JPH09210475A - Heat transport device - Google Patents

Heat transport device

Info

Publication number
JPH09210475A
JPH09210475A JP2270496A JP2270496A JPH09210475A JP H09210475 A JPH09210475 A JP H09210475A JP 2270496 A JP2270496 A JP 2270496A JP 2270496 A JP2270496 A JP 2270496A JP H09210475 A JPH09210475 A JP H09210475A
Authority
JP
Japan
Prior art keywords
pump
heat
heat transport
expansion valve
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2270496A
Other languages
Japanese (ja)
Other versions
JP3457790B2 (en
Inventor
Tsuneo Uekusa
常雄 植草
Shisei Waratani
至誠 藁谷
Kazuo Chiba
和夫 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N T T FACILITIES KK
Nippon Telegraph and Telephone Corp
NTT Facilities Inc
Original Assignee
N T T FACILITIES KK
Nippon Telegraph and Telephone Corp
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N T T FACILITIES KK, Nippon Telegraph and Telephone Corp, NTT Facilities Inc filed Critical N T T FACILITIES KK
Priority to JP02270496A priority Critical patent/JP3457790B2/en
Publication of JPH09210475A publication Critical patent/JPH09210475A/en
Application granted granted Critical
Publication of JP3457790B2 publication Critical patent/JP3457790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Abstract

PROBLEM TO BE SOLVED: To provide a heat transport device which can achieve both of the reduction of the circulation flow rate of a heat transport medium, and the reduction of a pump operation power, and by which an energy saving effect can be obtained while displaying the operation power reducing effect, which is a merit for the application of a pump, to the maximum. SOLUTION: The degree of superheat of a refrigerant (heat transport medium) at an evaporator 1 is detected. When this detected degree of superheat is higher than a set value, an expansion valve 5 is controlled in the opening direction, and if the expansion valve 5 is already fully opened, the operation frequency of a pump 4 is increased. When the detected degree of superheat is lower than the set value, the operation frequency of the pump 4 is decreased, and if the operation frequency has already been reduced to an allowable minimum frequency, the expansion valve 5 is controlled in the closing direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、熱輸送媒体の相
変化を利用して熱の輸送を行う熱輸送装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transport device that transports heat by utilizing a phase change of a heat transport medium.

【0002】[0002]

【従来の技術】一般に、熱を輸送する媒体として、水の
温度差(顕熱)が用いられている。冷凍機の凝縮器から
の排熱を冷却塔を使って大気中に放出する際の冷却水も
その一例である。
2. Description of the Related Art Generally, a temperature difference (sensible heat) of water is used as a medium for transporting heat. An example is cooling water when the exhaust heat from the condenser of the refrigerator is released into the atmosphere using the cooling tower.

【0003】しかし、顕熱を利用するよりも潜熱(相変
化)を利用した方が、熱輸送媒体の循環流量を少なくで
きることから、最近では、熱輸送媒体の相変化を利用し
た熱輸送システムが導入されてきている。
However, since the circulation flow rate of the heat transport medium can be reduced by utilizing latent heat (phase change) rather than by using sensible heat, recently, a heat transport system utilizing phase change of the heat transport medium has been developed. It has been introduced.

【0004】熱輸送媒体たとえば冷媒(フロンなど)の
相変化により熱を輸送するシステムとして、蒸発器を凝
縮器よりも低い位置に設置し、液と蒸気の密度差を利用
した自然循環による熱輸送方法が知られている。しか
し、この方法は、蒸発器を凝縮器よりも必ず低い位置に
設置しなければならないという制約条件が存在する。
As a system for transporting heat by a phase change of a heat transport medium such as a refrigerant (CFC, etc.), an evaporator is installed at a position lower than that of a condenser, and heat transport by natural circulation utilizing a density difference between liquid and vapor. The method is known. However, this method has a constraint that the evaporator must be installed lower than the condenser.

【0005】この制約条件を受けない汎用的な方法とし
ては、凝縮器の出口側にポンプを設けて熱輸送の駆動力
を得る方法と、蒸発器の出口側に圧縮機等を設けて熱輸
送の駆動力を得る方法がある。
As a general method not subject to this restriction condition, a pump is provided at the outlet side of the condenser to obtain a driving force for heat transport, and a compressor or the like is provided at the outlet side of the evaporator to perform heat transport. There is a method of obtaining the driving force of.

【0006】この二つのうち、運転動力の点から見れ
ば、圧縮機による方法よりも、ポンプによる方法の方が
運転動力が少なく、有利である。一方、熱輸送システム
では、蒸発器での熱輸送媒体の過熱度が検出され、その
過熱度が設定値一定となるよう、サイクル中の熱輸送媒
体の循環流量が調節される。
Of these two, from the viewpoint of operating power, the method using a pump is advantageous in that it uses less operating power than the method using a compressor. On the other hand, in the heat transport system, the degree of superheat of the heat transport medium in the evaporator is detected, and the circulating flow rate of the heat transport medium during the cycle is adjusted so that the degree of superheat becomes constant.

【0007】たとえば、空調負荷が小さくなると、蒸発
器の熱交換量が減少し、蒸発器に流れ込む熱輸送媒体の
すべてが蒸発しきれない状態となる。このとき、過熱度
は、減少方向に変化し、設定値より低くなる。過熱度が
設定値より低くなると、それを補うべく、サイクル中の
膨張弁の開度が縮小されて熱輸送媒体の循環流量が減ら
される。
For example, when the air conditioning load is reduced, the amount of heat exchange in the evaporator is reduced, and all the heat transport medium flowing into the evaporator cannot be completely evaporated. At this time, the degree of superheat changes in the decreasing direction and becomes lower than the set value. When the degree of superheat becomes lower than the set value, the opening degree of the expansion valve during the cycle is reduced to compensate for it, and the circulation flow rate of the heat transport medium is reduced.

【0008】過熱度が設定値より高くなった場合は、サ
イクル中の膨張弁の開度が拡大されて熱輸送媒体の循環
流量が増やされる。熱輸送媒体の循環流量を調節する手
段としては、膨張弁の開度を変化させる方法のほかに、
流量調節弁を介したバイパス経路を設けてその流量調節
弁の開度を変化させる方法がある。この場合、流量調節
弁の開度が拡大されることにより、サイクル中を循環し
ている熱輸送媒体の一部がバイパス経路を流れ、その分
だけサイクル中の循環流量が減少する。流量調節弁の開
度が縮小されると、バイパス経路の流量が減り、その分
だけサイクル中の循環流量が増える。
When the degree of superheat becomes higher than the set value, the opening degree of the expansion valve during the cycle is increased and the circulation flow rate of the heat transport medium is increased. As means for adjusting the circulation flow rate of the heat transport medium, in addition to the method of changing the opening degree of the expansion valve,
There is a method of providing a bypass path via a flow control valve to change the opening of the flow control valve. In this case, the opening degree of the flow rate control valve is increased, so that part of the heat transport medium circulating in the cycle flows through the bypass path, and the circulation flow rate in the cycle is reduced accordingly. When the opening degree of the flow rate control valve is reduced, the flow rate of the bypass path is reduced, and the circulation flow rate during the cycle is increased accordingly.

【0009】[0009]

【発明が解決しようとする課題】ポンプにより運転動力
を得るものにおいて、膨張弁による流量調節にて過熱度
を制御する場合、膨張弁の開度の縮小による循環重量の
減少に際し、ポンプ側から見た流路抵抗が増加し、この
流路抵抗の増加に伴ってポンプの揚程が高くなる。この
様子を図6に示している。すなわち、膨張弁の開度の縮
小により冷媒の循環流量がQ2 からQ1 に減るのに伴
い、ポンプの揚程がH1 からH2 へと高くなる。
In the case of obtaining operating power from a pump, when the superheat degree is controlled by adjusting the flow rate by the expansion valve, when the circulating weight is reduced by reducing the opening degree of the expansion valve, it is seen from the pump side. The flow path resistance increases, and the pump head rises as the flow path resistance increases. This state is shown in FIG. That is, as the circulation flow rate of the refrigerant decreases from Q 2 to Q 1 due to the reduction in the opening degree of the expansion valve, the pump head increases from H 1 to H 2 .

【0010】ポンプの揚程が高くなると運転動力が増大
し、ポンプを用いることの利点であったせっかくの運転
動力の削減効果が損なわれてしまう。なお、バイパス経
路による流量調節にて過熱度を制御する場合には、循環
流量の減少に際してポンプの揚程が不要に高くならず、
よって運転動力の不要な増大は生じない。ただし、ポン
プ位置の流量に変わりがないため、循環流量の減少であ
りながら、それが運転動力の削減につながらない。
When the head of the pump increases, the driving power increases, and the advantage of using the pump, that is, the effect of reducing the driving power, is impaired. When controlling the superheat degree by adjusting the flow rate by the bypass route, the pump head does not unnecessarily increase when the circulation flow rate decreases,
Therefore, unnecessary increase in driving power does not occur. However, since the flow rate at the pump position does not change, the circulation flow rate is reduced, but it does not lead to a reduction in operating power.

【0011】この発明は上記の事情を考慮したもので、
第1の発明の熱輸送装置は、熱輸送媒体の循環流量の減
少をポンプ運転動力の削減と共に達成することができ、
ポンプを用いることの利点である運転動力の削減効果を
最大限に発揮しながらしかも省エネルギ効果が得られる
ことを目的とする。
The present invention takes the above circumstances into consideration,
The heat transport device of the first invention can achieve a reduction in the circulation flow rate of the heat transport medium together with a reduction in pump operating power,
The purpose is to maximize the effect of reducing the driving power, which is an advantage of using a pump, and to obtain an energy saving effect.

【0012】第2の発明の熱輸送装置は、第1の発明の
目的に加え、熱輸送の駆動力が確実に得られることを目
的とする。第3の発明の熱輸送装置は、熱輸送媒体の循
環流量の減少をポンプ運転動力の削減と共に達成するこ
とができ、ポンプを用いることの利点である運転動力の
削減効果を最大限に発揮しながらしかも省エネルギ効果
が得られることを目的とする。
In addition to the object of the first invention, the heat-transporting device of the second invention aims to surely obtain the driving force for heat-transporting. The heat transport device of the third invention can achieve reduction of the circulation flow rate of the heat transport medium together with reduction of the pump driving power, and maximizes the driving power reduction effect which is an advantage of using the pump. However, the purpose is to obtain an energy saving effect.

【0013】[0013]

【課題を解決するための手段】第1の発明の熱輸送装置
は、蒸発器、凝縮器、ポンプ、および膨張弁を順次に配
管接続し、配管内に封入した熱輸送媒体の相変化により
熱の輸送を行うものであって、蒸発器での熱輸送媒体の
過熱度を検出する検出手段と、この検出手段の検出過熱
度が設定値より高い場合、膨張弁が全開状態かどうか判
断し、全開状態でなければ膨張弁を開方向に操作し、全
開状態であればポンプの運転周波数を上げる第1の制御
手段と、上記検出手段の検出過熱度が設定値より低い場
合、ポンプの運転周波数が許容最低周波数かどうか判断
し、許容最低周波数でなければポンプの運転周波数を下
げ、許容最低周波数であれば膨張弁を閉方向に操作する
第2の制御手段と、を備える。
According to a first aspect of the present invention, there is provided a heat transport device, in which an evaporator, a condenser, a pump, and an expansion valve are sequentially connected in a pipe, and heat is generated by a phase change of a heat transport medium enclosed in the pipe. For detecting the degree of superheat of the heat transport medium in the evaporator, and if the degree of superheat detected by this detecting means is higher than the set value, it is determined whether the expansion valve is in the fully open state, If it is not in the fully open state, the expansion valve is operated in the opening direction, and if it is in the fully open state, the first control means for increasing the operating frequency of the pump, and the operating frequency of the pump if the degree of superheat detected by the detecting means is lower than a set value. Is a permissible minimum frequency, and if not the permissible minimum frequency, the operating frequency of the pump is lowered, and if the permissible minimum frequency, the second control means for operating the expansion valve in the closing direction.

【0014】第2の発明の熱輸送装置は、第1の発明に
おける第2の制御手段が、ポンプの運転周波数が許容最
低周波数であるとき、ポンプの揚程が許容最低周波数時
の最大揚程限度値に達していない場合のみ膨張弁を閉方
向に操作し、最大揚程限度値に達している場合は膨張弁
を操作しない。
In the heat transport apparatus of the second invention, the second control means in the first invention is such that when the operating frequency of the pump is the lowest allowable frequency, the maximum lift limit value when the pump head is at the lowest allowable frequency. If the maximum head limit value is reached, the expansion valve is not operated if the maximum valve head has not been reached.

【0015】第3の発明の熱輸送装置は、蒸発器、凝縮
器、およびポンプを順次に配管接続し、かつポンプの送
出口側と凝縮器の出口側との間に流量調節弁を介してバ
イパス経路を設け、配管内に封入した熱輸送媒体の相変
化により熱の輸送を行うものであって、蒸発器での熱輸
送媒体の過熱度を検出する検出手段と、この検出手段の
検出過熱度が設定値より高い場合、流量調節弁が全閉状
態かどうか判断し、全閉状態でなければ流量調節弁を閉
方向に操作し、全閉状態であればポンプの運転周波数を
上げる第1の制御手段と、上記検出手段の検出過熱度が
設定値より低い場合、ポンプの運転周波数が許容最低周
波数かどうか判断し、許容最低周波数でなければポンプ
の運転周波数を下げ、許容最低周波数であれば流量調節
弁を開方向に操作する第2の制御手段と、を備える。
In the heat transfer apparatus of the third invention, the evaporator, the condenser, and the pump are sequentially connected by piping, and a flow control valve is provided between the outlet side of the pump and the outlet side of the condenser. A bypass path is provided, and heat is transported by the phase change of the heat transport medium enclosed in the pipe, and the detection means for detecting the degree of superheat of the heat transport medium in the evaporator and the detection overheat of this detection means If the degree is higher than the set value, it is judged whether the flow control valve is in the fully closed state. If not, the flow control valve is operated in the closing direction, and if it is in the fully closed state, the operating frequency of the pump is raised. If the degree of superheat detected by the control means and the detection means is lower than the set value, it is judged whether the operating frequency of the pump is the allowable minimum frequency. Operate the flow control valve in the opening direction That includes a second control means.

【0016】[0016]

【発明の実施の形態】以下、第1実施例について図面を
参照して説明する。この第1実施例は、第1の発明およ
び第2の発明に対応する。図1に示すように、蒸発器
1、凝縮器2、タンク3、ポンプ4、および電動式膨張
弁5が配管6で順次に接続される。配管6内には熱輸送
媒体として冷媒(たとえばフロン)が封入されている。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment will be described below with reference to the drawings. The first embodiment corresponds to the first invention and the second invention. As shown in FIG. 1, the evaporator 1, the condenser 2, the tank 3, the pump 4, and the electric expansion valve 5 are sequentially connected by a pipe 6. A refrigerant (for example, CFC) is enclosed in the pipe 6 as a heat transport medium.

【0017】凝縮器2の位置およびポンプ4の位置につ
いては、両者の高低差がポンプ固有の許容NPSH値以
上に設定される。タンク3は凝縮器2からの液冷媒を一
旦収容するためのものである。
Regarding the position of the condenser 2 and the position of the pump 4, the height difference between them is set to be equal to or more than the allowable NPSH value specific to the pump. The tank 3 is for temporarily storing the liquid refrigerant from the condenser 2.

【0018】凝縮器2への冷熱供給用に冷凍機11が設
けられ、その冷凍機11と凝縮器2との間に冷水循環用
の配管12が設けられる。そして、配管12に、冷水の
循環および量を制御するためのポンプ13および開閉弁
14が設けられる。冷凍機11としては、蒸気圧縮式冷
凍機、吸収式冷凍機、氷蓄熱槽など、種々の適用が可能
であり、すべての冷熱源を指す。
A refrigerator 11 is provided for supplying cold heat to the condenser 2, and a pipe 12 for circulating cold water is provided between the refrigerator 11 and the condenser 2. The pipe 12 is provided with a pump 13 and an opening / closing valve 14 for controlling the circulation and amount of cold water. The refrigerator 11 can be applied in various ways such as a vapor compression refrigerator, an absorption refrigerator, and an ice heat storage tank, and indicates all cold heat sources.

【0019】ポンプ4の送出口から送り出される液状の
冷媒は、膨張弁5を通って蒸発器1に流れ、そこで外部
から熱を奪って蒸発する。このガス冷媒は、次に凝縮器
2に流れ、そこで冷凍機11から供給される冷水に熱を
放出して液化する。この液冷媒は、タンク3を介してポ
ンプ4の吸入口に取込まれ、そのポンプ4の送出口から
蒸発器1に向けて再び送り出される。こうして、冷凍機
11から放出される冷熱が、蒸発器1側へ輸送される。
The liquid refrigerant sent out from the outlet of the pump 4 flows through the expansion valve 5 to the evaporator 1, where heat is taken from the outside and evaporated. This gas refrigerant then flows to the condenser 2 where it radiates heat to the cold water supplied from the refrigerator 11 and liquefies. The liquid refrigerant is taken into the suction port of the pump 4 via the tank 3 and is again sent from the outlet of the pump 4 toward the evaporator 1. In this way, the cold heat released from the refrigerator 11 is transported to the evaporator 1 side.

【0020】また、ポンプ4の送出口近傍の配管6に、
圧力センサ7が取付けられる。この圧力センサ7は、ポ
ンプ4から送出される冷媒の圧力を検知する。ポンプ4
の吸込口近傍の配管6に、圧力センサ8が取付けられ
る。この圧力センサ8は、ポンプ4に吸込まれる冷媒の
圧力を検知する。
Further, in the pipe 6 near the delivery port of the pump 4,
The pressure sensor 7 is attached. The pressure sensor 7 detects the pressure of the refrigerant delivered from the pump 4. Pump 4
A pressure sensor 8 is attached to the pipe 6 in the vicinity of the suction port. The pressure sensor 8 detects the pressure of the refrigerant sucked by the pump 4.

【0021】さらに、蒸発器1の出口近傍の配管6に、
冷媒状態検知手段9が設けられる。この冷媒状態検知手
段9は、配管6内の冷媒の温度および圧力を検知する。
一方、制御部20が設けられる。この制御部20に、上
記膨張弁5、圧力センサ7、圧力センサ8、冷媒状態検
知手段9、ポンプ13、開閉弁14、およびポンプ運転
周波数操作手段21が接続される。
Further, in the pipe 6 near the outlet of the evaporator 1,
Refrigerant state detection means 9 is provided. The refrigerant state detecting means 9 detects the temperature and pressure of the refrigerant in the pipe 6.
On the other hand, the control unit 20 is provided. The expansion valve 5, the pressure sensor 7, the pressure sensor 8, the refrigerant state detecting means 9, the pump 13, the opening / closing valve 14, and the pump operating frequency operating means 21 are connected to the control unit 20.

【0022】ポンプ運転周波数操作手段21は、ポンプ
4のモータに駆動電力を供給するためのたとえばインバ
ータ回路を備え、そのインバータ回路の出力周波数を制
御部20からの指令に応じて操作する。インバータ回路
の出力周波数のことを、以下、ポンプ4の運転周波数F
と称する。
The pump operating frequency operating means 21 comprises, for example, an inverter circuit for supplying drive power to the motor of the pump 4, and operates the output frequency of the inverter circuit in accordance with a command from the control unit 20. The output frequency of the inverter circuit is referred to below as the operating frequency F of the pump 4.
Called.

【0023】制御部20は、主要な機能手段として次の
[1][2][3]を備える。 [1]冷媒状態検知手段9で検知される温度および圧力
を用いた演算により、蒸発器1における冷媒の過熱度を
検出する過熱度検出手段。
The control unit 20 includes the following [1], [2] and [3] as main functional means. [1] Superheat detection means for detecting the degree of superheat of the refrigerant in the evaporator 1 by calculation using the temperature and pressure detected by the refrigerant state detection means 9.

【0024】[2]圧力センサ7で検知されるポンプ4
の送出冷媒圧力と圧力センサ8で検知されるポンプ4の
吸込冷媒圧力との差を、ポンプ4の揚程として測定する
測定手段。
[2] Pump 4 detected by the pressure sensor 7
Measuring means for measuring the difference between the delivery refrigerant pressure of the pump and the suction refrigerant pressure of the pump 4 detected by the pressure sensor 8 as the head of the pump 4.

【0025】[3]過熱度検出手段で検出される過熱度
があらかじめ定めている設定値(たとえば 5℃)に一定
となるよう、ポンプ4の運転周波数Fおよび膨張弁5の
開度を制御する制御手段。
[3] The operating frequency F of the pump 4 and the opening degree of the expansion valve 5 are controlled so that the degree of superheat detected by the degree of superheat detection means becomes constant at a predetermined set value (for example, 5 ° C.). Control means.

【0026】この制御手段は、具体的には、(a)過熱
度が設定値より高い場合、膨張弁5が全開状態かどうか
判断し、全開状態でなければ膨張弁5を開方向に操作
し、全開状態であればポンプ4の運転周波数Fを上げる
第1の制御手段と、(b)過熱度が設定値より低い場
合、ポンプ4の運転周波数Fが許容最低周波数Fmin か
どうか判断し、許容最低周波数Fmin でなければポンプ
4の運転周波数Fを下げ、許容最低周波数Fmin であれ
ば測定手段で測定されるポンプ4の揚程が許容最低周波
数時の最大揚程限度値に達していない場合のみ膨張弁5
を閉方向に操作し、最大揚程限度値に達している場合は
膨張弁5を操作しない第2の制御手段と、からなる。
Specifically, (a) when the degree of superheat is higher than a set value, (a) determines whether the expansion valve 5 is in the fully open state, and if not, operates the expansion valve 5 in the opening direction. The first control means for increasing the operating frequency F of the pump 4 in the fully opened state, and (b) when the degree of superheat is lower than the set value, it is judged whether the operating frequency F of the pump 4 is the allowable minimum frequency Fmin, and If it is not the minimum frequency Fmin, the operating frequency F of the pump 4 is lowered, and if it is the allowable minimum frequency Fmin, the expansion valve is measured only when the lift of the pump 4 measured by the measuring means does not reach the maximum lift limit value at the allowable minimum frequency. 5
In the closing direction and does not operate the expansion valve 5 when the maximum lift limit value is reached.

【0027】許容最低周波数Fmin とは、ポンプ4を支
障なく運転するための最低限の運転周波数のことであ
る。最大揚程限度値は、ポンプ4の運転に支障を及ぼさ
ない最大限の揚程のことであり、運転周波数Fに応じて
複数段の値があらかじめ定められている。
The allowable minimum frequency Fmin is the minimum operating frequency for operating the pump 4 without any trouble. The maximum head limit value is the maximum head that does not hinder the operation of the pump 4, and a plurality of values are predetermined according to the operating frequency F.

【0028】つぎに、上記の構成の作用を図2のフロー
チャートを参照して説明する。ポンプ4が運転される
と、そのポンプ4から液冷媒が送出される。この液冷媒
は所定開度に設定された膨張弁5を通って蒸発器1に流
れ、そこで外部から熱を奪って蒸発する。蒸発器1から
流出するガス冷媒は凝縮器2に流れ、そこで冷凍機6か
らの冷水に熱を放出して液化する。この液冷媒は、タン
ク3を介してポンプ4の吸入口に取込まれ、そのポンプ
4の送出口から蒸発器1に向けて再び送り出される。
Next, the operation of the above configuration will be described with reference to the flowchart of FIG. When the pump 4 is operated, the liquid refrigerant is delivered from the pump 4. This liquid refrigerant flows through the expansion valve 5 set to a predetermined opening degree to the evaporator 1, where heat is taken from the outside to be evaporated. The gas refrigerant flowing out from the evaporator 1 flows into the condenser 2, where heat is released to the cold water from the refrigerator 6 and liquefied. The liquid refrigerant is taken into the suction port of the pump 4 via the tank 3 and is again sent from the outlet of the pump 4 toward the evaporator 1.

【0029】運転中、蒸発器1から流出する冷媒の温度
および圧力が冷媒状態検知手段9で検知され、その検知
結果を用いた演算により蒸発器1における冷媒の過熱度
が検出される。そして、検出される過熱度が目標の設定
値(たとえば 5℃)に一定となるよう、膨張弁5の開度
およびポンプ4の運転周波数Fが制御される。
During operation, the temperature and pressure of the refrigerant flowing out of the evaporator 1 are detected by the refrigerant state detecting means 9, and the degree of superheat of the refrigerant in the evaporator 1 is detected by calculation using the detection result. Then, the opening degree of the expansion valve 5 and the operating frequency F of the pump 4 are controlled so that the detected degree of superheat becomes constant at a target set value (for example, 5 ° C.).

【0030】たとえば、過熱度が設定値よりも高い場合
には、冷媒の循環流量を増やして過熱度を下げるべく、
膨張弁5の開度が開方向に操作される。ただし、膨張弁
5がすでに全開していれば、ポンプ4の運転周波数Fが
上昇方向に操作される。膨張弁5が全開し、しかも運転
周波数Fが許容最高運転周波数Fmax に達している場合
には、そのままの状態が保持される。
For example, when the degree of superheat is higher than the set value, the circulating flow rate of the refrigerant is increased to reduce the degree of superheat.
The opening degree of the expansion valve 5 is operated in the opening direction. However, if the expansion valve 5 is already fully opened, the operating frequency F of the pump 4 is operated in the upward direction. When the expansion valve 5 is fully opened and the operating frequency F reaches the maximum allowable operating frequency Fmax, the state is maintained as it is.

【0031】過熱度が設定値より低い場合には、冷媒の
循環流量を減らして過熱度を上げるべく、ポンプ4の運
転周波数Fが下降方向に操作される。ただし、運転周波
数Fがすでに許容最低運転周波数Fmin まで下がってい
れば、圧力センサ7,8の検知圧力から測定されるポン
プ4の揚程が許容最低周波数時の最大揚程限度値に達し
ていない場合に限り、膨張弁5の開度が閉方向に操作さ
れる。運転周波数Fが許容最低運転周波数Fmin まで下
がり、しかも測定揚程が最大揚程限度値に達している場
合には、そのままの状態が保持される。
When the degree of superheat is lower than the set value, the operating frequency F of the pump 4 is operated downward in order to reduce the circulation flow rate of the refrigerant and increase the degree of superheat. However, if the operating frequency F has already dropped to the allowable minimum operating frequency Fmin, in the case where the lift of the pump 4 measured from the pressure detected by the pressure sensors 7 and 8 has not reached the maximum lift limit value at the allowable minimum frequency. As long as the expansion valve 5 is operated in the closing direction. When the operating frequency F drops to the minimum allowable operating frequency Fmin and the measured lift reaches the maximum lift limit value, the state is maintained as it is.

【0032】ところで、空調負荷が小さくなると、蒸発
器1の熱交換量が減少し、蒸発器1に流れ込む冷媒のす
べてが蒸発しきれない状態となる。このとき、過熱度
は、減少方向に変化し、設定値より低くなる。
By the way, when the air conditioning load decreases, the heat exchange amount of the evaporator 1 decreases, and all the refrigerant flowing into the evaporator 1 cannot be completely evaporated. At this time, the degree of superheat changes in the decreasing direction and becomes lower than the set value.

【0033】過熱度が設定値より低くなると、上記した
ように、ポンプ4の運転周波数が下降方向に操作され
る。こうして、ポンプ4の運転周波数が下降操作される
ことにより、冷媒の循環流量が空調負荷に見合う状態へ
と減少する。ポンプ4の揚程は、循環流量の減少に伴っ
て低下する。
When the degree of superheat becomes lower than the set value, the operating frequency of the pump 4 is operated downward as described above. In this way, the operating frequency of the pump 4 is lowered, so that the circulation flow rate of the refrigerant is reduced to a state commensurate with the air conditioning load. The head of the pump 4 decreases as the circulation flow rate decreases.

【0034】すなわち、図3に示すように、冷媒の循環
流量がQ2 からQ1 に減るのに伴い、ポンプ4の揚程は
従来の場合と逆にH2 からH1 へと低くなる。このよう
に、冷媒の循環流量の減少をポンプ4の揚程を下げる方
向で達成することにより、ポンプ運転動力を高める必要
はまったくなく、それどころか運転動力を減らすことが
でき、ポンプ4を用いることの利点である運転動力の削
減効果を最大限に発揮しながらしかも省エネルギ効果が
得られる。
That is, as shown in FIG. 3, as the circulation flow rate of the refrigerant decreases from Q 2 to Q 1 , the pump 4 head decreases from H 2 to H 1 contrary to the conventional case. Thus, by achieving the reduction of the circulation flow rate of the refrigerant in the direction of lowering the head of the pump 4, there is no need to increase the pump operating power, on the contrary, the operating power can be reduced, and the advantage of using the pump 4 is obtained. The energy saving effect can be obtained while maximizing the effect of reducing the driving power.

【0035】また、過熱度の設定値一定制御により、蒸
発器1における冷媒の蒸発をその蒸発器1の出口付近で
ほぼ終わらせることができる。したがって、常に空調負
荷に見合う最適な能力の効率の良い空調が可能となっ
て、安定かつ無駄のない運転を行うことができる。
Further, by controlling the set value of the superheat degree to be constant, the evaporation of the refrigerant in the evaporator 1 can be almost finished near the outlet of the evaporator 1. Therefore, it is possible to perform efficient and efficient air conditioning with an optimum capacity that always corresponds to the air conditioning load, and to perform stable and lean operation.

【0036】しかも、ポンプ4の揚程が最大揚程限度値
を超えない範囲で運転を行うので、ポンプ4の運転に何
ら支障を及ぼさず、熱輸送の駆動力が確実に得られる。
次に、第2実施例について説明する。この第2実施例
は、第3の発明に対応する。なお、図面において、図1
と同一部分には同一符号を付してその詳細な説明は省略
する。
Moreover, since the pump 4 is operated within a range in which the lift does not exceed the maximum lift limit value, the driving force for heat transport can be reliably obtained without any hindrance to the operation of the pump 4.
Next, a second embodiment will be described. The second embodiment corresponds to the third invention. In the drawings, FIG.
The same parts as those of the above are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0037】図4に示すように、ポンプ4の送出口側の
配管6と凝縮器2の出口側の配管6との間に、流量調節
弁31を介してバイパス経路32が接続される。このバ
イパス経路32は、ポンプ4から送出される冷媒の一部
を凝縮器2の出口側にバイパスするためのもので、バイ
パス量を流量調節弁31の開度変化によって調節するこ
とができる。
As shown in FIG. 4, a bypass path 32 is connected between the pipe 6 on the outlet side of the pump 4 and the pipe 6 on the outlet side of the condenser 2 via a flow rate control valve 31. The bypass path 32 is for bypassing a part of the refrigerant sent from the pump 4 to the outlet side of the condenser 2, and the bypass amount can be adjusted by changing the opening degree of the flow rate adjusting valve 31.

【0038】制御部20に、膨張弁5、冷媒状態検知手
段9、ポンプ13、開閉弁14、ポンプ運転周波数操作
手段21、および流量調節弁31が接続される。圧力セ
ンサ7,8は、とくに設ける必要はなく、除去してい
る。
The expansion valve 5, the refrigerant state detecting means 9, the pump 13, the opening / closing valve 14, the pump operating frequency operating means 21, and the flow rate adjusting valve 31 are connected to the control section 20. The pressure sensors 7 and 8 do not need to be provided and are removed.

【0039】そして、制御部20は、主要な機能手段と
して次の[1][2]を備える。 [1]冷媒状態検知手段9で検知される温度および圧力
を用いた演算により、蒸発器1における冷媒の過熱度を
検出する過熱度検出手段。
The control unit 20 has the following [1] and [2] as main functional means. [1] Superheat detection means for detecting the degree of superheat of the refrigerant in the evaporator 1 by calculation using the temperature and pressure detected by the refrigerant state detection means 9.

【0040】[2]過熱度検出手段で検出される過熱度
があらかじめ定めている設定値(たとえば 5℃)に一定
となるよう、流量調節弁31の開度およびポンプ4の運
転周波数Fを制御する制御手段。
[2] The opening degree of the flow rate control valve 31 and the operating frequency F of the pump 4 are controlled so that the degree of superheat detected by the degree of superheat detection means becomes constant at a preset value (for example, 5 ° C.). Control means to do.

【0041】この制御手段は、具体的には、(a)過熱
度が設定値より高い場合、流量調節弁31が全閉状態か
どうか判断し、全閉状態でなければ流量調節弁31を閉
方向に操作し、全閉状態であればポンプ4の運転周波数
Fを上げる第1の制御手段と、(b)過熱度が設定値よ
り低い場合、ポンプ4の運転周波数Fが許容最低周波数
Fmin かどうか判断し、許容最低周波数Fmin でなけれ
ばポンプ4の運転周波数Fを下げ、許容最低周波数Fmi
n であれば流量調節弁31を開方向に操作する第2の制
御手段と、からなる。
Specifically, (a) when the degree of superheat is higher than a set value, the control means determines whether or not the flow rate control valve 31 is in the fully closed state, and if it is not in the fully closed state, the flow rate control valve 31 is closed. If the superheat degree is lower than the set value, the operating frequency F of the pump 4 is the allowable minimum frequency Fmin. If it is not the minimum allowable frequency Fmin, lower the operating frequency F of the pump 4 and set the minimum allowable frequency Fmi.
If n, it comprises a second control means for operating the flow rate control valve 31 in the opening direction.

【0042】つぎに、上記の構成の作用を図5のフロー
チャートを参照して説明する。運転中、蒸発器1から流
出する冷媒の温度および圧力が冷媒状態検知手段9で検
知され、その検知結果を用いた演算により蒸発器1にお
ける冷媒の過熱度が検出される。そして、検出される過
熱度が目標の設定値(たとえば 5℃)に一定となるよ
う、流量調節弁31の開度およびポンプ4の運転周波数
Fが制御される。膨張弁5は所定の開度に設定される。
Next, the operation of the above configuration will be described with reference to the flowchart of FIG. During operation, the temperature and pressure of the refrigerant flowing out of the evaporator 1 are detected by the refrigerant state detecting means 9, and the degree of superheat of the refrigerant in the evaporator 1 is detected by calculation using the detection result. Then, the opening degree of the flow rate control valve 31 and the operating frequency F of the pump 4 are controlled so that the detected degree of superheat becomes constant at a target set value (for example, 5 ° C.). The expansion valve 5 is set to a predetermined opening.

【0043】たとえば、過熱度が設定値よりも高い場合
には、冷媒の循環流量を増やして過熱度を下げるべく、
流量調節弁31の開度が閉方向に操作される。流量調節
弁31の開度が小さくなると、ポンプ4から送出されて
バイパス経路32に流入する冷媒の量が減り、その分だ
け、蒸発器1に流れる冷媒の量が増える。
For example, when the degree of superheat is higher than the set value, the circulating flow rate of the refrigerant is increased to reduce the degree of superheat.
The opening degree of the flow rate control valve 31 is operated in the closing direction. When the opening degree of the flow rate control valve 31 decreases, the amount of the refrigerant sent from the pump 4 and flowing into the bypass path 32 decreases, and the amount of the refrigerant flowing to the evaporator 1 increases accordingly.

【0044】ただし、流量調節弁31がすでに全閉して
いれば、ポンプ4の運転周波数Fが上昇方向に操作され
る。流量調整弁31が全閉し、しかも運転周波数Fが許
容最高運転周波数Fmax に達している場合には、そのま
まの状態が保持される。
However, if the flow rate control valve 31 is already fully closed, the operating frequency F of the pump 4 is operated in the upward direction. When the flow rate adjusting valve 31 is fully closed and the operating frequency F reaches the maximum allowable operating frequency Fmax, the state is maintained as it is.

【0045】過熱度が設定値より低い場合には、冷媒の
循環流量を減らして過熱度を上げるべく、ポンプ4の運
転周波数Fが下降方向に操作される。ただし、運転周波
数Fがすでに許容最低運転周波数Fmin まで下がってい
れば、流量調節弁31の開度が開方向に操作される。運
転周波数Fが許容最低運転周波数Fmin まで下がり、し
かも流量調節弁31が全開している場合には、そのまま
の状態が保持される。
When the degree of superheat is lower than the set value, the operating frequency F of the pump 4 is operated in the downward direction in order to reduce the circulation flow rate of the refrigerant and increase the degree of superheat. However, if the operating frequency F has already dropped to the allowable minimum operating frequency Fmin, the opening degree of the flow control valve 31 is operated in the opening direction. When the operating frequency F drops to the allowable minimum operating frequency Fmin and the flow rate control valve 31 is fully opened, the state is maintained as it is.

【0046】ところで、空調負荷が小さくなると、蒸発
器1の熱交換量が減少し、蒸発器1に流れ込む冷媒のす
べてが蒸発しきれない状態となる。このとき、過熱度
は、減少方向に変化し、設定値より低くなる。
When the air conditioning load decreases, the heat exchange amount of the evaporator 1 decreases and all the refrigerant flowing into the evaporator 1 cannot be completely evaporated. At this time, the degree of superheat changes in the decreasing direction and becomes lower than the set value.

【0047】過熱度が設定値より低くなると、上記した
ように、ポンプ4の運転周波数が下降方向に操作され
る。こうして、ポンプ4の運転周波数が下降操作される
ことにより、冷媒の循環流量が空調負荷に見合う状態へ
と減少する。ポンプ4の揚程は、循環流量の減少に伴っ
て低下する。
When the degree of superheat becomes lower than the set value, the operating frequency of the pump 4 is operated downward as described above. In this way, the operating frequency of the pump 4 is lowered, so that the circulation flow rate of the refrigerant is reduced to a state commensurate with the air conditioning load. The head of the pump 4 decreases as the circulation flow rate decreases.

【0048】すなわち、第1実施例の場合と同じく、図
3に示すように、冷媒の循環流量がQ2 からQ1 に減る
のに伴い、ポンプ4の揚程がH2 からH1 へと低くな
る。このように、冷媒の循環流量の減少をポンプ4の揚
程を下げる方向で達成することにより、ポンプ運転動力
を高める必要はまったくなく、それどころか運転動力を
減らすことができ、ポンプ4を用いることの利点である
運転動力の削減効果を最大限に発揮しながらしかも省エ
ネルギ効果が得られる。
That is, as in the case of the first embodiment, as shown in FIG. 3, as the circulation flow rate of the refrigerant decreases from Q 2 to Q 1 , the head of the pump 4 decreases from H 2 to H 1 . Become. Thus, by achieving the reduction of the circulation flow rate of the refrigerant in the direction of lowering the head of the pump 4, there is no need to increase the pump operating power, on the contrary, the operating power can be reduced, and the advantage of using the pump 4 is obtained. The energy saving effect can be obtained while maximizing the effect of reducing the driving power.

【0049】また、過熱度の設定値一定制御により、蒸
発器1における冷媒の蒸発をその蒸発器1の出口付近で
ほぼ終わらせることができる。したがって、常に空調負
荷に見合う最適な能力の効率の良い空調が可能となっ
て、安定かつ無駄のない運転を行うことができる。
Further, by controlling the set value of the superheat degree to be constant, the evaporation of the refrigerant in the evaporator 1 can be almost finished in the vicinity of the outlet of the evaporator 1. Therefore, it is possible to perform efficient and efficient air conditioning with an optimum capacity that always corresponds to the air conditioning load, and to perform stable and lean operation.

【0050】なお、上記各実施例では、凝縮器2とポン
プ4との間にタンク3を設けたが、タンク3がない場合
にも同様に実施可能である。また、蒸発器1が一個の場
合について説明したが、複数個の蒸発器1が並列に接続
されている場合にも同様に実施できる。さらに、冷凍機
11と凝縮器2が一体の構成であってもよい。その他、
この発明は上記実施例に限定されるものではなく、要旨
を変えない範囲で種々変形実施可能である。
Although the tank 3 is provided between the condenser 2 and the pump 4 in each of the above-described embodiments, the present invention can be similarly implemented even when the tank 3 is not provided. Moreover, although the case where the number of the evaporators 1 is one has been described, the same can be applied to the case where a plurality of the evaporators 1 are connected in parallel. Further, the refrigerator 11 and the condenser 2 may be integrated. Other,
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the invention.

【0051】[0051]

【発明の効果】以上述べたようにこの発明によれば、第
1の発明の熱輸送装置は、蒸発器での熱輸送媒体の過熱
度を検出し、その検出過熱度が設定値より高い場合に
は、膨張弁を開方向に操作し、膨張弁がすでに全開して
いたらポンプの運転周波数を上げ、一方、検出過熱度が
設定値より低い場合には、ポンプの運転周波数を下げ、
運転周波数がすでに許容最低周波数まで下がっていたら
膨張弁を閉方向に操作する構成としたので、熱輸送媒体
の循環流量の減少をポンプ運転動力の削減と共に達成す
ることができ、ポンプを用いることの利点である運転動
力の削減効果を最大限に発揮しながらしかも省エネルギ
効果が得られる。
As described above, according to the present invention, the heat transport device of the first invention detects the superheat degree of the heat transport medium in the evaporator, and when the detected superheat degree is higher than the set value. In the case of operating the expansion valve in the opening direction, if the expansion valve is already fully open, the operating frequency of the pump is increased, while if the detected superheat is lower than the set value, the operating frequency of the pump is decreased.
When the operating frequency has already dropped to the allowable minimum frequency, the expansion valve is operated in the closing direction, so that the circulation flow rate of the heat transport medium can be reduced together with the reduction of the pump operating power. The energy saving effect can be obtained while maximizing the effect of reducing the driving power, which is an advantage.

【0052】第2の発明の熱輸送装置は、第1の発明に
おいて、検出過熱度が設定値より低い場合に、ポンプの
運転周波数がすでに許容最低周波数まで下がっていると
き、ポンプの揚程が許容最低周波数時の最大揚程限度値
に達していない場合のみ膨張弁を閉方向に操作する構成
としたので、第1の発明の目的に加え、熱輸送の駆動力
が確実に得られる。
In the heat transport apparatus of the second invention, in the first invention, when the detected superheat degree is lower than the set value, when the operating frequency of the pump has already dropped to the allowable minimum frequency, the pump head is allowed. Since the expansion valve is operated in the closing direction only when the maximum lift limit value at the lowest frequency is not reached, in addition to the object of the first invention, a driving force for heat transport can be reliably obtained.

【0053】第3の発明の熱輸送装置は、蒸発器での熱
輸送媒体の過熱度を検出し、その検出過熱度が設定値よ
り高い場合には、流量調節弁を閉方向に操作し、流量調
節弁がすでに全閉していたらポンプの運転周波数を上
げ、一方、検出過熱度が設定値より低い場合には、ポン
プの運転周波数を下げ、運転周波数がすでに許容最低周
波数まで下がっていたら流量調節弁を開方向に操作する
構成としたので、熱輸送媒体の循環流量の減少をポンプ
運転動力の削減と共に達成することができ、ポンプを用
いることの利点である運転動力の削減効果を最大限に発
揮しながらしかも省エネルギ効果が得られる。
The heat transport device of the third invention detects the superheat degree of the heat transport medium in the evaporator, and when the detected superheat degree is higher than the set value, the flow control valve is operated in the closing direction, If the flow control valve is already fully closed, raise the pump operating frequency.On the other hand, if the detected superheat is lower than the set value, lower the pump operating frequency, and if the operating frequency is already at the allowable minimum frequency, set the flow rate. Since the control valve is operated in the opening direction, the circulation flow rate of the heat transport medium can be reduced together with the reduction of the pump operating power, and the advantage of using the pump is that the operating power reducing effect is maximized. The energy saving effect can be obtained while exhibiting excellent performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の構成を示す図。FIG. 1 is a diagram showing a configuration of a first embodiment.

【図2】第1実施例の作用を説明するためのフローチャ
ート。
FIG. 2 is a flowchart for explaining the operation of the first embodiment.

【図3】各実施例における冷媒循環流量、ポンプ運転周
波数、ポンプ揚程の関係を示す図。
FIG. 3 is a diagram showing a relationship among a refrigerant circulation flow rate, a pump operating frequency, and a pump head in each example.

【図4】第2実施例の構成を示す図。FIG. 4 is a diagram showing a configuration of a second embodiment.

【図5】第2実施例の作用を説明するためのフローチャ
ート。
FIG. 5 is a flowchart for explaining the operation of the second embodiment.

【図6】従来装置における冷媒循環流量、ポンプ運転周
波数、ポンプ揚程の関係を示す図。
FIG. 6 is a diagram showing a relationship among a refrigerant circulation flow rate, a pump operating frequency, and a pump head in a conventional device.

【符号の説明】[Explanation of symbols]

1…蒸発器 2…凝縮器 3…タンク 4…ポンプ 6…配管 7…冷凍機 8…配管 9…ポンプ 10…開閉弁 11…冷媒状態検知手段 20…制御部 21…ポンプ運転周波数操作手段。 DESCRIPTION OF SYMBOLS 1 ... Evaporator 2 ... Condenser 3 ... Tank 4 ... Pump 6 ... Piping 7 ... Refrigerator 8 ... Piping 9 ... Pump 10 ... Open / close valve 11 ... Refrigerant state detection means 20 ... Control part 21 ... Pump operating frequency operation means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藁谷 至誠 東京都港区六本木一丁目4番33号 株式会 社エヌ・ティ・ティファシリティーズ内 (72)発明者 千葉 和夫 東京都港区六本木一丁目4番33号 株式会 社エヌ・ティ・ティファシリティーズ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shisei Makoto 1-33, Roppongi 4-chome, Minato-ku, Tokyo (NTT Facilities) (72) Inventor Kazuo Chiba 4-chome, Roppongi, Minato-ku, Tokyo No. 33 Stock Company NTT Facilities

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器、凝縮器、ポンプ、および膨張弁
を順次に配管接続し、配管内に封入した熱輸送媒体の相
変化により熱の輸送を行う熱輸送装置において、 前記蒸発器での熱輸送媒体の過熱度を検出する検出手段
と、 この検出手段の検出過熱度が設定値より高い場合、前記
膨張弁が全開状態かどうか判断し、全開状態でなければ
膨張弁を開方向に操作し、全開状態であれば前記ポンプ
の運転周波数を上げる第1の制御手段と、 前記検出手段の検出過熱度が設定値より低い場合、前記
ポンプの運転周波数が許容最低周波数かどうか判断し、
許容最低周波数でなければ前記ポンプの運転周波数を下
げ、許容最低周波数であれば前記膨張弁を閉方向に操作
する第2の制御手段と、 を具備したことを特徴とする熱輸送装置。
1. A heat-transporting device, in which an evaporator, a condenser, a pump, and an expansion valve are sequentially connected in a pipe, and heat is transported by a phase change of a heat-transporting medium sealed in the pipe, wherein When the superheat degree of the heat transport medium is detected, and when the superheat degree detected by the detector is higher than a set value, it is determined whether the expansion valve is in the fully open state. If not, the expansion valve is operated in the opening direction. However, if it is in the fully open state, the first control means for increasing the operating frequency of the pump, and if the detected superheat degree of the detecting means is lower than a set value, it is determined whether the operating frequency of the pump is the minimum allowable frequency,
The heat-transporting device further comprises: second control means for lowering the operating frequency of the pump if it is not the minimum allowable frequency, and operating the expansion valve in the closing direction if it is the minimum allowable frequency.
【請求項2】 請求項1記載の熱輸送装置において、 第2の制御手段は、ポンプの運転周波数が許容最低周波
数であるとき、ポンプの揚程が許容最低周波数時の最大
揚程限度値に達していない場合のみ膨張弁を閉方向に操
作し、最大揚程限度値に達している場合は膨張弁を操作
しないことを特徴とする熱輸送装置。
2. The heat transport apparatus according to claim 1, wherein the second control means, when the operating frequency of the pump is the lowest allowable frequency, the pump head reaches the maximum head limit value at the lowest allowable frequency. A heat transport device characterized in that the expansion valve is operated in the closing direction only when it is not present, and the expansion valve is not operated when the maximum lift limit value is reached.
【請求項3】 蒸発器、凝縮器、およびポンプを順次に
配管接続し、かつポンプの送出口側と凝縮器の出口側と
の間に流量調節弁を介してバイパス経路を設け、配管内
に封入した熱輸送媒体の相変化により熱の輸送を行う熱
輸送装置において、 前記蒸発器での熱輸送媒体の過熱度を検出する検出手段
と、 この検出手段の検出過熱度が設定値より高い場合、前記
流量調節弁が全閉状態かどうか判断し、全閉状態でなけ
れば流量調節弁を閉方向に操作し、全閉状態であれば前
記ポンプの運転周波数を上げる第1の制御手段と、 前記検出手段の検出過熱度が設定値より低い場合、前記
ポンプの運転周波数が許容最低周波数かどうか判断し、
許容最低周波数でなければ前記ポンプの運転周波数を下
げ、許容最低周波数であれば前記流量調節弁を開方向に
操作する第2の制御手段と、 を具備したことを特徴とする熱輸送装置。
3. An evaporator, a condenser, and a pump are sequentially connected by piping, and a bypass path is provided between the pump outlet side and the condenser outlet side via a flow rate control valve, and the inside of the piping is connected. In a heat transport device that transports heat by phase change of the enclosed heat transport medium, a detection unit that detects a superheat degree of the heat transport medium in the evaporator, and a detected superheat degree of this detection unit is higher than a set value. Determining whether the flow rate control valve is in a fully closed state, and operating the flow rate control valve in a closing direction if not in a fully closed state, and increasing the operating frequency of the pump in a fully closed state, When the detection degree of superheat of the detection means is lower than a set value, it is determined whether the operating frequency of the pump is the minimum allowable frequency,
The heat-transporting device further comprises: second control means for lowering the operating frequency of the pump if it is not the lowest allowable frequency, and operating the flow control valve in the opening direction if it is the lowest allowable frequency.
JP02270496A 1996-02-08 1996-02-08 Heat transport device Expired - Lifetime JP3457790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02270496A JP3457790B2 (en) 1996-02-08 1996-02-08 Heat transport device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02270496A JP3457790B2 (en) 1996-02-08 1996-02-08 Heat transport device

Publications (2)

Publication Number Publication Date
JPH09210475A true JPH09210475A (en) 1997-08-12
JP3457790B2 JP3457790B2 (en) 2003-10-20

Family

ID=12090258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02270496A Expired - Lifetime JP3457790B2 (en) 1996-02-08 1996-02-08 Heat transport device

Country Status (1)

Country Link
JP (1) JP3457790B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070753A (en) * 2012-09-28 2014-04-21 Hitachi Appliances Inc Air conditioning equipment
CN108507239A (en) * 2018-04-04 2018-09-07 北京丰联奥睿科技有限公司 A kind of distribution evaporating heat exchanger
WO2019017297A1 (en) * 2017-07-18 2019-01-24 日本電気株式会社 Phase change refrigerating device and phase change refrigerating method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070753A (en) * 2012-09-28 2014-04-21 Hitachi Appliances Inc Air conditioning equipment
WO2019017297A1 (en) * 2017-07-18 2019-01-24 日本電気株式会社 Phase change refrigerating device and phase change refrigerating method
JPWO2019017297A1 (en) * 2017-07-18 2020-04-23 日本電気株式会社 Phase change cooling device and phase change cooling method
CN108507239A (en) * 2018-04-04 2018-09-07 北京丰联奥睿科技有限公司 A kind of distribution evaporating heat exchanger

Also Published As

Publication number Publication date
JP3457790B2 (en) 2003-10-20

Similar Documents

Publication Publication Date Title
US5052472A (en) LSI temperature control system
US6349552B2 (en) Temperature control device for thermal medium fluid
CN101545689B (en) Air conditioning apparatus
JP5098046B2 (en) Temperature control system
CN112325494A (en) Refrigerant circulation system and control method thereof
JP3457790B2 (en) Heat transport device
JP2003004316A (en) Method for controlling refrigeration unit
JP2002228282A (en) Refrigerating device
JP2001090990A (en) Dehumidifier
US5924480A (en) Air conditioning system
WO2024058116A1 (en) Vehicular temperature regulation system and temperature regulation method
JP2023079334A (en) refrigerator
JPH0968355A (en) Cooling apparatus
JP3630892B2 (en) Air conditioner
JPS62200153A (en) Refrigerant level controller for refrigerator
JP3503583B2 (en) Refrigeration equipment
JPH0961076A (en) Heat transfer device and its controlling method
JPS63187042A (en) Air conditioner
JP3594426B2 (en) Air conditioner
JPH10170179A (en) Air conditioning apparatus
JP3615353B2 (en) Operation control method for air conditioner
JPS61208472A (en) Solar-heat utilizing water heater
JPH0735420A (en) Refrigerating device
JP2001116392A (en) Air conditioner
JPH062977A (en) Air conditioner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term