WO2024058116A1 - Vehicular temperature regulation system and temperature regulation method - Google Patents

Vehicular temperature regulation system and temperature regulation method Download PDF

Info

Publication number
WO2024058116A1
WO2024058116A1 PCT/JP2023/033031 JP2023033031W WO2024058116A1 WO 2024058116 A1 WO2024058116 A1 WO 2024058116A1 JP 2023033031 W JP2023033031 W JP 2023033031W WO 2024058116 A1 WO2024058116 A1 WO 2024058116A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat medium
heat
temperature control
heat exchanger
Prior art date
Application number
PCT/JP2023/033031
Other languages
French (fr)
Japanese (ja)
Inventor
知康 足立
徹三 鵜飼
信也 中川
崇幸 小林
裕之 山本
英人 野山
克弘 齊藤
昌俊 森下
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Publication of WO2024058116A1 publication Critical patent/WO2024058116A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine

Definitions

  • the present disclosure relates to a temperature control system installed in a vehicle and a temperature control method using the same.
  • Vehicles such as electric vehicles and so-called hybrid vehicles that obtain driving power from engines and electric motors tend to lack heat sources, but in addition to air conditioning functions required for vehicles such as heating, cooling, dehumidification, and ventilation, Thermal management and waste heat utilization of in-vehicle equipment such as batteries is required.
  • heat pump systems conventional systems include systems that include a chiller to cool the battery and a heater to warm the battery, or a system that uses a pump to transport water heated by the exhaust heat of a radiator to the temperature controlled target.
  • a number of systems have been used, such as the
  • a vehicle heat management system that can integrate air conditioning and equipment heat management consists of a primary loop in which refrigerant circulates according to the refrigeration cycle, and a heat medium (such as water) that transfers heat to and from the refrigerant in the primary loop indoors using a pump.
  • a system has been proposed that includes a secondary loop that transports the air to the heater core of an air conditioning unit (for example, Patent Document 1).
  • An object of the present disclosure is to provide a vehicle temperature control system and a vehicle temperature control method that can suppress power consumption.
  • the present disclosure is a temperature control system for a vehicle, and includes a refrigerant circuit that includes a compressor, a high-pressure side heat exchanger, a pressure reduction section, and a low-pressure side heat exchanger, and is configured to allow refrigerant to circulate according to a refrigeration cycle; A heat medium circuit configured to allow circulation of a heat medium that transfers heat to and receives heat from the refrigerant.
  • the heat medium circuit includes a high-pressure side heat exchanger that exchanges heat between the refrigerant and the heat medium, a low-pressure side heat exchanger that exchanges heat between the refrigerant and the heat medium, a pump configured to be able to pump the heat medium, and a pump configured to pump the outside air.
  • the temperature control system cools the temperature control equipment with outside air via a heat medium that circulates between the outdoor heat exchanger and the temperature control equipment, with the compressor stopped and the pump operating.
  • the compressor stop cooling mode is selected based on an outside air temperature sensor that detects the outside air temperature, and a judgment result that refers to the outside air temperature detected by the outside air temperature sensor and the target temperature of the temperature control device. and a control device configured to enable.
  • the present disclosure can also be applied to a temperature control method for vehicles.
  • the compressor stop cooling mode is used to reduce power consumption by the compressor and heat the temperature control device.
  • the control system can be operated economically.
  • FIG. 2 is a circuit diagram showing the vehicle temperature control system according to the first embodiment (compressor stop cooling mode, heat medium flow path pattern 1).
  • FIG. 2 is a circuit diagram showing a heat medium flow path pattern 2 of the system shown in FIG. 1.
  • FIG. 2 is a circuit diagram showing a heat medium flow path pattern 3 of the system shown in FIG. 1.
  • FIG. FIG. 2 is a block diagram showing the hardware configuration of a control device.
  • FIG. 2 is a diagram showing an operating state of the system shown in FIG. 1 in a cooling mode.
  • FIG. 2 is a diagram showing an operating state of the system shown in FIG. 1 in a heat pump mode.
  • FIG. 2 is a circuit diagram showing a vehicle temperature control system according to a second embodiment (compressor stop cooling mode, heat medium flow path pattern 1).
  • 8 is a circuit diagram showing a heat medium flow path pattern 2 of the system shown in FIG. 7.
  • FIG. It is a figure which shows the operating state in the heater mode of the temperature control system for vehicles based on the modification of 2nd Embodiment.
  • the temperature control system 1 for a vehicle shown in FIG. 1 is applicable, for example, to an electric vehicle that does not have an engine and obtains driving force for running the vehicle from an electric motor for running, or for an electric vehicle that does not have an engine and receives driving force for running the vehicle from an engine and an electric motor. It is equipped on a vehicle (not shown) such as a so-called hybrid vehicle.
  • the temperature control system 1 performs air conditioning such as heating and cooling, dehumidification, and ventilation for the passenger compartment 8 in which the passengers board, as well as air conditioning for the battery device 6 (power supply device), driving motor, heat-generating electronic devices, etc. installed in the vehicle.
  • thermo management' refers to air conditioning to the appropriate temperature and humidity, and controlling in-vehicle equipment to an appropriate temperature.
  • Electric power stored in an on-vehicle battery device 6 is supplied to the temperature control system 1 and electric devices and electronic devices provided in the on-vehicle device.
  • the on-vehicle battery device 6 is charged from an external power source when the vehicle is stopped.
  • the temperature control system 1 includes a refrigerant circuit 10 configured to allow circulation of a refrigerant, a heat medium circuit 20 configured to allow circulation of a heat medium that transfers heat to and from the refrigerant, and a temperature control system 1 configured to operate the temperature control system 1 in a predetermined manner. mode, and a control device 5 that controls the operating state of the temperature control system 1 according to the operating mode.
  • the temperature control system 1 also includes, for example, an outside air temperature sensor 61 that detects the outside air temperature, a temperature sensor 62 that detects the temperature of the conditioned air blown into the vehicle interior 8, and a heat medium temperature sensor 63 that detects the temperature of the heat medium. , and a sensor that detects refrigerant pressure.
  • the temperature control system 1 includes a plurality of operation modes selected by the occupant or by the control device 5. This embodiment exemplifies a compressor stop cooling mode CM (FIGS. 1 to 3), a cooling mode (FIG. 5), and a heat pump mode (FIG. 6) as operating modes of the temperature control system 1.
  • CM compressor stop cooling mode
  • FOG. 5 cooling mode
  • FOG. 6 heat pump mode
  • the refrigerant circuit 10 includes a compressor 11, a condenser 12, an expansion valve 13, and an evaporator 14, as an example of the configuration is shown in FIG.
  • Refrigerant circulates in the refrigerant circuit 10 according to a refrigeration cycle.
  • any known appropriate single refrigerant or mixed refrigerant can be used as the refrigerant sealed in the refrigerant circuit 10.
  • HFC Hydrofluoro Carbon
  • R410A and R32 HFC refrigerants
  • HFO Hydrocarbon
  • HC hydrocarbon refrigerants
  • propane and isobutane are used as the refrigerant of this embodiment.
  • R1234yf As the refrigerant of this embodiment, HFC (Hydro Fluoro Carbon) refrigerants such as R410A and R32, HFO (Hydro Fluoro Olefin) refrigerants such as R1234ze and R1234yf, or hydrocarbon (HC) refrigerants such as propane and isobutane are used.
  • R1234yf hydrocarbon refrigerants
  • a subcritical refrigeration cycle is constructed in which the refrigerant pressure on the high-pressure side does not exceed the critical pressure of the refrigerant.
  • CO 2 carbon dioxide
  • a transcritical refrigeration cycle is configured in which the refrigerant pressure on the high pressure side exceeds the critical pressure of the refrigerant.
  • the refrigerant can radiate heat by the high-pressure side heat exchanger like the condenser 12 of this embodiment, and the refrigerant can absorb heat by the low-pressure side heat exchanger like the evaporator 14 of this embodiment.
  • a refrigerant constituting a transcritical refrigeration cycle such as carbon dioxide refrigerant, can also be employed in the refrigerant circuit 10.
  • the compressor 11 corresponds to an electric compressor equipped with a motor driven by electric power supplied from the battery device 6.
  • the compressor 11 uses a compression mechanism to adiabatically compress refrigerant sucked into a housing (not shown) and then discharges the refrigerant.
  • the condenser 12 exchanges heat between the refrigerant gas discharged from the compressor 11 and a heat medium.
  • the expansion valve 13 pressure reducing section reduces the pressure of the refrigerant flowing out from the condenser 12 to adiabatically expand the refrigerant.
  • a temperature-type expansion valve can be adopted.
  • a capillary tube can be used instead of the expansion valve 13.
  • the evaporator 14 causes the refrigerant flowing out from the expansion valve 13 to exchange heat with a heat medium.
  • the refrigerant evaporated by the evaporator 14 is sucked into the compressor 11.
  • An accumulator gas-liquid separator, not shown, can be provided between the evaporator 14 and the compressor 11.
  • a relatively high refrigerant pressure (high pressure) is applied to the condenser 12, and a relatively low refrigerant pressure (low pressure) is applied to the evaporator 14.
  • the refrigerant circulates through the refrigerant circuit 10 based on the pressure difference between high pressure and low pressure.
  • FIG. 5 the flow of refrigerant on the low pressure side is shown by a thick solid line, and the flow of refrigerant on the high pressure side is shown by a thick broken line. The same applies to other figures.
  • the heat medium circuit 20 is configured such that a heat medium capable of exchanging heat with a refrigerant can be circulated through the condenser 12 and the evaporator 14 .
  • the heat medium is used for cooling or heating at least one temperature-controlled object.
  • the temperature control targets in this embodiment correspond to the air in the vehicle interior 8 and the battery device 6.
  • the heat medium sealed in the heat medium circuit 20 is a liquid such as water or brine that circulates through the heat medium circuit 20 while maintaining a liquid phase state. Examples of the brine include a mixture of water and propylene glycol, or a mixture of water and ethylene glycol.
  • the heat medium circuit 20 includes a condenser 12, an evaporator 14, a first pump 21 and a second pump 22, an outdoor heat exchanger 23, and an indoor heat exchanger 25. , a battery device 6, and a first switching valve 31, a second switching valve 32, and a third switching valve 33 as a plurality of flow path switching valves.
  • All of the first to third switching valves 31 to 33 are electrically operated valves that can be controlled to open and close based on commands from the control device 5, and are configured to be able to switch the heat medium flow path according to each operation mode.
  • the first switching valve 31 and the second switching valve 32 are four-way valves
  • the third switching valve 33 corresponds to a three-way valve.
  • the first to third switching valves 31 to 33 can be replaced with an appropriate number of electrically operated valves having an appropriate structure in order to set a path in the heat medium circuit 20 that is necessary to realize the required operation mode.
  • the heat medium circuit 20 includes a condenser bypass path 12A that detours the heat medium from the condenser 12, and an evaporator bypass path 14A that detours the heat medium from the evaporator 14.
  • the heat medium circuit 20 may include a condenser flow rate adjustment valve 12V and an evaporator flow rate adjustment valve 14V, both of which are three-way valves.
  • the entire amount of heat medium flowing from the first switching valve 31 toward the condenser 12 is condensed without flowing into the condenser 12 by adjusting the flow rate with the condenser flow rate adjustment valve 12V. Flows into the vessel bypass path 12A.
  • the entire amount of the heat medium flowing from the first switching valve 31 toward the evaporator 14 does not flow into the evaporator 14 due to the flow rate adjustment by the evaporator flow rate adjustment valve 14V. flows into the evaporator bypass path 14A.
  • the condenser flow rate adjustment valve 12V can be replaced with two on-off valves.
  • one on-off valve can be arranged in the condenser bypass path 12A, and the other on-off valve can be arranged in the piping between the condenser flow rate adjustment valve 12V and the condenser 12.
  • the evaporator flow control valve 14V can be replaced with two on-off valves.
  • Both the first pump 21 and the second pump 22 correspond to electric pumps driven by a motor (not shown).
  • the first pump 21 pumps the heat medium by sucking in and discharging the heat medium flowing out from the evaporator 14 or the evaporator bypass path 14A.
  • the second pump 22 pumps the heat medium by sucking in and discharging the heat medium flowing out from the condenser 12 or the condenser bypass path 12A.
  • the first pump 21 and the second pump 22 are preferably configured such that the rotation speed N of the mechanism for pumping the heat medium is variable by a drive circuit section that applies a drive current to the motor.
  • the respective positions of the first pump 21 and the second pump 22 are not limited to the example shown in the drawings, and in consideration of the path of the heat medium in each operation mode, the positions of the first pump 21 and the second pump 22 are not limited to the example shown in the figure. It can be determined as appropriate within the range that allows for pressure-feeding.
  • the outdoor heat exchanger 23 exchanges heat between the outside air outside the vehicle compartment 8 and the heat medium.
  • the outdoor heat exchanger 23 corresponds to, for example, a radiator placed near an air inlet of a vehicle.
  • the outside air supplied to the outdoor heat exchanger 23 due to the running of the vehicle and the operation of the outdoor blower 23A radiates or absorbs heat based on the temperature difference between the outside air and the heat medium.
  • the indoor heat exchanger 25 provides conditioned air into the vehicle interior 8 by exchanging heat between the air sent by the indoor blower 25A and a heat medium.
  • the indoor blower 25A is driven by a motor and blows air (inside air) in the vehicle interior 8, outside air, or a mixed gas of inside air and outside air toward the indoor heat exchanger 25. It is preferable that the indoor blower 25A is configured such that its rotation speed can be variably controlled.
  • the HVAC (Heating, Ventilation, and Air Conditioning) unit U includes an indoor heat exchanger 25, an indoor blower 25A, and a duct (not shown) through which air sent by the indoor blower 25A flows.
  • the heat medium circuit 20 includes an indoor bypass path 26 that detours the heat medium from the indoor heat exchanger 25.
  • the battery device 6 includes a battery main body which is a storage battery, and a battery heat exchanger and a heat radiating member provided in the battery main body as necessary.
  • a battery heat exchanger is, for example, a heat exchanger that exchanges heat between a heat medium and air, and is provided together with a blower that blows air toward the battery body.
  • the battery device 6 is preferably maintained within a predetermined temperature range in order to stabilize the output and charging efficiency of the battery body and to suppress deterioration.
  • the temperature of the battery device 6 is adjusted to an appropriate temperature.
  • the heat medium circuit 20 corresponds to heat exchange paths 414 and 415 configured to allow heat exchange between the battery device 6 and the heat medium directly or indirectly through air or the like, and heat exchange paths 414 and 415, respectively. It also includes battery switching valves 34 and 35 as four-way valves that switch between open and closed circuits.
  • the first battery switching valve 34 is arranged, for example, between the first switching valve 31 and the evaporator flow rate adjustment valve 14V.
  • the first battery switching valve 34 allows the heat medium to flow into the first heat exchange path 414 from the pipe 401 and be supplied to the battery device 6, and the state in which the heat medium does not flow into the first heat exchange path 414 to the pipe.
  • the flow path of the heat medium can be switched to a state where the heat medium flows through the heat transfer medium 401 toward the evaporator 14.
  • the second battery switching valve 35 is arranged, for example, between the first switching valve 31 and the condenser flow rate adjustment valve 12V.
  • the second battery switching valve 35 allows the heat medium to flow into the second heat exchange path 415 from the pipe 402 and be supplied to the battery device 6, and the state in which the heat medium does not flow into the second heat exchange path 415 to the pipe.
  • the flow path of the heat medium can be switched to a state where the heat medium flows through the heat transfer medium 402 toward the condenser 12.
  • the position of the battery device 6 is not limited to this embodiment, and can be set at any position on the heat medium circuit 20.
  • the second battery switching valve 35 is provided in the pipe 403 to which the indoor heat exchanger 25 is connected, and the second battery switching valve 35 is connected to the second heat exchange path 415 and the battery device 6. You can leave it there.
  • the control device 5 corresponds to a computer including a memory 501, a calculation section 502, a storage section 503, and an input/output section 504, as shown in FIG. "Computer” also includes programmable logic controllers (PLCs). The control device 5 operates according to a computer program read from the storage unit 503 and executed.
  • PLCs programmable logic controllers
  • the control device 5 controls the drive of the compressor 11 and increases or decreases the circulating flow rate of the refrigerant, thereby increasing or decreasing the cooling capacity or the heating capacity, respectively.
  • the control device 5 uses sensors 61, 62, etc. to detect physical quantities correlated with the room temperature, such as the outside temperature, the temperature of the air-conditioned air, or the temperature of the heat medium or refrigerant, and compares the detected value with a target value. For example, by performing feedback control to control the rotation speed of the compressor 11 so as to eliminate the deviation, the room temperature can be adjusted to the target temperature.
  • compressor stop cooling mode CM The compressor stop cooling mode CM will be explained with reference to FIGS. 1 to 3.
  • the compressor 11 is stopped, that is, the battery device 6 is cooled by outside air via a heat medium while the refrigerant circuit 10 is not operating.
  • the heat medium is circulated to at least the outdoor heat exchanger 23 and the battery device 6.
  • the control device 5 selects the compressor stop cooling mode CM based on a determination result that refers to the outside air temperature T OUT detected by the outside air temperature sensor 61 and the target temperature TT of the battery device 6 that is the temperature control target.
  • the target temperature TT corresponds to the temperature of the battery body that can be said to be appropriate when considering the output of the body of the battery device 6, stabilization of charging efficiency, and prevention of deterioration.
  • the target temperature TT can be stored in the storage unit 503.
  • the target temperature T T is, for example, 15 to 20°C. Cooling of the battery device 6 by outside air is possible when the outside air temperature is lower than the target temperature TT .
  • the control device 5 determines whether the outside air temperature T OUT detected by the outside air temperature sensor 61 is within a predetermined cooling possible range ⁇ TC whose upper limit is the target temperature TT of the battery device 6, and determines whether cooling is possible. If it is determined that it is within the range ⁇ TC , the compressor stop cooling mode CM can be selected.
  • the coolable range ⁇ T C refers to the temperature range of the outside air that can contribute to lowering the temperature of the battery device 6 that is generating heat.
  • the lower limit of the coolable range ⁇ TC corresponds to, for example, a temperature at which the maximum amount of heat generated by the battery device 6 and the minimum amount of heat exchanged by the outdoor heat exchanger 23 are balanced.
  • the lower limit of the coolable range ⁇ TC is preferably set to more than 0° C. so that frost does not form on the indoor heat exchanger 25.
  • the above-mentioned minimum heat exchange amount refers to the heat exchange amount by the outdoor heat exchanger 23 when the vehicle is stopped, the air volume level of the outdoor blower 23A is the minimum, and the discharge flow rate of the pumps 21 and 22 is the minimum.
  • the control device 5 stops the operation of the compressor 11 by generating a control command to the drive circuit section of the compressor 11, and also performs the operations shown in FIGS. At least one of the pumps 21 and 22 is operated according to the patterns 1 to 3 of the heat medium flow paths shown respectively, and the pump corresponding to the flow path that is not used among the pumps 21 and 22 is stopped. In the heat medium circuit 20, a path corresponding to a pattern arbitrarily selected from flow path patterns 1 to 3 is set by opening and closing the switching valves 31 to 33.
  • control device 5 causes the heat medium to flow into the bypass paths 12A and 14A in order to suppress the heat loss of the heat medium cooled by the outside air. Preferably, heat exchange is avoided. By doing so, the pressure loss of the heat medium is reduced, so that the power consumption of the pump 21 can be suppressed.
  • Flow path pattern 1 shown in FIG. 1 includes an outdoor heat exchanger 23, a battery device 6, and an evaporator bypass path 14A.
  • the first pump 21 is activated.
  • the path indicated by the broken line is not used as the heat medium is not pumped through the path.
  • the meaning of the broken line is the same in other circuit diagrams.
  • the flow of the heat medium having a relatively low temperature is shown by a solid line
  • the flow of the heat medium having a relatively high temperature is shown by a dashed line.
  • the meanings of the solid lines and dashed-dotted lines are the same in FIGS. 1 to 3 and 7 to 9.
  • the heat medium cooled by the outside air in the outdoor heat exchanger 23 flows out of the outdoor heat exchanger 23, it passes through the first switching valve 31 and the first battery switching valve 34, and enters the outgoing path 414A of the first heat exchange path 414. and is supplied to the battery device 6. While the battery device 6 is cooled by the heat medium, the heat medium absorbs heat from the battery device 6 and rises in temperature.
  • the heat medium whose temperature has increased flows through the return path 414B of the first heat exchange path 414, and flows into the evaporator bypass path 14A via the first battery switching valve 34 and the evaporator flow rate adjustment valve 14V.
  • the heat medium flowing out from the evaporator bypass path 14A returns to the outdoor heat exchanger 23 via the second switching valve 32, and is cooled by heat radiation to the outside air.
  • the control device 5 adjusts the rotational speed N of the operated pump (pump 21 in the case of flow path pattern 1) so that the temperature is below the target temperature T and is near the target temperature T. It is preferable to control the temperature of the heat medium to a temperature of .
  • the temperature T M of the heat medium detected by the heat medium temperature sensor 63 near the entrance of the battery device 6 is equal to the outside air temperature T OUT and deviates from the target temperature T T (T OUT ⁇ T T ). If so, it is a good idea to raise the temperature of the heat medium. By doing so, the temperature of the battery device 6 can be adjusted to an appropriate temperature without overcooling the battery device 6.
  • the battery device 6 is not necessarily cooled to the target temperature TT . Even in that case, the temperature of the battery device 6 decreases and approaches the target temperature TT , so the temperature of the battery device 6 can be adjusted to an appropriate temperature. Furthermore, when the outside air temperature T OUT is lower than the target temperature TT , even if the heat medium temperature TM is the same as the target temperature TT , the air volume of the outdoor blower 23A or the rotation speed of the pumps 21 and 22 may be lowered. By suppressing heat dissipation from the heat medium, the temperature of the battery device 6 that is generating heat can be controlled by outside air while maintaining the temperature TM of the heat medium at the same temperature as the target temperature TT .
  • the exhaust heat of the operated pump 21 can be used as a means to increase the temperature of the heat medium.
  • the pump 21 operates at a predetermined efficiency ⁇ , and simply put, most of the loss, which is the product of the shaft power P output from the motor to the pump 21 and (1-efficiency ⁇ ), is transferred to the heat medium as thermal energy. communicated.
  • the control device 5 By causing the control device 5 to generate a command corresponding to the rotation speed N to the drive circuit section of the pump 21, when the rotation speed N of the pump 21 increases, the amount of heat transferred from the pump 21 to the heat medium increases. Therefore, the temperature of the heat medium circulating between the outdoor heat exchanger 23 and the battery device 6 increases.
  • the control device 5 controls the rotation speed N of the pumps 21 and 22 so that the deviation between the detected temperature and the target temperature TTM is eliminated. Feedback control can be performed to provide the manipulated variable (control command) shown. If the detected heat medium temperature has reached the target temperature T T , the control device 5 may, for example, reduce the rotational speed N of the pumps 21 and 22 to reduce the circulating flow rate of the heat medium, or The operations of 21 and 22 can be temporarily stopped. After that, if the deviation between the heat medium temperature and the target temperature increases, the rotation speed N may be increased or the pumps 21 and 22 may be restarted.
  • the heat medium temperature In order to control the heat medium temperature to the target temperature TTM , it is also permissible to adjust the air volume by adjusting the rotation speed of the indoor blower 25A. However, by adjusting the rotational speed N of the pumps 21 and 22, which is not affected by the running state of the vehicle, the heat medium temperature can be controlled more easily and reliably than by adjusting the air volume.
  • Flow path pattern 2 shown in FIG. 2 includes an outdoor heat exchanger 23, a battery device 6, and a condenser bypass path 12A.
  • the second pump 22 is activated.
  • the heat medium flowing out from the outdoor heat exchanger 23 is caused to flow from the first switching valve 31 to the outgoing path 415A of the second heat exchange path 415 via the second battery switching valve 35.
  • the heat medium flowing out to the return path 415B flows through the condenser bypass path 12A from the condenser flow rate adjustment valve 12V, returns to the outdoor heat exchanger 23 via the third switching valve 33, Heat is radiated to the outside air.
  • the flow path pattern 3 shown in FIG. 3 includes an outdoor heat exchanger 23, a battery device 6, an evaporator bypass path 14A, and a condenser bypass path 12A.
  • the heat medium flows in parallel between the flow path on the evaporator 14 side and the flow path on the condenser 12 side. and the second pump 22 are operated.
  • the battery device 6 can be cooled by the outside air, so charging and discharging of the battery device 6 can be stabilized and deterioration can be suppressed.
  • the heat medium circuit 20 includes a first battery switching valve 34 and a first heat exchange path 414, and a second battery switching valve 35 and a second heat exchange path 414. Only one of the routes 415 may be provided.
  • the cooling mode shown in FIG. 5 is selected when the outside air temperature T OUT deviates from the cooling possible range ⁇ T C to the high temperature side.
  • the heat medium circuit 20 includes a low-pressure side circuit C1 including an evaporator 14, an indoor heat exchanger 25, a first heat exchange path 414, and a battery device 6, a condenser 12, and an outdoor heat exchanger 23.
  • the high voltage side circuit C2 is formed separately from each other.
  • the flow of a relatively low-temperature heat medium is shown by a solid line
  • the flow of a relatively high-temperature heat medium is shown by a constant chain line. Low-temperature heat carriers and high-temperature heat carriers do not mix.
  • the battery device 6 In the cooling mode, the battery device 6 is cooled by supplying the battery device 6 with a low-temperature heat medium that has radiated heat to the refrigerant by the evaporator 14 . Even in the case where the interior of the vehicle compartment 8 is cooled together with the cooling of the battery device 6, the battery device 6 can be cooled by the heat medium obtained by cooling the air with the outdoor heat exchanger 23.
  • the heat pump mode shown in FIG. 6 is selected when the outside air temperature T OUT deviates from the coolable range ⁇ T C to the low temperature side.
  • the example shown in FIG. 6 shows a case where only the battery device 6 is heated without heating the interior of the vehicle compartment 8.
  • the heat medium circuit 20 includes a low pressure side circuit C1 including the evaporator 14 and the outdoor heat exchanger 23, and a high pressure side circuit C1 including the condenser 12, the indoor bypass path 26, the second heat exchange path 415, and the battery device 6.
  • the side circuit C2 is formed separately from each other.
  • the battery device 6 In the heat pump mode, the battery device 6 is heated by supplying the high temperature heat medium that has absorbed heat from the refrigerant by the condenser 12 to the battery device 6 .
  • the heat medium flowing out from the condenser 12 may be allowed to flow into the indoor heat exchanger 25 from the third switching valve 33.
  • the operation of the indoor blower 25A is stopped.
  • the temperature control system 1 can be operated economically by suppressing consumption.
  • the vehicle temperature control system 1-2 shown in FIG. 7 includes a compressor stop cooling mode CM-2 in which the interior of the vehicle compartment 8 is cooled using outside air. As shown in FIG. 7, the temperature control system 1-2 does not need to include the battery device 6.
  • the compressor stop cooling mode CM-2 for example, when the temperature inside the vehicle compartment 8 is relatively high and the outside air temperature is lower than the room temperature, the compressor 11 is stopped and the outside air is directly supplied. It is suitable for cases where it is desired to indirectly lower the room temperature using outside air via a heat medium without introducing it into the room, that is, while circulating inside air. If it is determined that the outside air temperature T OUT is within the cooling range ⁇ T C2 that includes the target temperature T T2 of the temperature inside the vehicle compartment 8, the control device 5 stops the compressor 11 and stops the compressor. Cooling mode CM-2 can be selected.
  • the flow of the low-temperature heat medium and the flow of the high-temperature heat medium are not separated.
  • the heat medium changes the temperature by heat exchange with the outside air or heat exchange with the temperature control target, and passes through the outdoor heat exchanger 23, the condenser bypass path 12A, the indoor heat exchanger 25, and the evaporator bypass path 14A. It circulates in one continuous flow path including.
  • the outdoor heat exchanger 23 and the indoor heat exchanger 25 are connected in series with respect to the flow of the heat medium. Therefore, it is sufficient to operate at least one of the pumps 21 and 22.
  • the low-temperature heat medium (indicated by the solid line) cooled by the outside air is maintained at a low temperature by passing through the condenser bypass path 12A, and is cooled in the passenger compartment 8 by the indoor heat exchanger 25. Served.
  • the high-temperature heat medium (indicated by a dashed line) whose temperature has increased as the interior of the vehicle compartment 8 is cooled flows through the evaporator bypass path 14A, returns to the outdoor heat exchanger 23, and is radiated to the outside air.
  • Cooling of the interior of the vehicle compartment 8 by outside air is achieved in the same manner not only in the flow path pattern 1 shown in FIG. 7 but also in the flow path pattern 2 shown in FIG. 8.
  • the region through which the low temperature heat medium flows and the region through which the high temperature heat medium flows are partially interchanged with respect to flow path pattern 1 by switching the flow paths by the switching valves 31 to 33. That is, the low-temperature heat medium flowing out from the outdoor heat exchanger 23 flows through the evaporator bypass path 14A via the first switching valve 31, and flows into the indoor heat exchanger 25 from the second switching valve 32. Then, the high-temperature heat medium that has absorbed heat from the air flows through the condenser bypass path 12A via the first switching valve 31, returns to the outdoor heat exchanger 23 from the third switching valve 33, and is radiated to the outside air.
  • control device 5 may operate the compressor 11 to implement the cooling mode or the heat pump mode.
  • the temperature control system 1-2 may include a heater mode HT shown in FIG.
  • Heater mode HT is suitable when the outside temperature is lower than heat pump mode (FIG. 6). Even though it is difficult to operate to absorb heat from the outside air to the heat medium because the outside temperature is so low as to be significantly below 0°C, the heater mode HT is able to secure the necessary heating capacity by using the power of the compressor 11 as the heat source. can.
  • the heat medium circuit 20 includes an outdoor bypass path 24 that detours the heat medium from the outdoor heat exchanger 23 in order to avoid radiation of heat from the heat medium to the outside air during heater mode HT.
  • heat pump mode (Fig. 6) separate low-pressure side circuit C1 and high-pressure side circuit C2 are formed, whereas in heater mode HT, one continuous circuit is formed as in compressor stop cooling mode CM-2.
  • the heat medium circulates through the flow path while changing its temperature. That is, the heat medium flowing out of the condenser 12 is used for heating the interior of the vehicle compartment 8 by the indoor heat exchanger 25, and then flows into at least the evaporator 14 out of the evaporator 14 and the evaporator bypass path 14A. Further, the heat medium flowing out from the evaporator 14 flows through at least the condenser 12 and the condenser bypass path 12A, and returns to the evaporator 14 through the outdoor bypass path 24.
  • the heat medium flowing out from the indoor heat exchanger 25 radiates heat to the refrigerant by the evaporator 14, so that the low pressure of the refrigerant circuit 10 increases.
  • the density of the refrigerant sucked into the compressor 11 increases and the amount of refrigerant circulated increases, so that heating capacity can be ensured even when the outside temperature is very low.
  • the heating capacity can be variably adjusted.
  • the heat medium circuit (20) includes: the high-pressure side heat exchanger (12) for exchanging heat between the refrigerant and the heat medium; the low pressure side heat exchanger (14) for exchanging heat between the refrigerant and the heat medium; Pumps (21, 22) configured to be able to pump the heat medium; an outdoor heat exchanger (23) that exchanges heat between outside air and the heat medium;
  • a temperature control device (6, 25) corresponding to a temperature control object heated or cooled by the heat medium or used for
  • a compressor stop cooling mode is provided in which the temperature control device (6, 25) is cooled by the outside air through the compressor stop cooling mode (CM); an outside air temperature sensor (61) that detects the temperature of the outside air; Control configured to be able to select the compressor stop cooling mode (CM) based on a determination result that refers to the outside air temperature detected by the outside air temperature sensor (61) and the target temperature of the temperature control device (6, 25).
  • CM compressor stop cooling mode
  • a vehicle temperature control system (1, 1-2) comprising a device (5).
  • the outdoor heat exchanger (23), at least one of the high pressure side bypass path () 12A and the low pressure side bypass path (14A), and the temperature control device (6, 25) A flow path through which the heat medium circulates is formed.
  • [3] Includes an indoor heat exchanger (25) as the temperature control device used for air conditioning in the vehicle compartment (8) and exchanging heat between the heat medium and air;
  • CM compressor stop cooling mode
  • the outdoor heat exchanger (23) and the indoor heat exchanger (25) are connected in series with respect to the flow of the heat medium.
  • the vehicle temperature control system (1-2) according to [1] or [2].
  • the control device (5) includes: If it is determined that the outside air temperature is within a predetermined cooling range with the upper limit being the target temperature, the compressor stop cooling mode (CM) is selected; The vehicle temperature control system (1, 1-2) according to any one of [1] to [3].
  • CM compressor stop cooling mode
  • the control device (5) includes: If it is determined that the outside air temperature is outside the cooling range, the compressor (11) is operated to cool or heat the temperature control device (6, 25); [4] The vehicle temperature control system (1, 1-2) described in item [4].
  • the pump (21, 22) is configured to have a variable rotation speed
  • the control device (5) when in the compressor stop cooling mode (CM), By adjusting the rotation speed of the pump (21, 22), the temperature of the heat medium can be controlled to a temperature that is below the target temperature and in the vicinity of the target temperature.
  • the vehicle temperature control system (1, 1-2) according to any one of [1] to [5].
  • the temperature control system (1, 1-2) is A refrigerant circuit (10) including a compressor (11), a high-pressure side heat exchanger (12), a pressure reducing section (13), and a low-pressure side heat exchanger (14), and configured to allow refrigerant to circulate according to a refrigeration cycle;
  • a heat medium circuit (20) configured to allow circulation of a heat medium that transfers heat to and receives heat from the refrigerant,
  • the heat medium circuit (20) includes: the low pressure side heat exchanger (14) for exchanging heat between the refrigerant and the heat medium; Pumps (21, 22) configured to be able to pump the heat medium; an outdoor heat exchanger (23) that exchanges heat between outside air and the heat medium;
  • a temperature control device (6, 25) corresponding to a temperature control object heated or cooled by the heat medium or used for heating or cooling a temperature control object,
  • the temperature control method is Based on the determination result referring to the temperature of the outside

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

Provided are a vehicular temperature regulation system and a vehicular temperature regulation method capable of suppressing power consumption. The vehicular temperature regulation system comprises a refrigerant circuit and a heat medium circuit. The heat medium circuit includes a high-pressure-side heat exchanger, a low-pressure-side heat exchanger, a pump, an outdoor heat exchanger, and a temperature regulator. The temperature regulation system includes, as an operation mode, a compressor shutdown cooling mode in which a compressor is shut down and, in a state in which the pump is running, the temperature regulator is cooled by outdoor air via a heat medium circulating through the outdoor heat exchanger and the temperature regulator, and includes a control device configured to be capable of selecting the compressor shutdown cooling mode on the basis of a determination result made with reference to an outdoor temperature detected by an outdoor temperature sensor and a target temperature of the temperature regulator.

Description

車両用の温調システムおよび温調方法Vehicle temperature control system and temperature control method
 本開示は、車両に装備される温調システム、およびそれを用いる温調方法に関する。 The present disclosure relates to a temperature control system installed in a vehicle and a temperature control method using the same.
 電気自動車や、エンジンおよび電動機から車両走行用の駆動力を得る所謂ハイブリッド自動車等の車両においては、熱源が不足しがちな中、冷暖房、除湿、換気等の車両に要求される空調機能の他、バッテリー等の車載機器の熱管理や排熱利用が要求される。そうした要求に対して、従来、ヒートポンプシステムに加え、バッテリーを冷却するチラーやバッテリーを加温するヒータを含むシステム、あるいは、ラジエーターの排熱により加温された水をポンプで温調対象に搬送するシステム等の複数のシステムが用いられてきた。 Vehicles such as electric vehicles and so-called hybrid vehicles that obtain driving power from engines and electric motors tend to lack heat sources, but in addition to air conditioning functions required for vehicles such as heating, cooling, dehumidification, and ventilation, Thermal management and waste heat utilization of in-vehicle equipment such as batteries is required. In order to meet these demands, in addition to heat pump systems, conventional systems include systems that include a chiller to cool the battery and a heater to warm the battery, or a system that uses a pump to transport water heated by the exhaust heat of a radiator to the temperature controlled target. A number of systems have been used, such as the
 空調および機器の熱管理を統合可能な車両用熱管理システムとしては、冷媒が冷凍サイクルに従って循環する一次ループと、一次ループの冷媒に対して熱を授受する熱媒体(水等)をポンプにより室内空調ユニットのヒータコアに搬送する二次ループとを備えたシステムが提案されている(例えば、特許文献1)。 A vehicle heat management system that can integrate air conditioning and equipment heat management consists of a primary loop in which refrigerant circulates according to the refrigeration cycle, and a heat medium (such as water) that transfers heat to and from the refrigerant in the primary loop indoors using a pump. A system has been proposed that includes a secondary loop that transports the air to the heater core of an air conditioning unit (for example, Patent Document 1).
特許第6083304号Patent No. 6083304
 車両に搭載される機器の発熱量は増える傾向にある一方で、車載機器の熱管理が要求される温調システムの省電力化が要望されている。
 また、車載機器の熱管理に限らず、車室の冷暖房についても、一層の省電力化が要望されている。
While the amount of heat generated by equipment mounted on vehicles is increasing, there is a demand for power saving in temperature control systems that require thermal management of on-vehicle equipment.
Further, there is a demand for further power saving not only for thermal management of in-vehicle equipment but also for heating and cooling the vehicle interior.
 本開示は、消費電力を抑えることが可能な車両用温調システムおよび車両用温調方法を提供することを目的とする。 An object of the present disclosure is to provide a vehicle temperature control system and a vehicle temperature control method that can suppress power consumption.
 本開示は、車両用の温調システムであって、圧縮機、高圧側熱交換器、減圧部、および低圧側熱交換器を含み、冷凍サイクルに従って冷媒が循環可能に構成される冷媒回路と、冷媒に対して熱を授受する熱媒体が循環可能に構成される熱媒体回路と、を備える。
 熱媒体回路は、冷媒と熱媒体とを熱交換させる高圧側熱交換器と、冷媒と熱媒体とを熱交換させる低圧側熱交換器と、熱媒体を圧送可能に構成されるポンプと、外気と熱媒体とを熱交換させる室外熱交換器と、熱媒体により加熱または冷却される温調対象に相当する、または温調対象の加熱または冷却に用いられる温調機器と、を含む。
 温調システムは、運転モードとして、圧縮機を停止させ、ポンプを作動させている状態で、室外熱交換器と温調機器とを循環する熱媒体を介して、外気により温調機器を冷却する圧縮機停止冷却モードを備えるとともに、外気の温度を検知する外気温度センサと、外気温度センサにより検知される外気温度および温調機器の目標温度を参照する判定結果に基づき圧縮機停止冷却モードを選択可能に構成される制御装置と、を備える。
The present disclosure is a temperature control system for a vehicle, and includes a refrigerant circuit that includes a compressor, a high-pressure side heat exchanger, a pressure reduction section, and a low-pressure side heat exchanger, and is configured to allow refrigerant to circulate according to a refrigeration cycle; A heat medium circuit configured to allow circulation of a heat medium that transfers heat to and receives heat from the refrigerant.
The heat medium circuit includes a high-pressure side heat exchanger that exchanges heat between the refrigerant and the heat medium, a low-pressure side heat exchanger that exchanges heat between the refrigerant and the heat medium, a pump configured to be able to pump the heat medium, and a pump configured to pump the outside air. It includes an outdoor heat exchanger that exchanges heat between the heat medium and the heat medium, and a temperature control device that corresponds to the temperature control object heated or cooled by the heat medium or is used for heating or cooling the temperature control object.
In the operating mode, the temperature control system cools the temperature control equipment with outside air via a heat medium that circulates between the outdoor heat exchanger and the temperature control equipment, with the compressor stopped and the pump operating. In addition to being equipped with a compressor stop cooling mode, the compressor stop cooling mode is selected based on an outside air temperature sensor that detects the outside air temperature, and a judgment result that refers to the outside air temperature detected by the outside air temperature sensor and the target temperature of the temperature control device. and a control device configured to enable.
 本開示は、車両用の温調方法にも展開することができる。 The present disclosure can also be applied to a temperature control method for vehicles.
 本開示によれば、外気温度と温調対象の目標温度との関係から、外気により温調機器を冷却可能である場合には、圧縮機停止冷却モードにより、圧縮機による電力消費を抑えて温調システムを経済的に運転させることができる。 According to the present disclosure, if it is possible to cool the temperature control device with the outside air based on the relationship between the outside air temperature and the target temperature of the temperature control target, the compressor stop cooling mode is used to reduce power consumption by the compressor and heat the temperature control device. The control system can be operated economically.
第1実施形態に係る車両用温調システムを示す回路図である(圧縮機停止冷却モード、熱媒体の流路パターン1)。FIG. 2 is a circuit diagram showing the vehicle temperature control system according to the first embodiment (compressor stop cooling mode, heat medium flow path pattern 1). 図1に記載のシステムの熱媒体の流路パターン2を示す回路図である。FIG. 2 is a circuit diagram showing a heat medium flow path pattern 2 of the system shown in FIG. 1. FIG. 図1に記載のシステムの熱媒体の流路パターン3を示す回路図である。FIG. 2 is a circuit diagram showing a heat medium flow path pattern 3 of the system shown in FIG. 1. FIG. 制御装置のハードウェア構成を示すブロック図である。FIG. 2 is a block diagram showing the hardware configuration of a control device. 図1に記載のシステムの冷房モードによる運転状態を示す図である。FIG. 2 is a diagram showing an operating state of the system shown in FIG. 1 in a cooling mode. 図1に記載のシステムのヒートポンプモードによる運転状態を示す図である。FIG. 2 is a diagram showing an operating state of the system shown in FIG. 1 in a heat pump mode. 第2実施形態に係る車両用温調システムを示す回路図である(圧縮機停止冷却モード、熱媒体の流路パターン1)。FIG. 2 is a circuit diagram showing a vehicle temperature control system according to a second embodiment (compressor stop cooling mode, heat medium flow path pattern 1). 図7に記載のシステムの熱媒体の流路パターン2を示す回路図である。8 is a circuit diagram showing a heat medium flow path pattern 2 of the system shown in FIG. 7. FIG. 第2実施形態の変形例に係る車両用温調システムのヒータモードによる運転状態を示す図である。It is a figure which shows the operating state in the heater mode of the temperature control system for vehicles based on the modification of 2nd Embodiment.
 以下、添付図面を参照しながら、本開示の一実施形態について説明する。
[第1実施形態]
 図1に示す車両用の温調システム1は、例えば、エンジンを備えておらず走行用電動モータから車両走行用の駆動力を得る電気自動車、あるいは、エンジンおよび電動機から車両走行用の駆動力を得る所謂ハイブリッド自動車等の図示しない車両に装備されている。温調システム1は、乗員が搭乗する車室8の冷暖房、除湿、換気等の空調の他、車両に搭載されているバッテリー装置6(電源装置)、走行用モータ、発熱する電子機器等の車載装置の熱管理、排熱回収等を担う。適切な温度や湿度に空調したり、車載装置を適温に管理したりすることを「熱管理」と総称するものとする。
 温調システム1、および車載装置に備わる電動機器や電子機器には、車載のバッテリー装置6に蓄えられた電力が供給される。車載のバッテリー装置6は、車両停止時に外部電源から充電される。
Hereinafter, one embodiment of the present disclosure will be described with reference to the accompanying drawings.
[First embodiment]
The temperature control system 1 for a vehicle shown in FIG. 1 is applicable, for example, to an electric vehicle that does not have an engine and obtains driving force for running the vehicle from an electric motor for running, or for an electric vehicle that does not have an engine and receives driving force for running the vehicle from an engine and an electric motor. It is equipped on a vehicle (not shown) such as a so-called hybrid vehicle. The temperature control system 1 performs air conditioning such as heating and cooling, dehumidification, and ventilation for the passenger compartment 8 in which the passengers board, as well as air conditioning for the battery device 6 (power supply device), driving motor, heat-generating electronic devices, etc. installed in the vehicle. Responsible for equipment heat management, exhaust heat recovery, etc. The general term ``thermal management'' refers to air conditioning to the appropriate temperature and humidity, and controlling in-vehicle equipment to an appropriate temperature.
Electric power stored in an on-vehicle battery device 6 is supplied to the temperature control system 1 and electric devices and electronic devices provided in the on-vehicle device. The on-vehicle battery device 6 is charged from an external power source when the vehicle is stopped.
〔全体構成〕
 温調システム1は、冷媒が循環可能に構成される冷媒回路10と、冷媒に対して熱を授受する熱媒体が循環可能に構成される熱媒体回路20と、温調システム1を所定の運転モードに設定し、運転モードに応じて温調システム1の運転状態を制御する制御装置5とを備えている。
 また、温調システム1は、例えば、外気温度を検知する外気温度センサ61、車室8に吹き出される空調空気の温度を検知する温度センサ62、熱媒体の温度を検知する熱媒体温度センサ63、および冷媒圧力を検知するセンサ等を含む。
〔overall structure〕
The temperature control system 1 includes a refrigerant circuit 10 configured to allow circulation of a refrigerant, a heat medium circuit 20 configured to allow circulation of a heat medium that transfers heat to and from the refrigerant, and a temperature control system 1 configured to operate the temperature control system 1 in a predetermined manner. mode, and a control device 5 that controls the operating state of the temperature control system 1 according to the operating mode.
The temperature control system 1 also includes, for example, an outside air temperature sensor 61 that detects the outside air temperature, a temperature sensor 62 that detects the temperature of the conditioned air blown into the vehicle interior 8, and a heat medium temperature sensor 63 that detects the temperature of the heat medium. , and a sensor that detects refrigerant pressure.
 温調システム1は、乗員によりあるいは制御装置5により選択される複数の運転モードを備えている。本実施形態は、温調システム1の運転モードとして、圧縮機停止冷却モードCM(図1~図3)と、冷房モード(図5)と、ヒートポンプモード(図6)とを例示する。 The temperature control system 1 includes a plurality of operation modes selected by the occupant or by the control device 5. This embodiment exemplifies a compressor stop cooling mode CM (FIGS. 1 to 3), a cooling mode (FIG. 5), and a heat pump mode (FIG. 6) as operating modes of the temperature control system 1.
〔冷媒回路の構成〕
 冷媒回路10は、図1に構成の一例を示すように、圧縮機11と、凝縮器12と、膨張弁13と、蒸発器14とを備えている。冷媒回路10には、冷凍サイクルに従って冷媒が循環する。
 冷媒回路10に封入される冷媒としては、公知の適宜な単一冷媒あるいは混合冷媒を用いることができる。例えば、本実施形態の冷媒として、R410A、R32等のHFC(Hydro Fluoro Carbon)冷媒や、R1234ze、R1234yf等のHFO(Hydro Fluoro Olefin)冷媒、あるいは、プロパン、イソブタン等の炭化水素(HC)系冷媒を用いることが可能である。特に、本実施形態の冷媒としてR1234yfを用いることが好ましい。
[Refrigerant circuit configuration]
The refrigerant circuit 10 includes a compressor 11, a condenser 12, an expansion valve 13, and an evaporator 14, as an example of the configuration is shown in FIG. Refrigerant circulates in the refrigerant circuit 10 according to a refrigeration cycle.
As the refrigerant sealed in the refrigerant circuit 10, any known appropriate single refrigerant or mixed refrigerant can be used. For example, as the refrigerant of this embodiment, HFC (Hydro Fluoro Carbon) refrigerants such as R410A and R32, HFO (Hydro Fluoro Olefin) refrigerants such as R1234ze and R1234yf, or hydrocarbon (HC) refrigerants such as propane and isobutane are used. It is possible to use In particular, it is preferable to use R1234yf as the refrigerant in this embodiment.
 上記に列挙したフロン系または炭化水素系の冷媒を用いる場合は、高圧側の冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルが構成される。
 冷媒として二酸化炭素(CO)を用いる場合は、高圧側の冷媒圧力が冷媒の臨界圧力を超える遷臨界冷凍サイクルが構成される。その場合でも、本実施形態の凝縮器12と同様に高圧側熱交換器により冷媒が放熱し、本実施形態の蒸発器14と同様に低圧側熱交換器により冷媒が吸熱する作用が得られるから、二酸化炭素冷媒のように遷臨界冷凍サイクルを構成する冷媒も冷媒回路10に採用することができる。
When using the fluorocarbon-based or hydrocarbon-based refrigerants listed above, a subcritical refrigeration cycle is constructed in which the refrigerant pressure on the high-pressure side does not exceed the critical pressure of the refrigerant.
When carbon dioxide (CO 2 ) is used as the refrigerant, a transcritical refrigeration cycle is configured in which the refrigerant pressure on the high pressure side exceeds the critical pressure of the refrigerant. Even in that case, the refrigerant can radiate heat by the high-pressure side heat exchanger like the condenser 12 of this embodiment, and the refrigerant can absorb heat by the low-pressure side heat exchanger like the evaporator 14 of this embodiment. A refrigerant constituting a transcritical refrigeration cycle, such as carbon dioxide refrigerant, can also be employed in the refrigerant circuit 10.
 圧縮機11は、バッテリー装置6から供給される電力により駆動されるモータを備えた電動圧縮機に相当する。圧縮機11は、図示しないハウジング内に吸入される冷媒を圧縮機構により断熱圧縮して吐出する。 The compressor 11 corresponds to an electric compressor equipped with a motor driven by electric power supplied from the battery device 6. The compressor 11 uses a compression mechanism to adiabatically compress refrigerant sucked into a housing (not shown) and then discharges the refrigerant.
 凝縮器12は、圧縮機11から吐出された冷媒ガスを熱媒体と熱交換させる。
 膨張弁13(減圧部)は、凝縮器12から流出した冷媒を減圧させることで断熱膨張させる。膨張弁13としては、制御装置5からの指令に基づき開度を制御可能な電子膨張弁の他、温度式膨張弁を採用することができる。あるいは、膨張弁13の代わりにキャピラリーチューブを採用することができる。
The condenser 12 exchanges heat between the refrigerant gas discharged from the compressor 11 and a heat medium.
The expansion valve 13 (pressure reducing section) reduces the pressure of the refrigerant flowing out from the condenser 12 to adiabatically expand the refrigerant. As the expansion valve 13, in addition to an electronic expansion valve whose opening degree can be controlled based on a command from the control device 5, a temperature-type expansion valve can be adopted. Alternatively, a capillary tube can be used instead of the expansion valve 13.
 蒸発器14は、膨張弁13から流出した冷媒を熱媒体と熱交換させる。蒸発器14により蒸発した冷媒は、圧縮機11により吸入される。
 蒸発器14と圧縮機11との間には、図示しないアキュムレータ(気液分離器)を設けることができる。
The evaporator 14 causes the refrigerant flowing out from the expansion valve 13 to exchange heat with a heat medium. The refrigerant evaporated by the evaporator 14 is sucked into the compressor 11.
An accumulator (gas-liquid separator), not shown, can be provided between the evaporator 14 and the compressor 11.
 凝縮器12には相対的に高い冷媒圧力(高圧)が与えられ、蒸発器14には相対的に低い冷媒圧力(低圧)が与えられる。冷媒は、高圧と低圧との圧力差に基づき冷媒回路10を循環する。
 図5において、低圧側の冷媒の流れは太い実線により示され、高圧側の冷媒の流れは太い破線により示されている。他の図も同様である。
A relatively high refrigerant pressure (high pressure) is applied to the condenser 12, and a relatively low refrigerant pressure (low pressure) is applied to the evaporator 14. The refrigerant circulates through the refrigerant circuit 10 based on the pressure difference between high pressure and low pressure.
In FIG. 5, the flow of refrigerant on the low pressure side is shown by a thick solid line, and the flow of refrigerant on the high pressure side is shown by a thick broken line. The same applies to other figures.
〔熱媒体回路の構成〕
 熱媒体回路20は、凝縮器12および蒸発器14により冷媒と熱を授受可能な熱媒体が循環可能に構成されている。熱媒体は、少なくとも1つ以上の温調対象の冷却または加熱に用いられる。本実施形態における温調対象は、車室8内の空気およびバッテリー装置6に相当する。
 熱媒体回路20に封入される熱媒体は、液相の状態を維持して熱媒体回路20を循環する水やブライン等の液体である。ブラインとしては、例えば、水およびプロピレングリコールの混合液、あるいは、水およびエチレングリコールの混合液を例示することができる。
[Configuration of heat medium circuit]
The heat medium circuit 20 is configured such that a heat medium capable of exchanging heat with a refrigerant can be circulated through the condenser 12 and the evaporator 14 . The heat medium is used for cooling or heating at least one temperature-controlled object. The temperature control targets in this embodiment correspond to the air in the vehicle interior 8 and the battery device 6.
The heat medium sealed in the heat medium circuit 20 is a liquid such as water or brine that circulates through the heat medium circuit 20 while maintaining a liquid phase state. Examples of the brine include a mixture of water and propylene glycol, or a mixture of water and ethylene glycol.
 熱媒体回路20は、図1に構成の一例を示すように、凝縮器12と、蒸発器14と、第1ポンプ21および第2ポンプ22と、室外熱交換器23と、室内熱交換器25と、バッテリー装置6と、複数の流路切替弁としての第1切替弁31、第2切替弁32、および第3切替弁33とを備えている。 As an example of the configuration is shown in FIG. 1, the heat medium circuit 20 includes a condenser 12, an evaporator 14, a first pump 21 and a second pump 22, an outdoor heat exchanger 23, and an indoor heat exchanger 25. , a battery device 6, and a first switching valve 31, a second switching valve 32, and a third switching valve 33 as a plurality of flow path switching valves.
 第1~第3切替弁31~33のいずれも、制御装置5からの指令に基づき開閉制御が可能な電動弁であり、各運転モードに応じて熱媒体の流路を切り替え可能に構成される。
 本実施形態において、第1切替弁31および第2切替弁32は四方弁であり、第3切替弁33は三方弁に相当する。
 第1~第3切替弁31~33は、必要な運転モードの実現に必要な経路を熱媒体回路20に設定するために、適宜な構造の適宜な数の電動弁に代替可能である。
All of the first to third switching valves 31 to 33 are electrically operated valves that can be controlled to open and close based on commands from the control device 5, and are configured to be able to switch the heat medium flow path according to each operation mode. .
In this embodiment, the first switching valve 31 and the second switching valve 32 are four-way valves, and the third switching valve 33 corresponds to a three-way valve.
The first to third switching valves 31 to 33 can be replaced with an appropriate number of electrically operated valves having an appropriate structure in order to set a path in the heat medium circuit 20 that is necessary to realize the required operation mode.
 熱媒体回路20は、凝縮器12から熱媒体を迂回させる凝縮器バイパス経路12Aと、蒸発器14から熱媒体を迂回させる蒸発器バイパス経路14Aとを備えることが好ましい。さらに、熱媒体回路20は、いずれも三方弁である凝縮器流量調整弁12Vおよび蒸発器流量調整弁14Vを備えていてもよい。 Preferably, the heat medium circuit 20 includes a condenser bypass path 12A that detours the heat medium from the condenser 12, and an evaporator bypass path 14A that detours the heat medium from the evaporator 14. Furthermore, the heat medium circuit 20 may include a condenser flow rate adjustment valve 12V and an evaporator flow rate adjustment valve 14V, both of which are three-way valves.
 図2および図3に示す例では、凝縮器流量調整弁12Vによる流量調整により、第1切替弁31から凝縮器12に向けて流れる熱媒体の全量が、凝縮器12へは流入せずに凝縮器バイパス経路12Aへと流入する。
 また、図1および図3に示す例では、蒸発器流量調整弁14Vによる流量調整により、第1切替弁31から蒸発器14に向けて流れる熱媒体の全量が、蒸発器14へは流入せずに蒸発器バイパス経路14Aへと流入する。
In the example shown in FIGS. 2 and 3, the entire amount of heat medium flowing from the first switching valve 31 toward the condenser 12 is condensed without flowing into the condenser 12 by adjusting the flow rate with the condenser flow rate adjustment valve 12V. Flows into the vessel bypass path 12A.
In addition, in the example shown in FIGS. 1 and 3, the entire amount of the heat medium flowing from the first switching valve 31 toward the evaporator 14 does not flow into the evaporator 14 due to the flow rate adjustment by the evaporator flow rate adjustment valve 14V. flows into the evaporator bypass path 14A.
 凝縮器流量調整弁12Vは、2つの開閉弁に置き換えることができる。例えば、一方の開閉弁を凝縮器バイパス経路12Aに配置し、他方の開閉弁を凝縮器流量調整弁12Vと凝縮器12との間の配管に配置することができる。
 蒸発器流量調整弁14Vも同様に、2つの開閉弁に置き換えることができる。
The condenser flow rate adjustment valve 12V can be replaced with two on-off valves. For example, one on-off valve can be arranged in the condenser bypass path 12A, and the other on-off valve can be arranged in the piping between the condenser flow rate adjustment valve 12V and the condenser 12.
Similarly, the evaporator flow control valve 14V can be replaced with two on-off valves.
 第1ポンプ21および第2ポンプ22はいずれも、図示しないモータにより駆動される電動のポンプに相当する。第1ポンプ21は、蒸発器14または蒸発器バイパス経路14Aから流出した熱媒体を吸入して吐出することで熱媒体を圧送する。第2ポンプ22は、凝縮器12または凝縮器バイパス経路12Aから流出した熱媒体を吸入して吐出することで熱媒体を圧送する。 Both the first pump 21 and the second pump 22 correspond to electric pumps driven by a motor (not shown). The first pump 21 pumps the heat medium by sucking in and discharging the heat medium flowing out from the evaporator 14 or the evaporator bypass path 14A. The second pump 22 pumps the heat medium by sucking in and discharging the heat medium flowing out from the condenser 12 or the condenser bypass path 12A.
 第1ポンプ21および第2ポンプ22は、モータに駆動電流を印加する駆動回路部により、熱媒体を圧送する機構の回転数Nが可変に構成されることが好ましい。 The first pump 21 and the second pump 22 are preferably configured such that the rotation speed N of the mechanism for pumping the heat medium is variable by a drive circuit section that applies a drive current to the motor.
 第1ポンプ21および第2ポンプ22のそれぞれの位置は、図示する例には限らず、各運転モードの熱媒体の経路を考慮し、第1ポンプ21および第2ポンプ22の少なくとも一方により熱媒体を圧送することができる範囲で、適宜に定めることができる。 The respective positions of the first pump 21 and the second pump 22 are not limited to the example shown in the drawings, and in consideration of the path of the heat medium in each operation mode, the positions of the first pump 21 and the second pump 22 are not limited to the example shown in the figure. It can be determined as appropriate within the range that allows for pressure-feeding.
 室外熱交換器23は、車室8の外側の外気と、熱媒体とを熱交換させる。室外熱交換器23は、例えば、車両の空気導入口の付近に配置されるラジエーターに相当する。車両の走行と、室外送風機23Aの動作とによって室外熱交換器23に供給される外気は、外気と熱媒体との温度差に基づいて、放熱または吸熱する。 The outdoor heat exchanger 23 exchanges heat between the outside air outside the vehicle compartment 8 and the heat medium. The outdoor heat exchanger 23 corresponds to, for example, a radiator placed near an air inlet of a vehicle. The outside air supplied to the outdoor heat exchanger 23 due to the running of the vehicle and the operation of the outdoor blower 23A radiates or absorbs heat based on the temperature difference between the outside air and the heat medium.
 室内熱交換器25は、室内送風機25Aにより送られる空気と熱媒体とを熱交換させることで車室8内に空調空気を与える。室内送風機25Aは、モータにより駆動され、車室8内の空気(内気)または外気、あるいは内気と外気との混合気体を室内熱交換器25に向けて吹き付ける。室内送風機25Aは、回転数が可変に制御可能に構成されることが好ましい。
 HVAC(Heating, Ventilation, and Air Conditioning)ユニットUは、室内熱交換器25と、室内送風機25Aと、室内送風機25Aにより送られる空気が流れる図示しないダクトとを含んで構成されている。
The indoor heat exchanger 25 provides conditioned air into the vehicle interior 8 by exchanging heat between the air sent by the indoor blower 25A and a heat medium. The indoor blower 25A is driven by a motor and blows air (inside air) in the vehicle interior 8, outside air, or a mixed gas of inside air and outside air toward the indoor heat exchanger 25. It is preferable that the indoor blower 25A is configured such that its rotation speed can be variably controlled.
The HVAC (Heating, Ventilation, and Air Conditioning) unit U includes an indoor heat exchanger 25, an indoor blower 25A, and a duct (not shown) through which air sent by the indoor blower 25A flows.
 熱媒体回路20は、室内熱交換器25から熱媒体を迂回させる室内バイパス経路26を備えることが好ましい。 Preferably, the heat medium circuit 20 includes an indoor bypass path 26 that detours the heat medium from the indoor heat exchanger 25.
 バッテリー装置6は、具体的な図示を省略するが、蓄電池であるバッテリー本体と、必要に応じてバッテリー本体に設けられるバッテリー用熱交換器や放熱部材とを備えている。バッテリー用熱交換器は、例えば、熱媒体と空気とを熱交換させる熱交換器であり、バッテリー本体に向けて空気を送る送風機と共に設けられる。
 バッテリー装置6は、バッテリー本体の出力や充電効率を安定させ、かつ劣化を抑えるため、所定の温度範囲内に維持されることが好ましい。
 例えば、適温の熱媒体をバッテリー用熱交換器に供給することで温調された空気をバッテリー本体に吹き付ける、あるいはバッテリー本体に熱的に結合させたチューブに適温の熱媒体を供給することにより、バッテリー装置6の温度は適温に調整される。
Although not shown in detail, the battery device 6 includes a battery main body which is a storage battery, and a battery heat exchanger and a heat radiating member provided in the battery main body as necessary. A battery heat exchanger is, for example, a heat exchanger that exchanges heat between a heat medium and air, and is provided together with a blower that blows air toward the battery body.
The battery device 6 is preferably maintained within a predetermined temperature range in order to stabilize the output and charging efficiency of the battery body and to suppress deterioration.
For example, by supplying a heat medium at an appropriate temperature to a battery heat exchanger to blow temperature-controlled air onto the battery body, or by supplying a heat medium at an appropriate temperature to a tube that is thermally coupled to the battery body, The temperature of the battery device 6 is adjusted to an appropriate temperature.
 熱媒体回路20は、バッテリー装置6と熱媒体とが直接的にまたは空気等を介して間接的に熱交換可能に構成される熱交換経路414,415と、熱交換経路414,415にそれぞれ対応し、開路/閉路を切り替える四方弁としてのバッテリー用切替弁34,35とを備えている。
 第1バッテリー用切替弁34は、例えば、第1切替弁31と蒸発器流量調整弁14Vとの間に配置される。第1バッテリー用切替弁34により、熱媒体が配管401から第1熱交換経路414に流入してバッテリー装置6に供給される状態と、熱媒体が第1熱交換経路414には流入しないで配管401を蒸発器14に向けて流れる状態とに熱媒体の流路を切り替え可能である。
The heat medium circuit 20 corresponds to heat exchange paths 414 and 415 configured to allow heat exchange between the battery device 6 and the heat medium directly or indirectly through air or the like, and heat exchange paths 414 and 415, respectively. It also includes battery switching valves 34 and 35 as four-way valves that switch between open and closed circuits.
The first battery switching valve 34 is arranged, for example, between the first switching valve 31 and the evaporator flow rate adjustment valve 14V. The first battery switching valve 34 allows the heat medium to flow into the first heat exchange path 414 from the pipe 401 and be supplied to the battery device 6, and the state in which the heat medium does not flow into the first heat exchange path 414 to the pipe. The flow path of the heat medium can be switched to a state where the heat medium flows through the heat transfer medium 401 toward the evaporator 14.
 第2バッテリー用切替弁35は、例えば、第1切替弁31と凝縮器流量調整弁12Vとの間に配置される。第2バッテリー用切替弁35により、熱媒体が配管402から第2熱交換経路415に流入してバッテリー装置6に供給される状態と、熱媒体が第2熱交換経路415には流入しないで配管402を凝縮器12に向けて流れる状態とに熱媒体の流路を切り替え可能である。 The second battery switching valve 35 is arranged, for example, between the first switching valve 31 and the condenser flow rate adjustment valve 12V. The second battery switching valve 35 allows the heat medium to flow into the second heat exchange path 415 from the pipe 402 and be supplied to the battery device 6, and the state in which the heat medium does not flow into the second heat exchange path 415 to the pipe. The flow path of the heat medium can be switched to a state where the heat medium flows through the heat transfer medium 402 toward the condenser 12.
 バッテリー装置6の位置は、本実施形態に限らず、熱媒体回路20上の任意の位置に定めることが可能である。例えば、第2バッテリー用切替弁35が、室内熱交換器25の接続されている配管403に設けられ、その第2バッテリー用切替弁35には第2熱交換経路415およびバッテリー装置6が接続されていてもよい。 The position of the battery device 6 is not limited to this embodiment, and can be set at any position on the heat medium circuit 20. For example, the second battery switching valve 35 is provided in the pipe 403 to which the indoor heat exchanger 25 is connected, and the second battery switching valve 35 is connected to the second heat exchange path 415 and the battery device 6. You can leave it there.
〔制御装置の構成〕
 制御装置5は、図4に示すように、メモリ501、演算部502、記憶部503、および入出力部504を含むコンピュータに相当する。「コンピュータ」には、プログラマブルロジックコントローラ(PLC;programmable logic controller)も含まれる。制御装置5は、記憶部503から読み出されて実行されるコンピュータ・プログラムに従って動作する。
[Configuration of control device]
The control device 5 corresponds to a computer including a memory 501, a calculation section 502, a storage section 503, and an input/output section 504, as shown in FIG. "Computer" also includes programmable logic controllers (PLCs). The control device 5 operates according to a computer program read from the storage unit 503 and executed.
 圧縮機11を作動させる各運転モードにおいて、制御装置5は、圧縮機11の駆動制御を行い、冷媒の循環流量を増減させることで、冷房能力または暖房能力をそれぞれ増減させることができる。
 制御装置5は、例えば、外気温、空調空気の吹き出し温度、あるいは、熱媒体温度や冷媒の温度等、室温に相関する物理量をセンサ61,62等により検知し、検知された値と目標値との偏差を解消させるように、例えば圧縮機11の回転数を制御するフィードバック制御を行うことにより、室温を目標温度に調整することができる。
In each operation mode in which the compressor 11 is operated, the control device 5 controls the drive of the compressor 11 and increases or decreases the circulating flow rate of the refrigerant, thereby increasing or decreasing the cooling capacity or the heating capacity, respectively.
The control device 5 uses sensors 61, 62, etc. to detect physical quantities correlated with the room temperature, such as the outside temperature, the temperature of the air-conditioned air, or the temperature of the heat medium or refrigerant, and compares the detected value with a target value. For example, by performing feedback control to control the rotation speed of the compressor 11 so as to eliminate the deviation, the room temperature can be adjusted to the target temperature.
〔圧縮機停止冷却モード〕
 図1~図3を参照し、圧縮機停止冷却モードCMを説明する。
 圧縮機停止冷却モードCMは、圧縮機11を停止させ、つまり冷媒回路10を運転させていない状態で、熱媒体を介して、外気によりバッテリー装置6を冷却する。このとき、ポンプ21,22の少なくとも一方を作動させることで、熱媒体を少なくとも室外熱交換器23とバッテリー装置6とに循環させる。
[Compressor stop cooling mode]
The compressor stop cooling mode CM will be explained with reference to FIGS. 1 to 3.
In the compressor stop cooling mode CM, the compressor 11 is stopped, that is, the battery device 6 is cooled by outside air via a heat medium while the refrigerant circuit 10 is not operating. At this time, by operating at least one of the pumps 21 and 22, the heat medium is circulated to at least the outdoor heat exchanger 23 and the battery device 6.
 制御装置5は、外気温度センサ61により検知される外気温度TOUTと、温調対象であるバッテリー装置6の目標温度Tとを参照する判定結果に基づき圧縮機停止冷却モードCMを選択する。
 目標温度Tは、バッテリー装置6の本体の出力や充電効率の安定、劣化防止を考慮したときに適切と言えるバッテリー本体の温度に相当する。目標温度Tは、記憶部503に記憶させることができる。
 目標温度Tは、一例を挙げると、15~20℃である。外気によるバッテリー装置6の冷却は、目標温度Tに対して外気温度が低い場合に可能となる。
The control device 5 selects the compressor stop cooling mode CM based on a determination result that refers to the outside air temperature T OUT detected by the outside air temperature sensor 61 and the target temperature TT of the battery device 6 that is the temperature control target.
The target temperature TT corresponds to the temperature of the battery body that can be said to be appropriate when considering the output of the body of the battery device 6, stabilization of charging efficiency, and prevention of deterioration. The target temperature TT can be stored in the storage unit 503.
The target temperature T T is, for example, 15 to 20°C. Cooling of the battery device 6 by outside air is possible when the outside air temperature is lower than the target temperature TT .
 制御装置5は、外気温度センサ61により検知される外気温度TOUTが、バッテリー装置6の目標温度Tを上限とする所定の冷却可能範囲ΔT内にあるか否かを判定し、冷却可能範囲ΔT内にあると判定される場合には、圧縮機停止冷却モードCMを選択することができる。
 冷却可能範囲ΔTは、発熱しているバッテリー装置6の温度低下に寄与することが可能な外気の温度の範囲を言う。冷却可能範囲ΔTの下限は、例えば、バッテリー装置6の最大発熱量と、室外熱交換器23の最小熱交換量とがバランスする温度に相当する。さらに、冷却可能範囲ΔTの下限は、室内熱交換器25に着霜が発生しないように、0℃超に設定されることが好ましい。上記最小熱交換量は、車両停止時であって、室外送風機23Aの風量レベルが最小、且つポンプ21,22の吐出流量が最小の場合の室外熱交換器23による熱交換量を言う。
The control device 5 determines whether the outside air temperature T OUT detected by the outside air temperature sensor 61 is within a predetermined cooling possible range ΔTC whose upper limit is the target temperature TT of the battery device 6, and determines whether cooling is possible. If it is determined that it is within the range ΔTC , the compressor stop cooling mode CM can be selected.
The coolable range ΔT C refers to the temperature range of the outside air that can contribute to lowering the temperature of the battery device 6 that is generating heat. The lower limit of the coolable range ΔTC corresponds to, for example, a temperature at which the maximum amount of heat generated by the battery device 6 and the minimum amount of heat exchanged by the outdoor heat exchanger 23 are balanced. Further, the lower limit of the coolable range ΔTC is preferably set to more than 0° C. so that frost does not form on the indoor heat exchanger 25. The above-mentioned minimum heat exchange amount refers to the heat exchange amount by the outdoor heat exchanger 23 when the vehicle is stopped, the air volume level of the outdoor blower 23A is the minimum, and the discharge flow rate of the pumps 21 and 22 is the minimum.
 圧縮機停止冷却モードCMを選択するとき、制御装置5は、圧縮機11の駆動回路部に対して制御指令を発生させることで、圧縮機11の作動を停止させるとともに、図1~図3にそれぞれ示す熱媒体の流路のパターン1~3に応じてポンプ21,22の少なくとも一方を作動させ、ポンプ21,22のうち、使用されない流路に対応するポンプは停止させる。熱媒体回路20には、切替弁31~33の開閉により、流路パターン1~3のうち任意に選択されるパターンに対応する経路が設定される。 When selecting the compressor stop cooling mode CM, the control device 5 stops the operation of the compressor 11 by generating a control command to the drive circuit section of the compressor 11, and also performs the operations shown in FIGS. At least one of the pumps 21 and 22 is operated according to the patterns 1 to 3 of the heat medium flow paths shown respectively, and the pump corresponding to the flow path that is not used among the pumps 21 and 22 is stopped. In the heat medium circuit 20, a path corresponding to a pattern arbitrarily selected from flow path patterns 1 to 3 is set by opening and closing the switching valves 31 to 33.
 また、圧縮機停止冷却モードCMのとき、制御装置5は、外気により冷却される熱媒体の熱損失を抑えるため、バイパス経路12A,14Aに熱媒体を流入させることで、冷媒と熱媒体との熱交換を避けることが好ましい。そうすることで、熱媒体の圧力損失が小さくなるので、ポンプ21の電力消費を抑えることができる。 In addition, in the compressor stop cooling mode CM, the control device 5 causes the heat medium to flow into the bypass paths 12A and 14A in order to suppress the heat loss of the heat medium cooled by the outside air. Preferably, heat exchange is avoided. By doing so, the pressure loss of the heat medium is reduced, so that the power consumption of the pump 21 can be suppressed.
 図1に示す流路パターン1は、室外熱交換器23と、バッテリー装置6と、蒸発器バイパス経路14Aとを含む。この場合は、第1ポンプ21を作動させる。破線で示す経路は、熱媒体が圧送されておらず、使用されていない。破線の意味は、他の回路図でも同様である。
 また、相対的に温度が低い熱媒体の流れは実線で示され、相対的に温度が高い熱媒体の流れは一点鎖線で示されている。実線および一点鎖線の意味は、図1~図3および図7~図9において同様である。
Flow path pattern 1 shown in FIG. 1 includes an outdoor heat exchanger 23, a battery device 6, and an evaporator bypass path 14A. In this case, the first pump 21 is activated. The path indicated by the broken line is not used as the heat medium is not pumped through the path. The meaning of the broken line is the same in other circuit diagrams.
Further, the flow of the heat medium having a relatively low temperature is shown by a solid line, and the flow of the heat medium having a relatively high temperature is shown by a dashed line. The meanings of the solid lines and dashed-dotted lines are the same in FIGS. 1 to 3 and 7 to 9.
 室外熱交換器23において外気により冷却される熱媒体は、室外熱交換器23から流出すると、第1切替弁31および第1バッテリー用切替弁34を経由し、第1熱交換経路414の往路414Aを流れてバッテリー装置6に供給される。バッテリー装置6が熱媒体により冷却される一方、熱媒体はバッテリー装置6から吸熱して温度上昇する。温度上昇した熱媒体は、第1熱交換経路414の復路414Bを流れ、第1バッテリー用切替弁34および蒸発器流量調整弁14Vを経由して蒸発器バイパス経路14Aへと流入する。蒸発器バイパス経路14Aから流出した熱媒体は、第2切替弁32を経由して室外熱交換器23に戻り、外気への放熱により冷却される。 When the heat medium cooled by the outside air in the outdoor heat exchanger 23 flows out of the outdoor heat exchanger 23, it passes through the first switching valve 31 and the first battery switching valve 34, and enters the outgoing path 414A of the first heat exchange path 414. and is supplied to the battery device 6. While the battery device 6 is cooled by the heat medium, the heat medium absorbs heat from the battery device 6 and rises in temperature. The heat medium whose temperature has increased flows through the return path 414B of the first heat exchange path 414, and flows into the evaporator bypass path 14A via the first battery switching valve 34 and the evaporator flow rate adjustment valve 14V. The heat medium flowing out from the evaporator bypass path 14A returns to the outdoor heat exchanger 23 via the second switching valve 32, and is cooled by heat radiation to the outside air.
 制御装置5は、圧縮機停止冷却モードCMのとき、作動されるポンプ(流路パターン1の場合はポンプ21)の回転数Nの調整により、目標温度T未満であって目標温度T近傍の温度に熱媒体の温度を制御することが好ましい。
 例えば、バッテリー装置6の入口の近傍で熱媒体温度センサ63により検知される熱媒体の温度Tが外気温度TOUTと同等であり、目標温度T(TOUT<T)と乖離している場合は、熱媒体の温度を上昇させると良い。そうすることで、バッテリー装置6が冷却され過ぎることなく、バッテリー装置6を適温に温調することができる。
 なお、外気と熱媒体との熱交換量に対してバッテリー装置6の発熱量が十分に大きい場合、必ずしも目標温度Tにまでバッテリー装置6は冷却されない。その場合でも、バッテリー装置6の温度が低下して目標温度Tに近づくので、バッテリー装置6を適温に温調することができる。
 また、外気温度TOUTが目標温度Tに対して低いとき、熱媒体温度Tが目標温度Tと同じ場合でも、室外送風機23Aの風量を下げたりポンプ21,22の回転数を下げたりして熱媒体の放熱を抑えることで、熱媒体の温度Tを目標温度Tと同じ温度に維持しつつ、発熱しているバッテリー装置6を外気により温調することができる。
In the compressor stop cooling mode CM, the control device 5 adjusts the rotational speed N of the operated pump (pump 21 in the case of flow path pattern 1) so that the temperature is below the target temperature T and is near the target temperature T. It is preferable to control the temperature of the heat medium to a temperature of .
For example, the temperature T M of the heat medium detected by the heat medium temperature sensor 63 near the entrance of the battery device 6 is equal to the outside air temperature T OUT and deviates from the target temperature T T (T OUT <T T ). If so, it is a good idea to raise the temperature of the heat medium. By doing so, the temperature of the battery device 6 can be adjusted to an appropriate temperature without overcooling the battery device 6.
Note that if the amount of heat generated by the battery device 6 is sufficiently large compared to the amount of heat exchanged between the outside air and the heat medium, the battery device 6 is not necessarily cooled to the target temperature TT . Even in that case, the temperature of the battery device 6 decreases and approaches the target temperature TT , so the temperature of the battery device 6 can be adjusted to an appropriate temperature.
Furthermore, when the outside air temperature T OUT is lower than the target temperature TT , even if the heat medium temperature TM is the same as the target temperature TT , the air volume of the outdoor blower 23A or the rotation speed of the pumps 21 and 22 may be lowered. By suppressing heat dissipation from the heat medium, the temperature of the battery device 6 that is generating heat can be controlled by outside air while maintaining the temperature TM of the heat medium at the same temperature as the target temperature TT .
 熱媒体の温度を上昇させる手段として、作動させるポンプ21の排熱を用いることができる。ポンプ21は所定の効率ηで作動し、簡単には、モータからポンプ21に出力される軸動力Pと、(1-効率η)との積である損失の大部分が熱エネルギーとして熱媒体に伝達される。制御装置5によりポンプ21の駆動回路部に対して回転数Nに対応する指令を発生させることで、ポンプ21の回転数Nが増加すると、ポンプ21から熱媒体に伝達される熱量が増加する。そのため、室外熱交換器23とバッテリー装置6とを循環する熱媒体の温度が上昇する。 The exhaust heat of the operated pump 21 can be used as a means to increase the temperature of the heat medium. The pump 21 operates at a predetermined efficiency η, and simply put, most of the loss, which is the product of the shaft power P output from the motor to the pump 21 and (1-efficiency η), is transferred to the heat medium as thermal energy. communicated. By causing the control device 5 to generate a command corresponding to the rotation speed N to the drive circuit section of the pump 21, when the rotation speed N of the pump 21 increases, the amount of heat transferred from the pump 21 to the heat medium increases. Therefore, the temperature of the heat medium circulating between the outdoor heat exchanger 23 and the battery device 6 increases.
 したがって、制御装置5は、例えば、熱媒体温度センサ63により熱媒体の温度を検知しつつ、検知温度と目標温度TTMとの偏差が解消されるように、ポンプ21,22に回転数Nを示す操作量(制御指令)を与えるフィードバック制御を行うことができる。
 検知された熱媒体温度が目標温度Tに到達したのならば、制御装置5は、例えば、ポンプ21,22の回転数Nを減少させて熱媒体の循環流量を減少させるか、あるいは、ポンプ21,22の作動を一旦停止させることができる。その後、熱媒体温度と目標温度との偏差が拡大した場合は、回転数Nを増加させるか、あるいはポンプ21,22を再稼働させるとよい。
 熱媒体温度を目標温度TTMに制御するために、室内送風機25Aの回転数の調整により風量を調整することも許容される。但し、車両の走行状態に左右されないポンプ21,22の回転数Nの調整によれば、風量調整と比べて、熱媒体温度の制御を容易かつ確実に行える。
Therefore, for example, while detecting the temperature of the heat medium using the heat medium temperature sensor 63, the control device 5 controls the rotation speed N of the pumps 21 and 22 so that the deviation between the detected temperature and the target temperature TTM is eliminated. Feedback control can be performed to provide the manipulated variable (control command) shown.
If the detected heat medium temperature has reached the target temperature T T , the control device 5 may, for example, reduce the rotational speed N of the pumps 21 and 22 to reduce the circulating flow rate of the heat medium, or The operations of 21 and 22 can be temporarily stopped. After that, if the deviation between the heat medium temperature and the target temperature increases, the rotation speed N may be increased or the pumps 21 and 22 may be restarted.
In order to control the heat medium temperature to the target temperature TTM , it is also permissible to adjust the air volume by adjusting the rotation speed of the indoor blower 25A. However, by adjusting the rotational speed N of the pumps 21 and 22, which is not affected by the running state of the vehicle, the heat medium temperature can be controlled more easily and reliably than by adjusting the air volume.
 図2に示す流路パターン2は、室外熱交換器23と、バッテリー装置6と、凝縮器バイパス経路12Aとを含む。この場合は、第2ポンプ22を作動させる。
 流路パターン2の場合は、室外熱交換器23から流出した熱媒体を第1切替弁31から第2バッテリー用切替弁35を経由して第2熱交換経路415の往路415Aに流入させる。バッテリー装置6を冷却した後、復路415Bに流出した熱媒体は、凝縮器流量調整弁12Vから凝縮器バイパス経路12Aを流れ、第3切替弁33を経由して室外熱交換器23へと戻り、外気へと放熱される。
Flow path pattern 2 shown in FIG. 2 includes an outdoor heat exchanger 23, a battery device 6, and a condenser bypass path 12A. In this case, the second pump 22 is activated.
In the case of flow path pattern 2, the heat medium flowing out from the outdoor heat exchanger 23 is caused to flow from the first switching valve 31 to the outgoing path 415A of the second heat exchange path 415 via the second battery switching valve 35. After cooling the battery device 6, the heat medium flowing out to the return path 415B flows through the condenser bypass path 12A from the condenser flow rate adjustment valve 12V, returns to the outdoor heat exchanger 23 via the third switching valve 33, Heat is radiated to the outside air.
 図3に示す流路パターン3は、室外熱交換器23と、バッテリー装置6と、蒸発器バイパス経路14Aと、凝縮器バイパス経路12Aとを含む。この場合は、第1切替弁31と室外熱交換器23との間で、熱媒体が蒸発器14側の流路と凝縮器12側の流路とを並行して流れるので、第1ポンプ21と第2ポンプ22とを作動させる。 The flow path pattern 3 shown in FIG. 3 includes an outdoor heat exchanger 23, a battery device 6, an evaporator bypass path 14A, and a condenser bypass path 12A. In this case, between the first switching valve 31 and the outdoor heat exchanger 23, the heat medium flows in parallel between the flow path on the evaporator 14 side and the flow path on the condenser 12 side. and the second pump 22 are operated.
 流路パターン1~3のいずれによっても、バッテリー装置6を外気により冷却することができるので、バッテリー装置6の充放電を安定させ、また劣化を抑えることができる。
 なお、流路パターン1,2から理解されるように、熱媒体回路20には、第1バッテリー用切替弁34・第1熱交換経路414と、第2バッテリー用切替弁35・第2熱交換経路415とのうち、いずれか一方のみが設けられていてもよい。
With any of the flow path patterns 1 to 3, the battery device 6 can be cooled by the outside air, so charging and discharging of the battery device 6 can be stabilized and deterioration can be suppressed.
As understood from flow path patterns 1 and 2, the heat medium circuit 20 includes a first battery switching valve 34 and a first heat exchange path 414, and a second battery switching valve 35 and a second heat exchange path 414. Only one of the routes 415 may be provided.
〔冷房モード、ヒートポンプモード〕
 制御装置5は、外気温度TOUTが冷却可能範囲ΔTの外側にあると判定される場合には、圧縮機11の駆動回路部に対する制御指令により圧縮機11を作動させて、冷房モードまたはヒートポンプモードを選択する。判定結果は、外気温度の変化により変動するので、圧縮機停止冷却モードCMから冷房モードまたはヒートポンプモードに移行する場合がある。
[Cooling mode, heat pump mode]
When it is determined that the outside air temperature T OUT is outside the cooling range ΔT C , the control device 5 operates the compressor 11 in response to a control command to the drive circuit section of the compressor 11 to switch to cooling mode or heat pump mode. Select mode. Since the determination result varies depending on changes in the outside air temperature, there is a case where the compressor stop cooling mode CM shifts to the cooling mode or the heat pump mode.
 図5に示す冷房モードは、外気温度TOUTが冷却可能範囲ΔTを高温側に逸脱している場合に選択される。
 この場合、熱媒体回路20には、蒸発器14、室内熱交換器25、第1熱交換経路414、およびバッテリー装置6を含む低圧側回路C1と、凝縮器12および室外熱交換器23を含む高圧側回路C2とが互いに分離して形成される。図5においては、相対的に低温の熱媒体の流れが実線で示され、相対的に高温の熱媒体の流れが一定鎖線で示されている。低温の熱媒体と高温の熱媒体とは混合しない。実線および一点鎖線の意味は、図6でも同様である。
 車室8内の冷房は行わずに、バッテリー装置6の冷却のみを行う場合は、室内送風機25Aの作動を停止させる。バッテリー装置6の冷却と併せて車室8内の冷房を行う場合は、室内送風機25Aを作動させるとよい。
The cooling mode shown in FIG. 5 is selected when the outside air temperature T OUT deviates from the cooling possible range ΔT C to the high temperature side.
In this case, the heat medium circuit 20 includes a low-pressure side circuit C1 including an evaporator 14, an indoor heat exchanger 25, a first heat exchange path 414, and a battery device 6, a condenser 12, and an outdoor heat exchanger 23. The high voltage side circuit C2 is formed separately from each other. In FIG. 5, the flow of a relatively low-temperature heat medium is shown by a solid line, and the flow of a relatively high-temperature heat medium is shown by a constant chain line. Low-temperature heat carriers and high-temperature heat carriers do not mix. The meanings of the solid line and the dashed-dotted line are the same in FIG. 6 as well.
If only the battery device 6 is to be cooled without cooling the interior of the vehicle compartment 8, the operation of the indoor blower 25A is stopped. When cooling the interior of the vehicle compartment 8 in addition to cooling the battery device 6, it is preferable to operate the indoor blower 25A.
 冷房モード時には、蒸発器14により冷媒に放熱した低温熱媒体がバッテリー装置6に供給されることで、バッテリー装置6が冷却される。
 バッテリー装置6の冷却と併せて車室8内の冷房を行う場合でも、室外熱交換器23により空気を冷却した熱媒体により、バッテリー装置6を冷却することが可能である。
In the cooling mode, the battery device 6 is cooled by supplying the battery device 6 with a low-temperature heat medium that has radiated heat to the refrigerant by the evaporator 14 .
Even in the case where the interior of the vehicle compartment 8 is cooled together with the cooling of the battery device 6, the battery device 6 can be cooled by the heat medium obtained by cooling the air with the outdoor heat exchanger 23.
 図6に示すヒートポンプモードは、外気温度TOUTが冷却可能範囲ΔTを低温側に逸脱している場合に選択される。図6に示す例は、車室8内の暖房は行わずに、バッテリー装置6の加温のみを行う場合を示している。
 この場合、熱媒体回路20には、蒸発器14および室外熱交換器23を含む低圧側回路C1と、凝縮器12、室内バイパス経路26、第2熱交換経路415、およびバッテリー装置6を含む高圧側回路C2とが互いに分離して形成される。
The heat pump mode shown in FIG. 6 is selected when the outside air temperature T OUT deviates from the coolable range ΔT C to the low temperature side. The example shown in FIG. 6 shows a case where only the battery device 6 is heated without heating the interior of the vehicle compartment 8.
In this case, the heat medium circuit 20 includes a low pressure side circuit C1 including the evaporator 14 and the outdoor heat exchanger 23, and a high pressure side circuit C1 including the condenser 12, the indoor bypass path 26, the second heat exchange path 415, and the battery device 6. The side circuit C2 is formed separately from each other.
 ヒートポンプモード時には、凝縮器12により冷媒から吸熱した高温熱媒体がバッテリー装置6に供給されることで、バッテリー装置6が加温される。
 バッテリー装置6の加温と併せて車室8内の暖房を行う場合は、凝縮器12から流出した熱媒体を第3切替弁33から室内熱交換器25に流入させるとよい。
 車室8内の暖房は行わずに、バッテリー装置6の加温のみを行う場合は、室内送風機25Aの作動を停止させる。バッテリー装置6の加温と併せて車室8内の暖房を行う場合は、室内送風機25Aを作動させるとよい。
In the heat pump mode, the battery device 6 is heated by supplying the high temperature heat medium that has absorbed heat from the refrigerant by the condenser 12 to the battery device 6 .
When heating the interior of the vehicle compartment 8 in addition to heating the battery device 6, the heat medium flowing out from the condenser 12 may be allowed to flow into the indoor heat exchanger 25 from the third switching valve 33.
When heating only the battery device 6 without heating the interior of the vehicle compartment 8, the operation of the indoor blower 25A is stopped. When heating the interior of the vehicle compartment 8 in addition to heating the battery device 6, it is preferable to operate the indoor blower 25A.
 以上によれば、外気温度TOUTとバッテリー装置6の目標温度Tとの関係から、外気によりバッテリー装置6を冷却可能である場合には、圧縮機停止冷却モードCMにより、圧縮機11による電力消費を抑えて温調システム1を経済的に運転させることができる。 According to the above, if the battery device 6 can be cooled by the outside air from the relationship between the outside air temperature T OUT and the target temperature T The temperature control system 1 can be operated economically by suppressing consumption.
[第2実施形態]
 以下、第1実施形態と相違する事項を中心に説明する。
 図7に示す車両用の温調システム1-2は、外気により車室8内の冷房を行う圧縮機停止冷却モードCM-2を備えている。図7に示すように、温調システム1-2は、バッテリー装置6を備えていなくてもよい。
[Second embodiment]
Hereinafter, the differences from the first embodiment will be mainly explained.
The vehicle temperature control system 1-2 shown in FIG. 7 includes a compressor stop cooling mode CM-2 in which the interior of the vehicle compartment 8 is cooled using outside air. As shown in FIG. 7, the temperature control system 1-2 does not need to include the battery device 6.
 圧縮機停止冷却モードCM-2は、例えば、車室8内の温度が比較的高く、室温よりも外気温度が低い場合に、圧縮機11を停止させた状態で、かつ、外気を直接的に室内に導入することなく、つまり内気循環の状態で、外気により熱媒体を介して間接的に室温を低下させたい場合に適する。
 制御装置5は、外気温度TOUTが、車室8内の温度の目標温度TT2を含む冷却可能範囲ΔTC2内であると判定される場合には、圧縮機11を停止させて圧縮機停止冷却モードCM-2を選択することができる。
In the compressor stop cooling mode CM-2, for example, when the temperature inside the vehicle compartment 8 is relatively high and the outside air temperature is lower than the room temperature, the compressor 11 is stopped and the outside air is directly supplied. It is suitable for cases where it is desired to indirectly lower the room temperature using outside air via a heat medium without introducing it into the room, that is, while circulating inside air.
If it is determined that the outside air temperature T OUT is within the cooling range ΔT C2 that includes the target temperature T T2 of the temperature inside the vehicle compartment 8, the control device 5 stops the compressor 11 and stops the compressor. Cooling mode CM-2 can be selected.
 圧縮機停止冷却モードCM-2のとき、図5および図6に示す運転モードとは異なり、低温熱媒体の流れと高温熱媒体の流れとは分離していない。熱媒体は、外気との熱交換または温調対象との熱交換により温度を変化させつつ、室外熱交換器23と、凝縮器バイパス経路12Aと、室内熱交換器25と、蒸発器バイパス経路14Aとを含む一つの連続した流路を循環する。このとき、熱媒体の流れに関して、室外熱交換器23と室内熱交換器25とは直列に接続されている。そのため、ポンプ21,22のうち少なくとも一方を作動させれば足りる。 In the compressor stop cooling mode CM-2, unlike the operation modes shown in FIGS. 5 and 6, the flow of the low-temperature heat medium and the flow of the high-temperature heat medium are not separated. The heat medium changes the temperature by heat exchange with the outside air or heat exchange with the temperature control target, and passes through the outdoor heat exchanger 23, the condenser bypass path 12A, the indoor heat exchanger 25, and the evaporator bypass path 14A. It circulates in one continuous flow path including. At this time, the outdoor heat exchanger 23 and the indoor heat exchanger 25 are connected in series with respect to the flow of the heat medium. Therefore, it is sufficient to operate at least one of the pumps 21 and 22.
 図7に示すように、外気により冷却された低温熱媒体(実線で示す)は、凝縮器バイパス経路12Aを通ることで低温を維持しつつ、室内熱交換器25により車室8内の冷房に供される。車室8内の冷房に伴い昇温した高温熱媒体(一点鎖線で示す)は、蒸発器バイパス経路14Aを流れて室外熱交換器23へと戻り、外気へと放熱される。 As shown in FIG. 7, the low-temperature heat medium (indicated by the solid line) cooled by the outside air is maintained at a low temperature by passing through the condenser bypass path 12A, and is cooled in the passenger compartment 8 by the indoor heat exchanger 25. Served. The high-temperature heat medium (indicated by a dashed line) whose temperature has increased as the interior of the vehicle compartment 8 is cooled flows through the evaporator bypass path 14A, returns to the outdoor heat exchanger 23, and is radiated to the outside air.
 外気による車室8内の冷房は、図7に示す流路パターン1の他、図8に示す流路パターン2であっても同様に成立する。
 流路パターン2は、切替弁31~33による流路の切替により、低温熱媒体の流れる領域と高温熱媒体の流れる領域とが流路パターン1に対して一部入れ替わる。つまり、室外熱交換器23から流出した低温熱媒体は、第1切替弁31を経由して蒸発器バイパス経路14Aを流れ、第2切替弁32から室内熱交換器25へと流入する。そして、空気から吸熱した高温熱媒体は、第1切替弁31を経由して凝縮器バイパス経路12Aを流れ、第3切替弁33から室外熱交換器23へと戻り、外気へと放熱される。
Cooling of the interior of the vehicle compartment 8 by outside air is achieved in the same manner not only in the flow path pattern 1 shown in FIG. 7 but also in the flow path pattern 2 shown in FIG. 8.
In flow path pattern 2, the region through which the low temperature heat medium flows and the region through which the high temperature heat medium flows are partially interchanged with respect to flow path pattern 1 by switching the flow paths by the switching valves 31 to 33. That is, the low-temperature heat medium flowing out from the outdoor heat exchanger 23 flows through the evaporator bypass path 14A via the first switching valve 31, and flows into the indoor heat exchanger 25 from the second switching valve 32. Then, the high-temperature heat medium that has absorbed heat from the air flows through the condenser bypass path 12A via the first switching valve 31, returns to the outdoor heat exchanger 23 from the third switching valve 33, and is radiated to the outside air.
 制御装置5は、外気温度TOUTが冷却可能範囲ΔTC2を逸脱したと判定される場合には、圧縮機11を作動させて冷房モードまたはヒートポンプモードを実施するとよい。 When it is determined that the outside air temperature T OUT has deviated from the coolable range ΔTC2 , the control device 5 may operate the compressor 11 to implement the cooling mode or the heat pump mode.
〔ヒータモード〕
 温調システム1-2は、図9に示すヒータモードHTを備えていてもよい。ヒータモードHTは、ヒートポンプモード(図6)よりも外気温度が低い場合に適する。0℃を大幅に下回るほど外気温が低いために、外気から熱媒体への吸熱運転は難しいとしても、ヒータモードHTは、圧縮機11の動力を熱源として、必要な暖房能力を担保することができる。
[Heater mode]
The temperature control system 1-2 may include a heater mode HT shown in FIG. Heater mode HT is suitable when the outside temperature is lower than heat pump mode (FIG. 6). Even though it is difficult to operate to absorb heat from the outside air to the heat medium because the outside temperature is so low as to be significantly below 0°C, the heater mode HT is able to secure the necessary heating capacity by using the power of the compressor 11 as the heat source. can.
 熱媒体回路20は、ヒータモードHT時における熱媒体の外気への放熱を避けるため、室外熱交換器23から熱媒体を迂回させる室外バイパス経路24を備えることが好ましい。 Preferably, the heat medium circuit 20 includes an outdoor bypass path 24 that detours the heat medium from the outdoor heat exchanger 23 in order to avoid radiation of heat from the heat medium to the outside air during heater mode HT.
 ヒートポンプモード(図6)時には、分離した低圧側回路C1と高圧側回路C2とが形成されるのに対して、ヒータモードHT時には、圧縮機停止冷却モードCM-2と同様に、一つの連続した流路を熱媒体が温度変化しつつ循環する。
 つまり、凝縮器12から流出した熱媒体は、室内熱交換器25により車室8内の暖房に供された後、蒸発器14および蒸発器バイパス経路14Aのうち少なくとも蒸発器14に流入する。さらに、蒸発器14から流出した熱媒体は、凝縮器12および凝縮器バイパス経路12Aのうち少なくとも凝縮器12を流れ、室外バイパス経路24を通って蒸発器14へと戻る。
In heat pump mode (Fig. 6), separate low-pressure side circuit C1 and high-pressure side circuit C2 are formed, whereas in heater mode HT, one continuous circuit is formed as in compressor stop cooling mode CM-2. The heat medium circulates through the flow path while changing its temperature.
That is, the heat medium flowing out of the condenser 12 is used for heating the interior of the vehicle compartment 8 by the indoor heat exchanger 25, and then flows into at least the evaporator 14 out of the evaporator 14 and the evaporator bypass path 14A. Further, the heat medium flowing out from the evaporator 14 flows through at least the condenser 12 and the condenser bypass path 12A, and returns to the evaporator 14 through the outdoor bypass path 24.
 ヒータモードHTによれば、室内熱交換器25から流出した熱媒体が蒸発器14により冷媒へと放熱されることで、冷媒回路10の低圧が上昇する。そうすると、圧縮機11に吸入される冷媒の密度が増加して冷媒の循環量が増加するので、外気温が非常に低くても暖房能力を担保することができる。
 また、蒸発器流量調整弁14Vにより蒸発器14に流入させる熱媒体の流量を調整することにより、暖房能力を可変に調整することができる。
According to the heater mode HT, the heat medium flowing out from the indoor heat exchanger 25 radiates heat to the refrigerant by the evaporator 14, so that the low pressure of the refrigerant circuit 10 increases. In this case, the density of the refrigerant sucked into the compressor 11 increases and the amount of refrigerant circulated increases, so that heating capacity can be ensured even when the outside temperature is very low.
Further, by adjusting the flow rate of the heat medium flowing into the evaporator 14 using the evaporator flow rate adjustment valve 14V, the heating capacity can be variably adjusted.
 上記以外にも、上記実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。 In addition to the above, it is possible to select the configurations mentioned in the above embodiments or to change them to other configurations as appropriate.
[付記]
 以上の開示により、以下に記す構成が把握される。
〔1〕車両用の温調システム(1,1-2)であって、
 圧縮機(11)、高圧側熱交換器(12)、減圧部(13)、および低圧側熱交換器(14)を含み、冷凍サイクルに従って冷媒が循環可能に構成される冷媒回路(10)と、
 前記冷媒に対して熱を授受する熱媒体が循環可能に構成される熱媒体回路(20)と、を備え、
 前記熱媒体回路(20)は、
 前記冷媒と前記熱媒体とを熱交換させる前記高圧側熱交換器(12)と、
 前記冷媒と前記熱媒体とを熱交換させる前記低圧側熱交換器(14)と、
 前記熱媒体を圧送可能に構成されるポンプ(21,22)と、
 外気と前記熱媒体とを熱交換させる室外熱交換器(23)と、
 前記熱媒体により加熱または冷却される温調対象に相当する、または温調対象の加熱または冷却に用いられる温調機器(6,25)と、を含み、
 前記温調システム(1,1-2)は、運転モードとして、
 前記圧縮機(11)を停止させ、前記ポンプ(21,22)を作動させている状態で、前記室外熱交換器(23)と前記温調機器(6,25)とを循環する前記熱媒体を介して、前記外気により前記温調機器(6,25)を冷却する圧縮機停止冷却モード(CM)を備えるとともに、
 前記外気の温度を検知する外気温度センサ(61)と、
 前記外気温度センサ(61)により検知される外気温度および前記温調機器(6,25)の目標温度を参照する判定結果に基づき前記圧縮機停止冷却モード(CM)を選択可能に構成される制御装置(5)と、を備える、車両用温調システム(1,1-2)。
[Additional notes]
From the above disclosure, the configuration described below can be understood.
[1] A temperature control system for a vehicle (1, 1-2),
A refrigerant circuit (10) including a compressor (11), a high-pressure side heat exchanger (12), a pressure reducing section (13), and a low-pressure side heat exchanger (14), and configured to allow refrigerant to circulate according to a refrigeration cycle; ,
a heat medium circuit (20) configured to allow circulation of a heat medium that transfers heat to and receives heat from the refrigerant;
The heat medium circuit (20) includes:
the high-pressure side heat exchanger (12) for exchanging heat between the refrigerant and the heat medium;
the low pressure side heat exchanger (14) for exchanging heat between the refrigerant and the heat medium;
Pumps (21, 22) configured to be able to pump the heat medium;
an outdoor heat exchanger (23) that exchanges heat between outside air and the heat medium;
A temperature control device (6, 25) corresponding to a temperature control object heated or cooled by the heat medium or used for heating or cooling a temperature control object,
The temperature control system (1, 1-2) has the following operating modes:
The heat medium circulates through the outdoor heat exchanger (23) and the temperature control device (6, 25) while the compressor (11) is stopped and the pump (21, 22) is operated. A compressor stop cooling mode (CM) is provided in which the temperature control device (6, 25) is cooled by the outside air through the compressor stop cooling mode (CM);
an outside air temperature sensor (61) that detects the temperature of the outside air;
Control configured to be able to select the compressor stop cooling mode (CM) based on a determination result that refers to the outside air temperature detected by the outside air temperature sensor (61) and the target temperature of the temperature control device (6, 25). A vehicle temperature control system (1, 1-2) comprising a device (5).
〔2〕前記高圧側熱交換器(12)から前記熱媒体を迂回させる高圧側バイパス経路(12A)と、
 前記低圧側熱交換器(14)から前記熱媒体を迂回させる低圧側バイパス経路(14A)と、を備え、
 前記圧縮機停止冷却モードのとき、前記室外熱交換器(23)と、前記高圧側バイパス経路()12Aおよび前記低圧側バイパス経路(14A)の少なくとも一方と、前記温調機器(6,25)とを前記熱媒体が循環する流路が形成される、
〔1〕項に記載の車両用温調システム(1,1-2)。
[2] A high-pressure side bypass path (12A) that detours the heat medium from the high-pressure side heat exchanger (12);
A low-pressure side bypass path (14A) that detours the heat medium from the low-pressure side heat exchanger (14),
When in the compressor stop cooling mode, the outdoor heat exchanger (23), at least one of the high pressure side bypass path () 12A and the low pressure side bypass path (14A), and the temperature control device (6, 25) A flow path through which the heat medium circulates is formed.
[1] The vehicle temperature control system (1, 1-2) described in item [1].
〔3〕車室(8)内の空調に用いられ、前記熱媒体と空気とを熱交換させる前記温調機器としての室内熱交換器(25)を備え、
 前記圧縮機停止冷却モード(CM)のとき、前記熱媒体の流れに関して、前記室外熱交換器(23)と前記室内熱交換器(25)とが直列に接続される、
〔1〕または〔2〕項に記載の車両用温調システム(1-2)。
[3] Includes an indoor heat exchanger (25) as the temperature control device used for air conditioning in the vehicle compartment (8) and exchanging heat between the heat medium and air;
When in the compressor stop cooling mode (CM), the outdoor heat exchanger (23) and the indoor heat exchanger (25) are connected in series with respect to the flow of the heat medium.
The vehicle temperature control system (1-2) according to [1] or [2].
〔4〕前記制御装置(5)は、
 前記外気温度が、前記目標温度を上限とする所定の冷却可能範囲内にあると判定される場合には、前記圧縮機停止冷却モード(CM)を選択するように構成される、
〔1〕から〔3〕のいずれか一項に記載の車両用温調システム(1,1-2)。
[4] The control device (5) includes:
If it is determined that the outside air temperature is within a predetermined cooling range with the upper limit being the target temperature, the compressor stop cooling mode (CM) is selected;
The vehicle temperature control system (1, 1-2) according to any one of [1] to [3].
〔5〕前記制御装置(5)は、
 前記外気温度が前記冷却可能範囲外にあると判定される場合には、前記圧縮機(11)を作動させて前記温調機器(6,25)を冷却または加熱するように構成される、
〔4〕項に記載の車両用温調システム(1,1-2)。
[5] The control device (5) includes:
If it is determined that the outside air temperature is outside the cooling range, the compressor (11) is operated to cool or heat the temperature control device (6, 25);
[4] The vehicle temperature control system (1, 1-2) described in item [4].
〔6〕前記ポンプ(21,22)は、回転数が可変に構成され、
 前記制御装置(5)は、前記圧縮機停止冷却モード(CM)のとき、
 前記ポンプ(21,22)の前記回転数の調整により、前記目標温度未満であって前記目標温度近傍の温度に前記熱媒体の温度を制御可能に構成される、
〔1〕から〔5〕のいずれか一項に記載の車両用温調システム(1,1-2)。
[6] The pump (21, 22) is configured to have a variable rotation speed,
The control device (5), when in the compressor stop cooling mode (CM),
By adjusting the rotation speed of the pump (21, 22), the temperature of the heat medium can be controlled to a temperature that is below the target temperature and in the vicinity of the target temperature.
The vehicle temperature control system (1, 1-2) according to any one of [1] to [5].
〔7〕車両用の温調システム(1,1-2)を用いる温調方法であって、
 前記温調システム(1,1-2)は、
 圧縮機(11)、高圧側熱交換器(12)、減圧部(13)、および低圧側熱交換器(14)を含み、冷凍サイクルに従って冷媒が循環可能に構成される冷媒回路(10)と、
 前記冷媒に対して熱を授受する熱媒体が循環可能に構成される熱媒体回路(20)と、を備え、
 前記熱媒体回路(20)は、
 前記冷媒と前記熱媒体とを熱交換させる前記低圧側熱交換器(14)と、
 前記熱媒体を圧送可能に構成されるポンプ(21,22)と、
 外気と前記熱媒体とを熱交換させる室外熱交換器(23)と、
 前記熱媒体により加熱または冷却される温調対象に相当する、または温調対象の加熱または冷却に用いられる温調機器(6,25)と、を含み、
 前記温調方法は、
 前記外気の温度および前記温調機器の目標温度を参照する判定結果に基づき、
 前記圧縮機(11)を停止させ、前記ポンプ(21,22)を作動させている状態で、前記室外熱交換器(23)と前記温調機器(6,25)とを循環する前記熱媒体を介して、前記外気により前記温調機器(6,25)を冷却する圧縮機停止冷却モード(CM)を選択する、車両用温調方法。
[7] A temperature control method using a vehicle temperature control system (1, 1-2),
The temperature control system (1, 1-2) is
A refrigerant circuit (10) including a compressor (11), a high-pressure side heat exchanger (12), a pressure reducing section (13), and a low-pressure side heat exchanger (14), and configured to allow refrigerant to circulate according to a refrigeration cycle; ,
A heat medium circuit (20) configured to allow circulation of a heat medium that transfers heat to and receives heat from the refrigerant,
The heat medium circuit (20) includes:
the low pressure side heat exchanger (14) for exchanging heat between the refrigerant and the heat medium;
Pumps (21, 22) configured to be able to pump the heat medium;
an outdoor heat exchanger (23) that exchanges heat between outside air and the heat medium;
A temperature control device (6, 25) corresponding to a temperature control object heated or cooled by the heat medium or used for heating or cooling a temperature control object,
The temperature control method is
Based on the determination result referring to the temperature of the outside air and the target temperature of the temperature control device,
The heat medium circulates through the outdoor heat exchanger (23) and the temperature control device (6, 25) while the compressor (11) is stopped and the pump (21, 22) is operated. A temperature control method for a vehicle, which selects a compressor stop cooling mode (CM) in which the temperature control device (6, 25) is cooled by the outside air.
1,1-2   温調システム
5    制御装置
6    バッテリー装置(温調機器)
8    車室
10   冷媒回路
11   圧縮機
12   凝縮器(高圧側熱交換器)
12A  凝縮器バイパス経路(高圧側バイパス経路)
12V  凝縮器流量調整弁
13   膨張弁(減圧部)
14   蒸発器(低圧側熱交換器)
14A  蒸発器バイパス経路(低圧側バイパス経路)
14V  蒸発器流量調整弁
20   熱媒体回路
21   第1ポンプ
22   第2ポンプ
23   室外熱交換器
23A  室外送風機
24   室外バイパス経路
25   室内熱交換器(温調機器)
25A  室内送風機
26   室内バイパス経路
31   第1切替弁
32   第2切替弁
33   第3切替弁
34   第1バッテリー用切替弁
35   第2バッテリー用切替弁
61   外気温度センサ
62   温度センサ
63   熱媒体温度センサ
401~403   配管
414  第1熱交換経路
414A 往路
414B 復路
415  第2熱交換経路
415A 往路
415B 復路
501  メモリ
502  演算部
503  記憶部
504  入出力部
C1   低圧側回路
C2   高圧側回路
CM   圧縮機停止冷却モード
HT   ヒータモード
 U    HVACユニット
 
1,1-2 Temperature control system 5 Control device 6 Battery device (temperature control device)
8 Compartment 10 Refrigerant circuit 11 Compressor 12 Condenser (high pressure side heat exchanger)
12A Condenser bypass path (high pressure side bypass path)
12V Condenser flow rate adjustment valve 13 Expansion valve (pressure reducing part)
14 Evaporator (low pressure side heat exchanger)
14A Evaporator bypass path (low pressure side bypass path)
14V Evaporator flow rate adjustment valve 20 Heat medium circuit 21 First pump 22 Second pump 23 Outdoor heat exchanger 23A Outdoor blower 24 Outdoor bypass path 25 Indoor heat exchanger (temperature control device)
25A Indoor blower 26 Indoor bypass path 31 First switching valve 32 Second switching valve 33 Third switching valve 34 First battery switching valve 35 Second battery switching valve 61 Outside air temperature sensor 62 Temperature sensor 63 Heat medium temperature sensor 401~ 403 Piping 414 First heat exchange route 414A Outbound route 414B Return route 415 Second heat exchange route 415A Outbound route 415B Return route 501 Memory 502 Arithmetic section 503 Storage section 504 Input/output section C1 Low pressure side circuit C2 High pressure side circuit CM Compressor stop cooling mode HT Heater Mode U HVAC unit

Claims (7)

  1.  車両用の温調システムであって、
     圧縮機、高圧側熱交換器、減圧部、および低圧側熱交換器を含み、冷凍サイクルに従って冷媒が循環可能に構成される冷媒回路と、
     前記冷媒に対して熱を授受する熱媒体が循環可能に構成される熱媒体回路と、を備え、
     前記熱媒体回路は、
     前記冷媒と前記熱媒体とを熱交換させる前記高圧側熱交換器と、
     前記冷媒と前記熱媒体とを熱交換させる前記低圧側熱交換器と、
     前記熱媒体を圧送可能に構成されるポンプと、
     外気と前記熱媒体とを熱交換させる室外熱交換器と、
     前記熱媒体により加熱または冷却される温調対象に相当する、または温調対象の加熱または冷却に用いられる温調機器と、を含み、
     前記温調システムは、運転モードとして、
     前記圧縮機を停止させ、前記ポンプを作動させている状態で、前記室外熱交換器と前記温調機器とを循環する前記熱媒体を介して、前記外気により前記温調機器を冷却する圧縮機停止冷却モードを備えるとともに、
     前記外気の温度を検知する外気温度センサと、
     前記外気温度センサにより検知される外気温度および前記温調機器の目標温度を参照する判定結果に基づき前記圧縮機停止冷却モードを選択可能に構成される制御装置と、を備える、車両用温調システム。
    A temperature control system for a vehicle,
    A refrigerant circuit including a compressor, a high-pressure side heat exchanger, a pressure reduction section, and a low-pressure side heat exchanger, and configured to allow refrigerant to circulate according to a refrigeration cycle;
    a heat medium circuit configured to allow circulation of a heat medium that transfers heat to and receives heat from the refrigerant;
    The heat medium circuit is
    the high-pressure side heat exchanger that exchanges heat between the refrigerant and the heat medium;
    the low-pressure side heat exchanger that exchanges heat between the refrigerant and the heat medium;
    a pump configured to be able to pump the heat medium;
    an outdoor heat exchanger that exchanges heat between outside air and the heat medium;
    A temperature control device corresponding to a temperature control object heated or cooled by the heat medium or used for heating or cooling a temperature control object,
    The temperature control system has the following operating modes:
    A compressor that cools the temperature control device with the outside air via the heat medium circulating between the outdoor heat exchanger and the temperature control device while the compressor is stopped and the pump is operated. In addition to having a stop cooling mode,
    an outside air temperature sensor that detects the temperature of the outside air;
    A temperature control system for a vehicle, comprising: a control device configured to be able to select the compressor stop cooling mode based on a determination result that refers to the outside air temperature detected by the outside air temperature sensor and the target temperature of the temperature adjustment device. .
  2.  前記高圧側熱交換器から前記熱媒体を迂回させる高圧側バイパス経路と、
     前記低圧側熱交換器から前記熱媒体を迂回させる低圧側バイパス経路と、を備え、
     前記圧縮機停止冷却モードのとき、前記室外熱交換器と、前記高圧側バイパス経路および前記低圧側バイパス経路の少なくとも一方と、前記温調機器とを前記熱媒体が循環する流路が形成される、
    請求項1に記載の車両用温調システム。
    a high-pressure side bypass path that detours the heat medium from the high-pressure side heat exchanger;
    a low-pressure side bypass path that detours the heat medium from the low-pressure side heat exchanger,
    When in the compressor stop cooling mode, a flow path is formed in which the heat medium circulates through the outdoor heat exchanger, at least one of the high-pressure side bypass path and the low-pressure side bypass path, and the temperature control device. ,
    The vehicle temperature control system according to claim 1.
  3.  車室内の空調に用いられ、前記熱媒体と空気とを熱交換させる前記温調機器としての室内熱交換器を備え、
     前記圧縮機停止冷却モードのとき、前記熱媒体の流れに関して、前記室外熱交換器と前記室内熱交換器とが直列に接続される、
    請求項1または2に記載の車両用温調システム。
    an indoor heat exchanger as the temperature control device used for air conditioning in the vehicle interior and exchanging heat between the heat medium and the air;
    When in the compressor stop cooling mode, the outdoor heat exchanger and the indoor heat exchanger are connected in series with respect to the flow of the heat medium.
    The vehicle temperature control system according to claim 1 or 2.
  4.  前記制御装置は、
     前記外気温度が、前記目標温度を上限とする所定の冷却可能範囲内にあると判定される場合には、前記圧縮機停止冷却モードを選択するように構成される、
    請求項1または2に記載の車両用温調システム。
    The control device includes:
    If it is determined that the outside air temperature is within a predetermined cooling range with the upper limit being the target temperature, the compressor stop cooling mode is selected;
    The vehicle temperature control system according to claim 1 or 2.
  5.  前記制御装置は、
     前記外気温度が前記冷却可能範囲外にあると判定される場合には、前記圧縮機を作動させて前記温調機器を冷却または加熱するように構成される、
    請求項4に記載の車両用温調システム。
    The control device includes:
    If it is determined that the outside air temperature is outside the cooling range, the compressor is operated to cool or heat the temperature control device;
    The vehicle temperature control system according to claim 4.
  6.  前記ポンプは、回転数が可変に構成され、
     前記制御装置は、前記圧縮機停止冷却モードのとき、
     前記ポンプの前記回転数の調整により、前記目標温度未満であって前記目標温度近傍の温度に前記熱媒体の温度を制御可能に構成される、
    請求項1または2に記載の車両用温調システム。
    The pump is configured to have a variable rotation speed,
    The control device, when in the compressor stop cooling mode,
    By adjusting the rotation speed of the pump, the temperature of the heat medium can be controlled to a temperature that is below the target temperature and in the vicinity of the target temperature.
    The vehicle temperature control system according to claim 1 or 2.
  7.  車両用の温調システムを用いる温調方法であって、
     前記温調システムは、
     圧縮機、高圧側熱交換器、減圧部、および低圧側熱交換器を含み、冷凍サイクルに従って冷媒が循環可能に構成される冷媒回路と、
     前記冷媒に対して熱を授受する熱媒体が循環可能に構成される熱媒体回路と、を備え、
     前記熱媒体回路は、
     前記冷媒と前記熱媒体とを熱交換させる前記低圧側熱交換器と、
     前記熱媒体を圧送可能に構成されるポンプと、
     外気と前記熱媒体とを熱交換させる室外熱交換器と、
     前記熱媒体により加熱または冷却される温調対象に相当する、または温調対象の加熱または冷却に用いられる温調機器と、を含み、
     前記温調方法は、
     前記外気の温度および前記温調機器の目標温度を参照する判定結果に基づき、
      前記圧縮機を停止させ、前記ポンプを作動させている状態で、前記室外熱交換器と前記温調機器とを循環する前記熱媒体を介して、前記外気により前記温調機器を冷却する圧縮機停止冷却モードを選択する、車両用温調方法。
     
    A temperature control method using a vehicle temperature control system,
    The temperature control system is
    A refrigerant circuit including a compressor, a high-pressure side heat exchanger, a pressure reduction section, and a low-pressure side heat exchanger, and configured to allow refrigerant to circulate according to a refrigeration cycle;
    a heat medium circuit configured to allow circulation of a heat medium that transfers heat to and receives heat from the refrigerant;
    The heat medium circuit is
    the low-pressure side heat exchanger that exchanges heat between the refrigerant and the heat medium;
    a pump configured to be able to pump the heat medium;
    an outdoor heat exchanger that exchanges heat between outside air and the heat medium;
    A temperature control device corresponding to a temperature control object heated or cooled by the heat medium or used for heating or cooling a temperature control object,
    The temperature control method is
    Based on the determination result referring to the temperature of the outside air and the target temperature of the temperature control device,
    A compressor that cools the temperature control device with the outside air via the heat medium circulating between the outdoor heat exchanger and the temperature control device while the compressor is stopped and the pump is operated. Vehicle temperature control method that selects stop cooling mode.
PCT/JP2023/033031 2022-09-16 2023-09-11 Vehicular temperature regulation system and temperature regulation method WO2024058116A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022148272A JP7288127B1 (en) 2022-09-16 2022-09-16 Vehicle temperature control system and temperature control method
JP2022-148272 2022-09-16

Publications (1)

Publication Number Publication Date
WO2024058116A1 true WO2024058116A1 (en) 2024-03-21

Family

ID=86611005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033031 WO2024058116A1 (en) 2022-09-16 2023-09-11 Vehicular temperature regulation system and temperature regulation method

Country Status (2)

Country Link
JP (1) JP7288127B1 (en)
WO (1) WO2024058116A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015168297A (en) * 2014-03-05 2015-09-28 株式会社デンソー Vehicle heat control system
JP2017106367A (en) * 2015-12-09 2017-06-15 株式会社デンソー Cooling system for vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015168297A (en) * 2014-03-05 2015-09-28 株式会社デンソー Vehicle heat control system
JP2017106367A (en) * 2015-12-09 2017-06-15 株式会社デンソー Cooling system for vehicle

Also Published As

Publication number Publication date
JP7288127B1 (en) 2023-06-06
JP2024043213A (en) 2024-03-29

Similar Documents

Publication Publication Date Title
US20220032732A1 (en) Battery heating device for vehicle
JP4505510B2 (en) Vehicle air conditioning system
US11718156B2 (en) Refrigeration cycle device
CN113646595B (en) Refrigeration cycle device
JP5452409B2 (en) Thermal cycle system
US11506404B2 (en) Refrigeration cycle device
WO2020075446A1 (en) Vehicle air conditioning device
CN115556540A (en) Air conditioner
CN113646594B (en) Air conditioner
CN110998209A (en) Composite heat exchanger
WO2024058118A1 (en) Vehicular temperature control system and temperature control method
JP2004050991A (en) Cold storage type refrigeration cycle device
WO2024058116A1 (en) Vehicular temperature regulation system and temperature regulation method
CN117136144A (en) Vehicle air conditioning system and vehicle air conditioning method
JP7361176B1 (en) Vehicle temperature control system and temperature control method
JP7372414B1 (en) Vehicle temperature control system and temperature control method
KR20170070796A (en) Air conditioning apparatus
WO2024058123A1 (en) Vehicle temperature control system and temperature control method
WO2024075715A1 (en) Vehicle temperature control system
WO2024057865A1 (en) Vehicle temperature control system and temperature control method
WO2023017763A1 (en) Vehicle air conditioning system and vehicle air conditioning method
JP7361177B1 (en) Vehicle temperature control system and temperature control method
WO2022202307A1 (en) Refrigeration cycle device
CN116353283A (en) Temperature control device for vehicle and control method for temperature control device for vehicle
JP2024040735A (en) air conditioning system