムレータ27内が低温低圧とな
るため、液ポンプ運転モードへの切換え後に冷媒がアキ
ュムレータ27へ流入しようとする。本実施の形態の空
気調和機では、アキュムレータ27の上流部に電磁弁2
8を設け、圧縮機運転モードの場合には開とし、液ポン
プ運転モードの場合には閉とする。電磁弁28によっ
て、液ポンプ運転モード時にアキュムレータ27への冷
媒の流入を防止し、液ポンプ運転モードに必要な冷媒量
を確保することができるため、常に安定した液ポンプ運
転モードが行われる。
By the way, comparing the compressor operation mode and the liquid pump operation mode, in the liquid pump operation mode, the liquid pipe 3b is completely filled with the liquid, and the inlet portion of the liquid pump 23 is prevented to prevent cavitation. Since it is necessary to increase the degree of subcooling of the compressor, the appropriate amount of refrigerant is larger in the liquid pump operation mode than in the compressor operation mode. Therefore, in the liquid pump operation mode, it is necessary to prevent the refrigerant from staying in the refrigerant circuit not involved in the liquid pump operation mode as much as possible. However, when the accumulator 27 is installed in the outdoor unit 20 as shown in FIG. 1, the refrigerant flows into the accumulator 27 after switching to the liquid pump operation mode because the inside of the accumulator 27 is at low temperature and low pressure during the compressor operation mode. try to. In the air conditioner of the present embodiment, the solenoid valve 2 is provided upstream of the accumulator 27.
8, which is opened in the compressor operation mode and closed in the liquid pump operation mode. The electromagnetic valve 28 can prevent the refrigerant from flowing into the accumulator 27 in the liquid pump operation mode, and can secure the required amount of refrigerant in the liquid pump operation mode, so that a stable liquid pump operation mode is always performed.

【0045】また、図22に示した従来の空気調和機で
は圧縮機21の出口部と圧縮機バイパス配管4の出口側
接続部との間の配管に電磁弁29は設けらていなかっ
た。これは、圧縮機運転モードから液ポンプ運転モード
への運転切換え直後では、圧縮機21の温度が圧縮機2
1自身の熱容量によって液ポンプ運転モード時の冷媒温
度よりも高く維持され、冷媒が流入しないためである。
しかし、冬季など外気温度が低い場合には室内温度と外
気温度との温度差が大きくなり、液ポンプ運転モードに
よって得られる冷房能力が増加するため、圧縮機21は
長時間停止状態となり、時間の経過に伴って圧縮機21
内の温度は外気温度まで低下する。このような場合、液
ポンプ運転モードの冷媒回路である圧縮機バイパス配管
4の出口側接続部から圧縮機21の吐出側へ徐々に冷媒
が流入して凝縮するため、液ポンプ運転モードに必要な
冷媒量が確保されないだけでなく、圧縮機運転モードに
切換える際の圧縮機起動時に液圧縮が発生して破損に至
るといった現象を生じる可能性がある。これに対して本
実施の形態の空気調和機では、圧縮機21出口部と圧縮
機バイパス配管4の出口側接続部との間に電磁弁29を
設けて液ポンプ運転モードで閉とする。このため、上記
のように圧縮機21内の温度が下がって外気温度まで低
下しても圧縮機21内へ冷媒が凝縮するのを防止し、液
ポンプ運転モードで必要な冷媒量を確保できると共に圧
縮機21の信頼性を向上することができる。
In the conventional air conditioner shown in FIG. 22, the solenoid valve 29 is not provided in a pipe between the outlet of the compressor 21 and the outlet side connection of the compressor bypass pipe 4. This is because immediately after the operation is switched from the compressor operation mode to the liquid pump operation mode, the temperature of the compressor 21 becomes lower than that of the compressor 2.
This is because the temperature of the refrigerant is maintained higher than that in the liquid pump operation mode by the heat capacity of the refrigerant itself, and the refrigerant does not flow.
However, when the outside air temperature is low, such as in winter, the temperature difference between the indoor temperature and the outside air temperature increases, and the cooling capacity obtained by the liquid pump operation mode increases. Compressor 21 over time
The temperature inside decreases to the outside temperature. In such a case, the refrigerant gradually flows into the discharge side of the compressor 21 from the outlet side connection portion of the compressor bypass pipe 4 which is the refrigerant circuit in the liquid pump operation mode, and condenses. Not only the amount of the refrigerant is not ensured, but also a phenomenon that liquid compression occurs at the time of starting the compressor when switching to the compressor operation mode to cause breakage may occur. On the other hand, in the air conditioner of the present embodiment, the solenoid valve 29 is provided between the outlet of the compressor 21 and the outlet side connection of the compressor bypass pipe 4, and is closed in the liquid pump operation mode. For this reason, even if the temperature in the compressor 21 falls as described above and drops to the outside air temperature, it is possible to prevent the refrigerant from condensing into the compressor 21 and to secure the required amount of refrigerant in the liquid pump operation mode. The reliability of the compressor 21 can be improved.

【0046】ところで、液ポンプ運転モードで用いる冷
媒の特性としては、蒸発器11や凝縮器22の熱交換器
における熱伝達率が大きいこと、熱交換器および液配管
やガス配管における圧力損失が小さいことが要求され
る。そこで、オゾン層破壊係数(ODP)が0であり液
ポンプ運転モードに適したHFC系冷媒としては、R4
10Aが挙げられる。図4、図5および図6は、平滑管
におけるR22とR410Aの蒸発熱伝達率、凝縮熱伝
達率、圧力損失を比較したものである。図4、図5およ
び図6の横軸は質量速度G(kg/m2 ・S)、縦軸は
それぞれ蒸発熱伝達率HTC(W/m2 ・K)、凝縮熱
伝達率HTC(W/m2 ・K)、蒸発器における二相域
での圧力損失△P(kPa)である。各図において、黒
丸はR22の場合の測定値,実線はR22の場合の特性
曲線、三角はR410Aの場合の測定値、一点鎖線はR
410Aの場合の特性曲線であり、図4では蒸発器の伝
熱管の管内径di=6.8mm、乾き度X=0.2〜
0.9、図5では凝縮器の伝熱管の管内径di=6.8
mm、過熱度SH=1℃、過冷却度SC=1〜3℃、図
6では蒸発器の伝熱管の管内径di=6.8mm、管の
長さL=5mという条件での特性である。これらの図か
らわかるように、R22に対するR410Aの蒸発熱伝
達率は1.2〜1.5倍、凝縮熱伝達率は0.8〜1.
0倍、圧力損失は0.5〜0.8倍となる。凝縮熱伝達
率の低下率に比べて蒸発熱伝達率の増加率が大きく、か
つ圧力損失が小さくなることから、室内温度と外気温度
との温度差が一定の場合、R410AはR22に比べて
冷媒循環量が大きくなり、大きな冷房能力が得られる。
従って、R410Aはオゾン層破壊係数が0であり、か
つ液ポンプ運転により適した冷媒であると言える。
Incidentally, the characteristics of the refrigerant used in the liquid pump operation mode include a large heat transfer coefficient in the heat exchanger of the evaporator 11 and the condenser 22, and a small pressure loss in the heat exchanger, the liquid pipe and the gas pipe. Is required. Therefore, as an HFC-based refrigerant having an ozone layer depletion coefficient (ODP) of 0 and suitable for the liquid pump operation mode, R4
10A. FIGS. 4, 5, and 6 compare the evaporative heat transfer coefficient, the condensed heat transfer coefficient, and the pressure loss of R22 and R410A in a smooth tube. 4, 5 and 6, the horizontal axis is mass velocity G (kg / m 2 · S), and the vertical axis is evaporation heat transfer coefficient HTC (W / m 2 · K) and condensation heat transfer coefficient HTC (W / m 2 · K), the pressure loss ΔP (kPa) in the two-phase region in the evaporator. In each figure, solid circles represent measured values for R22, solid lines represent characteristic curves for R22, triangles represent measured values for R410A, and dashed lines represent R.
It is a characteristic curve in the case of 410A. In FIG. 4, the inside diameter di of the heat transfer tube of the evaporator is di = 6.8 mm, and the dryness X is 0.2 to 0.2 mm.
0.9, and in FIG. 5 the inner diameter di = 6.8 of the heat transfer tube of the condenser.
mm, superheat degree SH = 1 ° C., supercool degree SC = 1 to 3 ° C., FIG. 6 shows the characteristics under the conditions that the inner diameter of the heat transfer tube of the evaporator is di = 6.8 mm, and the length of the tube is L = 5 m. . As can be seen from these figures, the evaporation heat transfer coefficient of R410A to R22 is 1.2 to 1.5 times, and the condensation heat transfer coefficient is 0.8 to 1.
0 times and the pressure loss is 0.5 to 0.8 times. Since the rate of increase of the evaporative heat transfer rate is larger than the rate of decrease of the condensed heat transfer rate and the pressure loss is smaller, when the temperature difference between the room temperature and the outside air temperature is constant, R410A is more refrigerant than R22. The circulation amount is increased, and a large cooling capacity is obtained.
Therefore, it can be said that R410A is a refrigerant having an ozone layer destruction coefficient of 0 and more suitable for liquid pump operation.

【0047】また、炭化水素冷媒であるプロパンやイソ
ブタンはオゾン層破壊係数が0であると共に、R22や
R410Aなどのフロン系冷媒に比べて地球温暖化能力
(GWP)が1オーダー以上小さく、地球環境に対して
害の少ない冷媒である。図7、図8および図9は平滑管
における炭化水素冷媒であるプロパン(R290),イ
ソブタン(R600a)、フロン系冷媒であるR22,
R407C,R410Aの蒸発熱伝達率、凝縮熱伝達
率、圧力損失△Pを示している。図7、図8および図9
の横軸は質量速度G(kg/m2 ・S)、縦軸はそれぞ
れ蒸発熱伝達率(W/m2 ・K)、凝縮熱伝達率(W/
2 ・K)、二相域での圧力損失(kPa)である。図
7では平滑管の管内径di=7mm、蒸発温度Te=5
℃、乾き度X=0.2〜0.9、配管長さL=5m、図
8では平滑管の管内径di=7mm、凝縮温度Tc=5
0℃、図9では平滑管の管内径di=7mm、蒸発温度
Te=5℃、乾き度X=0.2〜0.9、配管長さL=
5mという条件での特性である。図7および図8からわ
かるように、同一質量速度におけるR22に対するプロ
パン(R290)の蒸発熱伝達率は2.3倍程度、凝縮
熱伝達率は1.3倍程度であり、イソブタン(R600
a)に対しても蒸発熱伝達率は1.6倍程度、凝縮熱伝
達率は同等程度の優れた伝熱性能を有している。また、
同一質量速度における圧力損失はR22に対しては2倍
程度となるが、イソブタン(R600a)に対しては
0.5倍程度の値となるため、地球環境に対して害が少
なくかつ液ポンプ運転モードにおいてR22と同等の冷
房性能が得られる炭化水素冷媒である。なお、ここでは
炭化水素冷媒としてプロパン(R290)が液ポンプ運
転モードに適していることを示したが、熱伝達率が大き
く圧力損失の小さい他の炭化水素冷媒や炭化水素冷媒を
含む混合冷媒を用いても同様の効果を発揮する。
The hydrocarbon refrigerants propane and isobutane have an ozone depletion potential of 0 and a global warming capacity (GWP) that is at least one order of magnitude lower than that of fluorocarbon refrigerants such as R22 and R410A. It is a refrigerant that is less harmful to 7, 8, and 9 show propane (R290) and isobutane (R600a), which are hydrocarbon refrigerants, and R22, which is a CFC-based refrigerant, in a smooth tube.
It shows the evaporation heat transfer coefficient, the condensation heat transfer coefficient, and the pressure loss ΔP of R407C and R410A. 7, 8, and 9
The horizontal axis of is the mass velocity G (kg / m 2 · S), the vertical axis is the evaporation heat transfer coefficient (W / m 2 · K), and the condensation heat transfer coefficient (W /
m 2 · K), pressure loss (kPa) in the two-phase region. In FIG. 7, the inside diameter di of the smooth tube is 7 mm, and the evaporation temperature Te is 5
° C, dryness X = 0.2-0.9, pipe length L = 5 m, in FIG. 8, the pipe inner diameter di = 7 mm, and the condensation temperature Tc = 5.
9, the inner diameter di of the smooth tube is 7 mm, the evaporation temperature Te is 5 ° C., the dryness X is 0.2 to 0.9, and the pipe length L is 0 in FIG.
This is a characteristic under the condition of 5 m. As can be seen from FIGS. 7 and 8, the heat transfer coefficient of evaporation of propane (R290) with respect to R22 at the same mass velocity is about 2.3 times, the heat transfer coefficient of condensation is about 1.3 times, and isobutane (R600
As compared with a), the heat transfer coefficient of evaporation is about 1.6 times, and the heat transfer coefficient of condensation is about the same. Also,
The pressure loss at the same mass velocity is about twice as large for R22, but about 0.5 times for isobutane (R600a). This is a hydrocarbon refrigerant that can provide the same cooling performance as R22 in the mode. Here, propane (R290) was shown to be suitable for the liquid pump operation mode as a hydrocarbon refrigerant. Even when used, a similar effect is exhibited.

【0048】なお、液ポンプ23は、図2に示すような
歯車ポンプに限るものではない。液ポンプ運転時に流通
する液体を昇圧して冷媒回路を循環させ、液ポンプ23
停止時に流通する液体が液ポンプ23内の部材の隙間を
通過し得る構成のものならどのようなものを用いてもよ
い。
The liquid pump 23 is not limited to a gear pump as shown in FIG. During the operation of the liquid pump, the pressure of the liquid flowing therethrough is increased to circulate the refrigerant circuit.
Any liquid may be used as long as the liquid flowing at the time of stoppage can pass through the gap between the members in the liquid pump 23.

【0049】また、開閉弁24と開閉弁28との機能を
兼ね備えたものとして、圧縮機バイパス配管4の入口部
でアキュムレータ27の入口側への接続部に例えば三方
弁や四方弁などの多方向の流路を切換えることのできる
開閉弁を設けて、蒸発器11からアキュムレータ27へ
の流路と蒸発器11から凝縮器22への流路とを切換え
るように構成してもよい。2つの開閉弁24,28の機
能を1つの開閉弁で機能させることにより、1度の制御
で動作できるため制御装置70を簡素化できる。同様
に、開閉弁24と開閉弁29との機能を兼ね備えたもの
として、圧縮機バイパス配管4の出口部で圧縮機21の
出口側への接続部に例えば三方弁や四方弁などの多方向
の流路を切換えることのできる開閉弁を設けて、圧縮機
バイパス配管4から凝縮器22への流路と圧縮機21か
ら凝縮器22への流路とを切換えるように構成してもよ
い。この場合にも2つの開閉弁24,29の機能を1つ
の開閉弁で機能させることにより、1度の制御で動作で
きるため制御装置70を簡素化できる。
Also, as a valve having both the functions of the on-off valve 24 and the on-off valve 28, a multi-directional valve such as a three-way valve or a four-way valve is provided at the inlet of the compressor bypass pipe 4 to the inlet of the accumulator 27. An on-off valve capable of switching the flow path of the evaporator 11 may be provided to switch the flow path from the evaporator 11 to the accumulator 27 and the flow path from the evaporator 11 to the condenser 22. By making the functions of the two on-off valves 24 and 28 function with one on-off valve, the control device 70 can be operated by one control, so that the control device 70 can be simplified. Similarly, as a valve having the functions of the on-off valve 24 and the on-off valve 29, a multi-directional valve such as a three-way valve or a four-way valve is provided at the outlet of the compressor bypass pipe 4 to the outlet of the compressor 21. An on-off valve capable of switching the flow path may be provided to switch the flow path from the compressor bypass pipe 4 to the condenser 22 and the flow path from the compressor 21 to the condenser 22. In this case as well, by making the functions of the two on-off valves 24 and 29 function with one on-off valve, the control device 70 can be simplified because the operation can be performed by one control.

【0050】以上のように、この空気調和機では圧縮機
運転モードと液ポンプ運転モードとを備え、室内温度と
外気温度との温度差ΔTに応じて両運転を切換える構成
であり、液ポンプ運転モード時の消費電力は圧縮機運転
モード時と比較して1/10程度となるため、年間消費
電力の大幅削減が可能となる。また、室内温度が低く外
気温度との温度差が小さくなる、あるいは室内温度が外
気温度よりも低くなる条件において、不必要な液ポンプ
運転モードでの運転を防止することができる。このた
め、空気調和機の設置場所の環境状況に合わせて最適な
運転を行うことができる。また、液ポンプ23を電子式
膨張弁13と直列に接続し、圧縮機運転モードと液ポン
プ運転モードとで液ポンプ23付近の冷媒回路を切換え
ない構成としたので、切換え動作を簡単にでき、液ポン
プバイパス配管を設けて切換える構成と比較すると、室
外機20を小型化することができると共に制御装置70
を簡素化することができる。
As described above, this air conditioner is provided with the compressor operation mode and the liquid pump operation mode, and switches between the two operations in accordance with the temperature difference ΔT between the room temperature and the outside air temperature. Since the power consumption in the mode is about 1/10 of that in the compressor operation mode, the annual power consumption can be significantly reduced. Further, under the condition that the room temperature is low and the temperature difference from the outside air temperature is small, or the room temperature is lower than the outside air temperature, unnecessary operation in the liquid pump operation mode can be prevented. For this reason, optimal operation can be performed according to the environmental conditions of the installation location of the air conditioner. Further, since the liquid pump 23 is connected in series with the electronic expansion valve 13 and the refrigerant circuit near the liquid pump 23 is not switched between the compressor operation mode and the liquid pump operation mode, the switching operation can be simplified. As compared with a configuration in which the liquid pump bypass pipe is provided for switching, the outdoor unit 20 can be downsized and the control device 70
Can be simplified.

【0051】また、電磁弁28,29によって、液ポン
プ運転モード時に圧縮機21やアキュムレータ27への
冷媒の流入を防止し、液ポンプ運転モードで必要な冷媒
量を確保することができるため、常に安定した液ポンプ
運転モードで運転できる。また、冷媒として、R410
Aやプロパンを用いることにより、消費電力量が小さ
く、地球環境に対して害の少ない圧縮機運転モードと液
ポンプ運転モードを併用した空気調和機を得ることがで
きる。
Also, the solenoid valves 28 and 29 prevent the refrigerant from flowing into the compressor 21 and the accumulator 27 in the liquid pump operation mode, and can secure a necessary amount of refrigerant in the liquid pump operation mode. Can be operated in a stable liquid pump operation mode. As a refrigerant, R410
By using A or propane, it is possible to obtain an air conditioner that uses both a compressor operation mode and a liquid pump operation mode that consumes less power and is less harmful to the global environment.

【0052】実施の形態2.以下、本発明の実施の形態
2による空気調和機として例えば冷房装置について説明
する。図10は本実施の形態に係る空気調和機を示す構
成図である。ここでは、開閉弁24,29として逆止弁
を用い、例えばマイクロコンピュータで構成される制御
装置70は、開閉弁28の開閉動作、圧縮機21の運転
/停止動作、液ポンプ23の運転/停止動作、電子式膨
張弁23の開度制御動作、蒸発器側送風機12および凝
縮器側送風機26の運転/停止動作などを制御してお
り、実施の形態1で行っていた開閉弁24,29の開閉
動作の制御は行っていない。その他の各部は図1と同じ
構成である。
Embodiment 2 Hereinafter, for example, a cooling device will be described as an air conditioner according to Embodiment 2 of the present invention. FIG. 10 is a configuration diagram showing an air conditioner according to the present embodiment. Here, non-return valves are used as the on-off valves 24 and 29, and the control device 70 constituted by a microcomputer, for example, controls the on-off operation of the on-off valve 28, the operation / stop operation of the compressor 21, and the operation / stop of the liquid pump 23. It controls the operation, the opening control operation of the electronic expansion valve 23, the operation / stop operation of the evaporator-side blower 12 and the condenser-side blower 26, and the like, and controls the on-off valves 24 and 29 performed in the first embodiment. No opening / closing operation is controlled. Other components are the same as those in FIG.

【0053】逆止弁24は圧縮機バイパス配管4に設け
られた開閉弁で、例えば圧縮機バイパス配管4の設置箇
所における両端部の圧力差によって自動的に開閉する。
すなわち、圧縮機バイパス配管4において、(蒸発器1
1側の圧力)>(凝縮器22側の圧力)のときに開とな
り蒸発器11から凝縮器22への流れを通過させ、(蒸
発器11側の圧力)<(凝縮器22側の圧力)のときに
閉となり圧縮機21から吐出された冷媒が蒸発器11へ
流れるのを阻止する。また、逆止弁29は圧縮機21の
出口部と圧縮機バイパス配管4の出口側接続部との間に
設けられた開閉弁で、例えばその設置箇所における両端
部の圧力差によって自動的に開閉する。すなわち、逆止
弁24と同様の構成によって圧縮機21から凝縮器22
への流れを通過させ逆方向の流れを阻止する。
The check valve 24 is an opening / closing valve provided in the compressor bypass pipe 4 and automatically opens and closes, for example, according to a pressure difference between both ends at a place where the compressor bypass pipe 4 is installed.
That is, in the compressor bypass pipe 4, (the evaporator 1
It opens when (pressure on the side 1)> (pressure on the side of the condenser 22) and allows the flow from the evaporator 11 to the condenser 22 to pass therethrough, (pressure on the side of the evaporator 11) <(pressure on the side of the condenser 22). And the refrigerant discharged from the compressor 21 is prevented from flowing to the evaporator 11. The check valve 29 is an on-off valve provided between the outlet of the compressor 21 and the outlet-side connection of the compressor bypass pipe 4. For example, the check valve 29 automatically opens and closes due to a pressure difference between both ends of the installation location. I do. That is, the compressor 21 is connected to the condenser 22 by the same configuration as the check valve 24.
To prevent the flow in the opposite direction.

【0054】圧縮機運転モードの時には、制御装置70
によって、電子式膨張弁13の開度を、例えば凝縮器2
2の出口部の過冷却度が一定値となるように設定し、圧
縮機21を運転し液ポンプ23を停止状態とする。この
時、逆止弁24は圧縮機21の吐出圧力と吸入圧力との
圧力差で閉止され、逆止弁29は圧縮機21の吐出圧力
によって開放されて、圧縮機運転モードの冷媒回路が形
成される。すなわち、冷媒は、圧縮機21→逆止弁29
→凝縮器22→液ポンプ23→電子式膨張弁13→液配
管3b→蒸発器11→ガス配管3a→電磁弁28→アキ
ュムレータ27→圧縮機21の順で冷媒回路内を流動す
る。
In the compressor operation mode, the controller 70
Thus, the opening degree of the electronic expansion valve 13 is controlled, for example, by the condenser 2
The supercooling degree at the outlet of Step 2 is set to a constant value, the compressor 21 is operated, and the liquid pump 23 is stopped. At this time, the check valve 24 is closed by the pressure difference between the discharge pressure and the suction pressure of the compressor 21, and the check valve 29 is opened by the discharge pressure of the compressor 21 to form a refrigerant circuit in the compressor operation mode. Is done. That is, the refrigerant flows from the compressor 21 to the check valve 29.
The refrigerant flows through the refrigerant circuit in the order of the condenser 22, the liquid pump 23, the electronic expansion valve 13, the liquid pipe 3b, the evaporator 11, the gas pipe 3a, the solenoid valve 28, the accumulator 27, and the compressor 21.

【0055】液ポンプ運転モードの時には、制御装置7
0によって、電磁弁28を閉とすると共に、電子式膨張
弁13の開度を、例えば蒸発器11の出口部の過熱度が
一定値となるように設定して液ポンプ23を運転し圧縮
機21を停止状態にする。この時、逆止弁24は冷媒の
流れにより開放され逆止弁29は閉止されて、液ポンプ
運転モードの冷媒回路が形成される。すなわち、冷媒
は、液ポンプ23→電子式膨張弁13→液配管3b→蒸
発器11→ガス配管3a→逆止弁24→凝縮器22→液
ポンプ23の順で冷媒回路内を流動する。
In the liquid pump operation mode, the controller 7
0, the solenoid valve 28 is closed, and the opening of the electronic expansion valve 13 is set so that the degree of superheat at the outlet of the evaporator 11 becomes constant, for example, and the liquid pump 23 is operated to operate the compressor. 21 is stopped. At this time, the check valve 24 is opened by the flow of the refrigerant, and the check valve 29 is closed, so that the refrigerant circuit in the liquid pump operation mode is formed. That is, the refrigerant flows in the refrigerant circuit in the order of the liquid pump 23 → the electronic expansion valve 13 → the liquid pipe 3b → the evaporator 11 → the gas pipe 3a → the check valve 24 → the condenser 22 → the liquid pump 23.

【0056】本実施の形態による空気調和機の主な構成
および動作は、実施の形態1と同様であり、実施の形態
1と同様の効果を奏する。さらに本実施の形態では、圧
縮機21の冷媒回路への接続/切り離し動作を行う開閉
弁24を逆止弁で構成し、また、特に圧縮機運転から液
ポンプ運転への運転切換え直後に圧縮機21へ冷媒が流
入するのを阻止する開閉弁29を逆止弁で構成してい
る。逆止弁24,29はそれ自体が簡単な構造であり、
圧縮機21や液ポンプの起動に伴って自動的に開閉され
るので、これらに対しては制御装置70からの指令によ
る開閉制御が必要ない。このため、室外機20を小型化
できると共に制御装置70を簡素化することができると
いう効果もある。
The main configuration and operation of the air conditioner according to the present embodiment are the same as those of the first embodiment, and have the same effects as those of the first embodiment. Further, in the present embodiment, the on-off valve 24 for connecting / disconnecting the compressor 21 to / from the refrigerant circuit is constituted by a check valve. An on-off valve 29 for preventing the refrigerant from flowing into 21 is constituted by a check valve. The check valves 24 and 29 have a simple structure by themselves,
Opening / closing is automatically performed when the compressor 21 and the liquid pump are started, so that opening / closing control by a command from the control device 70 is not required for these. Therefore, the outdoor unit 20 can be downsized and the control device 70 can be simplified.

【0057】実施の形態3.以下、本発明の実施の形態
3による空気調和機として例えば冷房装置について説明
する。図11は本実施の形態による空気調和機を示す構
成図である。図において、40は液ポンプ23から吐出
される油を分離する油分離手段で例えば油分離器で、液
ポンプ23の出口部と電子式膨張弁13の入口部との間
に接続している。41は油分離器40で分離した油を液
ポンプ23の吸入部へ戻す油戻し手段で例えば潤滑油戻
し配管であり、一端が油分離器40の油貯溜部に接続さ
れ、他端が凝縮器22の出口部と液ポンプ23の入口部
との間の配管に接続されている。図中、図10と同一符
号は同一、または相当部分を示している。なお、制御装
置70から各機器への制御信号線の接続も図10と同様
であり、ここでは省略している。
Embodiment 3 Hereinafter, for example, a cooling device will be described as an air conditioner according to Embodiment 3 of the present invention. FIG. 11 is a configuration diagram showing an air conditioner according to the present embodiment. In the figure, reference numeral 40 denotes oil separating means for separating oil discharged from the liquid pump 23, for example, an oil separator, which is connected between the outlet of the liquid pump 23 and the inlet of the electronic expansion valve 13. Reference numeral 41 denotes oil return means for returning the oil separated by the oil separator 40 to the suction part of the liquid pump 23, for example, a lubricating oil return pipe, one end of which is connected to the oil storage part of the oil separator 40 and the other end of which is a condenser. It is connected to a pipe between the outlet of the liquid pump 22 and the inlet of the liquid pump 23. In the figure, the same reference numerals as those in FIG. 10 indicate the same or corresponding parts. The connection of the control signal line from the control device 70 to each device is the same as that in FIG. 10 and is omitted here.

【0058】室内機10は、液配管3bから流入した湿
り蒸気を空調対象空間の空調負荷によって蒸発させて冷
媒ガスとする蒸発器11、室内空気を強制的に蒸発器1
1の外表面に送風する蒸発器側送風機12、室内温度セ
ンサ71より構成されている。また、室外機20は、冷
媒ガスを圧縮する圧縮機21、この冷媒ガスを冷却液化
させる凝縮器22、外気を強制的に凝縮器22の外表面
に送風する凝縮器側送風機26、液ポンプ23、液ポン
プ23から吐出される油が蒸発器11の熱交換部や圧縮
機21へ流出するのを防止するための油分離器40、油
分離器40で分離した油を液ポンプ23の吸入側へ戻す
潤滑油戻し配管41、凝縮器22を出た高温高圧の冷媒
液を減圧して二相状態の湿り蒸気とする電子式膨張弁1
3、過渡的現象や冷媒の過充填などの場合に圧縮機21
への液戻りを防止するためのアキュムレータ27、液ポ
ンプ運転モード時にアキュムレータ27への冷媒の流入
を防止する電磁弁28、液ポンプ運転モード時に圧縮機
21およびアキュムレータ27をバイパスするための逆
止弁24、液ポンプ運転モード時に圧縮機21への冷媒
の流入を防止する逆止弁29、外気温度センサ72より
構成されている。液ポンプ23と電子式膨張弁13は凝
縮器22の出口部と蒸発器11の入口部との間の配管に
直列に接続されている。図では室内機10が室外機20
よりも低所に設置されているが、高低の位置関係につい
ては特に制限はない。
The indoor unit 10 evaporates the wet steam flowing from the liquid pipe 3b by the air-conditioning load of the space to be air-conditioned, and turns the evaporator 11 into a refrigerant gas.
1 comprises an evaporator-side blower 12 for blowing air to the outer surface and an indoor temperature sensor 71. The outdoor unit 20 includes a compressor 21 for compressing the refrigerant gas, a condenser 22 for cooling and liquefying the refrigerant gas, a condenser-side blower 26 for forcibly blowing outside air to the outer surface of the condenser 22, and a liquid pump 23. An oil separator 40 for preventing oil discharged from the liquid pump 23 from flowing out to the heat exchange section of the evaporator 11 and the compressor 21; Expansion valve 1 that reduces the temperature of the high-temperature and high-pressure refrigerant liquid that has exited the condenser 22 and converts it into a two-phase wet steam
3. Compressor 21 for transient phenomena or overfilling of refrigerant
Accumulator 27 for preventing liquid from returning to tank, solenoid valve 28 for preventing refrigerant from flowing into accumulator 27 in liquid pump operation mode, check valve for bypassing compressor 21 and accumulator 27 in liquid pump operation mode 24, a check valve 29 for preventing refrigerant from flowing into the compressor 21 in the liquid pump operation mode, and an outside air temperature sensor 72. The liquid pump 23 and the electronic expansion valve 13 are connected in series to a pipe between the outlet of the condenser 22 and the inlet of the evaporator 11. In the figure, the indoor unit 10 is the outdoor unit 20
Although it is installed at a lower place than the above, there is no particular limitation on the positional relationship between the heights.

【0059】この空気調和機では、圧縮機運転モードの
場合、制御装置70によって、電子式膨張弁13の開度
を、例えば凝縮器22の出口部の過冷却度が一定値とな
るように設定して圧縮機21を運転し液ポンプ23を運
転または停止状態にする。この時、逆止弁24は圧縮機
21の吐出圧力と吸入圧力との圧力差で閉止されて圧縮
機運転モードの冷媒回路が形成される。すなわち、冷媒
は、圧縮機21→逆止弁29→凝縮器22→液ポンプ2
3→油分離器40→電子式膨張弁13→液配管3b→蒸
発器11→ガス配管3a→電磁弁28→アキュムレータ
27→圧縮機21の順で冷媒回路内を流動し、冷房運転
が行われる。
In this air conditioner, in the compressor operation mode, the opening of the electronic expansion valve 13 is set by the control device 70 so that the degree of supercooling at the outlet of the condenser 22 becomes constant. Then, the compressor 21 is operated and the liquid pump 23 is operated or stopped. At this time, the check valve 24 is closed by the pressure difference between the discharge pressure and the suction pressure of the compressor 21 to form a refrigerant circuit in the compressor operation mode. That is, the refrigerant flows from the compressor 21 → the check valve 29 → the condenser 22 → the liquid pump 2
3 → oil separator 40 → electronic expansion valve 13 → liquid pipe 3b → evaporator 11 → gas pipe 3a → electromagnetic valve 28 → accumulator 27 → compressor 21 flows in the refrigerant circuit in this order, and the cooling operation is performed. .

【0060】また、液ポンプ運転モードを行う場合、制
御装置70によって、電磁弁28を閉止し、電子式膨張
弁13の開度を、例えば蒸発器11の出口部の過熱度が
一定値となるように設定する。そして、液ポンプ23を
運転し圧縮機21を停止状態とする。この時、逆止弁2
4は冷媒の流れにより開放されて液ポンプ運転モードの
冷媒回路が形成される。すなわち、冷媒は、液ポンプ2
3→油分離器40→電子式膨張弁13→液配管3b→蒸
発器11→ガス配管3a→逆止弁24→凝縮器22→液
ポンプ23の順で冷媒回路内を流動し、冷房運転が行わ
れる。
Further, when the liquid pump operation mode is performed, the solenoid valve 28 is closed by the control device 70, and the opening degree of the electronic expansion valve 13 becomes constant, for example, the degree of superheat at the outlet of the evaporator 11 becomes constant. Set as follows. Then, the liquid pump 23 is operated to stop the compressor 21. At this time, check valve 2
4 is opened by the flow of the refrigerant to form a refrigerant circuit in the liquid pump operation mode. That is, the refrigerant is supplied to the liquid pump 2
3 → oil separator 40 → electronic expansion valve 13 → liquid pipe 3b → evaporator 11 → gas pipe 3a → check valve 24 → condenser 22 → liquid pump 23 Done.

【0061】ところで、表2は、温度が10℃の時の、
水,R22,R410A,R407C,R404A,R
290,R600aの各冷媒の飽和液粘度(μPa・
s)を示している。一般に液ポンプ23内部には圧縮機
21のように摺動部の潤滑に用いられる潤滑油が含まれ
ず、搬送する流体(例えば、水)自身で摺動部の潤滑が
行われる。この潤滑効果は粘性の大きな流体の方が大き
く、フロンまたは炭化水素系の冷媒液は表2に示すよう
に水と比較すると、1オーダー程度粘性が小さい。従っ
て、フロン系または炭化水素系の冷媒を用いると、潤滑
効果が水に比べて小さいため、摺動部の潤滑不良から摩
耗の進行が速くなり、液ポンプ23を長時間運転する場
合には流量低下が生じる可能性がある。そこで、本実施
の形態では、油分離器40に液ポンプ23の摺動部の潤
滑用の油を封入しておき、この潤滑油を潤滑油戻し配管
41によって液ポンプ23の周囲にのみ循環させる。こ
のような短絡回路を形成することにより液ポンプ23の
部分のみ粘性を大きくすることができ、液ポンプ23を
長時間運転する場合の流量低下を防止することができ
る。
Table 2 shows that when the temperature was 10 ° C.
Water, R22, R410A, R407C, R404A, R
290, R600a Refrigerant saturated liquid viscosity (μPa ·
s). Generally, the inside of the liquid pump 23 does not contain the lubricating oil used for lubricating the sliding parts as in the compressor 21, and the sliding part is lubricated by the fluid to be conveyed (for example, water) itself. This lubricating effect is greater in a fluid having a large viscosity, and the viscosity of a refrigerant fluid of a chlorofluorocarbon or hydrocarbon series is smaller than that of water by about one order as shown in Table 2. Therefore, when a CFC-based or hydrocarbon-based refrigerant is used, since the lubricating effect is smaller than that of water, the progress of wear is accelerated due to poor lubrication of the sliding portion. Degradation can occur. Therefore, in the present embodiment, oil for lubricating the sliding portion of the liquid pump 23 is sealed in the oil separator 40, and this lubricating oil is circulated only around the liquid pump 23 by the lubricating oil return pipe 41. . By forming such a short circuit, the viscosity of only the liquid pump 23 can be increased, and a decrease in the flow rate when the liquid pump 23 is operated for a long time can be prevented.

【0062】[0062]

【表2】 [Table 2]

【0063】ここで、油分離器40に封入する潤滑油と
しては、圧縮機用潤滑油と同一の潤滑油が望ましい。こ
れは、圧縮機用潤滑油以外の潤滑油を液ポンプ用潤滑油
として用いると、圧縮機21の内部で圧縮機用潤滑油と
液ポンプ用潤滑油が混合され、圧縮機用潤滑油が分離あ
るいは希釈されて圧縮機21の潤滑不良が生じるためで
ある。また、油分離器40の分離方法としては圧縮機用
潤滑油が冷媒と互いに溶け合う相溶油の場合、例えば膜
分離、遠心分離などの分離方法を用いて分離することが
可能である。また、非相溶油に対しては次の2種類の構
造が考えられる。すなわち、潤滑油の比重が冷媒よりも
小さい場合、例えばアルキルベンゼンとR410Aとの
組合わせなどの場合には潤滑油が冷媒の上層となるた
め、上層から潤滑油を分離する構造とし、潤滑油の比重
が冷媒よりも大きい場合、例えばパーフルオロポリエー
テル油とR410Aとの組合わせなどの場合には潤滑油
が冷媒の下層となるため、下層から潤滑油を分離する構
造とする。
Here, as the lubricating oil sealed in the oil separator 40, the same lubricating oil as the lubricating oil for the compressor is desirable. This is because when a lubricating oil other than the lubricating oil for the compressor is used as the lubricating oil for the liquid pump, the lubricating oil for the compressor and the lubricating oil for the liquid pump are mixed inside the compressor 21, and the lubricating oil for the compressor is separated. Alternatively, the lubrication is diluted and poor lubrication of the compressor 21 occurs. Further, as a method of separating the oil separator 40, when the compressor lubricating oil is a compatible oil that is mutually soluble with the refrigerant, the oil can be separated using a separation method such as membrane separation or centrifugal separation. Further, the following two types of structures are considered for the incompatible oil. That is, when the specific gravity of the lubricating oil is smaller than that of the refrigerant, for example, in the case of a combination of alkylbenzene and R410A, the lubricating oil is the upper layer of the refrigerant. Is larger than the refrigerant, for example, in the case of a combination of perfluoropolyether oil and R410A, the lubricating oil forms the lower layer of the refrigerant, so that the lubricating oil is separated from the lower layer.

【0064】また、本実施の形態では、液ポンプ23の
周囲にのみ潤滑油を循環させる構成としたが、これは蒸
発器11や凝縮器22に潤滑油が混入すると伝熱性能の
低下や圧力損失の増大をもたらし、冷媒循環量の減少に
よる冷房能力の低下を引き起こすためである。従って、
潤滑油による冷房能力の低下が許容される場合には、あ
らかじめ圧縮機21の潤滑油量を既定値よりも多く充填
し、圧縮機21からの潤滑油吐出量を増大させ、冷媒回
路全体の循環油量を増加させるなどの方法を用いること
もできる。また、開閉弁24,29は逆止弁で構成する
ものに限らず、実施の形態1のように、電磁弁で構成し
その開閉動作を制御装置70で制御するように構成して
もよい。また、実施の形態1でも述べたが、圧縮機バイ
パス配管4の入口側や出口側に三方弁などの多方向の流
路を切換えることのできる開閉弁を設けてその開閉動作
を制御装置70で制御するように構成してもよい。
In this embodiment, the lubricating oil is circulated only around the liquid pump 23. However, when lubricating oil is mixed into the evaporator 11 or the condenser 22, the heat transfer performance is reduced and the pressure is reduced. This is because the loss increases and the cooling capacity decreases due to the decrease in the amount of circulating refrigerant. Therefore,
If a decrease in the cooling capacity due to the lubricating oil is allowed, the amount of the lubricating oil of the compressor 21 is filled in advance so as to be larger than a predetermined value, the amount of the lubricating oil discharged from the compressor 21 is increased, and the circulation of the entire refrigerant circuit is performed. A method such as increasing the amount of oil can also be used. Further, the on-off valves 24 and 29 are not limited to the check valves, but may be configured by electromagnetic valves and the opening and closing operations thereof are controlled by the control device 70 as in the first embodiment. As described in the first embodiment, an on-off valve such as a three-way valve, which can switch a multi-directional flow path, is provided on the inlet side and the outlet side of the compressor bypass pipe 4, and the on-off operation is controlled by the control device 70. You may comprise so that it may control.

【0065】以上のように、本実施の形態では、液ポン
プ23の周囲のみに潤滑油を循環させる短絡回路を設け
たため、液ポンプ23を長時間運転する場合の流量低下
を防止することができる。また、油分離器40と潤滑油
戻し配管41以外の構成は実施の形態2と同一であるた
め、実施の形態2と同様の効果を得ることができる。
As described above, in this embodiment, since the short circuit for circulating the lubricating oil is provided only around the liquid pump 23, it is possible to prevent the flow rate from decreasing when the liquid pump 23 is operated for a long time. . Further, the configuration other than the oil separator 40 and the lubricating oil return pipe 41 is the same as that of the second embodiment, so that the same effects as those of the second embodiment can be obtained.

【0066】実施の形態4.以下、本発明の実施の形態
4による空気調和機として例えば冷房装置について説明
する。図12は本実施の形態による空気調和機を示す構
成図である。図において、5は液ポンプ23をバイパス
するための逆止弁25を介した液ポンプバイパス配管で
ある。図において、図10と同一符号は同一、または相
当部分を示している。また、制御装置70から各機器へ
の制御信号線の接続も図10と同様であり、ここでは省
略している。なお、本実施の形態では、第2温度センサ
72を凝縮器22の出口部の配管温度を検出するものと
している。実施の形態1でも述べたが、凝縮器22に流
入する被加熱流体の温度として、外気温度を検出する代
わりに、凝縮器22の出口部から液ポンプ23の入口部
までの配管の温度を検知し、この配管温度と室内温度と
の温度差で圧縮機運転モードと液ポンプ運転モードを切
換えることもできる。これは、この部分の配管を流通す
る冷媒の温度は、凝縮器22に流入する被加熱流体の温
度とほぼ等しいとみなすことができるからである。
Embodiment 4 Hereinafter, for example, a cooling device will be described as an air conditioner according to Embodiment 4 of the present invention. FIG. 12 is a configuration diagram showing an air conditioner according to the present embodiment. In the figure, reference numeral 5 denotes a liquid pump bypass pipe via a check valve 25 for bypassing the liquid pump 23. In the figure, the same reference numerals as those in FIG. 10 indicate the same or corresponding parts. The connection of the control signal line from the control device 70 to each device is the same as in FIG. 10 and is omitted here. In the present embodiment, the second temperature sensor 72 detects the pipe temperature at the outlet of the condenser 22. As described in the first embodiment, the temperature of the pipe from the outlet of the condenser 22 to the inlet of the liquid pump 23 is detected instead of detecting the outside air temperature as the temperature of the fluid to be heated flowing into the condenser 22. The compressor operation mode and the liquid pump operation mode can be switched based on the temperature difference between the pipe temperature and the room temperature. This is because the temperature of the refrigerant flowing through this part of the pipe can be regarded as substantially equal to the temperature of the fluid to be heated flowing into the condenser 22.

【0067】室内機10は、液配管3bから流入した湿
り蒸気を空調対象空間の空調負荷によって蒸発させて冷
媒ガスとする蒸発器11、室内空気を強制的に蒸発器1
1の外表面に送風する蒸発器側送風機12、室内温度セ
ンサ71より構成されている。また、室外機20は、冷
媒ガスを圧縮する圧縮機21、この冷媒ガスを冷却液化
させる凝縮器22、外気を強制的に凝縮器22の外表面
に送風する凝縮器側送風機26、液ポンプ23、圧縮機
運転モード時に液ポンプ23をバイパスする逆止弁25
を介した液ポンプバイパス配管5、凝縮器22を出た高
温高圧の冷媒液を減圧して二相状態の湿り蒸気とする電
子式膨張弁13、過渡的現象や冷媒の過充填などの場合
に冷媒液を貯溜して圧縮機21への液戻りを防止するア
キュムレータ27、液ポンプ運転モード時にアキュムレ
ータ27への冷媒の流入を防止する電磁弁28、液ポン
プ運転モード時に圧縮機21およびアキュムレータ27
をバイパスするための逆止弁24を介した圧縮機バイパ
ス配管4、液ポンプ運転モード時に圧縮機21への冷媒
の流入を防止する逆止弁29、外気温度センサ72より
構成されている。液ポンプ23と電子式膨張弁13は凝
縮器22の出口部と蒸発器11の入口部の間の配管に直
列に接続されており、図12では室内機10が室外機2
0よりも低所に設置されているが、この高低の位置関係
については特に制限はない。
The indoor unit 10 comprises an evaporator 11 for evaporating the wet steam flowing from the liquid pipe 3b by the air conditioning load of the space to be air-conditioned and forming a refrigerant gas, and forcibly evaporating the indoor air.
1 comprises an evaporator-side blower 12 for blowing air to the outer surface and an indoor temperature sensor 71. The outdoor unit 20 includes a compressor 21 for compressing the refrigerant gas, a condenser 22 for cooling and liquefying the refrigerant gas, a condenser-side blower 26 for forcibly blowing outside air to the outer surface of the condenser 22, and a liquid pump 23. Check valve 25 that bypasses liquid pump 23 in compressor operation mode
, A liquid pump bypass pipe 5, an electronic expansion valve 13 that decompresses the high-temperature and high-pressure refrigerant liquid that has exited the condenser 22 to produce a two-phase wet vapor, in the case of a transient phenomenon or refrigerant overfilling. An accumulator 27 for storing the refrigerant liquid to prevent the liquid from returning to the compressor 21, an electromagnetic valve 28 for preventing the refrigerant from flowing into the accumulator 27 in the liquid pump operation mode, and the compressor 21 and the accumulator 27 in the liquid pump operation mode.
, A check valve 29 for preventing refrigerant from flowing into the compressor 21 in the liquid pump operation mode, and an outside air temperature sensor 72. The liquid pump 23 and the electronic expansion valve 13 are connected in series to a pipe between the outlet of the condenser 22 and the inlet of the evaporator 11, and in FIG.
Although it is installed at a position lower than 0, there is no particular limitation on the positional relationship between the heights.

【0068】この空気調和機では、圧縮機運転モードを
行う場合、制御装置70によって、電子式膨張弁13の
開度を、例えば凝縮器22の出口部の過冷却度が一定値
となるように設定して圧縮機21を運転し液ポンプ23
は停止状態とする。この時、逆止弁24は圧縮機21の
吐出圧力と吸入圧力との圧力差で閉止され、逆止弁25
は冷媒の流れにより開放されて圧縮機運転の冷媒回路が
形成される。すなわち、冷媒は、圧縮機21→逆止弁2
9→凝縮器22→逆止弁25→電子式膨張弁13→液配
管3b→蒸発器11→ガス配管3a→電磁弁28→アキ
ュムレータ27→圧縮機21の順で冷媒回路内を流動
し、冷房運転が行われる。
In this air conditioner, when the compressor operation mode is performed, the opening of the electronic expansion valve 13 is controlled by the control device 70 so that the degree of supercooling at the outlet of the condenser 22 becomes constant. After setting, the compressor 21 is operated and the liquid pump 23 is operated.
Is stopped. At this time, the check valve 24 is closed due to the pressure difference between the discharge pressure and the suction pressure of the compressor 21, and the check valve 25 is closed.
Is opened by the flow of the refrigerant to form a refrigerant circuit for compressor operation. That is, the refrigerant flows from the compressor 21 to the check valve 2
9 → condenser 22 → check valve 25 → electronic expansion valve 13 → liquid pipe 3b → evaporator 11 → gas pipe 3a → electromagnetic valve 28 → accumulator 27 → compressor 21 Driving is performed.

【0069】また、液ポンプ運転モードを行う場合、制
御装置70によって、電磁弁28を閉止し、電子式膨張
弁13の開度を、例えば蒸発器11の出口部の過熱度が
一定値となるように設定して液ポンプ23を運転し圧縮
機21を停止状態とする。この時、逆止弁24は冷媒の
流れにより開放され、逆止弁25は液ポンプ23の吐出
圧力と吸入圧力との圧力差で閉止されて液ポンプ運転モ
ードの冷媒回路が形成される。すなわち、冷媒は、液ポ
ンプ23→電子式膨張弁13→液配管3b→蒸発器11
→ガス配管3a→逆止弁24→凝縮器22→液ポンプ2
3の順で冷媒回路内を流動し、冷房運転が行われる。
When the liquid pump operation mode is performed, the control device 70 closes the solenoid valve 28 and sets the opening of the electronic expansion valve 13 to a constant value, for example, the degree of superheat at the outlet of the evaporator 11. Then, the liquid pump 23 is operated and the compressor 21 is stopped. At this time, the check valve 24 is opened by the flow of the refrigerant, and the check valve 25 is closed by the pressure difference between the discharge pressure and the suction pressure of the liquid pump 23 to form a refrigerant circuit in the liquid pump operation mode. That is, the refrigerant is supplied from the liquid pump 23 → the electronic expansion valve 13 → the liquid pipe 3b → the evaporator 11
→ gas pipe 3a → check valve 24 → condenser 22 → liquid pump 2
The refrigerant flows in the refrigerant circuit in the order of 3, and the cooling operation is performed.

【0070】本実施の形態による空気調和機は、図22
の従来装置において、開閉弁24と開閉弁25をそれぞ
れ逆止弁で構成したことになる。逆止弁は、圧縮機21
または液ポンプ23の運転によって生じる冷媒の圧力差
で自動的に開閉されるものであり、制御装置70からの
指令による開閉操作が必要ない。このため、運転モード
切換え時に圧縮機21や液ポンプ23の起動に伴って無
制御で開閉される簡易な構造となり、室外機を小型化す
ることができると共に、制御装置70を簡素化すること
ができる。また、開閉弁24,29は逆止弁で構成する
ものに限らず、実施の形態1のように、電磁弁で構成し
その開閉動作を制御装置70で制御するように構成して
も、逆止弁25で構成したことによる効果はある。ま
た、実施の形態1でも述べたが、圧縮機バイパス配管4
の入口側や出口側に三方弁などの多方向の流路を切換え
ることのできる開閉弁を設けてその開閉動作を制御装置
70で制御するように構成してもよい。
The air conditioner according to the present embodiment has the structure shown in FIG.
In the prior art device, the opening / closing valve 24 and the opening / closing valve 25 are each constituted by a check valve. The check valve is connected to the compressor 21
Alternatively, the opening / closing operation is automatically performed by the pressure difference of the refrigerant generated by the operation of the liquid pump 23, and the opening / closing operation by the command from the control device 70 is not required. For this reason, when the operation mode is switched, the compressor 21 and the liquid pump 23 have a simple structure that can be opened and closed without control along with the activation thereof, and the outdoor unit can be downsized and the control device 70 can be simplified. it can. Further, the opening / closing valves 24 and 29 are not limited to those constituted by the check valves, but may be constituted by electromagnetic valves as in Embodiment 1 and the opening / closing operation thereof is controlled by the control device 70. There is an effect due to the configuration with the stop valve 25. Also, as described in the first embodiment, the compressor bypass piping 4
An opening / closing valve, such as a three-way valve, capable of switching a multidirectional flow path may be provided on the inlet side or the outlet side of the device, and the opening / closing operation thereof may be controlled by the control device 70.

【0071】また、圧縮機運転モード時に液ポンプ23
をバイパスするための逆止弁25を介した液ポンプバイ
パス配管5以外の構成は、実施の形態2と同一であるた
め、実施の形態2と同様の効果を得ることができる。さ
らに、圧縮機運転モード時に構成される冷凍サイクル
は、現在汎用されている空気調和機の冷凍サイクルと同
様の冷媒回路を構成することになるため、電子式膨張弁
13の制御方法をそのまま使用できるという効果もあ
る。電子式膨張弁13の制御は、単に例えば開閉弁を開
閉するだけではなく冷媒の状態を見ながら開度の制御を
行なう必要があり、その冷媒回路の変更に応じて冷媒の
最適状態を設定するのは煩雑であるため、既存の制御方
法を用いることができることに対する効果は大きいもの
である。
In the compressor operation mode, the liquid pump 23
Since the configuration other than the liquid pump bypass pipe 5 via the check valve 25 for bypassing is the same as that of the second embodiment, the same effect as that of the second embodiment can be obtained. Furthermore, since the refrigeration cycle configured in the compressor operation mode has the same refrigerant circuit as the refrigeration cycle of the air conditioner that is currently widely used, the control method of the electronic expansion valve 13 can be used as it is. There is also an effect. For the control of the electronic expansion valve 13, it is necessary not only to open and close the on-off valve, for example, but also to control the opening degree while observing the state of the refrigerant, and to set the optimum state of the refrigerant according to the change of the refrigerant circuit. This is complicated, and the effect on the fact that the existing control method can be used is great.

【0072】実施の形態5.以下、本発明の実施の形態
5による空気調和機として例えば冷房装置について説明
する。図13は本実施の形態による空気調和機を示す構
成図である。図において、液ポンプ23は凝縮器22の
出口部と蒸発器11の入口部との間で、電子式膨張弁1
3と並列に接続されている。42は液ポンプ23が接続
されている並列部に設けられ、凝縮器22から液ポンプ
23への冷媒の流入を開閉する開閉弁(第2開閉弁)で
例えば電磁弁である。電磁弁42の開閉動作は、制御装
置70によって行われる。図中、図10と同一符号は同
一、または相当部分を示している。
Embodiment 5 Hereinafter, for example, a cooling device will be described as an air conditioner according to Embodiment 5 of the present invention. FIG. 13 is a configuration diagram showing an air conditioner according to the present embodiment. In the figure, a liquid pump 23 is connected between an outlet of a condenser 22 and an inlet of an evaporator 11 by an electronic expansion valve 1.
3 are connected in parallel. Reference numeral 42 denotes an on-off valve (second on-off valve) which is provided in a parallel portion to which the liquid pump 23 is connected and opens and closes the flow of the refrigerant from the condenser 22 to the liquid pump 23, for example, an electromagnetic valve. The opening and closing operation of the electromagnetic valve 42 is performed by the control device 70. In the figure, the same reference numerals as those in FIG. 10 indicate the same or corresponding parts.

【0073】室内機10は、液配管3bから流入した湿
り蒸気を空調対象空間の空調負荷によって蒸発させて冷
媒ガスとする蒸発器11、室内空気を強制的に蒸発器1
1の外表面に送風する蒸発器側送風機12、室内温度セ
ンサ71より構成されている。また、室外機20は冷媒
ガスを圧縮する圧縮機21、この冷媒ガスを冷却液化さ
せる凝縮器22、外気を強制的に凝縮器22の外表面に
送風する凝縮器側送風機26、液ポンプ23への冷媒の
流入を開閉する電磁弁42、液ポンプ23、凝縮器22
を出た高温高圧の冷媒液を減圧して二相状態の湿り蒸気
とする電子式膨張弁13、過渡的現象や冷媒の過充填な
どの場合に圧縮機21への液戻りを防止するアキュムレ
ータ27、液ポンプ運転モード時にアキュムレータ27
への冷媒の流入を防止する電磁弁28、液ポンプ運転モ
ード時に圧縮機21およびアキュムレータ27をバイパ
スするための逆止弁24を介した圧縮機バイパス配管
4、液ポンプ運転モード時に圧縮機21への冷媒の流入
を防止する逆止弁29、外気温度センサ72より構成さ
れ、電子式膨張弁13は凝縮器22の出口部と蒸発器1
1の入口部の間の配管に接続され、液ポンプ23は電子
式膨張弁13と並列に設置されている。また、電磁弁4
2は、凝縮器22の出口部と液ポンプ23の入口部の間
で、電子式膨張弁13との接続部よりも液ポンプ23側
に接続され、この電磁弁42を開閉することにより、液
ポンプ23の冷媒回路への接続/切り離し動作が行われ
る。
The indoor unit 10 comprises an evaporator 11 for evaporating wet steam flowing from the liquid pipe 3b by an air-conditioning load of the space to be air-conditioned to produce a refrigerant gas, and forcibly evaporating the indoor air to the evaporator 1.
1 comprises an evaporator-side blower 12 for blowing air to the outer surface and an indoor temperature sensor 71. Further, the outdoor unit 20 includes a compressor 21 for compressing the refrigerant gas, a condenser 22 for cooling and liquefying the refrigerant gas, a condenser-side blower 26 for forcibly blowing outside air to the outer surface of the condenser 22, and a liquid pump 23. Valve 42 for opening and closing the inflow of refrigerant, liquid pump 23, condenser 22
Electronic expansion valve 13 that decompresses the high-temperature and high-pressure refrigerant liquid that has exited to produce wet vapor in a two-phase state, and an accumulator 27 that prevents liquid from returning to the compressor 21 in the event of a transient phenomenon or refrigerant overfilling. , The accumulator 27 in the liquid pump operation mode
Solenoid valve 28 for preventing refrigerant from flowing into the compressor, compressor bypass pipe 4 through check valve 24 for bypassing compressor 21 and accumulator 27 in liquid pump operation mode, and to compressor 21 in liquid pump operation mode The electronic expansion valve 13 includes a check valve 29 for preventing the refrigerant from flowing in, and an outside air temperature sensor 72.
The liquid pump 23 is connected in parallel to the pipe between the inlets of the liquid crystal device 1 and is installed in parallel with the electronic expansion valve 13. Also, the solenoid valve 4
2 is connected between the outlet of the condenser 22 and the inlet of the liquid pump 23 and closer to the liquid pump 23 than the connection with the electronic expansion valve 13. The operation of connecting / disconnecting the pump 23 to / from the refrigerant circuit is performed.

【0074】この空気調和機では、圧縮機運転モードを
行う場合、制御装置70によって、電磁弁28を開放し
て電磁弁42を閉とし、電子式膨張弁13の開度を設定
する。この電子式膨張弁13の開度は、例えば凝縮器2
2の出口部の過冷却度が一定値となるように設定する。
そして、圧縮機21を運転し液ポンプ23を停止状態と
する。この時、逆止弁24は圧縮機21の吐出圧力と吸
入圧力との圧力差で閉止されて圧縮機運転モードの冷媒
回路が形成される。すなわち、冷媒は、圧縮機21→逆
止弁29→凝縮器22→電子式膨張弁13→液配管3b
→蒸発器11→ガス配管3a→電磁弁28→アキュムレ
ータ27→圧縮機21の順で冷媒回路内を流動し、冷房
運転が行われる。
In this air conditioner, when the compressor operation mode is performed, the controller 70 opens the solenoid valve 28 and closes the solenoid valve 42, and sets the opening of the electronic expansion valve 13. The opening degree of the electronic expansion valve 13 is, for example,
The degree of supercooling at the outlet of Step 2 is set to a constant value.
Then, the compressor 21 is operated and the liquid pump 23 is stopped. At this time, the check valve 24 is closed by the pressure difference between the discharge pressure and the suction pressure of the compressor 21 to form a refrigerant circuit in the compressor operation mode. That is, the refrigerant flows from the compressor 21 → the check valve 29 → the condenser 22 → the electronic expansion valve 13 → the liquid pipe 3b.
The evaporator 11 → the gas pipe 3a → the solenoid valve 28 → the accumulator 27 → the compressor 21 flows in the refrigerant circuit in this order, and the cooling operation is performed.

【0075】また、液ポンプ運転モードを行う場合、制
御装置70によって、電磁弁28を閉止して電磁弁42
を開放し、電子式膨張弁13を閉止する。そして、液ポ
ンプ23を運転し圧縮機23を停止状態とする。この
時、逆止弁24は冷媒の流れにより開放され、液ポンプ
運転モードの冷媒回路が形成される。すなわち、冷媒
は、液ポンプ23→液配管3b→蒸発器11→ガス配管
3a→逆止弁24→凝縮器22→電磁弁42→液ポンプ
23の順で冷媒回路内を流動し、冷房運転が行われる。
When the liquid pump operation mode is performed, the control device 70 closes the electromagnetic valve 28 and sets the electromagnetic valve 42
Is opened, and the electronic expansion valve 13 is closed. Then, the liquid pump 23 is operated to stop the compressor 23. At this time, the check valve 24 is opened by the flow of the refrigerant, and a refrigerant circuit in the liquid pump operation mode is formed. That is, the refrigerant flows through the refrigerant circuit in the order of the liquid pump 23 → the liquid pipe 3b → the evaporator 11 → the gas pipe 3a → the check valve 24 → the condenser 22 → the solenoid valve 42 → the liquid pump 23; Done.

【0076】本実施の形態では、冷媒は液ポンプ運転モ
ード時に電子式膨張弁を通過しないため、電子式膨張弁
の開度を制御する必要がなく、制御装置70を簡素化す
ることができる。実施の形態1〜実施の形態4では液ポ
ンプ運転モードの時に電子式膨張弁13の制御は、蒸発
器11の出口部の過熱度状態を検知してその開度を制御
しており煩雑であったが、本実施の形態ではこの制御を
行なう必要がなくなり、液ポンプ運転モードでの制御が
大幅に簡素化される。
In the present embodiment, since the refrigerant does not pass through the electronic expansion valve in the liquid pump operation mode, there is no need to control the opening of the electronic expansion valve, and the control device 70 can be simplified. In the first to fourth embodiments, the control of the electronic expansion valve 13 in the liquid pump operation mode is performed by detecting the degree of superheat at the outlet of the evaporator 11 and controlling the opening thereof, which is complicated. However, in the present embodiment, it is not necessary to perform this control, and control in the liquid pump operation mode is greatly simplified.

【0077】なお、本実施の形態による液ポンプ運転モ
ードの冷媒回路と実施の形態1〜実施の形態4の構成の
電子式膨張弁を通過する場合と比較すると、冷媒回路内
の圧力損失が小さくなり、冷媒循環量は大きくなる。こ
の現象を、図14を用いて説明する。図14は、液ポン
プ23の吐出圧力と吸入圧力との圧力差に対する冷媒循
環量を示したものである。図において、U0は液ポンプ
23の特性曲線であり、U1は実施の形態1〜実施の形
態4の構成のように冷媒流路に膨張弁がある場合の冷媒
回路特性曲線、U2は本実施の形態の構成のように冷媒
流路に膨張弁がない場合の冷媒回路特性曲線である。曲
線U0に示すように液ポンプ23の冷媒循環量は圧力差
が増加するにつれて直線的に減少する。一方、冷媒回路
内の圧力損失は冷媒循環量の増加と共に増加し、同一冷
媒循環量では電子式膨張弁13を通過する場合(曲線U
1)の方が、通過しない場合(曲線U2)に比べて圧力
損失が大きくなる。図14において、液ポンプ運転モー
ド時の冷媒循環量は液ポンプ特性曲線U0と冷媒回路特
性曲線U1,U2との交点として求められる。従って、
冷媒が電子式膨張弁13を通過しない場合の冷媒循環量
はA点となり、通過する場合のB点よりも大きくなる。
これを、圧力−エンタルピー線図上で表すと図15のよ
うになる。図において、52は室内温度相当の冷媒飽和
圧力、53は外気温度相当の冷媒飽和圧力である。冷媒
が電子式膨張弁を通過する場合の液ポンプ運転モードの
サイクルは逆止弁24での圧力損失を無視すると、液ポ
ンプ出口54→電子式膨張弁出口(蒸発器入口)55→
蒸発器出口(ガス配管入口)56→ガス配管出口(凝縮
器入口)57→凝縮器出口(液ポンプ入口)58なる経
路をとる。また、冷媒が電子式膨張弁を通過しない場合
の液ポンプ運転モードのサイクルは逆止弁24での圧力
損失を無視すると、液ポンプ出口(蒸発器入口)59→
蒸発器出口(ガス配管入口)60→ガス配管出口(凝縮
器入口)61→凝縮器出口(液ポンプ入口)62なる経
路をとり、冷媒が電子式膨張弁を通過する場合の液ポン
プ運転モードのサイクルと比較すると、冷媒循環量は増
加するがエンタルピー差はDからCへと小さくなる。
It should be noted that the pressure loss in the refrigerant circuit is smaller than when the refrigerant circuit in the liquid pump operation mode according to the present embodiment and the electronic expansion valve of the first to fourth embodiments are passed. And the refrigerant circulation amount increases. This phenomenon will be described with reference to FIG. FIG. 14 shows the refrigerant circulation amount with respect to the pressure difference between the discharge pressure and the suction pressure of the liquid pump 23. In the figure, U0 is a characteristic curve of the liquid pump 23, U1 is a refrigerant circuit characteristic curve when the refrigerant flow path has an expansion valve as in the configurations of the first to fourth embodiments, and U2 is the present embodiment. It is a refrigerant circuit characteristic curve when there is no expansion valve in the refrigerant flow path as in the configuration of the embodiment. As shown by the curve U0, the refrigerant circulation amount of the liquid pump 23 decreases linearly as the pressure difference increases. On the other hand, the pressure loss in the refrigerant circuit increases with an increase in the amount of circulating refrigerant.
The pressure loss of 1) is larger than that of the case where no passage occurs (curve U2). In FIG. 14, the refrigerant circulation amount in the liquid pump operation mode is obtained as the intersection of the liquid pump characteristic curve U0 and the refrigerant circuit characteristic curves U1 and U2. Therefore,
The refrigerant circulation amount when the refrigerant does not pass through the electronic expansion valve 13 is point A, and is larger than the point B when the refrigerant passes.
This is represented on a pressure-enthalpy diagram as shown in FIG. In the figure, 52 is a refrigerant saturation pressure corresponding to the indoor temperature, and 53 is a refrigerant saturation pressure corresponding to the outside air temperature. In the liquid pump operation mode cycle in which the refrigerant passes through the electronic expansion valve, ignoring the pressure loss at the check valve 24, the liquid pump outlet 54 → the electronic expansion valve outlet (evaporator inlet) 55 →
A route is taken from the evaporator outlet (gas pipe inlet) 56 → gas pipe outlet (condenser inlet) 57 → condenser outlet (liquid pump inlet) 58. In the liquid pump operation mode cycle in which the refrigerant does not pass through the electronic expansion valve, the liquid pump outlet (evaporator inlet) 59 → if the pressure loss at the check valve 24 is ignored.
The evaporator outlet (gas pipe inlet) 60 → gas pipe outlet (condenser inlet) 61 → condenser outlet (liquid pump inlet) 62 takes a route, and the liquid pump operation mode in the case where the refrigerant passes through the electronic expansion valve. Compared with the cycle, the refrigerant circulation amount increases, but the enthalpy difference decreases from D to C.

【0078】従って、本実施の形態では、冷媒循環量の
増加により液ポンプ運転モード時の蒸発器22の出口部
での冷媒状態が二相となるため、同一冷媒量の条件では
膨張弁がある場合と比較して液ポンプ23の入口部の冷
媒量が減少する。このような場合、液ポンプ23の入口
部に冷媒ガスが混入してキャビテーションを生じやすく
なるが、これはあらかじめ冷媒充填量を多くしておいた
り、液ポンプ23の入口部に液溜めや過冷却器を設ける
などの対策を講じれば回避できる。また、図13のよう
に蒸発器11の出口部にアキュムレータ27が設置され
ている場合、液ポンプ運転モード時に蒸発器11の出口
部の冷媒状態が二相となる条件では、アキュムレータ2
7や圧縮機21内へ冷媒液が流入して必要冷媒量が確保
されず、液ポンプ23の入口部が二相状態となってキャ
ビテーションが生じる可能性がある。しかし、本実施の
形態ではアキュムレータ27の入口部および圧縮機21
の出口部にそれぞれ電磁弁28および逆止弁29を設け
ているのでこのような冷媒の流入を防止することがで
き、必要冷媒量を確保し、安定した液ポンプ運転を行う
ことができる。また、開閉弁24,29は逆止弁で構成
するものに限らず、実施の形態1のように、電磁弁で構
成しその開閉動作を制御装置70で制御するように構成
してもよい。また、実施の形態1でも述べたが、圧縮機
バイパス配管4の入口側や出口側に三方弁などの多方向
の流路を切換えることのできる開閉弁を設けてその開閉
動作を制御装置70で制御するように構成してもよい。
また、電磁弁42の代わりに、液ポンプ23と電子式膨
張弁13との分岐部に三方弁などの多方向の流路を切換
えることのできる開閉弁を設けてその開閉動作を制御装
置70で制御するように構成してもよい。
Therefore, in the present embodiment, the refrigerant state at the outlet of the evaporator 22 in the liquid pump operation mode becomes two-phase due to an increase in the amount of circulating refrigerant. The amount of refrigerant at the inlet of the liquid pump 23 decreases as compared with the case. In such a case, cavitation is likely to occur due to the refrigerant gas being mixed into the inlet of the liquid pump 23. This can be avoided by taking measures such as installing a container. Further, when the accumulator 27 is provided at the outlet of the evaporator 11 as shown in FIG. 13, the accumulator 2 is not operated under the condition that the refrigerant state at the outlet of the evaporator 11 becomes two-phase in the liquid pump operation mode.
When the refrigerant liquid flows into the compressor 7 and the compressor 21, the required refrigerant amount is not ensured, and the inlet of the liquid pump 23 may be in a two-phase state to cause cavitation. However, in the present embodiment, the inlet of the accumulator 27 and the compressor 21
Since the solenoid valve 28 and the check valve 29 are respectively provided at the outlets of the above, such inflow of the refrigerant can be prevented, the required amount of refrigerant can be secured, and a stable liquid pump operation can be performed. Further, the on-off valves 24 and 29 are not limited to the check valves, but may be configured by electromagnetic valves and the opening and closing operations thereof are controlled by the control device 70 as in the first embodiment. As described in the first embodiment, an on-off valve such as a three-way valve, which can switch a multi-directional flow path, is provided on the inlet side and the outlet side of the compressor bypass pipe 4, and the on-off operation is controlled by the control device 70. You may comprise so that it may control.
Further, instead of the electromagnetic valve 42, an on-off valve such as a three-way valve capable of switching a multi-directional flow path is provided at a branch portion between the liquid pump 23 and the electronic expansion valve 13, and the on-off operation is controlled by the control device 70. You may comprise so that it may control.

【0079】以上のように、本実施の形態では、液ポン
プ23の出口部に電子式膨張弁が設置されていないた
め、液ポンプ運転モード時は電子式膨張弁の開度を制御
する必要がなく、制御装置を簡素化することができる。
また、本実施の形態では、液ポンプ運転モード時に電子
式膨張弁13を閉とする例を示したが、電子式膨張弁1
3を適当な開度に設定すると、液ポンプ23→電子式膨
張弁13→電磁弁42なる蒸発器および凝縮器を通過し
ない短絡回路が形成され、液ポンプ23から吐出される
冷媒液の一部がこの短絡回路に流れるため液ポンプ運転
モード時の冷房能力を制御することができる。例えば、
室内温度と外気温度との温度差に基づいて電子式膨張弁
13の開度を変化させ、短絡回路に流れる冷媒循環量を
制御するようにすれば、液ポンプ運転モード時の冷房能
力を室内温度と外気温度との温度差に基づいて制御する
ことができる。
As described above, in this embodiment, since the electronic expansion valve is not provided at the outlet of the liquid pump 23, it is necessary to control the opening of the electronic expansion valve in the liquid pump operation mode. Therefore, the control device can be simplified.
Further, in the present embodiment, the example in which the electronic expansion valve 13 is closed in the liquid pump operation mode has been described.
When 3 is set to an appropriate opening, a short circuit that does not pass through the evaporator and the condenser, which is the liquid pump 23 → the electronic expansion valve 13 → the solenoid valve 42, is formed, and a part of the refrigerant liquid discharged from the liquid pump 23 Flows through this short circuit, the cooling capacity in the liquid pump operation mode can be controlled. For example,
If the opening degree of the electronic expansion valve 13 is changed based on the temperature difference between the room temperature and the outside air temperature to control the amount of refrigerant circulating in the short circuit, the cooling capacity in the liquid pump operation mode is reduced to the room temperature. It can be controlled based on the temperature difference between the temperature and the outside air temperature.

【0080】実施の形態6.以下、本発明の実施の形態
6による空気調和機として例えば冷房装置について説明
する。図16は本実施の形態による空気調和機を示す構
成図である。図において、43は液ポンプ23の出口部
から蒸発器11の入口部の間の配管に設けられた第2減
圧手段で、例えば電子式膨張弁である。図中、図13と
同一符号は同一、または相当部分を示している。また、
制御装置70から各機器への制御信号線の接続はここで
は省略しているが、図13の各制御信号線に加え、電子
式膨張弁43の制御も制御装置70で行なうように制御
信号線を接続している。
Embodiment 6 FIG. Hereinafter, for example, a cooling device will be described as an air conditioner according to Embodiment 6 of the present invention. FIG. 16 is a configuration diagram showing an air conditioner according to the present embodiment. In the figure, reference numeral 43 denotes a second pressure reducing means provided in a pipe between the outlet of the liquid pump 23 and the inlet of the evaporator 11, and is, for example, an electronic expansion valve. In the figure, the same reference numerals as those in FIG. 13 indicate the same or corresponding parts. Also,
The connection of the control signal lines from the control device 70 to each device is omitted here, but in addition to the control signal lines in FIG. 13, the control signal lines are controlled so that the control device 70 also controls the electronic expansion valve 43. Are connected.

【0081】室内機10は、液配管3bから流入した湿
り蒸気を空調対象空間の空調負荷によって蒸発させて冷
媒ガスとする蒸発器11、室内空気を強制的に蒸発器1
1の外表面に送風する蒸発器側送風機12、室内温度セ
ンサ71より構成されている。また、室外機20は冷媒
ガスを圧縮するための圧縮機21、この冷媒ガスを冷却
液化させる凝縮器22、外気を強制的に凝縮器22の外
表面に送風する凝縮器側送風機26、液ポンプ23側へ
の冷媒の流入を防止する電磁弁42、液ポンプ23、凝
縮器22を出た高温高圧の冷媒液を減圧して二相状態の
湿り蒸気とする電子式膨張弁13、液ポンプ23から吐
出される冷媒液を減圧するための電子式膨張弁43、過
渡的現象や冷媒の過充填などの場合に圧縮機21への液
戻りを防止するためのアキュムレータ27、液ポンプ運
転モード時にアキュムレータ27への冷媒の流入を防止
する電磁弁28、液ポンプ運転時に圧縮機21およびア
キュムレータ27をバイパスするための逆止弁24を介
した圧縮機バイパス配管4、液ポンプ運転モード時に圧
縮機21への冷媒の流入を防止する逆止弁29、外気温
度センサ72より構成され、液ポンプ23と電子式膨張
弁13は並列に、液ポンプ23と電子式膨張弁43は直
列に接続されている。
The indoor unit 10 comprises an evaporator 11 which evaporates the wet steam flowing from the liquid pipe 3b by the air-conditioning load of the space to be air-conditioned and turns it into a refrigerant gas.
1 comprises an evaporator-side blower 12 for blowing air to the outer surface and an indoor temperature sensor 71. The outdoor unit 20 includes a compressor 21 for compressing the refrigerant gas, a condenser 22 for cooling and liquefying the refrigerant gas, a condenser-side blower 26 for forcibly blowing outside air to the outer surface of the condenser 22, and a liquid pump. An electromagnetic valve 42 for preventing the refrigerant from flowing into the side 23, a liquid pump 23, an electronic expansion valve 13 for reducing the temperature of the high-temperature and high-pressure refrigerant liquid that has exited the condenser 22 into two-phase wet steam, and a liquid pump 23. Electronic expansion valve 43 for reducing the pressure of the refrigerant liquid discharged from the compressor, an accumulator 27 for preventing liquid from returning to the compressor 21 in the event of a transient phenomenon or refrigerant overfilling, and an accumulator in the liquid pump operation mode. A solenoid valve 28 for preventing refrigerant from flowing into the compressor 27, a compressor bypass pipe 4 via a check valve 24 for bypassing the compressor 21 and the accumulator 27 during operation of the liquid pump, and a liquid pump operation mode The liquid pump 23 and the electronic expansion valve 13 are connected in parallel, and the liquid pump 23 and the electronic expansion valve 43 are connected in series. It is connected.

【0082】この空気調和機では、圧縮機運転モードの
場合、制御装置70によって、電磁弁28を開放して電
磁弁42を閉止し、電子式膨張弁13および電子式膨張
弁43の開度を、例えば凝縮器22の出口部の過冷却度
が一定値となるように設定して圧縮機21を運転し液ポ
ンプ23を停止状態とする。この時、逆止弁24は圧縮
機21の吐出圧力と吸入圧力との圧力差で閉止されて圧
縮機運転モードの冷媒回路が形成される。すなわち、冷
媒は、圧縮機21→逆止弁29→凝縮器22→電子式膨
張弁13→電子式膨張弁43→液配管3b→蒸発器11
→ガス配管3a→電磁弁28→アキュムレータ27→圧
縮機21の順で冷媒回路内を流動し、冷房運転が行われ
る。
In this air conditioner, in the compressor operation mode, the control device 70 opens the solenoid valve 28 and closes the solenoid valve 42 to control the opening of the electronic expansion valve 13 and the electronic expansion valve 43. For example, the compressor 21 is operated by setting the degree of supercooling at the outlet of the condenser 22 to a constant value, and the liquid pump 23 is stopped. At this time, the check valve 24 is closed by the pressure difference between the discharge pressure and the suction pressure of the compressor 21 to form a refrigerant circuit in the compressor operation mode. That is, the refrigerant flows from the compressor 21 → the check valve 29 → the condenser 22 → the electronic expansion valve 13 → the electronic expansion valve 43 → the liquid pipe 3b → the evaporator 11
The gas flows in the refrigerant circuit in the order of the gas pipe 3a, the solenoid valve 28, the accumulator 27, and the compressor 21 to perform the cooling operation.

【0083】また、液ポンプ運転モードの場合、制御装
置70によって、電磁弁28を閉止して電磁弁42を開
放し、電子式膨張弁13を閉止、電子式膨張弁43を適
切な開度、例えば蒸発器11の出口部の過熱度が5℃程
度となるような開度に設定して、液ポンプ23を運転し
圧縮機21を停止状態とする。この時、逆止弁24は冷
媒の流れにより開放され、液ポンプ運転モードの冷媒回
路が形成される。すなわち、冷媒は、液ポンプ23→電
子式膨張弁43→液配管3b→蒸発器11→ガス配管3
a→逆止弁24→凝縮器22→電磁弁42→液ポンプ2
3の順で冷媒回路内を流動し、冷房運転が行われる。ま
た、開閉弁24,29は逆止弁で構成するものに限ら
ず、実施の形態1のように、電磁弁で構成しその開閉動
作を制御装置70で制御するように構成してもよい。
In the liquid pump operation mode, the controller 70 closes the solenoid valve 28 and opens the solenoid valve 42, closes the electronic expansion valve 13, and sets the electronic expansion valve 43 to an appropriate opening degree. For example, the opening degree is set such that the degree of superheat at the outlet of the evaporator 11 is about 5 ° C., and the liquid pump 23 is operated to stop the compressor 21. At this time, the check valve 24 is opened by the flow of the refrigerant, and a refrigerant circuit in the liquid pump operation mode is formed. That is, the refrigerant is supplied from the liquid pump 23 → the electronic expansion valve 43 → the liquid pipe 3b → the evaporator 11 → the gas pipe 3
a → check valve 24 → condenser 22 → solenoid valve 42 → liquid pump 2
The refrigerant flows in the refrigerant circuit in the order of 3, and the cooling operation is performed. Further, the on-off valves 24 and 29 are not limited to the check valves, but may be configured by electromagnetic valves and the opening and closing operations thereof are controlled by the control device 70 as in the first embodiment.

【0084】本実施の形態では、液ポンプ23の出口部
と蒸発器11の入口部との間の配管に電子式膨張弁43
を設置したため、例えば蒸発器11出口の冷媒状態を制
御することができ、蒸発器11を有効に利用できる効果
がある。
In this embodiment, the electronic expansion valve 43 is connected to the pipe between the outlet of the liquid pump 23 and the inlet of the evaporator 11.
Is installed, for example, the state of the refrigerant at the outlet of the evaporator 11 can be controlled, and there is an effect that the evaporator 11 can be used effectively.

【0085】実施の形態7.以下、本発明の実施の形態
7による空気調和機として例えば冷房装置について説明
する。図17は本実施の形態による空気調和機を示す構
成図である。図において、44は圧縮機運転モードで構
成する冷媒回路の高圧部と低圧部とを接続する高低圧バ
イパス配管(第2バイパス配管)である。圧縮機運転モ
ードでの高圧配管とは、圧縮機21の出口部から減圧手
段である電子式膨張弁13の入口部までの配管であり、
低圧配管とは、減圧手段である電子式膨張弁13の出口
部から圧縮機21の入口部までの配管である。例えば高
低圧バイパス配管44の一端は圧縮機21の出口側の高
圧部に接続され、他端はアキュムレータ27内の低圧部
に接続されている。さらに高低圧バイパス配管44には
開閉弁(第5開閉弁)例えば電磁弁45が設けられてい
る。また、制御装置70から各機器への制御信号線の接
続はここでは省略しているが、図10の各制御信号線に
加え、電磁弁45の制御も制御装置70で行なうように
制御信号線を接続している。他の各部において、図10
と同一符号は同一、または相当部分を示している。
Embodiment 7 FIG. Hereinafter, for example, a cooling device will be described as an air conditioner according to Embodiment 7 of the present invention. FIG. 17 is a configuration diagram showing an air conditioner according to the present embodiment. In the figure, reference numeral 44 denotes a high / low pressure bypass pipe (second bypass pipe) connecting the high pressure section and the low pressure section of the refrigerant circuit configured in the compressor operation mode. The high-pressure pipe in the compressor operation mode is a pipe from an outlet of the compressor 21 to an inlet of the electronic expansion valve 13 which is a pressure reducing means.
The low-pressure pipe is a pipe from the outlet of the electronic expansion valve 13 that is a pressure reducing means to the inlet of the compressor 21. For example, one end of the high / low pressure bypass pipe 44 is connected to a high pressure section on the outlet side of the compressor 21, and the other end is connected to a low pressure section in the accumulator 27. Further, an on-off valve (a fifth on-off valve), for example, an electromagnetic valve 45 is provided in the high / low pressure bypass pipe 44. Although connection of control signal lines from the control device 70 to each device is omitted here, in addition to each control signal line in FIG. 10, control signal lines are controlled so that the control device 70 also controls the solenoid valve 45. Are connected. In other parts, FIG.
The same reference numerals indicate the same or corresponding parts.

【0086】室内機10は、液配管3bから流入した湿
り蒸気を空調負荷によって蒸発させる蒸発器11、蒸発
器側送風機12、室内温度センサ71より構成されてい
る。また、室外機20は、冷媒ガスを圧縮する圧縮機2
1、この冷媒ガスを冷却液化させる凝縮器22、外気を
強制的に凝縮器22の外表面に送風する凝縮器側送風機
26、液ポンプ23、凝縮器22を出た高温高圧の冷媒
液を減圧して二相状態の湿り蒸気とする電子式膨張弁1
3、過渡的現象や冷媒の過充填などの場合に圧縮機21
への液戻りを防止するアキュムレータ27、液ポンプ運
転モード時にアキュムレータ27への冷媒の流入を防止
する電磁弁28、液ポンプ運転モード時に圧縮機21お
よびアキュムレータ27をバイパスするための逆止弁2
4を介した圧縮機バイパス配管4、液ポンプ運転モード
時に圧縮機21への冷媒の流入を防止する逆止弁29、
圧縮機21出口の高圧部とアキュムレータ27の低圧部
とを接続する電磁弁45を介した高低圧バイパス配管4
4、外気温度センサ72より構成されている。
The indoor unit 10 includes an evaporator 11, an evaporator-side blower 12, and an indoor temperature sensor 71 for evaporating wet steam flowing from the liquid pipe 3b by an air conditioning load. Further, the outdoor unit 20 is a compressor 2 for compressing the refrigerant gas.
1. A condenser 22 for cooling and liquefying the refrigerant gas, a condenser-side blower 26 for forcibly blowing outside air to the outer surface of the condenser 22, a liquid pump 23, and a high-temperature high-pressure refrigerant liquid exiting the condenser 22. Electronic expansion valve 1 to obtain two-phase wet steam
3. Compressor 21 for transient phenomena or overfilling of refrigerant
An accumulator 27 for preventing liquid from returning to the reservoir, a solenoid valve 28 for preventing refrigerant from flowing into the accumulator 27 in the liquid pump operation mode, and a check valve 2 for bypassing the compressor 21 and the accumulator 27 in the liquid pump operation mode.
A check valve 29 for preventing refrigerant from flowing into the compressor 21 in the liquid pump operation mode;
A high / low pressure bypass pipe 4 via an electromagnetic valve 45 connecting a high pressure section at the outlet of the compressor 21 and a low pressure section of the accumulator 27.
4. An outside air temperature sensor 72 is provided.

【0087】この空気調和機では、圧縮機運転モードの
場合、制御装置70によって、電磁弁45を閉止して電
磁弁28を開放し、電子式膨張弁13の開度を、例えば
凝縮器22の出口部の過冷却度が一定値となるように設
定する。そして、圧縮機21を運転し液ポンプ23を運
転または停止状態とする。この時、逆止弁24は圧縮機
21の吐出圧力と吸入圧力との圧力差で閉止されて圧縮
機運転モードの冷媒回路が形成される。すなわち、冷媒
は、圧縮機21→逆止弁29→凝縮器22→液ポンプ2
3→電子式膨張弁13→液配管3b→蒸発器11→ガス
配管3a→電磁弁28→アキュムレータ27→圧縮機2
1の順で冷媒回路内を流動し、冷房運転が行われる。
In this air conditioner, in the compressor operation mode, the control device 70 closes the solenoid valve 45 and opens the solenoid valve 28, and adjusts the opening of the electronic expansion valve 13 by, for example, Set the degree of supercooling at the outlet to a constant value. Then, the compressor 21 is operated, and the liquid pump 23 is operated or stopped. At this time, the check valve 24 is closed by the pressure difference between the discharge pressure and the suction pressure of the compressor 21 to form a refrigerant circuit in the compressor operation mode. That is, the refrigerant flows from the compressor 21 → the check valve 29 → the condenser 22 → the liquid pump 2
3 → electronic expansion valve 13 → liquid pipe 3b → evaporator 11 → gas pipe 3a → electromagnetic valve 28 → accumulator 27 → compressor 2
The refrigerant flows in the refrigerant circuit in the order of 1, and the cooling operation is performed.

【0088】また、液ポンプ運転モードの場合、制御装
置70によって、電磁弁28および電磁弁45を閉止
し、電子式膨張弁13を適切な開度、例えば蒸発器11
の出口部の過熱度が5℃程度となるような開度に設定し
て液ポンプを運転し圧縮機21を停止状態とする。この
時、逆止弁24は冷媒の流れにより開放され、液ポンプ
運転の冷媒回路が形成される。すなわち、冷媒は、液ポ
ンプ23→電子式膨張弁13→液配管3b→蒸発器11
→ガス配管3a→逆止弁24→凝縮器22→液ポンプ2
3の順で冷媒回路内を流動し、冷房運転が行われる。
In the case of the liquid pump operation mode, the controller 70 closes the solenoid valve 28 and the solenoid valve 45 and opens the electronic expansion valve 13 at an appropriate opening degree, for example, the evaporator 11.
The liquid pump is operated by setting the opening degree so that the degree of superheat at the outlet of is about 5 ° C., and the compressor 21 is stopped. At this time, the check valve 24 is opened by the flow of the refrigerant, and a refrigerant circuit for operating the liquid pump is formed. That is, the refrigerant is supplied from the liquid pump 23 → the electronic expansion valve 13 → the liquid pipe 3b → the evaporator 11
→ gas pipe 3a → check valve 24 → condenser 22 → liquid pump 2
The refrigerant flows in the refrigerant circuit in the order of 3, and the cooling operation is performed.

【0089】ところで、圧縮機運転モードと液ポンプ運
転モードを比較すると、液ポンプ運転モードでは、液配
管3bが完全に液で満たされることに加え、キャビテー
ションの発生防止のために、液ポンプ23の入口部の過
冷却度を大きくする必要があることから、適正冷媒量は
圧縮機運転モードと比較して液ポンプ運転モードの方が
多くなる。ところが、図17に示すように圧縮機21の
吸入部にアキュムレータ27が設置されている場合、圧
縮機運転モード時にはアキュムレータ27内に余剰冷媒
が蓄積される。従って、液ポンプ運転モードへの切換え
時にこの余剰冷媒を液ポンプ運転モードの冷媒回路へ回
収する冷媒回収運転を行う必要がある。
By the way, comparing the compressor operation mode and the liquid pump operation mode, in the liquid pump operation mode, in addition to the liquid pipe 3b being completely filled with the liquid, the liquid pump 23 is operated in order to prevent cavitation. Since it is necessary to increase the degree of subcooling at the inlet, the appropriate refrigerant amount is larger in the liquid pump operation mode than in the compressor operation mode. However, when the accumulator 27 is installed at the suction portion of the compressor 21 as shown in FIG. 17, excess refrigerant is accumulated in the accumulator 27 in the compressor operation mode. Therefore, it is necessary to perform a refrigerant recovery operation of recovering the surplus refrigerant to the refrigerant circuit in the liquid pump operation mode when switching to the liquid pump operation mode.

【0090】冷媒回収運転としては、電子式膨張弁13
の開度を全閉して圧縮機運転を行う方法もあるが、この
方法では圧縮機21の吸入圧力が急激に低下するため、
圧縮機21内に吸入された冷媒液が発泡して冷凍機油が
吐出ガスと共に冷媒回路内へ流出し、圧縮機21内部の
冷凍機油量が減少して潤滑不良により焼損に至る可能性
がある。特に、スクロール圧縮機の場合、吸入圧力の低
下や圧縮機21内部の冷媒液の発泡によって、摺動部へ
の給油量が低下し、摺動部が温度上昇により熱変形して
破損に至るといった問題が生じる。また、冷媒回路内に
流出した冷凍機油が圧力損失の増大をもたらし、液ポン
プ運転モード時の冷房能力を低下させる原因にもなる。
そこで、圧縮機21の吸入圧力を低下させることなく、
冷媒回収運転を行う必要がある。
In the refrigerant recovery operation, the electronic expansion valve 13
There is also a method of operating the compressor by completely closing the opening of the compressor, but in this method, since the suction pressure of the compressor 21 rapidly decreases,
The refrigerant liquid sucked into the compressor 21 foams, and the refrigerating machine oil flows out into the refrigerant circuit together with the discharged gas, and the amount of the refrigerating machine oil inside the compressor 21 decreases, which may lead to burnout due to poor lubrication. In particular, in the case of a scroll compressor, the amount of oil supplied to a sliding portion is reduced due to a decrease in suction pressure or a bubbling of a refrigerant liquid inside the compressor 21, and the sliding portion is thermally deformed due to a rise in temperature, leading to breakage. Problems arise. In addition, the refrigerating machine oil that has flowed into the refrigerant circuit causes an increase in pressure loss, which also causes a reduction in cooling capacity in the liquid pump operation mode.
Therefore, without lowering the suction pressure of the compressor 21,
It is necessary to perform a refrigerant recovery operation.

【0091】図18は、本実施の形態の空気調和機にお
ける、圧縮機運転モードから液ポンプ運転モードへの運
転切換え時のフローチャートを示している。ST21で
は圧縮機運転モードを行っており、電磁弁28は開、電
磁弁45は閉、電子式膨張弁13の開度は、例えば凝縮
器22の出口部の過冷却度が一定値となるような開度
(開度P)に設定された状態である。ST22で室内温
度と外気温度との温度差が所定値、例えば10℃以上に
なると液ポンプ運転モードへの運転切換え指令を受け、
ST23で電磁弁45を開とし、ST24で電子式膨張
弁13の開度を、例えば蒸発器11の出口部の過熱度が
20℃となるような開度(開度Q)に変更して、冷媒回
収運転を一定時間、例えば1分程度行う(ST25)。
冷媒回収運転(ST25)において、アキュムレータ2
7内の冷媒液は蒸発器11からの過熱ガスと電磁弁45
を介した高低圧バイパス配管42を通って流入する圧縮
機21から吐出された過熱ガスによって蒸発し圧縮機2
1へ吸入される。
FIG. 18 shows a flow chart at the time of operation switching from the compressor operation mode to the liquid pump operation mode in the air conditioner of the present embodiment. In ST21, the compressor operation mode is performed, the solenoid valve 28 is opened, the solenoid valve 45 is closed, and the degree of opening of the electronic expansion valve 13 is such that the degree of supercooling at the outlet of the condenser 22 is constant. This is a state in which the opening is set to an appropriate opening (opening P). In ST22, when the temperature difference between the room temperature and the outside air temperature becomes a predetermined value, for example, 10 ° C. or more, an operation switching command to the liquid pump operation mode is received,
In ST23, the electromagnetic valve 45 is opened, and in ST24, the opening degree of the electronic expansion valve 13 is changed to an opening degree (opening Q) at which the superheat degree at the outlet of the evaporator 11 becomes 20 ° C., for example. The refrigerant recovery operation is performed for a predetermined time, for example, about 1 minute (ST25).
In the refrigerant recovery operation (ST25), the accumulator 2
The refrigerant liquid in the evaporator 11 and the superheated gas from the evaporator 11
Is evaporated by the superheated gas discharged from the compressor 21 flowing through the high / low pressure bypass pipe 42 through the compressor 2.
Inhaled to 1.

【0092】次に、ST26で圧縮機21を停止し、S
T27で電磁弁28を閉止してアキュムレータ27への
冷媒の流入を防止する。そして、ST28で電磁弁45
を閉止して、電子式膨張弁13の開度を、蒸発器11の
出口部の過熱度が適切な値、例えば過熱度5℃となるよ
うに設定(開度R)し(ST29)、液ポンプ運転モー
ドへ移行する(ST30)。
Next, the compressor 21 is stopped in ST26, and S
At T27, the electromagnetic valve 28 is closed to prevent the refrigerant from flowing into the accumulator 27. Then, in ST28, the solenoid valve 45
Is closed, and the opening degree of the electronic expansion valve 13 is set (opening degree R) so that the superheat degree at the outlet of the evaporator 11 becomes an appropriate value, for example, 5 ° C. (open degree R) (ST29). The operation shifts to the pump operation mode (ST30).

【0093】冷媒回収運転(ST25)では、圧縮機2
1から吐出された高温高圧の過熱ガスを圧縮機21の吸
入部へバイパスするため、圧縮機21の低圧を低下させ
ることなくアキュムレータ27内に蓄積された冷媒を液
ポンプ運転モードの冷媒回路に回収することができる。
また、ST25では冷媒回収運転を一定時間行う例を示
したが、圧縮機21の吸入あるいは吐出配管の温度や圧
力を検知し、検知した温度や圧力が設定値になるまで冷
媒回収運転を行うようにしてもよい。
In the refrigerant recovery operation (ST25), the compressor 2
Since the high-temperature and high-pressure superheated gas discharged from 1 is bypassed to the suction part of the compressor 21, the refrigerant accumulated in the accumulator 27 is recovered to the refrigerant circuit in the liquid pump operation mode without lowering the low pressure of the compressor 21. can do.
In ST25, an example in which the refrigerant recovery operation is performed for a certain period of time has been described. However, the temperature and pressure of the suction or discharge pipe of the compressor 21 are detected, and the refrigerant recovery operation is performed until the detected temperature and pressure reach the set values. It may be.

【0094】また、ST25では制御装置を簡素化する
ために冷媒回収運転を一定時間行う例を示したが、外気
温度センサ72で検出した外気温度に基づいてST25
の冷媒回収運転の時間あるいは冷媒回収運転時の電子式
膨張弁13の開度を変化させ、外気温度に対してアキュ
ムレータ27内の回収冷媒量を制御してもよい。例えば
外気温度が高い時には回収冷媒量を少なくし、外気温度
が低い時には回収冷媒量を多くする。さらに、外気温度
センサ72で検出した外気温度と室内温度センサ71で
検出した室内温度を用い、この外気温度と室内温度との
温度差に基づいて回収冷媒量を制御するようにしてもよ
い。例えば温度差が小さい時には回収冷媒量を少なく
し、温度差が大きい時には回収冷媒量を多くする。この
ような制御を行うことにより、液ポンプ運転モード時の
冷媒量を外気温度に対して最適量とすることができ、液
ポンプ運転モードの冷房能力を最大限に利用することが
できる。
Further, in ST25, an example has been shown in which the refrigerant recovery operation is performed for a fixed time in order to simplify the control device. However, based on the outside air temperature detected by the outside air temperature sensor 72, ST25
By changing the opening time of the electronic expansion valve 13 during the refrigerant recovery operation or during the refrigerant recovery operation, the amount of refrigerant recovered in the accumulator 27 may be controlled with respect to the outside air temperature. For example, when the outside air temperature is high, the recovered refrigerant amount is reduced, and when the outside air temperature is low, the recovered refrigerant amount is increased. Further, the amount of the collected refrigerant may be controlled based on the temperature difference between the outside air temperature and the room temperature using the outside air temperature detected by the outside air temperature sensor 72 and the room temperature detected by the room temperature sensor 71. For example, when the temperature difference is small, the amount of collected refrigerant is reduced, and when the temperature difference is large, the amount of collected refrigerant is increased. By performing such control, the amount of refrigerant in the liquid pump operation mode can be optimized for the outside air temperature, and the cooling capacity in the liquid pump operation mode can be used to the maximum.

【0095】以上のような手順で圧縮機運転モードから
液ポンプ運転モードへの運転切換えを行うことにより、
圧縮機21の吸入圧力を低下させることなくアキュムレ
ータ27内に蓄積された冷媒を液ポンプ運転モード時の
冷媒回路に回収でき、安定した液ポンプ運転モードを行
うことができると共に圧縮機21の信頼性を向上させる
ことができる。なお、開閉弁24,29は逆止弁で構成
するものに限らず、実施の形態1のように、電磁弁で構
成しその開閉動作を制御装置70で制御するように構成
してもよい。
By switching the operation from the compressor operation mode to the liquid pump operation mode according to the above procedure,
The refrigerant accumulated in the accumulator 27 can be recovered in the refrigerant circuit in the liquid pump operation mode without lowering the suction pressure of the compressor 21, and a stable liquid pump operation mode can be performed, and the reliability of the compressor 21 can be improved. Can be improved. The on-off valves 24 and 29 are not limited to those constituted by check valves, but may be constituted by solenoid valves and their opening and closing operations are controlled by the control device 70 as in the first embodiment.

【0096】実施の形態8.以下、本発明の実施の形態
8による空気調和機として例えば冷房装置について説明
する。図19は本実施の形態による空気調和機を示す構
成図である。図において、46は凝縮器22の出口部と
液ポンプ23の入口部との間の配管に設けられた液体貯
溜手段で例えば受液器であり、内部に冷媒液を溜めるも
のである。47は凝縮器22の出口部と液ポンプ23の
入口部との間を流れる冷媒を過冷却する過冷却手段であ
り、例えば液ポンプ23の入口部において所定の過冷却
度を得るための過冷却器、48は過冷却器47のバイパ
ス配管に設けられた開閉弁で例えば電磁弁、49は過冷
却器47内部を通る配管に設けられた開閉弁で例えば電
磁弁である。また、制御装置70から各機器への制御信
号線の接続はここでは省略しているが、図10の各制御
信号線に加え、電磁弁48,49の制御も制御装置70
で行なうように制御信号線を接続している。他の各部に
おいて、図10と同一符号は同一、または相当部分を示
している。
Embodiment 8 FIG. Hereinafter, for example, a cooling device will be described as an air conditioner according to Embodiment 8 of the present invention. FIG. 19 is a configuration diagram showing an air conditioner according to the present embodiment. In the figure, reference numeral 46 denotes a liquid storage means provided in a pipe between the outlet of the condenser 22 and the inlet of the liquid pump 23, for example, a liquid receiver for storing a refrigerant liquid therein. 47 is a supercooling means for supercooling the refrigerant flowing between the outlet of the condenser 22 and the inlet of the liquid pump 23, for example, a supercooling device for obtaining a predetermined degree of subcooling at the inlet of the liquid pump 23. A cooling unit 48 is an on-off valve provided in a bypass pipe of the subcooler 47, for example, an electromagnetic valve. Although connection of control signal lines from the control device 70 to each device is omitted here, in addition to the control signal lines in FIG.
The control signal line is connected as described above. In other parts, the same reference numerals as those in FIG. 10 indicate the same or corresponding parts.

【0097】室内機10は、液配管3bから流入した湿
り蒸気を空調負荷によって蒸発させる蒸発器11、蒸発
器側送風機12、室内温度センサ71より構成されてい
る。また、室外機20は、冷媒ガスを圧縮する圧縮機2
1、この冷媒ガスを冷却液化させる凝縮器22、外気を
強制的に凝縮器22の外表面に送風する凝縮器側送風機
26、凝縮器22の出口部から流入する冷媒液を溜める
受液器46、液ポンプ23の入口部において所定の過冷
却度を得るための過冷却器47、過冷却器47のバイパ
ス配管に設けられた電磁弁48、過冷却器47内部を通
る配管に設けられた電磁弁49、凝縮器22を出た高温
高圧の冷媒液を減圧して二相状態の湿り蒸気とする電子
式膨張弁13、過渡的現象や冷媒の過充填などの場合に
圧縮機21への液戻りを防止するアキュムレータ27、
液ポンプ運転モード時にアキュムレータ27への冷媒の
流入を防止する電磁弁28、圧縮機21およびアキュム
レータ27をバイパスするための逆止弁24を介した圧
縮機バイパス配管4、液ポンプ運転モード時に圧縮機2
1への冷媒の流入を閉止する逆止弁29、外気温度セン
サ72より構成されている。
The indoor unit 10 includes an evaporator 11 for evaporating wet steam flowing from the liquid pipe 3b by an air conditioning load, an evaporator-side blower 12, and an indoor temperature sensor 71. Further, the outdoor unit 20 is a compressor 2 for compressing the refrigerant gas.
1. A condenser 22 for cooling and liquefying the refrigerant gas, a condenser-side blower 26 for forcibly blowing outside air to the outer surface of the condenser 22, and a receiver 46 for storing a refrigerant liquid flowing from an outlet of the condenser 22. A supercooler 47 for obtaining a predetermined degree of subcooling at the inlet of the liquid pump 23, an electromagnetic valve 48 provided on a bypass pipe of the subcooler 47, and an electromagnetic valve provided on a pipe passing through the inside of the subcooler 47. A valve 49, an electronic expansion valve 13 that decompresses the high-temperature and high-pressure refrigerant liquid that has exited the condenser 22 to produce a two-phase wet vapor, and supplies a liquid to the compressor 21 in the event of a transient phenomenon or refrigerant overcharge. Accumulator 27 to prevent return
A solenoid valve 28 for preventing refrigerant from flowing into the accumulator 27 in the liquid pump operation mode, a compressor bypass pipe 4 through a compressor 21 and a check valve 24 for bypassing the accumulator 27, and a compressor in the liquid pump operation mode 2
1 comprises a check valve 29 for closing the flow of refrigerant into the air conditioner 1 and an outside air temperature sensor 72.

【0098】受液器46は、凝縮器22の下方でかつ液
ポンプ23の上方に配置され、凝縮器22からの冷媒流
入配管と冷媒流出配管を有する。冷媒流出配管は受液器
46の下部に接続され、冷媒流入配管は冷媒流出配管よ
りも上方に接続されている。このため、冷媒流出配管に
冷媒液が確実に供給される構造となっている。また、受
液器46の内容積は圧縮機運転モードと液ポンプ運転モ
ードとの適正冷媒量差に相当する冷媒液を収納できる容
積とする。
The liquid receiver 46 is arranged below the condenser 22 and above the liquid pump 23, and has a refrigerant inflow pipe and a refrigerant outflow pipe from the condenser 22. The refrigerant outflow pipe is connected to a lower part of the receiver 46, and the refrigerant inflow pipe is connected above the refrigerant outflow pipe. For this reason, the refrigerant liquid is reliably supplied to the refrigerant outflow pipe. The internal volume of the liquid receiver 46 is a volume that can store a refrigerant liquid corresponding to an appropriate refrigerant amount difference between the compressor operation mode and the liquid pump operation mode.

【0099】過冷却器47は受液器46からの冷媒液を
更に冷却し過冷却度を増大させるもので、内部には蓄熱
材、例えば水が充填されており、電磁弁49を介した配
管が蓄熱材中に設置されている。さらに、過冷却器47
は内部の蓄熱材が圧縮機運転モード時にアキュムレータ
27から冷熱を得ることができるようにアキュムレータ
27に接触して配置されている。
The supercooler 47 further cools the refrigerant liquid from the liquid receiver 46 to increase the degree of supercooling. The supercooler 47 is filled with a heat storage material, for example, water. Are installed in the heat storage material. Further, the subcooler 47
Is arranged in contact with the accumulator 27 so that the internal heat storage material can obtain cold heat from the accumulator 27 in the compressor operation mode.

【0100】この空気調和機では、圧縮機運転モードを
行う場合、制御装置70によって、電磁弁28、48を
開放して電磁弁49を閉止し、電子式膨張弁13の開度
を、例えば凝縮器22の出口部の過冷却度が一定値とな
るように設定する。そして、圧縮機21を運転し液ポン
プ23を運転または停止状態とする。この時、逆止弁2
4は圧縮機21の吐出圧力と吸入圧力との圧力差で閉止
されて圧縮機運転モードの冷媒回路が形成される。すな
わち、冷媒は、圧縮機21→逆止弁29→凝縮器22→
受液器46→電磁弁48→液ポンプ23→電子式膨張弁
13→液配管3b→蒸発器11→ガス配管3a→電磁弁
28→アキュムレータ27→圧縮機21の順で冷媒回路
内を流動し、冷房運転が行われる。この時、過冷却器4
7内部の蓄熱材はアキュムレータ27内の冷媒液の蒸発
潜熱によってアキュムレータ27と同一温度まで冷却さ
れ、蓄熱材には冷熱が蓄えられる。
In the air conditioner, when the compressor operation mode is performed, the control device 70 opens the solenoid valves 28 and 48 and closes the solenoid valve 49, and adjusts the opening of the electronic expansion valve 13 by, for example, condensing. The degree of supercooling at the outlet of the vessel 22 is set to a constant value. Then, the compressor 21 is operated, and the liquid pump 23 is operated or stopped. At this time, check valve 2
4 is closed by the pressure difference between the discharge pressure and the suction pressure of the compressor 21 to form a refrigerant circuit in the compressor operation mode. That is, the refrigerant flows from the compressor 21 → the check valve 29 → the condenser 22 →
The liquid flows in the refrigerant circuit in the order of the receiver 46 → the solenoid valve 48 → the liquid pump 23 → the electronic expansion valve 13 → the liquid pipe 3 b → the evaporator 11 → the gas pipe 3 a → the solenoid valve 28 → the accumulator 27 → the compressor 21. , A cooling operation is performed. At this time, the subcooler 4
The heat storage material inside 7 is cooled to the same temperature as the accumulator 27 by the latent heat of evaporation of the refrigerant liquid in the accumulator 27, and the heat storage material stores cold heat.

【0101】また、液ポンプ運転モードを行う場合、制
御装置70によって、電磁弁28、48を閉止して電磁
弁49を開放し、電子式膨張弁13の開度を、例えば蒸
発器11の出口部の過熱度が5℃となる開度に設定す
る。そして、液ポンプ23を運転し圧縮機21を停止状
態とする。この時、逆止弁24は冷媒の流れにより開放
され、液ポンプ運転モードの冷媒回路が形成される。す
なわち、冷媒は、液ポンプ23→電子式膨張弁13→液
配管3b→蒸発器11→ガス配管3a→逆止弁24→凝
縮器22→受液器46→電磁弁49→過冷却器47→液
ポンプ23の順で冷媒回路内を流動し、冷房運転が行わ
れる。
When the liquid pump operation mode is performed, the control device 70 closes the solenoid valves 28 and 48 and opens the solenoid valve 49, and adjusts the opening of the electronic expansion valve 13 by, for example, the outlet of the evaporator 11. The degree of superheat is set to 5 ° C. Then, the liquid pump 23 is operated to stop the compressor 21. At this time, the check valve 24 is opened by the flow of the refrigerant, and a refrigerant circuit in the liquid pump operation mode is formed. That is, the refrigerant is supplied from the liquid pump 23 → the electronic expansion valve 13 → the liquid pipe 3b → the evaporator 11 → the gas pipe 3a → the check valve 24 → the condenser 22 → the liquid receiver 46 → the electromagnetic valve 49 → the supercooler 47 → The liquid flows in the refrigerant circuit in the order of the liquid pump 23, and the cooling operation is performed.

【0102】上記の圧縮機運転モードでは圧縮機21を
運転し、液ポンプ23は運転または停止する。また、液
ポンプ運転モードで液ポンプ23を運転する。液ポンプ
23を運転すると、キャビテーションの問題が生ずる
が、本実施の形態による空気調和機は、凝縮器22の出
口部に受液器46を設けているので、液ポンプ運転時に
冷媒液が確実に液ポンプ23へ供給される。このため、
キャビテーションの発生を防止することができ安定して
液ポンプ23を運転することができる。さらに、過冷却
器47を設けたため、液ポンプ23の入口部での冷媒液
の過冷却度を増大させることができ、更なるキャビテー
ションの発生防止を行うことができる。また、過冷却器
47の冷熱源を圧縮機運転モード時のアキュムレータ2
7から得る構成としたため、過冷却器47の冷熱源とし
て冷媒回路とは別の冷熱源を設置する必要がなく、1つ
の冷媒回路内で安定して液ポンプ23を運転することが
できる。なお、本実施の形態では1つの冷媒回路内で過
冷却器の冷熱源を得る構成としたが、蓄熱槽、例えば氷
蓄熱槽を備え、蓄熱運転が可能な冷媒回路構成である場
合、過冷却器47の冷熱源として氷水などを利用でき
る。
In the compressor operation mode, the compressor 21 is operated, and the liquid pump 23 is operated or stopped. Further, the liquid pump 23 is operated in the liquid pump operation mode. When the liquid pump 23 is operated, a problem of cavitation occurs. However, in the air conditioner according to the present embodiment, since the liquid receiver 46 is provided at the outlet of the condenser 22, the refrigerant liquid is surely formed during the operation of the liquid pump. The liquid is supplied to the liquid pump 23. For this reason,
The occurrence of cavitation can be prevented, and the liquid pump 23 can be operated stably. Furthermore, since the supercooler 47 is provided, the degree of supercooling of the refrigerant liquid at the inlet of the liquid pump 23 can be increased, and further cavitation can be prevented. Further, the cooling source of the supercooler 47 is set to the accumulator 2 in the compressor operation mode.
7, it is not necessary to provide a separate cold heat source from the refrigerant circuit as a cold heat source for the subcooler 47, and the liquid pump 23 can be stably operated within one refrigerant circuit. In the present embodiment, the cooling source of the subcooler is obtained in one refrigerant circuit. However, if the refrigerant circuit is provided with a heat storage tank, for example, an ice heat storage tank and is capable of performing heat storage operation, the supercooling may be performed. Ice water or the like can be used as a cold heat source of the vessel 47.

【0103】また、圧縮機運転モード時のアキュムレー
タ27の温度は0〜10℃程度であり、蓄熱材として水
を用いる場合には、顕熱の形で冷熱を蓄えることとな
る。従って、所定の過冷却度を得るために多くの蓄熱材
を必要とし、それに伴い過冷却器47の容積も大型化す
るという問題が生じる。このような場合には、0〜10
℃で相変化を生じる物質、例えばクラスレート(気体水
和物)を用いることにより、潜熱の形で冷熱を蓄えるこ
とができ過冷却器47を小型化することができる。
The temperature of the accumulator 27 in the compressor operation mode is about 0 to 10 ° C. When water is used as the heat storage material, cold heat is stored in the form of sensible heat. Therefore, a large amount of heat storage material is required to obtain a predetermined degree of subcooling, and the volume of the supercooler 47 is accordingly increased. In such a case, 0-10
By using a substance that undergoes a phase change at a temperature of, for example, clathrate (gas hydrate), cold heat can be stored in the form of latent heat, and the size of the supercooler 47 can be reduced.

【0104】また、本実施の形態では過冷却器47への
冷媒の流入およびバイパスに2つの電磁弁48、49を
用いる構成としたが、これに限るものではなく例えば3
方弁を用いて制御装置70でその動作を制御することに
より、受液器46から流入する冷媒液が過冷却器47を
通過するか否かを選択できる構造としてもよい。
In the present embodiment, the two solenoid valves 48 and 49 are used for the flow of the refrigerant into the subcooler 47 and the bypass. However, the present invention is not limited to this.
By controlling the operation of the control device 70 using the one-way valve, it is possible to select whether or not the refrigerant liquid flowing from the liquid receiver 46 passes through the supercooler 47.

【0105】実施の形態9.以下、本発明の実施の形態
9による空気調和機として例えば冷房装置について説明
する。図20は本実施の形態による空気調和機を示す構
成図である。本実施の形態は、過冷却手段として実施の
形態8とは異なる過冷却手段の構成を示すと共に、複数
の室内機を有する構成の空気調和機を示すものである。
50は過冷却器47内に充填された蓄熱材である例えば
水が流通する蓄熱材搬送用配管であり、アキュムレータ
27の周囲に巻回されてその冷熱を得て、過冷却器47
に搬送する。51は配管50内で蓄熱材を搬送する蓄熱
材搬送用ポンプである。また、制御装置70から各機器
への制御信号線の接続はここでは省略しているが、図1
0の各制御信号線に加え、電磁弁48,49および蓄熱
材搬送用ポンプ51の制御も制御装置70で行なうよう
に制御信号線を接続している。他の各部において、図1
0と同一符号は同一、または相当部分を示している。
Embodiment 9 FIG. Hereinafter, for example, a cooling device will be described as an air conditioner according to Embodiment 9 of the present invention. FIG. 20 is a configuration diagram showing an air conditioner according to the present embodiment. The present embodiment shows an air conditioner having a configuration including a plurality of indoor units while showing a configuration of a supercooling unit different from that of the eighth embodiment as a supercooling unit.
Reference numeral 50 denotes a heat storage material conveying pipe through which the heat storage material, for example, water, which is filled in the supercooler 47, is wound around the accumulator 27 to obtain the cold heat thereof, and
Transport to Reference numeral 51 denotes a heat storage material transfer pump that transfers the heat storage material in the pipe 50. Although connection of control signal lines from the control device 70 to each device is omitted here, FIG.
Control signal lines are connected so that the control device 70 also controls the electromagnetic valves 48 and 49 and the heat storage material conveying pump 51 in addition to the control signal lines of 0. In other parts, FIG.
The same reference numerals as 0 indicate the same or corresponding parts.

【0106】本実施の形態による空気調和機は、複数の
室内機10を有する構成である。室内機10は、例えば
上下に2台設置されており、減圧手段である電子式膨張
弁13は蒸発器11を収納する箱体内すなわち室内機内
に設置されている。室内機10は、例えば、凝縮器22
を出た高温高圧の冷媒液を減圧して二相状態の湿り蒸気
とする電子式膨張弁13、液配管3bから流入した湿り
蒸気を空調負荷によって蒸発させる蒸発器11、蒸発器
側送風機12、電磁弁63、室内温度センサ71を収納
する箱体であり、上方の室内機には添字a、下方の室内
機には添字bを付している。
The air conditioner according to the present embodiment has a configuration having a plurality of indoor units 10. For example, two indoor units 10 are installed vertically, and an electronic expansion valve 13 serving as a decompression unit is installed in a box housing the evaporator 11, that is, in the indoor unit. The indoor unit 10 includes, for example, a condenser 22
An electronic expansion valve 13 which decompresses the high-temperature and high-pressure refrigerant liquid that has exited into a two-phase wet vapor, an evaporator 11 for evaporating the wet vapor flowing from the liquid pipe 3b by an air conditioning load, an evaporator-side blower 12, This is a box housing the electromagnetic valve 63 and the indoor temperature sensor 71. The upper indoor unit is given a suffix a, and the lower indoor unit is given a suffix b.

【0107】また、室外機20は、冷媒ガスを圧縮する
圧縮機21、この冷媒ガスを冷却液化させる凝縮器2
2、外気を強制的に凝縮器22の外表面に送風する凝縮
器側送風機26、液ポンプ23の入口部において所定の
過冷却度を得るための過冷却器47、過冷却器47のバ
イパス配管に設けられた電磁弁48、過冷却器47内部
を通る配管に設けられた電磁弁49、アキュムレータ2
7の冷熱を得るために過冷却器47内に充填された蓄熱
材をアキュムレータ27の周囲へ搬送する配管50、蓄
熱材を搬送するポンプ51、液ポンプ23、過渡的現象
や冷媒の過充填などの場合に圧縮機21への液戻りを防
止するアキュムレータ27、液ポンプ運転時にアキュム
レータ27への冷媒の流入を防止する電磁弁28、圧縮
機21およびアキュムレータ27をバイパスする逆止弁
24を介した圧縮機用バイパス配管4、液ポンプ運転時
に圧縮機21への冷媒の流入を防止する逆止弁29、外
気温度センサ72を収納する箱体である。
The outdoor unit 20 includes a compressor 21 for compressing the refrigerant gas and a condenser 2 for cooling and liquefying the refrigerant gas.
2. A condenser-side blower 26 that forcibly blows outside air to the outer surface of the condenser 22, a supercooler 47 for obtaining a predetermined degree of subcooling at an inlet of the liquid pump 23, and a bypass pipe of the supercooler 47. , A solenoid valve 49 provided in a pipe passing through the inside of the subcooler 47, and an accumulator 2
7, a pipe 50 for transporting the heat storage material filled in the supercooler 47 to the periphery of the accumulator 27, a pump 51 for transporting the heat storage material, a liquid pump 23, transient phenomena and overfilling of the refrigerant, etc. In the case of (1), an accumulator 27 for preventing the liquid from returning to the compressor 21, a solenoid valve 28 for preventing the refrigerant from flowing into the accumulator 27 during operation of the liquid pump, and a check valve 24 for bypassing the compressor 21 and the accumulator 27. It is a box housing the bypass pipe 4 for the compressor, the check valve 29 for preventing the refrigerant from flowing into the compressor 21 when the liquid pump is operated, and the outside air temperature sensor 72.

【0108】この空気調和機では、圧縮機運転モードを
行う場合、制御装置70によって、電磁弁28、48を
開として電磁弁49を閉とし、電子式膨張弁13の開度
を、例えば凝縮器22の出口部の過冷却度が一定値とな
るように設定する。そして、圧縮機21を運転し液ポン
プ23を運転または停止状態とする。この時、逆止弁2
4は圧縮機21の吐出圧力と吸入圧力との圧力差で閉止
されて圧縮機運転モードの冷媒回路が形成される。すな
わち、冷媒は、圧縮機21→逆止弁29→凝縮器22→
電磁弁48→液ポンプ23→液配管3b→電子式膨張弁
13aおよび13b→蒸発器11aおよび11b→電磁
弁63aおよび63b→ガス配管3a→電磁弁28→ア
キュムレータ27→圧縮機21の順で冷媒回路内を流動
し、冷房運転が行われる。この時、過冷却器47内部の
蓄熱材、例えば水は蓄熱材搬送用ポンプ51によって蓄
熱材搬送用配管50を流動し、アキュムレータ27と熱
交換してアキュムレータ27と同一温度まで冷却され
る。逆に、アキュムレータ27内の余剰冷媒は蓄熱材か
らの放熱によって蒸発するが、圧縮機運転モードが長時
間に及ぶと過冷却器47内の蓄熱材の温度がアキュムレ
ータ27の温度と等しくなり、過冷却器47がない場合
の圧縮機運転モードと同一運転状態に戻る。このように
して過冷却器47内部の蓄熱材にはアキュムレータ27
からの冷熱が蓄えられる。なお、圧縮機運転モードが長
時間に及ぶ場合には、蓄熱材の温度を検出してアキュム
レータ27と同一の温度になったら蓄熱材搬送用ポンプ
51を停止するように構成すれば、無駄な動作を省くこ
とができる。
In this air conditioner, when the compressor operation mode is performed, the controller 70 opens the solenoid valves 28 and 48 and closes the solenoid valve 49, and adjusts the opening of the electronic expansion valve 13 by, for example, a condenser. The supercooling degree at the outlet 22 is set to a constant value. Then, the compressor 21 is operated, and the liquid pump 23 is operated or stopped. At this time, check valve 2
4 is closed by the pressure difference between the discharge pressure and the suction pressure of the compressor 21 to form a refrigerant circuit in the compressor operation mode. That is, the refrigerant flows from the compressor 21 → the check valve 29 → the condenser 22 →
Solenoid valve 48 → liquid pump 23 → liquid pipe 3b → electronic expansion valves 13a and 13b → evaporators 11a and 11b → solenoid valves 63a and 63b → gas pipe 3a → solenoid valve 28 → accumulator 27 → compressor 21 in order of refrigerant. The air flows in the circuit, and the cooling operation is performed. At this time, the heat storage material, for example, water inside the subcooler 47 flows through the heat storage material transfer pipe 50 by the heat storage material transfer pump 51, exchanges heat with the accumulator 27, and is cooled to the same temperature as the accumulator 27. Conversely, the excess refrigerant in the accumulator 27 evaporates due to heat radiation from the heat storage material. However, if the compressor operation mode extends for a long time, the temperature of the heat storage material in the supercooler 47 becomes equal to the temperature of the accumulator 27, The operation returns to the same operation state as the compressor operation mode when the cooler 47 is not provided. Thus, the heat storage material inside the subcooler 47 is stored in the accumulator 27.
The cold heat from is stored. If the compressor operation mode is performed for a long time, the heat storage material transport pump 51 is stopped when the temperature of the heat storage material is detected and reaches the same temperature as that of the accumulator 27. Can be omitted.

【0109】また、圧縮機21を停止状態として液ポン
プ運転モードを行う場合、制御装置70によって、電磁
弁28、48を閉止して電磁弁49を開放し、電子式膨
張弁13a,13bの開度を、例えば蒸発器11a,1
1bの出口部の過熱度が5℃となる開度にそれぞれ設定
すると、逆止弁24は冷媒の流れにより開放され、液ポ
ンプ運転モードの冷媒回路が形成される。すなわち、冷
媒は、液ポンプ23→液配管3b→電子式膨張弁13a
および13b→蒸発器11aおよび11b→電磁弁63
aおよび63b→ガス配管3a→逆止弁24→凝縮器2
2→電磁弁49→過冷却器47→液ポンプ23の順で冷
媒回路内を流動し、冷房運転が行われる。
When the compressor 21 is stopped and the liquid pump operation mode is performed, the controller 70 closes the solenoid valves 28 and 48, opens the solenoid valve 49, and opens the electronic expansion valves 13a and 13b. The degree is, for example, evaporator 11a, 1
When the degree of superheat at the outlet of 1b is set to 5 ° C., the check valve 24 is opened by the flow of the refrigerant, and a refrigerant circuit in the liquid pump operation mode is formed. That is, the refrigerant is supplied from the liquid pump 23 → the liquid pipe 3b → the electronic expansion valve 13a.
And 13b → evaporators 11a and 11b → solenoid valve 63
a and 63b → gas pipe 3a → check valve 24 → condenser 2
The coolant flows through the refrigerant circuit in the order of 2 → electromagnetic valve 49 → supercooler 47 → liquid pump 23 to perform the cooling operation.

【0110】ここで、室内機10bは室内機10aより
も下方に設置されており、かつ液配管3bが完全に冷媒
液で満たされている。このため、室内機10bは室内機
10aと比較して液ヘッド分、すなわち液柱高さに相当
する圧力増加分だけ入口圧力が高くなり、冷媒が流れや
すくなる。従って、例えば蒸発器11aと11bの両方
の出口部の過熱度を5℃となるようにするためには、電
子式膨張弁13bの開度を13aの開度よりも小さく設
定し、室内機10bの電子式膨張弁13b部分での流動
抵抗を増加させる必要がある。そこで、液ポンプ運転モ
ード時は電子式膨張弁13bの開度を13aの開度より
も液ヘッド分だけ小さい開度に設定するようにする。
Here, the indoor unit 10b is installed below the indoor unit 10a, and the liquid pipe 3b is completely filled with the refrigerant liquid. For this reason, the inlet pressure of the indoor unit 10b is increased by the amount corresponding to the liquid head, that is, the pressure increase corresponding to the liquid column height, as compared with the indoor unit 10a, and the refrigerant easily flows. Therefore, for example, in order to set the degree of superheat at both outlets of the evaporators 11a and 11b to 5 ° C., the opening of the electronic expansion valve 13b is set smaller than the opening of 13a, and the indoor unit 10b It is necessary to increase the flow resistance in the electronic expansion valve 13b. Therefore, in the liquid pump operation mode, the opening of the electronic expansion valve 13b is set to be smaller by the liquid head than the opening of the electronic expansion valve 13a.

【0111】また、室内機2台のうち下方に設置される
室内機10bが停止される場合、停止している室内機1
0bの電子式膨張弁13bは全閉にし、電磁弁63bは
閉止しておく。電子式膨張弁13bを全閉にするのは、
液配管3bから液冷媒が停止している室内機10bに滞
留して冷媒不足となるのを防止するためであり、電磁弁
63bを閉止するのは、上方の室内機10aの負荷が急
激に変動した場合などに蒸発器11a出口から未蒸発の
冷媒液が流出し、ガス配管3aを下降して下方の停止し
ている室内機10bに滞留して冷媒不足となるのを防止
するためである。また、本実施の形態では室内機が2台
設置される場合について示したが、2台に限るものでは
なく、複数台設置される場合についても上記の弁制御を
行うことにより2台の場合と同様の効果が得られる。た
だし、複数の室内機の設置位置に上下の差がない場合に
は、電子式膨張弁13の開度については液ヘッド分を考
慮する必要はないが、停止している室内機10の電子式
膨張弁13を全閉にし、電磁弁63を閉止しておくほう
が望ましい。
When the lower indoor unit 10b of the two indoor units is stopped, the stopped indoor unit 1b is stopped.
The electronic expansion valve 13b of 0b is fully closed, and the solenoid valve 63b is closed. To fully close the electronic expansion valve 13b,
This is to prevent the liquid refrigerant from staying in the indoor unit 10b where the liquid refrigerant is stopped from the liquid pipe 3b and becoming short of the refrigerant. This is to prevent the unevaporated refrigerant liquid from flowing out from the outlet of the evaporator 11a and staying in the stopped indoor unit 10b below the gas pipe 3a to cause a shortage of the refrigerant. Further, in the present embodiment, the case where two indoor units are installed is shown, but the number of indoor units is not limited to two. Similar effects can be obtained. However, when there is no vertical difference between the installation positions of the plurality of indoor units, it is not necessary to consider the liquid head for the opening degree of the electronic expansion valve 13. It is desirable that the expansion valve 13 be fully closed and the solenoid valve 63 be closed.

【0112】また、本実施の形態では、電子式膨張弁1
3を室内機10内に設置しており、液配管3bが圧縮機
運転モード時にも液ポンプ運転モード時にも常に冷媒液
で満たされる構成としたため、圧縮機運転モード時と液
ポンプ運転モード時の冷媒量差を小さくすることがで
き、アキュムレータ27の小型化や冷媒回収運転時間の
短縮を行うことができる。また、室外機1台に対して室
内機が2台設置されているため、室外機の省スペース化
を図ることができると共に、同時に2室の冷房を行うこ
とができる。また、凝縮器22の出口部に過冷却器47
を設けたため、液ポンプ23の入口部での冷媒液の過冷
却度を増大させ、キャビテーションの発生の防止して安
定した液ポンプ運転を行うことができる。さらに、過冷
却器47の冷熱源を圧縮機運転モード時のアキュムレー
タ27から得る構成としたため、1つの冷媒回路内で安
定した液ポンプ運転を行うことができる。
In the present embodiment, the electronic expansion valve 1
3 is installed in the indoor unit 10, and the liquid pipe 3b is always filled with the refrigerant liquid in both the compressor operation mode and the liquid pump operation mode. The difference in the amount of the refrigerant can be reduced, and the size of the accumulator 27 can be reduced and the operation time of the refrigerant recovery operation can be reduced. Further, since two indoor units are provided for one outdoor unit, the space of the outdoor unit can be reduced, and the two rooms can be cooled at the same time. A supercooler 47 is provided at the outlet of the condenser 22.
Is provided, the degree of supercooling of the refrigerant liquid at the inlet of the liquid pump 23 is increased, and the occurrence of cavitation can be prevented, and a stable liquid pump operation can be performed. Further, since the cooling source of the supercooler 47 is obtained from the accumulator 27 in the compressor operation mode, a stable liquid pump operation can be performed in one refrigerant circuit.

【0113】実施の形態10.実施の形態1〜9では、
空気調和機として冷房装置の例について示したが、凝縮
器を室内機、蒸発器を室外機とすれば暖房装置として利
用することもでき、冷房装置の場合と同様な消費電力削
減効果が得られる。以下、実施の形態10による空気調
和機として例えば暖房装置について説明する。本実施の
形態は、実施の形態1による冷房装置と同様の構成で、
暖房装置としたものであり、図21に本実施の形態に係
る空気調和機の構成を示す。図中、図1と同一符号は同
一、または相当部分を示している。
Embodiment 10 FIG. In Embodiments 1 to 9,
Although an example of a cooling device has been shown as an air conditioner, if the condenser is an indoor unit and the evaporator is an outdoor unit, it can be used as a heating device, and the same power consumption reduction effect as that of the cooling device can be obtained. . Hereinafter, for example, a heating device will be described as an air conditioner according to Embodiment 10. This embodiment has the same configuration as the cooling device according to the first embodiment,
FIG. 21 shows a configuration of an air conditioner according to the present embodiment. In the figure, the same reference numerals as those in FIG. 1 indicate the same or corresponding parts.

【0114】室内機10は、空調対象空間の空調負荷に
よって冷媒を凝縮させる凝縮器22、室内空気を強制的
に凝縮器22の外表面に送風するための凝縮器側送風機
26、凝縮器22に流入する被加熱流体の温度を検出す
る第2温度検出手段72、この場合には室内温度を検出
する室内温度センサなどを収納している。また、室外機
20は、冷媒ガスを圧縮するための圧縮機21、電子式
膨張弁13から流入した湿り蒸気を蒸発させて冷媒ガス
とする蒸発器11、外気を強制的に蒸発器11の外表面
に送風するための蒸発器側送風機12、凝縮器22を出
た高温高圧の冷媒液を減圧して二相状態の湿り蒸気とす
る電子式膨張弁13、過渡的現象や冷媒の過充填などの
場合に圧縮機21への液戻りを防止するためのアキュム
レータ27、液ポンプ23、液ポンプ運転モード時にア
キュムレータ27への冷媒の流入を防止する電磁弁2
8、液ポンプ運転モード時に圧縮機21をバイパスする
ための電磁弁24を備えた圧縮機バイパス配管4、液ポ
ンプ運転モード時に圧縮機21への冷媒の流入を防止す
る電磁弁29、蒸発器11に流入する被冷却流体の温度
を検出する第1温度検出手段71、この場合には外気温
度を検出する外気温度センサなどを収納し、側面には例
えばマイクロコンピュータで構成された制御装置70が
固定されている。電子式膨張弁13は凝縮器22の出口
部と蒸発器11の入口部の間の配管に接続され、液ポン
プ23は凝縮器22の出口部と電子式膨張弁13の入口
部の間の配管に電子式膨張弁13と直列に接続されてい
る。なお、図21では室内機10が室外機20よりも高
所に設置されているが、この位置関係については特に制
限はない。
The indoor unit 10 includes a condenser 22 for condensing the refrigerant by an air-conditioning load in the space to be air-conditioned, a condenser-side blower 26 for forcibly blowing indoor air to the outer surface of the condenser 22, and a condenser 22. A second temperature detecting means 72 for detecting the temperature of the inflowing fluid to be heated, in this case, an indoor temperature sensor for detecting the indoor temperature is housed. Further, the outdoor unit 20 includes a compressor 21 for compressing the refrigerant gas, an evaporator 11 for evaporating the wet steam flowing from the electronic expansion valve 13 into a refrigerant gas, and forcing the outside air out of the evaporator 11. An evaporator-side blower 12 for blowing air to the surface, an electronic expansion valve 13 that decompresses the high-temperature and high-pressure refrigerant liquid that has exited the condenser 22 to produce two-phase wet vapor, transient phenomena and overfilling of the refrigerant, etc. , An accumulator 27 for preventing liquid return to the compressor 21, a liquid pump 23, and a solenoid valve 2 for preventing refrigerant from flowing into the accumulator 27 in the liquid pump operation mode.
8, a compressor bypass pipe 4 having an electromagnetic valve 24 for bypassing the compressor 21 in the liquid pump operation mode, an electromagnetic valve 29 for preventing refrigerant from flowing into the compressor 21 in the liquid pump operation mode, and the evaporator 11 A first temperature detecting means 71 for detecting the temperature of the fluid to be cooled flowing into the air conditioner, in which case an outside air temperature sensor for detecting the outside air temperature and the like are housed, and a control device 70 composed of, for example, a microcomputer is fixed on the side surface. Have been. The electronic expansion valve 13 is connected to a pipe between the outlet of the condenser 22 and the inlet of the evaporator 11, and the liquid pump 23 is connected to a pipe between the outlet of the condenser 22 and the inlet of the electronic expansion valve 13. Is connected in series with the electronic expansion valve 13. In FIG. 21, the indoor unit 10 is installed at a higher position than the outdoor unit 20. However, there is no particular limitation on the positional relationship.

【0115】この空気調和機は年間を通して暖房が必要
な場所に利用され、例えば第1温度検出手段71で検出
される外気温度と第2温度検出手段72で検出される室
内温度との温度差(以下、外気温度と室内温度との温度
差をΔTとする)に基づいて制御装置70の指令により
圧縮機運転モードと液ポンプ運転モードとを切換える。
すなわち、ΔTが例えば5℃以下の条件では圧縮機21
を用いた圧縮機運転モードで暖房運転を行い、ΔTが1
0℃以上の条件では外気の温熱を利用した液ポンプ運転
モードを行う。ここで、ΔTの条件が圧縮機運転モード
と液ポンプ運転モードで異なるのは、圧縮機21と液ポ
ンプ23の発停が頻繁に繰り返されるのを防止するため
である。また、外気温度の代りに凝縮器22の出口部か
ら電子式膨張弁13の入口部までの配管温度を検知し、
この配管温度と室内温度との温度差で圧縮機運転モード
と液ポンプ運転モードとを切換える構成としてもよい。
これは、この部分の配管を流通する冷媒の温度は、凝縮
器22に流入する被加熱流体の温度とほぼ等しいと見な
すことができるからである。
This air conditioner is used in places where heating is required throughout the year, and for example, the temperature difference between the outside air temperature detected by the first temperature detecting means 71 and the room temperature detected by the second temperature detecting means 72 ( Hereinafter, the compressor operation mode and the liquid pump operation mode are switched by a command from the control device 70 on the basis of the temperature difference between the outside air temperature and the room temperature.
That is, when ΔT is, for example, 5 ° C. or less, the compressor 21
Heating operation in the compressor operation mode using
Under the condition of 0 ° C. or more, the liquid pump operation mode using the temperature of the outside air is performed. The reason that the condition of ΔT is different between the compressor operation mode and the liquid pump operation mode is to prevent the compressor 21 and the liquid pump 23 from being repeatedly started and stopped. Also, instead of the outside air temperature, the pipe temperature from the outlet of the condenser 22 to the inlet of the electronic expansion valve 13 is detected,
The compressor operation mode and the liquid pump operation mode may be switched based on the temperature difference between the pipe temperature and the room temperature.
This is because the temperature of the refrigerant flowing through this part of the pipe can be regarded as substantially equal to the temperature of the fluid to be heated flowing into the condenser 22.

【0116】ここでまず、圧縮機運転について説明す
る。制御装置70の指令により、電磁弁24を閉、電磁
弁28および29を開とし、電子式膨張弁13の開度
を、例えば凝縮器22の出口部の過冷却度が一定値とな
るように設定して圧縮機21を運転する。この時例えば
液ポンプ23は停止すると、圧縮機運転モードの冷媒回
路が形成される。すなわち、冷媒は、圧縮機21→電磁
弁29→ガス配管3a→凝縮器22→液配管3b→液ポ
ンプ23→電子式膨張弁13→蒸発器11→電磁弁28
→アキュムレータ27→圧縮機21の順で冷媒回路内を
流動し、凝縮器22で室内空気と熱交換して暖房運転が
行われる。この時、電子式膨張弁13の開度は、冷媒が
液ポンプ23内部を通過する際に流動抵抗が生じるた
め、液ポンプ運転モードを併用しない場合と比較すると
大きくする必要がある。しかし、圧縮機運転モードで圧
縮機21と液ポンプ23を同時に運転すれば、液ポンプ
23の内部を冷媒が通過する際の流動抵抗が減少し、電
子式膨張弁13の開度を通常の圧縮機運転と同等にする
ことができ、液ポンプ運転モードを併用しない場合の電
子式膨張弁の制御を適用することができる。
First, the compressor operation will be described. The solenoid valve 24 is closed, the solenoid valves 28 and 29 are opened according to a command from the control device 70, and the opening of the electronic expansion valve 13 is adjusted so that the degree of supercooling at the outlet of the condenser 22 becomes a constant value. After setting, the compressor 21 is operated. At this time, for example, when the liquid pump 23 stops, a refrigerant circuit in the compressor operation mode is formed. That is, the refrigerant flows from the compressor 21 → the solenoid valve 29 → the gas pipe 3a → the condenser 22 → the liquid pipe 3b → the liquid pump 23 → the electronic expansion valve 13 → the evaporator 11 → the solenoid valve 28.
The refrigerant flows through the refrigerant circuit in the order of the accumulator 27 and the compressor 21 and exchanges heat with room air in the condenser 22 to perform a heating operation. At this time, the opening degree of the electronic expansion valve 13 needs to be larger than that in the case where the liquid pump operation mode is not used because the flow resistance occurs when the refrigerant passes through the inside of the liquid pump 23. However, when the compressor 21 and the liquid pump 23 are simultaneously operated in the compressor operation mode, the flow resistance when the refrigerant passes through the inside of the liquid pump 23 is reduced, and the opening degree of the electronic expansion valve 13 is reduced to the normal compression degree. The operation of the electronic expansion valve can be applied when the liquid pump operation mode is not used together.

【0117】次に、液ポンプ運転モードについて説明す
る。制御装置70によって、電磁弁28および29を
閉、電磁弁24を開とし、電子式膨張弁13の開度を、
例えば蒸発器11の出口部の過熱度が一定値となるよう
に設定して液ポンプ23を運転すると、液ポンプ運転モ
ードの冷媒回路が形成される。すなわち、冷媒は、液ポ
ンプ23→電子式膨張弁13→蒸発器11→電磁弁24
→ガス管3a→凝縮器22→液管3b→液ポンプ23の
順で冷媒回路内を流動し、暖房運転が行われる。
Next, the liquid pump operation mode will be described. The control device 70 closes the solenoid valves 28 and 29, opens the solenoid valve 24, and sets the opening of the electronic expansion valve 13 to
For example, when the superheat degree at the outlet of the evaporator 11 is set to a constant value and the liquid pump 23 is operated, a refrigerant circuit in a liquid pump operation mode is formed. That is, the refrigerant is supplied from the liquid pump 23 → the electronic expansion valve 13 → the evaporator 11 → the solenoid valve 24.
The gas flows in the refrigerant circuit in the order of the gas pipe 3a, the condenser 22, the liquid pipe 3b, and the liquid pump 23, and the heating operation is performed.

【0118】ところで、圧縮機運転モードと液ポンプ運
転モードを比較すると、液ポンプ運転モードでは、キャ
ビテーションの発生防止のため凝縮器22の出口部すな
わち液ポンプ23の入口部の過冷却度を大きくする必要
がある。さらにこれに加え、蒸発器11の入口部が液状
態(乾き度X=0)となる。これに対して、圧縮機運転
モードでは蒸発器11の入口部の乾き度X=0.2程度
の二相状態である。このことから液ポンプ運転モード時
の適正冷媒量は圧縮機運転モード時と比較して多くなる
ので、液ポンプ運転モード時は液ポンプ運転に関与しな
い冷媒回路内に冷媒が滞留するのを極力防止する必要が
ある。しかし、図21のように室外機20にアキュムレ
ータ27が設置されている場合、圧縮機運転モード時は
アキュムレータ27内が低温低圧となるため、液ポンプ
運転モードへの切換え後に冷媒がアキュムレータ27へ
流入しようとする。本実施の形態の空気調和機では、ア
キュムレータ27の上流部に電磁弁28を設けたため、
このような冷媒の流入を防止できる。そして、液ポンプ
運転モードに必要な冷媒量を確保することができるた
め、常に安定した液ポンプ運転モードが行われる。
When the compressor operation mode and the liquid pump operation mode are compared, in the liquid pump operation mode, the degree of supercooling at the outlet of the condenser 22, that is, at the inlet of the liquid pump 23 is increased in order to prevent cavitation. There is a need. In addition, the inlet of the evaporator 11 is in a liquid state (dryness X = 0). On the other hand, in the compressor operation mode, the dryness X at the inlet of the evaporator 11 is in a two-phase state of about 0.2. As a result, the appropriate amount of refrigerant in the liquid pump operation mode is larger than that in the compressor operation mode.Therefore, in the liquid pump operation mode, the refrigerant is minimized from remaining in the refrigerant circuit not involved in the liquid pump operation. There is a need to. However, when the accumulator 27 is installed in the outdoor unit 20 as shown in FIG. 21, the refrigerant flows into the accumulator 27 after switching to the liquid pump operation mode because the temperature in the accumulator 27 is low and low in the compressor operation mode. try to. In the air conditioner of the present embodiment, since the electromagnetic valve 28 is provided in the upstream portion of the accumulator 27,
Such inflow of the refrigerant can be prevented. Then, since the amount of refrigerant required for the liquid pump operation mode can be ensured, a stable liquid pump operation mode is always performed.

【0119】また、従来の空気調和機では圧縮機21の
出口部と圧縮機バイパス配管4の出口側接続部との間の
配管に電磁弁29は設けらていなかった。しかし、圧縮
機運転モードから液ポンプ運転モードへの運転切換え時
に、切換え前の圧縮機運転モード時の吐出圧力が切換え
後の液ポンプ運転モード時の圧力より低下するような場
合、液ポンプ運転モードの回路から圧縮機21へ冷媒が
凝縮するため、液ポンプ運転に必要な冷媒量が確保され
ないだけでなく、圧縮機起動時に液圧縮が発生して破損
に至るといった現象を生じる可能性がある。これに対
し、本実施の形態の空気調和機では、圧縮機21の出口
部と圧縮機バイパス配管4の出口側接続部との間に電磁
弁29を設けたため、圧縮機21内へ冷媒が凝縮するの
を防止し、液ポンプ運転モードに必要な冷媒量を確保で
きると共に圧縮機21の信頼性を向上することができ
る。
Further, in the conventional air conditioner, the solenoid valve 29 is not provided in the pipe between the outlet of the compressor 21 and the outlet side connection of the compressor bypass pipe 4. However, when the operation pressure is switched from the compressor operation mode to the liquid pump operation mode, if the discharge pressure in the compressor operation mode before the switching is lower than the pressure in the liquid pump operation mode after the switching, the liquid pump operation mode Since the refrigerant is condensed from the circuit to the compressor 21, not only the amount of the refrigerant necessary for the operation of the liquid pump is not ensured, but also a phenomenon that liquid compression occurs at the time of starting the compressor and damage may occur. On the other hand, in the air conditioner of the present embodiment, since the solenoid valve 29 is provided between the outlet of the compressor 21 and the outlet-side connection of the compressor bypass pipe 4, the refrigerant is condensed into the compressor 21. Can be prevented, the amount of refrigerant required for the liquid pump operation mode can be secured, and the reliability of the compressor 21 can be improved.

【0120】以上のように、実施の形態1と同様、この
暖房装置でも圧縮機運転モードと液ポンプ運転モードと
を備え、外気温度と室内温度との温度差ΔTに応じて両
運転を切換える構成であり、液ポンプ運転モード時の消
費電力は圧縮機機運転モード時と比較して1/10程度
となるため、年間消費電力の大幅削減が可能となる。ま
た、外気温度と室内温度との温度差に基づいて両運転モ
ードを切換える構成としたため、室内温度が高く外気温
度との温度差が小さくなる、あるいは室内温度が外気温
度よりも高くなる条件において、不必要な液ポンプ運転
モードでの運転を防止することができる。また、アキュ
ムレータ27の入口部と圧縮機21の出口部に電磁弁2
8,29を設けたため、液ポンプ運転モード時に圧縮機
21やアキュムレータ27への冷媒の流入を防止し、液
ポンプ運転モードに必要な冷媒量を確保することができ
るため、常に安定した液ポンプ運転モードが行われる。
また、液ポンプ23を電子式膨張弁13と直列に接続
し、圧縮機運転モードと液ポンプ運転モードとで液ポン
プ23付近の冷媒回路を切換えない構成としたので、切
換え動作を簡単にでき、液ポンプバイパス配管を設けて
切換える構成と比較すると、室外機20を小型化するこ
とができると共に制御装置70を簡素化することができ
る。
As described above, similarly to the first embodiment, this heating device also includes the compressor operation mode and the liquid pump operation mode, and switches between the two operations according to the temperature difference ΔT between the outside air temperature and the room temperature. Since the power consumption in the liquid pump operation mode is about 1/10 of that in the compressor operation mode, annual power consumption can be significantly reduced. In addition, since both operation modes are switched based on the temperature difference between the outside air temperature and the room temperature, the temperature difference between the room temperature and the outside air temperature is small, or the room temperature is higher than the outside air temperature. Unnecessary operation in the liquid pump operation mode can be prevented. A solenoid valve 2 is provided between the inlet of the accumulator 27 and the outlet of the compressor 21.
Since the refrigerant pumps 8 and 29 are provided, it is possible to prevent the refrigerant from flowing into the compressor 21 and the accumulator 27 in the liquid pump operation mode, and to secure a necessary amount of refrigerant in the liquid pump operation mode. Mode is performed.
Further, since the liquid pump 23 is connected in series with the electronic expansion valve 13 and the refrigerant circuit near the liquid pump 23 is not switched between the compressor operation mode and the liquid pump operation mode, the switching operation can be simplified. As compared with a configuration in which a liquid pump bypass pipe is provided for switching, the outdoor unit 20 can be downsized and the control device 70 can be simplified.

【0121】なお、ここでは実施の形態1と同様の構成
で暖房装置とした実施の形態について説明したが、実施
の形態2〜9と同様の構成で暖房装置とすることもで
き、それぞれの実施の形態と同様の効果を奏する。ま
た、実施の形態1〜9では冷房装置専用として空気調和
機を構成し、実施の形態10では暖房装置専用として空
気調和機を構成したが、冷暖房装置として構成すること
もできる。この場合には、例えば実施の形態1におい
て、液ポンプ23および圧縮機21それぞれの吸入側と
吐出側を逆にできるように、例えば四方弁などを設けて
その流路を切換える。そして、冷房時には室内側の熱交
換器を蒸発器,室外側の熱交換器を凝縮器として動作さ
せ、暖房時には室内側の熱交換器を凝縮器,室外側の熱
交換器を蒸発器として動作させる。さらに室外機側の熱
交換器と熱交換する流体の温度と室内機側の熱交換器と
熱交換する流体の温度とを検出して、冷房装置の場合に
は、(室内機側流体温度−室外機側流体温度)の温度差
が大きい時に液ポンプ運転、温度差が小さい時に圧縮機
運転を行なう。また、暖房装置の場合には、(室外機側
流体温度−室内機側流体温度)の温度差が大きい時に液
ポンプ運転、温度差が小さい時に圧縮機運転を行なう。
このように動作させることにより、年間消費電力を大幅
削減でき、室外機の小型化を図ることができると共に、
制御装置からの指令による開閉操作を少なくでき制御装
置を簡素化することができ、さらに圧縮機と液体搬送装
置とを設置場所の環境状況に合わせて最適に運転するこ
とのできる冷暖房用の空気調和機が得られる。
Here, the embodiment in which the heating device has the same configuration as in the first embodiment has been described. However, the heating device may have the same configuration as in the second to ninth embodiments. The same effect as in the embodiment is exerted. In the first to ninth embodiments, the air conditioner is configured exclusively for the cooling device, and in the tenth embodiment, the air conditioner is configured exclusively for the heating device. However, the air conditioner may be configured as a cooling and heating device. In this case, for example, in the first embodiment, for example, a four-way valve or the like is provided to switch the flow path so that the suction side and the discharge side of the liquid pump 23 and the compressor 21 can be reversed. During cooling, the indoor heat exchanger operates as an evaporator and the outdoor heat exchanger operates as a condenser. During heating, the indoor heat exchanger operates as a condenser and the outdoor heat exchanger operates as an evaporator. Let it. Furthermore, the temperature of the fluid that exchanges heat with the heat exchanger on the outdoor unit side and the temperature of the fluid that exchanges heat with the heat exchanger on the indoor unit side are detected. The liquid pump operation is performed when the temperature difference of the outdoor unit side fluid temperature is large, and the compressor operation is performed when the temperature difference is small. In the case of a heating device, the liquid pump operation is performed when the temperature difference of (outdoor unit side fluid temperature−the indoor unit side fluid temperature) is large, and the compressor operation is performed when the temperature difference is small.
By operating in this manner, annual power consumption can be significantly reduced, and the size of the outdoor unit can be reduced.
Air conditioning for cooling and heating that can reduce the number of opening and closing operations by commands from the control device, simplify the control device, and operate the compressor and liquid transfer device optimally according to the environmental conditions of the installation location Machine.

【0122】以上、実施の形態1〜10では、減圧手段
として電子式膨張弁13を用いる例について説明した
が、減圧手段はこれに限るものではなく、毛細管や温度
式膨張弁を用いてもよい。また、実施の形態1〜10で
は、凝縮器22を空気で冷却する空冷凝縮器の例を示し
たが、水やブラインなど適当な温度・流量が得られる冷
熱源が存在する場合は、水冷凝縮器として使用すること
もでき、本実施の形態と同様の効果を発揮する。
In the first to tenth embodiments, the example in which the electronic expansion valve 13 is used as the pressure reducing means has been described. However, the pressure reducing means is not limited to this, and a capillary tube or a temperature type expansion valve may be used. . Further, in the first to tenth embodiments, the example of the air-cooled condenser that cools the condenser 22 with air has been described. It can also be used as a container, and exhibits the same effects as the present embodiment.

【0123】[0123]

【発明の効果】以上のように、本発明によれば、圧縮
機、凝縮器、減圧手段および蒸発器を順次配管で接続し
て冷媒を循環させる冷凍サイクルと、前記蒸発器の出口
部と前記凝縮器の入口部とを開閉弁を介して接続するバ
イパス配管と、前記凝縮器の出口部と前記減圧手段の入
口部との間で前記減圧手段と直列に接続される液体搬送
装置と、前記開閉弁の開閉動作と前記圧縮機の運転/停
止動作と前記液体搬送装置の運転/停止動作を制御する
制御装置と、前記蒸発器に流入する被冷却流体の温度を
検出する第1温度検出手段と、前記凝縮器に流入する被
加熱流体の温度を検出する第2温度検出手段と、を備
え、前記第1温度検出手段で検出した被冷却流体の温度
と前記第2温度検出手段で検出した被加熱流体の温度と
の温度差が所定温度以下のときに前記開閉弁を閉として
前記圧縮機を運転し、前記被加熱流体の温度と前記被冷
却流体の温度との温度差が所定温度よりも大きいときに
前記開閉弁を開とし前記圧縮機を停止して前記液体搬送
装置を運転するように、前記制御装置によって前記開閉
弁と前記圧縮機と前記液体搬送装置のそれぞれの動作を
制御することにより、年間消費電力を大幅削減でき、室
外機の小型化を図ることができると共に、制御装置から
の指令による開閉操作を少なくでき制御装置を簡素化す
ることができ、さらに圧縮機と液体搬送装置とを設置場
所の環境状況に合わせて最適に運転することのできる空
気調和機が得られる。
As described above, according to the present invention, a refrigeration cycle in which a compressor, a condenser, a decompression means, and an evaporator are sequentially connected by piping to circulate a refrigerant, an outlet of the evaporator, A bypass pipe connecting the inlet of the condenser via an on-off valve, a liquid transfer device connected in series with the pressure reducing means between an outlet of the condenser and an inlet of the pressure reducing means, A control device for controlling the opening / closing operation of the on-off valve, the operation / stop operation of the compressor, and the operation / stop operation of the liquid transfer device; and a first temperature detecting means for detecting the temperature of the fluid to be cooled flowing into the evaporator. And second temperature detecting means for detecting the temperature of the fluid to be heated flowing into the condenser, wherein the temperature of the fluid to be cooled detected by the first temperature detecting means and the temperature detected by the second temperature detecting means are detected. The temperature difference with the temperature of the fluid to be heated When the temperature of the fluid to be heated and the temperature of the fluid to be cooled are greater than a predetermined temperature, the compressor is operated by closing the on / off valve at By controlling the operations of the on-off valve, the compressor, and the liquid transfer device by the control device so as to stop the operation of the liquid transfer device, the annual power consumption can be significantly reduced, and the outdoor unit The size of the compressor can be reduced, the opening / closing operation by commands from the control device can be reduced, the control device can be simplified, and the compressor and the liquid transfer device can be optimally adapted to the environmental conditions of the installation location. An operable air conditioner is obtained.

【0124】また、本発明によれば、圧縮機、凝縮器、
減圧手段および蒸発器を順次配管で接続して冷媒を循環
させる冷凍サイクルと、前記蒸発器の出口部と前記凝縮
器の入口部とを前記凝縮器側から前記蒸発器側への冷媒
の流れを閉止する逆止弁を介して接続するバイパス配管
と、前記凝縮器の出口部と前記減圧手段の入口部との間
で前記減圧手段と直列に接続される液体搬送装置と、前
記圧縮機の運転/停止動作と前記液体搬送装置の運転/
停止動作を制御する制御装置と、前記蒸発器に流入する
被冷却流体の温度を検出する第1温度検出手段と、前記
凝縮器に流入する被加熱流体の温度を検出する第2温度
検出手段と、を備え、前記第1温度検出手段で検出した
被冷却流体の温度と前記第2温度検出手段で検出した被
加熱流体の温度との温度差が所定温度以下のときに前記
圧縮機を運転し、前記被加熱流体の温度と前記被冷却流
体の温度との温度差が所定温度よりも大きいときに前記
圧縮機を停止して前記液体搬送装置を運転するように、
前記制御装置によって前記圧縮機と前記液体搬送装置を
制御することにより、年間消費電力を大幅削減でき、室
外機の小型化を図ることができると共に、制御装置から
の指令による開閉操作を少なくでき制御装置を簡素化す
ることができ、さらに圧縮機と液体搬送装置とを設置場
所の環境状況に合わせて最適に運転することのできる空
気調和機が得られる。
Further, according to the present invention, a compressor, a condenser,
A refrigeration cycle in which the pressure reducing means and the evaporator are sequentially connected by a pipe to circulate the refrigerant, and the flow of the refrigerant from the condenser side to the evaporator side is formed by an outlet of the evaporator and an inlet of the condenser. A bypass pipe connected via a check valve to be closed, a liquid transfer device connected in series with the pressure reducing means between an outlet of the condenser and an inlet of the pressure reducing means, and operation of the compressor / Stop operation and operation of the liquid transfer device /
A control device for controlling a stop operation, first temperature detecting means for detecting the temperature of the fluid to be cooled flowing into the evaporator, and second temperature detecting means for detecting the temperature of the fluid to be heated flowing into the condenser. And operating the compressor when a temperature difference between the temperature of the fluid to be cooled detected by the first temperature detecting means and the temperature of the fluid to be heated detected by the second temperature detecting means is equal to or lower than a predetermined temperature. When the temperature difference between the temperature of the fluid to be heated and the temperature of the fluid to be cooled is greater than a predetermined temperature, the compressor is stopped to operate the liquid transfer device,
By controlling the compressor and the liquid transfer device by the control device, annual power consumption can be significantly reduced, the size of the outdoor unit can be reduced, and the number of opening and closing operations in accordance with commands from the control device can be reduced. It is possible to obtain an air conditioner in which the apparatus can be simplified and the compressor and the liquid transfer device can be optimally operated according to the environmental conditions of the installation place.

【0125】また、本発明によれば、圧縮機、凝縮器、
減圧手段および蒸発器を順次配管で接続して冷媒を循環
させる冷凍サイクルと、前記蒸発器の出口部と前記凝縮
器の入口部とを第1開閉弁を介して接続するバイパス配
管と、前記凝縮器の出口部と前記蒸発器の入口部との間
で前記減圧手段と並列に接続される液体搬送手段と、前
記液体搬送手段の接続された並列部の流路を開閉する第
2開閉弁と、前記第1,第2開閉弁の開閉動作と前記圧
縮機の運転/停止動作と前記液体搬送装置の運転/停止
動作を制御する制御装置と、前記蒸発器に流入する被冷
却流体の温度を検出する第1温度検出手段と、前記凝縮
器に流入する被加熱流体の温度を検出する第2温度検出
手段と、を備え、前記第1温度検出手段で検出した被冷
却流体の温度と前記第2温度検出手段で検出した被加熱
流体の温度との温度差が所定温度以下のときに前記第
1,第2開閉弁を閉とし前記液体搬送装置を停止して前
記圧縮機を運転し、前記被加熱流体の温度と前記被冷却
流体の温度との温度差が所定温度よりも大きいときに前
記第1,第2開閉弁を開とし前記圧縮機を停止して前記
液体搬送装置を運転するように、前記制御装置によって
前記第1,第2開閉弁と前記圧縮機と前記液体搬送装置
のそれぞれの動作を制御することにより、年間消費電力
を大幅削減でき、液体搬送装置運転時に制御装置からの
指令による制御操作を少なくでき制御装置を簡素化する
ことができ、さらに圧縮機と液体搬送装置とを設置場所
の環境状況に合わせて最適に運転することのできる空気
調和機が得られる。
Further, according to the present invention, a compressor, a condenser,
A refrigeration cycle in which a pressure reducing means and an evaporator are sequentially connected by a pipe to circulate a refrigerant; a bypass pipe connecting an outlet of the evaporator and an inlet of the condenser via a first on-off valve; A liquid transfer means connected in parallel with the pressure reducing means between an outlet of a vessel and an inlet of the evaporator, a second on-off valve for opening and closing a flow path of the connected parallel part of the liquid transfer means; A control device for controlling the opening / closing operation of the first and second on-off valves, the operation / stop operation of the compressor, and the operation / stop operation of the liquid transfer device; and controlling the temperature of the fluid to be cooled flowing into the evaporator. A first temperature detecting means for detecting the temperature of the fluid to be heated flowing into the condenser; and a second temperature detecting means for detecting a temperature of the fluid to be heated flowing into the condenser. (2) Temperature between the temperature of the fluid to be heated detected by the temperature detecting means When the difference is equal to or less than a predetermined temperature, the first and second on-off valves are closed, the liquid transfer device is stopped, the compressor is operated, and the temperature of the fluid to be heated and the temperature of the fluid to be cooled are reduced. When the difference is larger than a predetermined temperature, the first and second on-off valves are opened by the control device so that the first and second on-off valves are opened and the compressor is stopped to operate the liquid transfer device. By controlling the operation of each of the compressor and the liquid transfer device, annual power consumption can be significantly reduced, control operations by commands from the control device during operation of the liquid transfer device can be reduced, and the control device can be simplified. It is possible to obtain an air conditioner that can operate the compressor and the liquid transfer device optimally according to the environmental conditions of the installation place.

【0126】また、本発明によれば、圧縮機、凝縮器、
減圧手段および蒸発器を順次配管で接続して冷媒を循環
させる冷凍サイクルと、前記蒸発器の出口部と前記凝縮
器の入口部とを前記凝縮器側から前記蒸発器側への冷媒
の流れを閉止する逆止弁を介して接続するバイパス配管
と、前記凝縮器の出口部と前記蒸発器の入口部との間で
前記減圧手段と並列に接続される液体搬送手段と、前記
液体搬送手段の接続された並列部の流路を開閉する開閉
弁と、前記開閉弁の開閉動作と前記圧縮機の運転/停止
動作と前記液体搬送装置の運転/停止動作を制御する制
御装置と、前記蒸発器に流入する被冷却流体の温度を検
出する第1温度検出手段と、前記凝縮器に流入する被加
熱流体の温度を検出する第2温度検出手段と、を備え、
前記第1温度検出手段で検出した被冷却流体の温度と前
記第2温度検出手段で検出した被加熱流体の温度との温
度差が所定温度以下のときに前記開閉弁を閉とし前記液
体搬送装置を停止して前記圧縮機を運転し、前記被加熱
流体の温度と前記被冷却流体の温度との温度差が所定温
度よりも大きいときに前記開閉弁を開とし前記圧縮機を
停止して前記液体搬送装置を運転するように、前記制御
装置によって前記開閉弁と前記圧縮機と前記液体搬送装
置のそれぞれの動作を制御することにより、年間消費電
力を大幅削減でき、制御装置からの指令による開閉操作
を少なくできると共に、液体搬送装置運転時に制御装置
からの指令による制御操作を少なくでき制御装置を簡素
化することができ、さらに圧縮機と液体搬送装置とを設
置場所の環境状況に合わせて最適に運転することのでき
る空気調和機が得られる。
Further, according to the present invention, a compressor, a condenser,
A refrigeration cycle in which the pressure reducing means and the evaporator are sequentially connected by pipes to circulate the refrigerant, and the flow of the refrigerant from the condenser side to the evaporator side is formed by the outlet of the evaporator and the inlet of the condenser. A bypass pipe connected via a check valve to be closed, a liquid transporting means connected in parallel with the pressure reducing means between an outlet of the condenser and an inlet of the evaporator, and An on-off valve for opening and closing the flow path of the connected parallel portion, a control device for controlling the on-off operation of the on-off valve, the operation / stop operation of the compressor, and the operation / stop operation of the liquid transfer device, and the evaporator First temperature detecting means for detecting the temperature of the fluid to be cooled flowing into the condenser, and second temperature detecting means for detecting the temperature of the fluid to be heated flowing into the condenser,
When the temperature difference between the temperature of the fluid to be cooled detected by the first temperature detecting means and the temperature of the fluid to be heated detected by the second temperature detecting means is equal to or lower than a predetermined temperature, the on-off valve is closed and the liquid transfer device is closed. Stop and operate the compressor, when the temperature difference between the temperature of the fluid to be heated and the temperature of the fluid to be cooled is greater than a predetermined temperature, open the on-off valve and stop the compressor to stop the compressor. By operating each of the on-off valve, the compressor, and the liquid transfer device by the control device so as to operate the liquid transfer device, annual power consumption can be significantly reduced, and opening and closing by a command from the control device can be performed. The number of operations can be reduced, the number of control operations by commands from the control device during operation of the liquid transfer device can be reduced, and the control device can be simplified. Air conditioner can be operated optimally fit is obtained.

【0127】また、本発明によれば、液体搬送装置の出
口部と蒸発器の入口部との間に第2減圧手段を設けたこ
とにより、蒸発器での冷媒状態を制御でき蒸発器を有効
に動作させることができる空気調和機が得られる。
Further, according to the present invention, by providing the second pressure reducing means between the outlet of the liquid transfer device and the inlet of the evaporator, the state of the refrigerant in the evaporator can be controlled and the evaporator can be used effectively. Thus, an air conditioner that can be operated at a high speed is obtained.

【0128】また、本発明によれば、バイパス配管の入
口側接続部と圧縮機の入口部との間にアキュムレータを
設けたことにより、圧縮機運転と液体搬送装置運転との
冷媒量差を吸収することができ、過渡的現象や冷媒の過
充填などの場合に圧縮機への液戻りを防止することがで
きる空気調和機が得られる。
Further, according to the present invention, by providing an accumulator between the inlet side connection of the bypass pipe and the inlet of the compressor, the difference in refrigerant amount between the operation of the compressor and the operation of the liquid transfer device is absorbed. Thus, an air conditioner that can prevent liquid from returning to the compressor in the event of a transient phenomenon, refrigerant overfilling, or the like can be obtained.

【0129】また、本発明によれば、バイパス配管の入
口側接続部とアキュムレータの入口部との間に第3開閉
弁を設けたことにより、液体搬送装置運転への切換え後
に冷媒がアキュムレータへ流入するのを防止して液体搬
送装置運転に必要な冷媒量を確保することができ、常に
安定して液体搬送装置を運転することができる空気調和
機が得られる。
According to the present invention, the third on-off valve is provided between the inlet side connection of the bypass pipe and the inlet of the accumulator, so that the refrigerant flows into the accumulator after switching to the operation of the liquid transfer device. Thus, an air conditioner can be obtained in which the amount of refrigerant required for the operation of the liquid transfer device can be secured by preventing the operation of the liquid transfer device, and the liquid transfer device can always be operated stably.

【0130】また、本発明によれば、圧縮機の出口部と
バイパス配管の出口側接続部との間に第4開閉弁を設け
たことにより、圧縮機内へ冷媒が凝縮するのを防止して
液体搬送装置運転に必要な冷媒量を確保でき、常に安定
して液体搬送装置を運転することができると共に、圧縮
機再起動時の液圧縮を防止して圧縮機の信頼性を向上す
ることができる空気調和機が得られる。
Further, according to the present invention, the provision of the fourth on-off valve between the outlet of the compressor and the outlet-side connection of the bypass pipe prevents the refrigerant from condensing into the compressor. It is possible to secure the amount of refrigerant necessary for the operation of the liquid transfer device, to stably operate the liquid transfer device at all times, to prevent liquid compression when the compressor is restarted, and to improve the reliability of the compressor. An air conditioner that can be obtained is obtained.

【0131】また、本発明によれば、第4開閉弁を、バ
イパス配管の出口側接続部から圧縮機の出口部への冷媒
の流れを閉止する逆止弁としたことにより、制御装置か
らの指令による開閉操作を必要とせずに圧縮機内へ冷媒
が凝縮するのを防止して液体搬送装置の運転に必要な冷
媒量を確保できると共に、圧縮機再起動時の液圧縮を防
止して圧縮機の信頼性を向上することができる空気調和
機が得られる。
According to the present invention, the fourth on-off valve is a check valve for closing the flow of the refrigerant from the outlet side connection of the bypass pipe to the outlet of the compressor. Prevents refrigerant from condensing into the compressor without requiring opening and closing operations by commands, thereby ensuring the amount of refrigerant required for operation of the liquid transfer device and preventing liquid compression when the compressor is restarted. An air conditioner that can improve the reliability of the air conditioner is obtained.

【0132】また、本発明によれば、圧縮機の出口部か
ら減圧手段の入口部までの高圧配管と前記減圧手段の出
口部から前記圧縮機の入口部までの低圧配管とを第5開
閉弁を介した第2バイパス配管で接続したことにより、
圧縮機の吸入圧力を急激に低下させることなくアキュム
レータ内に蓄積された冷媒を液体搬送装置運転時の冷媒
回路にスムーズに回収することができ、安定して液体搬
送装置を運転することができると共に圧縮機の信頼性を
向上できる空気調和機が得られる。
According to the present invention, the high pressure pipe from the outlet of the compressor to the inlet of the pressure reducing means and the low pressure pipe from the outlet of the pressure reducing means to the inlet of the compressor are connected to the fifth on-off valve. By connecting with the second bypass pipe via
The refrigerant accumulated in the accumulator can be smoothly recovered to the refrigerant circuit during operation of the liquid transfer device without rapidly reducing the suction pressure of the compressor, and the liquid transfer device can be operated stably. An air conditioner that can improve the reliability of the compressor can be obtained.

【0133】また、本発明によれば、凝縮器の出口部と
液体搬送装置の入口部との間に液体貯溜手段を設けたこ
とにより、液体搬送装置運転時に冷媒液が確実に液体搬
送装置へ供給されるため、キャビテーションの発生を防
止することができ安定して液体搬送装置を運転すること
ができる空気調和機が得られる。
Further, according to the present invention, the provision of the liquid storage means between the outlet of the condenser and the inlet of the liquid transfer device ensures that the refrigerant liquid flows to the liquid transfer device during operation of the liquid transfer device. Since the air conditioner is supplied, it is possible to prevent the occurrence of cavitation and obtain an air conditioner capable of stably operating the liquid transfer device.

【0134】また、本発明によれば、凝縮器の出口部と
液体搬送装置の入口部との間を流れる冷媒を過冷却する
過冷却手段を備えたことにより、液体搬送装置の入口部
での冷媒液の過冷却度を増大させることができ、キャビ
テーションの発生を防止することができ安定して液体搬
送装置を運転することができる空気調和機が得られる。
Further, according to the present invention, by providing the supercooling means for supercooling the refrigerant flowing between the outlet of the condenser and the inlet of the liquid transfer device, it is possible to provide the supercooling means at the inlet of the liquid transfer device. An air conditioner that can increase the degree of subcooling of the refrigerant liquid, can prevent cavitation, and can operate the liquid transfer device stably can be obtained.

【0135】また、本発明によれば、過冷却手段の冷熱
源として、圧縮機運転でのアキュムレータ内の冷媒液の
蒸発潜熱を利用したことにより、過冷却手段の冷熱源と
して冷媒回路とは別の冷熱源を設置する必要がなく、1
つの冷媒回路内で安定して液体搬送装置を運転すること
ができる空気調和機が得られる。
Further, according to the present invention, the latent heat of evaporation of the refrigerant liquid in the accumulator during the operation of the compressor is utilized as the cold heat source of the supercooling means. No need to install a cold heat source
An air conditioner that can stably operate the liquid transfer device in one refrigerant circuit is obtained.

【0136】また、本発明によれば、圧縮機運転から液
体搬送装置運転への運転切換え時に、減圧手段または第
2減圧手段の少なくともどちらか一方の減圧の程度を変
化させて、アキュムレータ内に貯溜した冷媒を液体搬送
装置運転の冷媒回路へ回収する冷媒回収運転を行うこと
により、運転切換えの際にアキュムレータに蓄積された
冷媒をスムーズに液体搬送装置運転の冷媒回路に回収で
き、液体搬送装置運転に必要な冷媒量を確保でき、安定
して液体搬送装置を運転することができる空気調和機が
得られる。
According to the present invention, when the operation is switched from the operation of the compressor to the operation of the liquid transfer device, the degree of decompression of at least one of the decompression means and the second decompression means is changed so as to store the pressure in the accumulator. The refrigerant collected in the accumulator at the time of operation switching can be smoothly collected in the refrigerant circuit of the liquid transport device by performing the refrigerant recovery operation of recovering the cooled refrigerant into the refrigerant circuit of the liquid transport device operation. Thus, an air conditioner that can secure the required amount of refrigerant and can operate the liquid transfer device stably can be obtained.

【0137】また、本発明によれば、冷媒回収運転を一
定時間行なうことにより、簡単な制御装置で安定して液
体搬送装置を運転することができる空気調和機が得られ
る。
Further, according to the present invention, an air conditioner that can stably operate the liquid transfer device with a simple control device by performing the refrigerant recovery operation for a fixed time can be obtained.

【0138】また、本発明によれば、第1温度検出手段
で検出した被冷却流体の温度または第2温度検出手段で
検出した被加熱流体の温度に応じて冷媒回収運転の時間
または冷媒回収運転時の減圧手段の減圧の程度を設定し
て前記冷媒回収運転を行うことにより、アキュムレータ
から液体搬送装置運転での冷媒回路への回収冷媒量を制
御したので、液体搬送装置運転時の冷媒量を外気温度に
対して最適量とすることができ、液体搬送装置運転での
冷房能力を最大限に利用することができる空気調和機が
得られる。
Further, according to the present invention, the time of the refrigerant recovery operation or the refrigerant recovery operation depends on the temperature of the fluid to be cooled detected by the first temperature detecting means or the temperature of the fluid to be heated detected by the second temperature detecting means. By performing the refrigerant recovery operation by setting the degree of decompression of the pressure reducing means at the time, the amount of refrigerant recovered from the accumulator to the refrigerant circuit in the operation of the liquid transfer device is controlled. An air conditioner that can be set to an optimum amount with respect to the outside air temperature and can make maximum use of the cooling capacity in the operation of the liquid transfer device is obtained.

【0139】また、本発明によれば、減圧手段とその下
流側で蒸発器までの配管を、前記蒸発器を収納する箱体
内に配置したことにより、液配管が圧縮機運転時にも液
体搬送手段運転時にも常に冷媒液で満たされる構成とな
り、圧縮機運転時と液体搬送手段運転時の冷媒量差を小
さくすることができると共に、アキュムレータの小型化
や冷媒回収運転時間の短縮を行うことができる空気調和
機が得られる。
Further, according to the present invention, since the decompression means and the pipe to the evaporator on the downstream side thereof are arranged in the box housing the evaporator, the liquid pipe can be used even when the compressor is operating. The structure is always filled with the refrigerant liquid even during the operation, so that the difference in the amount of the refrigerant between the operation of the compressor and the operation of the liquid transfer means can be reduced, and the accumulator can be downsized and the operation time of the refrigerant recovery operation can be shortened. An air conditioner is obtained.

【0140】また、本発明によれば、蒸発器と凝縮器の
いずれか一方を収納する箱体を室内機とし、前記蒸発器
と前記凝縮器の他方と圧縮機と液体搬送装置を収納する
箱体を室外機とし、前記室外機1台に対して前記室内機
を複数台接続する構成としたことにより、室外機の省ス
ペース化を図ることができると共に、同時に複数室の空
調を行うことができる空気調和機が得られる。
Further, according to the present invention, the box housing either the evaporator or the condenser is an indoor unit, and the box housing the evaporator and the other of the condenser, the compressor and the liquid transfer device is provided. By using a body as an outdoor unit and connecting a plurality of the indoor units to the one outdoor unit, it is possible to save space of the outdoor unit and simultaneously perform air conditioning of the plurality of rooms. An air conditioner that can be obtained is obtained.

【0141】また、本発明によれば、圧縮機、凝縮器、
減圧手段および蒸発器に冷媒を循環させてなる冷凍サイ
クルと、液体搬送装置で前記蒸発器と前記凝縮器間に冷
媒を循環させてなる熱輸送サイクルとを備える空気調和
機において、前記蒸発器に流入する被冷却流体の温度を
検出するステップと、前記凝縮器に流入する被加熱流体
の温度を検出するステップと、前記被冷却流体の温度を
検出するステップで検出した被加熱流体の温度と前記被
冷却流体の温度を検出するステップで検出した被加熱流
体の温度との温度差が所定温度以下のときに前記冷凍サ
イクルを動作させるステップと、前記被冷却流体の温度
を検出するステップで検出した被加熱流体の温度と前記
被冷却流体の温度を検出するステップで検出した被加熱
流体の温度との温度差が所定温度よりも大きいときに前
記熱輸送サイクルを動作させるステップとを備えたこと
により、冷凍サイクルと熱輸送サイクルとを運転中の状
況に合わせて最適に切換えることのできる空気調和機の
制御方法が得られる。
Further, according to the present invention, a compressor, a condenser,
In an air conditioner including a refrigeration cycle in which a refrigerant is circulated through a decompression unit and an evaporator, and a heat transport cycle in which a refrigerant is circulated between the evaporator and the condenser in a liquid transfer device, the evaporator includes: Detecting the temperature of the fluid to be cooled, detecting the temperature of the fluid to be heated flowing into the condenser, detecting the temperature of the fluid to be cooled detected in the step of detecting the temperature of the fluid to be cooled, Operating the refrigeration cycle when the temperature difference from the temperature of the fluid to be heated detected in the step of detecting the temperature of the fluid to be cooled is equal to or less than a predetermined temperature, and detecting the temperature of the fluid to be cooled. When the temperature difference between the temperature of the fluid to be heated and the temperature of the fluid to be heated detected in the step of detecting the temperature of the fluid to be cooled is greater than a predetermined temperature, By having a step of operation, the control method of an air conditioner capable of optimally switched that in context during operation of the refrigeration cycle and the heat transport cycle is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1による空気調和機を示
す構成図である。
FIG. 1 is a configuration diagram illustrating an air conditioner according to Embodiment 1 of the present invention.

【図2】 実施の形態1に係わる液ポンプの構成を示す
模式図である。
FIG. 2 is a schematic diagram showing a configuration of a liquid pump according to the first embodiment.

【図3】 実施の形態1に係わる制御装置の動作手順を
示すフローチャートである。
FIG. 3 is a flowchart showing an operation procedure of the control device according to the first embodiment.

【図4】 実施の形態1に係わる冷媒質量速度と蒸発熱
伝達率の関係をR410AとR22で比較した特性図で
ある。
FIG. 4 is a characteristic diagram in which the relationship between the refrigerant mass velocity and the heat transfer coefficient of evaporation according to the first embodiment is compared between R410A and R22.

【図5】 実施の形態1に係わる冷媒質量速度と凝縮熱
伝達率の関係をR410AとR22で比較した特性図で
ある。
FIG. 5 is a characteristic diagram comparing the relationship between the refrigerant mass velocity and the heat transfer coefficient of condensation according to the first embodiment in R410A and R22.

【図6】 実施の形態1に係わる冷媒質量速度と圧力損
失の関係をR410AとR22で比較した特性図であ
る。
FIG. 6 is a characteristic diagram in which the relationship between the refrigerant mass velocity and the pressure loss according to the first embodiment is compared between R410A and R22.

【図7】 実施の形態1に係わる炭化水素系冷媒の冷媒
質量速度と蒸発熱伝達率の関係を示す特性図である。
FIG. 7 is a characteristic diagram showing a relationship between a refrigerant mass velocity and a heat transfer coefficient of evaporation of the hydrocarbon-based refrigerant according to the first embodiment.

【図8】 実施の形態1に係わる炭化水素系冷媒の冷媒
質量速度と凝縮熱伝達率の関係を示す特性図である。
FIG. 8 is a characteristic diagram showing a relationship between a refrigerant mass velocity and a condensation heat transfer coefficient of the hydrocarbon-based refrigerant according to the first embodiment.

【図9】 実施の形態1に係わる炭化水素系冷媒の冷媒
質量速度と圧力損失の関係を示す特性図である。
FIG. 9 is a characteristic diagram showing a relationship between a refrigerant mass velocity and a pressure loss of the hydrocarbon-based refrigerant according to the first embodiment.

【図10】 本発明の実施の形態2による空気調和機を
示す構成図である。
FIG. 10 is a configuration diagram showing an air conditioner according to Embodiment 2 of the present invention.

【図11】 本発明の実施の形態3による空気調和機を
示す構成図である。
FIG. 11 is a configuration diagram showing an air conditioner according to Embodiment 3 of the present invention.

【図12】 本発明の実施の形態4による空気調和機を
示す構成図である。
FIG. 12 is a configuration diagram showing an air conditioner according to Embodiment 4 of the present invention.

【図13】 本発明の実施の形態5による空気調和機を
示す構成図である。
FIG. 13 is a configuration diagram showing an air conditioner according to Embodiment 5 of the present invention.

【図14】 実施の形態5に係わる液ポンプの吐出と吸
入の圧力差に対する冷媒循環量の関係を示す特性図であ
る。
FIG. 14 is a characteristic diagram showing a relationship between a refrigerant circulation amount and a pressure difference between discharge and suction of a liquid pump according to a fifth embodiment.

【図15】 実施の形態5に係わる液ポンプ運転時の圧
力−エンタルピー線図である。
FIG. 15 is a pressure-enthalpy diagram during operation of a liquid pump according to the fifth embodiment.

【図16】 本発明の実施の形態6による空気調和機を
示す構成図である。
FIG. 16 is a configuration diagram illustrating an air conditioner according to Embodiment 6 of the present invention.

【図17】 本発明の実施の形態7による空気調和機を
示す構成図である。
FIG. 17 is a configuration diagram showing an air conditioner according to a seventh embodiment of the present invention.

【図18】 実施の形態7に係わる圧縮機運転から液ポ
ンプ運転への運転切換え手順を示すフローチャートであ
る。
FIG. 18 is a flowchart showing an operation switching procedure from compressor operation to liquid pump operation according to the seventh embodiment.

【図19】 本発明の実施の形態8による空気調和機を
示す構成図である。
FIG. 19 is a configuration diagram illustrating an air conditioner according to an eighth embodiment of the present invention.

【図20】 本発明の実施の形態9による空気調和機を
示す構成図である。
FIG. 20 is a configuration diagram showing an air conditioner according to Embodiment 9 of the present invention.

【図21】 本発明の実施の形態10による空気調和機
を示す構成図である。
FIG. 21 is a configuration diagram showing an air conditioner according to Embodiment 10 of the present invention.

【図22】 従来の液ポンプ運転と圧縮機運転とを備え
た空気調和機を示す構成図である。
FIG. 22 is a configuration diagram showing a conventional air conditioner provided with a liquid pump operation and a compressor operation.

【符号の説明】[Explanation of symbols]

3a ガス配管、3b 液配管、10 室内機、11
蒸発器、12 蒸発器側送風機、13 膨張弁、20
室外機、21 圧縮機、22 凝縮器、23液ポンプ、
24、25 逆止弁、26 凝縮器側送風機、27 ア
キュムレータ、28 開閉弁、40 油分離器、41
潤滑油戻し配管、42 開閉弁、43膨張弁、46 受
液器、47 過冷却器、48,49 開閉弁、50 蓄
熱材搬送用配管、51 蓄熱材搬送用ポンプ、63a,
63b 開閉弁、70 制御装置、71,72 温度検
出手段。
3a gas pipe, 3b liquid pipe, 10 indoor unit, 11
Evaporator, 12 Evaporator-side blower, 13 Expansion valve, 20
Outdoor unit, 21 compressor, 22 condenser, 23 liquid pump,
24, 25 check valve, 26 condenser side blower, 27 accumulator, 28 on-off valve, 40 oil separator, 41
Lubricating oil return pipe, 42 on-off valve, 43 expansion valve, 46 liquid receiver, 47 subcooler, 48, 49 on-off valve, 50 heat storage material transfer pipe, 51 heat storage material transfer pump, 63a,
63b open / close valve, 70 control device, 71, 72 temperature detecting means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 隅田 嘉裕 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 3L060 AA03 AA05 CC02 CC03 DD02 EE02 EE09  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshihiro Sumita 2-3-2 Marunouchi, Chiyoda-ku, Tokyo F-term in Mitsubishi Electric Corporation (reference) 3L060 AA03 AA05 CC02 CC03 DD02 EE02 EE09

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、減圧手段および蒸発器
を順次配管で接続して冷媒を循環させる冷凍サイクル
と、前記蒸発器の出口部と前記凝縮器の入口部とを開閉
弁を介して接続するバイパス配管と、前記凝縮器の出口
部と前記減圧手段の入口部との間で前記減圧手段と直列
に接続される液体搬送装置と、前記開閉弁の開閉動作と
前記圧縮機の運転/停止動作と前記液体搬送装置の運転
/停止動作を制御する制御装置と、前記蒸発器に流入す
る被冷却流体の温度を検出する第1温度検出手段と、前
記凝縮器に流入する被加熱流体の温度を検出する第2温
度検出手段と、を備え、前記第1温度検出手段で検出し
た被冷却流体の温度と前記第2温度検出手段で検出した
被加熱流体の温度との温度差が所定温度以下のときに前
記開閉弁を閉として前記圧縮機を運転し、前記被加熱流
体の温度と前記被冷却流体の温度との温度差が所定温度
よりも大きいときに前記開閉弁を開とし前記圧縮機を停
止して前記液体搬送装置を運転するように、前記制御装
置によって前記開閉弁と前記圧縮機と前記液体搬送装置
のそれぞれの動作を制御することを特徴とする空気調和
機。
1. A refrigeration cycle in which a compressor, a condenser, a decompression means, and an evaporator are sequentially connected by piping to circulate a refrigerant, and an outlet of the evaporator and an inlet of the condenser are connected via an on-off valve. A liquid transfer device connected in series with the pressure reducing means between an outlet of the condenser and an inlet of the pressure reducing means, an opening / closing operation of the on / off valve, and an operation of the compressor. A control device for controlling the start / stop operation and the operation / stop operation of the liquid transfer device; a first temperature detecting means for detecting a temperature of the fluid to be cooled flowing into the evaporator; and a fluid to be heated flowing into the condenser. A temperature difference between a temperature of the fluid to be cooled detected by the first temperature detecting means and a temperature of the fluid to be heated detected by the second temperature detecting means. When the temperature is below the temperature, the on-off valve is closed and Operate the compressor, when the temperature difference between the temperature of the fluid to be heated and the temperature of the fluid to be cooled is greater than a predetermined temperature, open the on-off valve and stop the compressor to stop the liquid transfer device. An air conditioner, wherein the control device controls the respective operations of the on-off valve, the compressor, and the liquid transfer device so as to operate.
【請求項2】 圧縮機、凝縮器、減圧手段および蒸発器
を順次配管で接続して冷媒を循環させる冷凍サイクル
と、前記蒸発器の出口部と前記凝縮器の入口部とを前記
凝縮器側から前記蒸発器側への冷媒の流れを閉止する逆
止弁を介して接続するバイパス配管と、前記凝縮器の出
口部と前記減圧手段の入口部との間で前記減圧手段と直
列に接続される液体搬送装置と、前記圧縮機の運転/停
止動作と前記液体搬送装置の運転/停止動作を制御する
制御装置と、前記蒸発器に流入する被冷却流体の温度を
検出する第1温度検出手段と、前記凝縮器に流入する被
加熱流体の温度を検出する第2温度検出手段と、を備
え、前記第1温度検出手段で検出した被冷却流体の温度
と前記第2温度検出手段で検出した被加熱流体の温度と
の温度差が所定温度以下のときに前記圧縮機を運転し、
前記被加熱流体の温度と前記被冷却流体の温度との温度
差が所定温度よりも大きいときに前記圧縮機を停止して
前記液体搬送装置を運転するように、前記制御装置によ
って前記圧縮機と前記液体搬送装置を制御することを特
徴とする空気調和機。
2. A refrigeration cycle in which a compressor, a condenser, a pressure reducing means, and an evaporator are sequentially connected by piping to circulate a refrigerant, and an outlet of the evaporator and an inlet of the condenser are connected to the condenser. A bypass pipe connected via a check valve for closing the flow of the refrigerant from the evaporator to the evaporator side, and connected in series with the pressure reducing means between an outlet of the condenser and an inlet of the pressure reducing means. Liquid transfer device, a control device for controlling the operation / stop operation of the compressor and the operation / stop operation of the liquid transfer device, and first temperature detecting means for detecting the temperature of the fluid to be cooled flowing into the evaporator And second temperature detecting means for detecting the temperature of the fluid to be heated flowing into the condenser, wherein the temperature of the fluid to be cooled detected by the first temperature detecting means and the temperature detected by the second temperature detecting means are detected. The temperature difference from the temperature of the fluid to be heated is less than the specified temperature When the compressor is operated,
When the temperature difference between the temperature of the fluid to be heated and the temperature of the fluid to be cooled is greater than a predetermined temperature, the compressor is stopped to operate the liquid transport device to stop the compressor. An air conditioner characterized by controlling the liquid transfer device.
【請求項3】 圧縮機、凝縮器、減圧手段および蒸発器
を順次配管で接続して冷媒を循環させる冷凍サイクル
と、前記蒸発器の出口部と前記凝縮器の入口部とを第1
開閉弁を介して接続するバイパス配管と、前記凝縮器の
出口部と前記蒸発器の入口部との間で前記減圧手段と並
列に接続される液体搬送手段と、前記液体搬送手段の接
続された並列部の流路を開閉する第2開閉弁と、前記第
1,第2開閉弁の開閉動作と前記圧縮機の運転/停止動
作と前記液体搬送装置の運転/停止動作を制御する制御
装置と、前記蒸発器に流入する被冷却流体の温度を検出
する第1温度検出手段と、前記凝縮器に流入する被加熱
流体の温度を検出する第2温度検出手段と、を備え、前
記第1温度検出手段で検出した被冷却流体の温度と前記
第2温度検出手段で検出した被加熱流体の温度との温度
差が所定温度以下のときに前記第1,第2開閉弁を閉と
し前記液体搬送装置を停止して前記圧縮機を運転し、前
記被加熱流体の温度と前記被冷却流体の温度との温度差
が所定温度よりも大きいときに前記第1,第2開閉弁を
開とし前記圧縮機を停止して前記液体搬送装置を運転す
るように、前記制御装置によって前記第1,第2開閉弁
と前記圧縮機と前記液体搬送装置のそれぞれの動作を制
御することを特徴とする空気調和機。
3. A refrigeration cycle in which a compressor, a condenser, a decompression means, and an evaporator are sequentially connected by piping to circulate a refrigerant, and an outlet of the evaporator and an inlet of the condenser are firstly connected.
A bypass pipe connected via an on-off valve, a liquid transfer means connected in parallel with the pressure reducing means between an outlet of the condenser and an inlet of the evaporator, and the liquid transfer means connected A second opening / closing valve for opening and closing the flow path of the parallel section, a control device for controlling opening / closing operations of the first and second opening / closing valves, operation / stop operation of the compressor, and operation / stop operation of the liquid transfer device; A first temperature detecting means for detecting a temperature of the fluid to be cooled flowing into the evaporator; and a second temperature detecting means for detecting the temperature of the fluid to be heated flowing into the condenser. When the temperature difference between the temperature of the fluid to be cooled detected by the detecting means and the temperature of the fluid to be heated detected by the second temperature detecting means is equal to or less than a predetermined temperature, the first and second on-off valves are closed and the liquid transfer is performed. The compressor is operated with the device stopped, and the temperature of the fluid to be heated is increased. The controller is configured to open the first and second on-off valves and stop the compressor when the temperature difference between the temperature of the fluid to be cooled and the temperature of the fluid to be cooled is greater than a predetermined temperature to operate the liquid transfer device. An air conditioner wherein the operations of the first and second on-off valves, the compressor, and the liquid transfer device are controlled by the first and second on-off valves.
【請求項4】 圧縮機、凝縮器、減圧手段および蒸発器
を順次配管で接続して冷媒を循環させる冷凍サイクル
と、前記蒸発器の出口部と前記凝縮器の入口部とを前記
凝縮器側から前記蒸発器側への冷媒の流れを閉止する逆
止弁を介して接続するバイパス配管と、前記凝縮器の出
口部と前記蒸発器の入口部との間で前記減圧手段と並列
に接続される液体搬送手段と、前記液体搬送手段の接続
された並列部の流路を開閉する開閉弁と、前記開閉弁の
開閉動作と前記圧縮機の運転/停止動作と前記液体搬送
装置の運転/停止動作を制御する制御装置と、前記蒸発
器に流入する被冷却流体の温度を検出する第1温度検出
手段と、前記凝縮器に流入する被加熱流体の温度を検出
する第2温度検出手段と、を備え、前記第1温度検出手
段で検出した被冷却流体の温度と前記第2温度検出手段
で検出した被加熱流体の温度との温度差が所定温度以下
のときに前記開閉弁を閉とし前記液体搬送装置を停止し
て前記圧縮機を運転し、前記被加熱流体の温度と前記被
冷却流体の温度との温度差が所定温度よりも大きいとき
に前記開閉弁を開とし前記圧縮機を停止して前記液体搬
送装置を運転するように、前記制御装置によって前記開
閉弁と前記圧縮機と前記液体搬送装置のそれぞれの動作
を制御することを特徴とする空気調和機。
4. A refrigeration cycle in which a compressor, a condenser, a pressure reducing means, and an evaporator are sequentially connected by piping to circulate a refrigerant, and an outlet of the evaporator and an inlet of the condenser are connected to the condenser. A bypass pipe connected via a check valve for closing the flow of refrigerant from the evaporator to the evaporator, and a bypass pipe connected between the outlet of the condenser and the inlet of the evaporator in parallel with the pressure reducing means. Liquid transfer means, an on-off valve for opening and closing a flow path of a parallel portion connected to the liquid transfer means, an opening / closing operation of the on-off valve, a start / stop operation of the compressor, and a start / stop of the liquid transfer device A control device for controlling operation, first temperature detecting means for detecting the temperature of the fluid to be cooled flowing into the evaporator, and second temperature detecting means for detecting the temperature of the fluid to be heated flowing to the condenser. A flow to be cooled detected by the first temperature detecting means. When the temperature difference between the temperature of the body and the temperature of the fluid to be heated detected by the second temperature detecting means is equal to or lower than a predetermined temperature, the on-off valve is closed and the liquid transfer device is stopped to operate the compressor; When the temperature difference between the temperature of the fluid to be heated and the temperature of the fluid to be cooled is greater than a predetermined temperature, the control is performed such that the on-off valve is opened, the compressor is stopped, and the liquid transfer device is operated. An air conditioner, wherein the operation of each of the on-off valve, the compressor, and the liquid transfer device is controlled by a device.
【請求項5】 液体搬送装置の出口部と蒸発器の入口部
との間に第2減圧手段を設けたことを特徴とする請求項
3または請求項4記載の空気調和機。
5. The air conditioner according to claim 3, wherein a second pressure reducing means is provided between an outlet of the liquid transfer device and an inlet of the evaporator.
【請求項6】 バイパス配管の入口側接続部と圧縮機の
入口部との間にアキュムレータを設けたことを特徴とす
る請求項1ないし請求項5のいずれか1項に記載の空気
調和機。
6. The air conditioner according to claim 1, wherein an accumulator is provided between an inlet-side connection of the bypass pipe and an inlet of the compressor.
【請求項7】 バイパス配管の入口側接続部とアキュム
レータの入口部との間に第3開閉弁を設けたことを特徴
とする請求項6記載の空気調和機。
7. The air conditioner according to claim 6, wherein a third on-off valve is provided between an inlet-side connection of the bypass pipe and an inlet of the accumulator.
【請求項8】 圧縮機の出口部とバイパス配管の出口側
接続部との間に第4開閉弁を設けたことを特徴とする請
求項1ないし請求項7のいずれか1項に記載の空気調和
機。
8. The air according to claim 1, wherein a fourth on-off valve is provided between an outlet of the compressor and an outlet-side connection of the bypass pipe. Harmony machine.
【請求項9】 第4開閉弁を、バイパス配管の出口側接
続部から圧縮機の出口部への冷媒の流れを閉止する逆止
弁としたことを特徴とする請求項8記載の空気調和機。
9. The air conditioner according to claim 8, wherein the fourth on-off valve is a check valve for closing a flow of the refrigerant from an outlet-side connection portion of the bypass pipe to an outlet portion of the compressor. .
【請求項10】 圧縮機の出口部から減圧手段の入口部
までの高圧配管と前記減圧手段の出口部から前記圧縮機
の入口部までの低圧配管とを第5開閉弁を介した第2バ
イパス配管で接続したことを特徴とする請求項6ないし
請求項9のいずれか1項に記載の空気調和機。
10. A second bypass through a fifth on-off valve between a high pressure pipe from an outlet of the compressor to an inlet of the pressure reducing means and a low pressure pipe from an outlet of the pressure reducing means to an inlet of the compressor. The air conditioner according to any one of claims 6 to 9, wherein the air conditioner is connected by a pipe.
【請求項11】 凝縮器の出口部と液体搬送装置の入口
部との間に液体貯溜手段を設けたことを特徴とする請求
項1ないし請求項10のいずれか1項に記載の空気調和
機。
11. The air conditioner according to claim 1, wherein a liquid storage means is provided between an outlet of the condenser and an inlet of the liquid transfer device. .
【請求項12】 凝縮器の出口部と液体搬送装置の入口
部との間を流れる冷媒を過冷却する過冷却手段を備えた
ことを特徴とする請求項1ないし請求項11のいずれか
1項に記載の空気調和機。
12. A supercooling means for supercooling a refrigerant flowing between an outlet of the condenser and an inlet of the liquid transfer device. The air conditioner according to item 1.
【請求項13】 過冷却手段の冷熱源として、圧縮機運
転でのアキュムレータ内の冷媒液の蒸発潜熱を利用した
ことを特徴とする請求項12記載の空気調和機。
13. The air conditioner according to claim 12, wherein the latent heat of evaporation of the refrigerant liquid in the accumulator during the operation of the compressor is used as a cold heat source of the supercooling means.
【請求項14】 圧縮機運転から液体搬送装置運転への
運転切換え時に、減圧手段または第2減圧手段の少なく
ともどちらか一方の減圧の程度を変化させて、アキュム
レータ内に貯溜した冷媒を液体搬送装置運転の冷媒回路
へ回収する冷媒回収運転を行うことを特徴とする請求項
6ないし請求項13のいずれか1項に記載の空気調和
機。
14. When the operation is switched from the compressor operation to the liquid transfer device operation, the degree of pressure reduction of at least one of the pressure reducing means and the second pressure reducing means is changed so that the refrigerant stored in the accumulator is transferred to the liquid transfer device. The air conditioner according to any one of claims 6 to 13, wherein a refrigerant recovery operation for recovering the refrigerant to the operating refrigerant circuit is performed.
【請求項15】 冷媒回収運転を一定時間行なうことを
特徴とする請求項14記載の空気調和機。
15. The air conditioner according to claim 14, wherein the refrigerant recovery operation is performed for a predetermined time.
【請求項16】 第1温度検出手段で検出した被冷却流
体の温度または第2温度検出手段で検出した被加熱流体
の温度に応じて冷媒回収運転の時間または冷媒回収運転
時の減圧手段の減圧の程度を設定して前記冷媒回収運転
を行うことにより、アキュムレータから液体搬送装置運
転での冷媒回路への回収冷媒量を制御したことを特徴と
する請求項14記載の空気調和機。
16. The time of the refrigerant recovery operation or the pressure reduction of the pressure reducing means during the refrigerant recovery operation according to the temperature of the fluid to be cooled detected by the first temperature detecting means or the temperature of the fluid to be heated detected by the second temperature detecting means. 15. The air conditioner according to claim 14, wherein the amount of refrigerant collected from the accumulator to the refrigerant circuit in the operation of the liquid transfer device is controlled by performing the refrigerant recovery operation by setting the degree of the refrigerant recovery.
【請求項17】 減圧手段とその下流側で蒸発器までの
配管を、前記蒸発器を収納する箱体内に配置したことを
特徴とする請求項1ないし請求項16のいずれか1項に
記載の空気調和機。
17. The method according to claim 1, wherein the decompression means and a pipe downstream from the decompression means to the evaporator are arranged in a box housing the evaporator. Air conditioner.
【請求項18】 蒸発器と凝縮器のいずれか一方を収納
する箱体を室内機とし、前記蒸発器と前記凝縮器の他方
と圧縮機と液体搬送装置を収納する箱体を室外機とし、
前記室外機1台に対して前記室内機を複数台接続する構
成としたことを特徴とする請求項1ないし請求項17の
いずれか1項に記載の空気調和機。
18. A box containing one of an evaporator and a condenser is an indoor unit, and a box containing the other of the evaporator and the condenser, a compressor and a liquid transfer device is an outdoor unit.
The air conditioner according to any one of claims 1 to 17, wherein a plurality of the indoor units are connected to the one outdoor unit.
【請求項19】 圧縮機、凝縮器、減圧手段および蒸発
器に冷媒を循環させてなる冷凍サイクルと、液体搬送装
置で前記蒸発器と前記凝縮器間に冷媒を循環させてなる
熱輸送サイクルとを備える空気調和機において、前記蒸
発器に流入する被冷却流体の温度を検出するステップ
と、前記凝縮器に流入する被加熱流体の温度を検出する
ステップと、前記被冷却流体の温度を検出するステップ
で検出した被加熱流体の温度と前記被冷却流体の温度を
検出するステップで検出した被加熱流体の温度との温度
差が所定温度以下のときに前記冷凍サイクルを動作させ
るステップと、前記被冷却流体の温度を検出するステッ
プで検出した被加熱流体の温度と前記被冷却流体の温度
を検出するステップで検出した被加熱流体の温度との温
度差が所定温度よりも大きいときに前記熱輸送サイクル
を動作させるステップとを備えたことを特徴とする空気
調和機の制御方法。
19. A refrigeration cycle in which a refrigerant is circulated through a compressor, a condenser, a decompression means and an evaporator, and a heat transport cycle in which a refrigerant is circulated between the evaporator and the condenser in a liquid transfer device. Detecting the temperature of the fluid to be cooled flowing into the evaporator; detecting the temperature of the fluid to be heated flowing into the condenser; and detecting the temperature of the fluid to be cooled. Operating the refrigeration cycle when a temperature difference between the temperature of the heated fluid detected in the step and the temperature of the heated fluid detected in the step of detecting the temperature of the cooled fluid is equal to or lower than a predetermined temperature; The temperature difference between the temperature of the heated fluid detected in the step of detecting the temperature of the cooling fluid and the temperature of the heated fluid detected in the step of detecting the temperature of the cooled fluid is higher than a predetermined temperature. Operating the heat transport cycle when it is large.
JP10369112A 1998-12-25 1998-12-25 Air conditioner equipment and control method thereof Pending JP2000193327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10369112A JP2000193327A (en) 1998-12-25 1998-12-25 Air conditioner equipment and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10369112A JP2000193327A (en) 1998-12-25 1998-12-25 Air conditioner equipment and control method thereof

Publications (1)

Publication Number Publication Date
JP2000193327A true JP2000193327A (en) 2000-07-14

Family

ID=18493595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10369112A Pending JP2000193327A (en) 1998-12-25 1998-12-25 Air conditioner equipment and control method thereof

Country Status (1)

Country Link
JP (1) JP2000193327A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013781A (en) * 2000-06-30 2002-01-18 Hitachi Ltd Air-conditioning system
JP2002061918A (en) * 2000-08-11 2002-02-28 Ntt Power & Building Facilities Inc Air conditioner
JP2002107001A (en) * 2000-09-29 2002-04-10 Mitsubishi Electric Corp Air conditioner
JP2002106986A (en) * 2000-09-29 2002-04-10 Mitsubishi Electric Corp Air conditioner and control method therefor
JP2005199772A (en) * 2004-01-13 2005-07-28 Denso Corp Air conditioner for vehicle
WO2008076120A1 (en) 2006-12-21 2008-06-26 Carrier Corporation Free-cooling limitation control for air conditioning systems
WO2008082378A1 (en) 2006-12-28 2008-07-10 Carrier Corporation Methods and systems for controlling air conditioning systems having a cooling mode and a free-cooling mode
EP2122273A1 (en) * 2006-12-22 2009-11-25 Carrier Corporation Air conditioning systems and methods having free-cooling pump starting sequences
JP2011064436A (en) * 2009-09-18 2011-03-31 Toshiba Carrier Corp Cooling device
CN102425880A (en) * 2011-12-17 2012-04-25 山东小鸭零售设备有限公司 Environmental cold source refrigerating system
JP2012107805A (en) * 2010-11-17 2012-06-07 Mitsubishi Electric Corp Refrigerating device
US8261574B2 (en) 2008-03-13 2012-09-11 Aisin Seiki Kabushiki Kaisha Air conditioning system and accumulator thereof
JP2013076491A (en) * 2011-09-30 2013-04-25 Hitachi Appliances Inc Air conditioner
JP2013092318A (en) * 2011-10-27 2013-05-16 Hitachi Appliances Inc Air conditioning apparatus
JP2014070753A (en) * 2012-09-28 2014-04-21 Hitachi Appliances Inc Air conditioning equipment
CN104697233A (en) * 2015-02-10 2015-06-10 珠海格力电器股份有限公司 Refrigerating system and operation method for preventing wet compression of compressor of refrigerating system
JP2017120155A (en) * 2015-12-28 2017-07-06 ダイキン工業株式会社 Air conditioner
CN107449107A (en) * 2017-07-13 2017-12-08 珠海格力电器股份有限公司 Multimode air-conditioner set water pump dispatch control method, water pump system and air-conditioner set
JP2018071955A (en) * 2016-11-04 2018-05-10 日立ジョンソンコントロールズ空調株式会社 Air-conditioner
WO2018109894A1 (en) * 2016-12-15 2018-06-21 三菱電機株式会社 Refrigeration cycle device
WO2018189861A1 (en) * 2017-04-13 2018-10-18 三菱電機株式会社 Air conditioner
CN109539442A (en) * 2018-12-26 2019-03-29 北京丰联奥睿科技有限公司 A kind of magnetic suspension centrifugal power heat pipe combined air conditioners all-in-one machine
WO2019138493A1 (en) * 2018-01-11 2019-07-18 三菱電機株式会社 Air-conditioning device
CN110513922A (en) * 2019-08-30 2019-11-29 广东美的暖通设备有限公司 Air-conditioning and its control method, computer readable storage medium
JPWO2021124499A1 (en) * 2019-12-19 2021-06-24
CN114963600A (en) * 2022-06-02 2022-08-30 青岛理工大学 CO switched in multiple modes 2 Heat pipe cooling system and control method

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013781A (en) * 2000-06-30 2002-01-18 Hitachi Ltd Air-conditioning system
JP4540812B2 (en) * 2000-08-11 2010-09-08 株式会社Nttファシリティーズ air conditioner
JP2002061918A (en) * 2000-08-11 2002-02-28 Ntt Power & Building Facilities Inc Air conditioner
JP2002107001A (en) * 2000-09-29 2002-04-10 Mitsubishi Electric Corp Air conditioner
JP2002106986A (en) * 2000-09-29 2002-04-10 Mitsubishi Electric Corp Air conditioner and control method therefor
JP2005199772A (en) * 2004-01-13 2005-07-28 Denso Corp Air conditioner for vehicle
WO2008076120A1 (en) 2006-12-21 2008-06-26 Carrier Corporation Free-cooling limitation control for air conditioning systems
EP2122276A1 (en) * 2006-12-21 2009-11-25 Carrier Corporation Free-cooling limitation control for air conditioning systems
EP2122276A4 (en) * 2006-12-21 2014-02-26 Carrier Corp Free-cooling limitation control for air conditioning systems
EP2122273A1 (en) * 2006-12-22 2009-11-25 Carrier Corporation Air conditioning systems and methods having free-cooling pump starting sequences
EP2122273A4 (en) * 2006-12-22 2014-02-26 Carrier Corp Air conditioning systems and methods having free-cooling pump starting sequences
EP2102570A4 (en) * 2006-12-28 2014-02-26 Carrier Corp Methods and systems for controlling air conditioning systems having a cooling mode and a free-cooling mode
WO2008082378A1 (en) 2006-12-28 2008-07-10 Carrier Corporation Methods and systems for controlling air conditioning systems having a cooling mode and a free-cooling mode
EP2102570A1 (en) * 2006-12-28 2009-09-23 Carrier Corporation Methods and systems for controlling air conditioning systems having a cooling mode and a free-cooling mode
US8261574B2 (en) 2008-03-13 2012-09-11 Aisin Seiki Kabushiki Kaisha Air conditioning system and accumulator thereof
JP2011064436A (en) * 2009-09-18 2011-03-31 Toshiba Carrier Corp Cooling device
JP2012107805A (en) * 2010-11-17 2012-06-07 Mitsubishi Electric Corp Refrigerating device
JP2013076491A (en) * 2011-09-30 2013-04-25 Hitachi Appliances Inc Air conditioner
JP2013092318A (en) * 2011-10-27 2013-05-16 Hitachi Appliances Inc Air conditioning apparatus
CN102425880A (en) * 2011-12-17 2012-04-25 山东小鸭零售设备有限公司 Environmental cold source refrigerating system
JP2014070753A (en) * 2012-09-28 2014-04-21 Hitachi Appliances Inc Air conditioning equipment
CN104697233A (en) * 2015-02-10 2015-06-10 珠海格力电器股份有限公司 Refrigerating system and operation method for preventing wet compression of compressor of refrigerating system
JP2017120155A (en) * 2015-12-28 2017-07-06 ダイキン工業株式会社 Air conditioner
JP2018071955A (en) * 2016-11-04 2018-05-10 日立ジョンソンコントロールズ空調株式会社 Air-conditioner
JPWO2018109894A1 (en) * 2016-12-15 2019-07-11 三菱電機株式会社 Refrigeration cycle device
WO2018109894A1 (en) * 2016-12-15 2018-06-21 三菱電機株式会社 Refrigeration cycle device
JPWO2018189861A1 (en) * 2017-04-13 2019-11-07 三菱電機株式会社 Air conditioner
WO2018189861A1 (en) * 2017-04-13 2018-10-18 三菱電機株式会社 Air conditioner
CN107449107B (en) * 2017-07-13 2019-07-23 珠海格力电器股份有限公司 Multimode air-conditioner set water pump dispatch control method, water pump system and air-conditioner set
CN107449107A (en) * 2017-07-13 2017-12-08 珠海格力电器股份有限公司 Multimode air-conditioner set water pump dispatch control method, water pump system and air-conditioner set
JPWO2019138493A1 (en) * 2018-01-11 2020-08-20 三菱電機株式会社 Air conditioner
WO2019138493A1 (en) * 2018-01-11 2019-07-18 三菱電機株式会社 Air-conditioning device
CN109539442A (en) * 2018-12-26 2019-03-29 北京丰联奥睿科技有限公司 A kind of magnetic suspension centrifugal power heat pipe combined air conditioners all-in-one machine
CN110513922A (en) * 2019-08-30 2019-11-29 广东美的暖通设备有限公司 Air-conditioning and its control method, computer readable storage medium
JPWO2021124499A1 (en) * 2019-12-19 2021-06-24
WO2021124499A1 (en) * 2019-12-19 2021-06-24 三菱電機株式会社 Air conditioning device
GB2603349A (en) * 2019-12-19 2022-08-03 Mitsubishi Electric Corp Air conditioning device
JP7308978B2 (en) 2019-12-19 2023-07-14 三菱電機株式会社 air conditioner
GB2603349B (en) * 2019-12-19 2024-02-28 Mitsubishi Electric Corp Air-conditioning apparatus
CN114963600A (en) * 2022-06-02 2022-08-30 青岛理工大学 CO switched in multiple modes 2 Heat pipe cooling system and control method
WO2023231110A1 (en) * 2022-06-02 2023-12-07 青岛理工大学 Multi-mode switching co2 heat pipe cooling system and control method therefor

Similar Documents

Publication Publication Date Title
JP2000193327A (en) Air conditioner equipment and control method thereof
JP4167196B2 (en) Natural circulation combined use air conditioner and natural circulation combined use air conditioner control method
EP0937950B1 (en) Air conditioner
JP3743861B2 (en) Refrigeration air conditioner
CN104838219A (en) Air conditioning device
WO2015045011A1 (en) Refrigeration cycle device
JPWO2014141375A1 (en) Air conditioner
EP3995758B1 (en) Heat exchange unit for a refrigeration apparatus with a thermal storage and using co2 as refrigerant
JP3125778B2 (en) Air conditioner
JP2006098044A (en) Refrigeration device
JP4169080B2 (en) Freezer refrigerator
JP2008082674A (en) Supercooling device
EP3995760B1 (en) Thermal storage unit for a refrigeration apparatus with a thermal storage and using co2 as refrigerant
JP4258030B2 (en) Refrigerant circulation device
US20230392829A1 (en) Refrigerant circuit for a refrigeration apparatus with a thermal storage and method for controlling a refrigerant circuit
EP3995761A1 (en) Refrigerant circuit for a refrigeration apparatus with a thermal storage and method forcontrolling a refrigerant circuit
JP2008082676A (en) Supercooling device
JP2008082677A (en) Supercooling device
JP5193450B2 (en) Supercooling device
JP2009036508A (en) Supercooling system
JP2009024998A (en) Supercooling device
KR20070078194A (en) Air conditioner and the method for controlling the operation thereof
JP2001235189A (en) Regenerative refrigerating system
JP2008309486A (en) Supercooling device
JP2008082680A (en) Supercooling device