WO2024058123A1 - Vehicle temperature control system and temperature control method - Google Patents

Vehicle temperature control system and temperature control method Download PDF

Info

Publication number
WO2024058123A1
WO2024058123A1 PCT/JP2023/033043 JP2023033043W WO2024058123A1 WO 2024058123 A1 WO2024058123 A1 WO 2024058123A1 JP 2023033043 W JP2023033043 W JP 2023033043W WO 2024058123 A1 WO2024058123 A1 WO 2024058123A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
mode
pressure side
heat medium
temperature
Prior art date
Application number
PCT/JP2023/033043
Other languages
French (fr)
Japanese (ja)
Inventor
知康 足立
徹三 鵜飼
信也 中川
崇幸 小林
裕之 山本
英人 野山
克弘 齊藤
昌俊 森下
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Publication of WO2024058123A1 publication Critical patent/WO2024058123A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant

Definitions

  • the present disclosure relates to a temperature control system installed in a vehicle and a temperature control method using the same.
  • Vehicles such as electric vehicles and so-called hybrid vehicles that obtain driving power from engines and electric motors tend to lack heat sources, but in addition to air conditioning functions required for vehicles such as heating, cooling, dehumidification, and ventilation, Thermal management and waste heat utilization of in-vehicle equipment such as batteries is required.
  • heat pump systems conventional systems include systems that include a chiller to cool the battery and a heater to warm the battery, or a system that uses a pump to transport water heated by the exhaust heat of a radiator to the temperature controlled target.
  • a number of systems have been used, such as the
  • a vehicle heat management system that can integrate air conditioning and equipment heat management includes a primary loop in which refrigerant circulates according to the refrigeration cycle, and a heat medium (such as water) that transfers heat to and from the refrigerant in the primary loop, which is mounted on the vehicle using a pump.
  • a system including a secondary loop for transporting to equipment has been proposed (for example, Patent Document 1).
  • the heat management system described in Patent Document 1 includes a first heat medium circuit in which an evaporator of a refrigerant circuit and a heat medium outside air heat exchanger are arranged, and a condenser of the refrigerant circuit and a heater core of a cabin air conditioning unit are arranged. and a second heat medium circuit.
  • the first heat medium circuit and the second heat medium circuit are in an unconnected state (unconnected mode) and a connected state assuming low outside temperature by switching the flow paths by the first switching means and the second switching means. (concatenated mode).
  • a heat pump operation is performed in which heat from the outside air is pumped into the heat medium of the second heat medium circuit.
  • the heat medium flowing out from the evaporator is not flowed into the heat medium outside air heat exchanger, but is combined with the heat medium flowing out from the condenser, and the heat medium is flowed into the evaporator and condenser in parallel.
  • the first heat medium circuit and the second heat medium circuit are connected via the evaporator and the condenser.
  • ⁇ 1 is the density of the refrigerant sucked into the compressor in the non-connected mode
  • ⁇ 2 is the density of the refrigerant sucked into the compressor 11 in the non-connected mode
  • A1 is the coefficient of performance (COP) of the refrigeration cycle in the non-connected mode.
  • Patent Document 1 as a condition for switching from a non-coupled mode corresponding to heat pump operation to a coupled mode, an index based on the compressor suction density in the non-coupled mode and the coupled mode and COP according to the outside temperature is used. is used. These mode switching conditions are such that the amount of heat input to the heat medium in the uncoupled mode is compared with the amount of heat input to the heat medium in the coupled mode, and the one with the larger amount of heat input is selected. In other words, although Patent Document 1 aims to secure more sufficient heating capacity, there is a possibility that the power consumed for heating will increase.
  • connection mode of Patent Document 1 the heat medium flowing out from the evaporator and the heat medium flowing out from the condenser are mixed, so that the temperature becomes intermediate between the temperatures of the respective heat mediums before mixing. Flows into the evaporator and condenser. Therefore, compared to the non-coupled mode, it takes time for the temperature of the heat medium flowing out from the condenser to rise. Furthermore, since the flow rate of the heat medium flowing into the indoor heat exchanger decreases, there is room for improvement in the heating capacity.
  • the present disclosure provides temperature control for vehicles that can ensure heating capacity even in situations where it is difficult to secure a heat source due to low outside temperatures, and that can heat the temperature-controlled target by switching modes more appropriately.
  • the purpose is to provide a system and temperature control method.
  • the present disclosure relates to a temperature control system for a vehicle, which includes a refrigerant circuit that includes a compressor, a high-pressure side heat exchanger, a pressure reduction section, and a low-pressure side heat exchanger, and is configured to allow refrigerant to circulate according to a refrigeration cycle; and a heat medium circuit configured to allow circulation of a heat medium that transfers heat to and receives heat from the heat transfer medium.
  • the heat medium circuit includes a high-pressure side heat exchanger that exchanges heat between the refrigerant and the heat medium, and a low-pressure side heat exchanger that exchanges heat between the refrigerant and the heat medium, both of which are configured to be able to pump the heat medium.
  • a pump and a second pump an outdoor heat exchanger that exchanges heat between outside air and a heat medium, and a temperature control object that corresponds to a temperature control object that is heated or cooled by the heat medium or that is used for heating or cooling the temperature control object. and an outdoor bypass path that detours the heat medium from the outdoor heat exchanger.
  • the temperature control system has two operating modes: a low-pressure side circuit in which a heat medium circulates through a low-pressure side heat exchanger and an outdoor heat exchanger by a first pump, and a second circuit in which a heat medium circulates through a high-pressure side heat exchanger and temperature control equipment.
  • a circulating high pressure side circuit is formed, and the heat medium flowing out from the high pressure side heat exchanger flows into the low pressure side heat exchanger via the temperature control device, and further passes through the outdoor bypass route.
  • a compressor heat source mode that flows into the high-pressure side heat exchanger, a mode selection section configured to be able to select a heat pump mode or a compressor heat source mode, and an outside temperature sensor that detects outside air temperature.
  • the mode selection section selects an outside air temperature that corresponds to the intersection of the outside air temperature and heating capacity characteristics of the heat pump mode and the compressor heat source mode, or a switching outside air temperature that is set to a temperature lower than the outside air temperature of the intersection.
  • the heat pump mode is selected when the outside air temperature detected by the air temperature sensor is high, and the compressor heat source mode is selected when the outside air temperature is low.
  • the present disclosure can also be applied to a temperature control method for vehicles.
  • the mode selection unit determines mode selection using a switching outside air temperature that is set based on correlation data of outside air temperature-heating capacity characteristics of each of the heat pump mode and the compressor heat source mode as a threshold. . Then, the heat pump mode or the compressor heat source mode can be appropriately selected based on the heating capacity that depends on the outside air temperature. For example, even if compressor heat source mode is more suitable than heat pump mode in terms of the amount of heat input into the heat medium that is heat exchanged with the high-pressure heat exchanger, based on the characteristics of outside air temperature and heating capacity, , it is possible to select a heat pump mode that can be operated with less power by absorbing heat from the outside air. Then, if the heating capacity obtained by the heat pump mode is sufficient for the required heating capacity, the compressor heat source mode, which obtains the necessary amount of heat by supplying power to the compressor, will not be selected, making economical operation possible. It becomes possible.
  • the high-pressure side heat exchanger and the low-pressure side heat exchanger are connected in series, so the heat medium flows in parallel to the high-pressure side heat exchanger and the low-pressure side heat exchanger.
  • the temperature of the heat medium flowing out from the high-pressure side heat exchanger can be raised more quickly than in the case where the heat exchanger flows out from the high-pressure side heat exchanger. Furthermore, since the amount of heat medium circulated through the temperature control device is large, the amount of heat exchanged between the heat medium and the object of temperature control becomes large.
  • the heat medium that has passed through the high-pressure side heat exchanger and the indoor heat exchanger radiates heat to the refrigerant by the low-pressure side heat exchanger, so that the low pressure in the refrigerant circuit is lower than in the heat pump mode.
  • the circulating flow rate of the refrigerant increases. Since the heat exchange ability is improved by increasing the refrigerant circulation flow rate, and the heating ability can be improved, the temperature of the temperature-controlled object can quickly reach the target temperature.
  • the heating capacity can be increased while supplying the compressor with the power necessary to secure the heat source. can be guaranteed.
  • FIG. 1 is a circuit diagram showing a vehicle temperature control system according to an embodiment of the present disclosure (heat pump mode).
  • FIG. 2 is a diagram showing an operating state of the system shown in FIG. 1 in a heater mode.
  • FIG. 2 is a block diagram showing the hardware configuration of a control device including a mode selection section.
  • (a) and (b) are graphs showing the outside air temperature vs. heating capacity characteristics in the heat pump mode and the heater mode, respectively.
  • FIG. 3 is a flow diagram showing an example of mode determination. It is a graph for explaining mode selection according to a first modification example of the present disclosure.
  • FIG. 3 is a circuit diagram showing a vehicle temperature control system according to a second modified example of the present disclosure (heater mode at startup).
  • the temperature control system 1 for a vehicle shown in FIG. 1 is applicable, for example, to an electric vehicle that does not have an engine and obtains driving force for running the vehicle from an electric motor for running, or for an electric vehicle that does not have an engine and receives driving force for running the vehicle from an engine and an electric motor. It is equipped on a vehicle (not shown) such as a so-called hybrid vehicle.
  • the temperature control system 1 includes air conditioning such as heating and cooling, dehumidification, ventilation, etc. for the passenger compartment 8 in which passengers board, as well as in-vehicle devices such as a battery device (power supply device), a driving motor, and electronic devices that generate heat.
  • thermo management' refers to air conditioning to the appropriate temperature and humidity, and controlling in-vehicle equipment to an appropriate temperature. Electrical equipment and electronic devices included in the temperature control system 1 and other in-vehicle devices are supplied with electric power stored in an in-vehicle battery device. An on-vehicle battery device is charged from an external power source when the vehicle is stopped.
  • the temperature control system 1 includes a refrigerant circuit 10 configured to allow circulation of a refrigerant, a heat medium circuit 20 configured to allow circulation of a heat medium that transfers heat to and from the refrigerant, and a temperature control system 1 configured to operate the temperature control system 1 in a predetermined manner. mode, and a control device 5 that controls the operating state of the temperature control system 1 according to the operating mode.
  • the temperature control system 1 also includes sensors such as an outside temperature sensor 51 that detects the outside temperature, and a room temperature sensor 52 that detects the temperature (room temperature) inside the vehicle interior 8.
  • the temperature control system 1 includes a plurality of operation modes selected by a passenger or by the control device 5. Among the operation modes of the temperature control system 1 of this embodiment, the heat pump mode HP (FIG. 1) and the heater mode HT (FIG. 2) will be described later.
  • the temperature control system 1 includes a mode selection unit 50 configured to be able to select between a heat pump mode HP and a heater mode HT.
  • the mode selection unit 50 may be included in the control device 5.
  • the refrigerant circuit 10 includes a compressor 11, a condenser 12, an expansion valve 13, and an evaporator 14, as an example of the configuration is shown in FIG.
  • Refrigerant circulates in the refrigerant circuit 10 according to a refrigeration cycle.
  • any known appropriate single refrigerant or mixed refrigerant can be used as the refrigerant sealed in the refrigerant circuit 10.
  • HFC Hydrofluoro Carbon
  • R410A and R32 HFC refrigerants
  • HFO Hydrocarbon
  • HC hydrocarbon refrigerants
  • propane and isobutane are used as the refrigerant of this embodiment.
  • R1234yf As the refrigerant of this embodiment, HFC (Hydro Fluoro Carbon) refrigerants such as R410A and R32, HFO (Hydro Fluoro Olefin) refrigerants such as R1234ze and R1234yf, or hydrocarbon (HC) refrigerants such as propane and isobutane are used.
  • R1234yf hydrocarbon refrigerants
  • a subcritical refrigeration cycle is constructed in which the refrigerant pressure on the high-pressure side does not exceed the critical pressure of the refrigerant.
  • CO 2 carbon dioxide
  • a transcritical refrigeration cycle is configured in which the refrigerant pressure on the high pressure side exceeds the critical pressure of the refrigerant.
  • the refrigerant can radiate heat by the high-pressure side heat exchanger like the condenser 12 of this embodiment, and the refrigerant can absorb heat by the low-pressure side heat exchanger like the evaporator 14 of this embodiment.
  • a refrigerant constituting a transcritical refrigeration cycle such as carbon dioxide refrigerant, can also be employed in the refrigerant circuit 10.
  • the compressor 11 corresponds to an electric compressor equipped with a motor driven by electric power supplied from a battery device (not shown).
  • the compressor 11 uses a compression mechanism to adiabatically compress refrigerant sucked into a housing (not shown) and then discharges the refrigerant.
  • the condenser 12 exchanges heat between the refrigerant gas discharged from the compressor 11 and a heat medium.
  • the expansion valve 13 pressure reducing section reduces the pressure of the refrigerant flowing out from the condenser 12 to adiabatically expand the refrigerant.
  • the expansion valve 13 it is preferable to employ an electronic expansion valve whose opening degree can be controlled based on a command from the control device 5.
  • the evaporator 14 causes the refrigerant flowing out from the expansion valve 13 to exchange heat with a heat medium.
  • the refrigerant evaporated by the evaporator 14 is sucked into the compressor 11.
  • An accumulator gas-liquid separator, not shown, can be provided between the evaporator 14 and the compressor 11.
  • a relatively high refrigerant pressure (high pressure) is applied to the condenser 12, and a relatively low refrigerant pressure (low pressure) is applied to the evaporator 14.
  • the refrigerant circulates through the refrigerant circuit 10 based on the pressure difference between high pressure and low pressure.
  • FIG. 1 the flow of refrigerant on the low pressure side is shown by a thick solid line, and the flow of refrigerant on the high pressure side is shown by a thick broken line. The same applies to FIG. 2 and subsequent figures.
  • the heat medium circuit 20 is configured such that a heat medium capable of exchanging heat with a refrigerant can be circulated through the condenser 12 and the evaporator 14 .
  • the heat medium is used for cooling or heating at least one temperature-controlled object.
  • One of the objects of temperature control in this embodiment corresponds to the air inside the vehicle compartment 8.
  • the heat medium sealed in the heat medium circuit 20 is a liquid such as water or brine that circulates through the heat medium circuit 20 while maintaining a liquid phase state. Examples of the brine include a mixture of water and propylene glycol, or a mixture of water and ethylene glycol.
  • the heat medium circuit 20 includes a condenser 12, an evaporator 14, a first pump 21 and a second pump 22, an outdoor heat exchanger 23, and an outdoor bypass path 24. , an indoor heat exchanger 25, and a first switching valve 31, a second switching valve 32, and a third switching valve 33 as a plurality of flow path switching valves.
  • the first switching valve 31 and the second switching valve 32 are four-way valves, and the third switching valve 33 corresponds to a three-way valve.
  • the heat pump mode HP shown in FIG. 1 both the heat medium flowing out from the condenser 12 and the heat medium flowing out from the evaporator 14 flow through the first switching valve 31.
  • the heat medium circuit 20 includes a condenser bypass path 12A that detours the heat medium from the condenser 12, and an evaporator bypass path 14A that detours the heat medium from the evaporator 14.
  • the heat medium circuit 20 includes a condenser flow rate adjustment valve 12V configured to be able to adjust the flow rate ratio of the heat medium between the condenser 12 and the condenser bypass path 12A, and a condenser flow rate adjustment valve 12V that is configured to adjust the flow rate ratio of the heat medium between the condenser 12 and the condenser bypass path 12A, and the evaporator 14 and the evaporator bypass path 14A.
  • the first pump 21 pumps the heat medium by sucking in the heat medium flowing out from the evaporator 14 and discharging it.
  • the second pump 22 pumps the heat medium by sucking in the heat medium flowing out from the condenser 12 and discharging it.
  • the outdoor heat exchanger 23 exchanges heat between the outside air outside the vehicle compartment 8 and the heat medium.
  • the outdoor heat exchanger 23 corresponds to, for example, a radiator placed near an air inlet of a vehicle.
  • the outside air supplied to the outdoor heat exchanger 23 due to the running of the vehicle and the operation of the outdoor blower 23A radiates or absorbs heat based on the temperature difference between the outside air and the heat medium.
  • the outdoor bypass path 24 detours the heat medium from the outdoor heat exchanger 23.
  • the indoor heat exchanger 25 provides conditioned air into the vehicle interior 8 by exchanging heat between the air sent by the indoor blower 25A and a heat medium.
  • the indoor blower 25A blows air (inside air) inside the vehicle interior 8 or outside air toward the indoor heat exchanger 25.
  • the HVAC (Heating, Ventilation, and Air Conditioning) unit U includes an indoor heat exchanger 25, an indoor blower 25A, and a duct (not shown) through which air sent by the indoor blower 25A flows.
  • the heat medium circuit 20 is configured such that the low pressure side circuit C1 and the high pressure side circuit C2 can be set in parallel. (FIG. 1), and is configured such that a series circuit CC can be set (FIG. 2).
  • a high-pressure side circuit C2 for the heat medium that flows out of the condenser 12 and returns to the condenser 12, and a low-pressure side circuit C1 that flows out of the evaporator 14 and returns to the evaporator 14 are separated from each other.
  • the low voltage side circuit C1 and the high voltage side circuit C2 may be referred to as parallel circuits C1 and C2.
  • the heat medium of the high pressure side circuit C2 including the condenser 12 and the heat medium of the low pressure side circuit C1 including the evaporator 14 are not mixed with each other.
  • FIG. 1 showing the parallel circuits C1 and C2
  • the flow of a relatively low temperature heat medium (low temperature heat medium) circulating in the low pressure side circuit C1 is shown by a solid line
  • the flow of a relatively high temperature heat medium (low temperature heat medium) circulating in the high pressure side circuit C2 is shown as a solid line
  • the flow of the heat medium (high-temperature heat medium) is shown by a dashed line.
  • the series circuit CC corresponds to one continuous circuit including the evaporator 14 and the condenser 12 arranged in series.
  • the series circuit CC is set, for example, as shown in FIG. 2, the heat medium flowing out of the condenser 12 flows into the evaporator 14 and then into the condenser 12.
  • FIG. 2 showing the series circuit CC the flow of a relatively low-temperature heat medium is shown by a solid line, and the flow of a relatively high-temperature heat medium is shown by a dashed-dotted line.
  • the flow of the heat medium from the evaporator 14 to the condenser 12 is shown by a solid line, and the heat medium flows from the condenser 12 to the condenser 12.
  • the flow of the heat medium until it flows into the evaporator 14 is shown by a dashed-dotted line. This means that when the heat medium flows into the evaporator 14, the temperature of the heat medium decreases due to heat radiation to the refrigerant, and when the heat medium flows into the condenser 12, the temperature of the heat medium rises due to heat absorption from the refrigerant. represents something to do.
  • the heat medium circulates between the condenser 12 and the evaporator 14 while repeating a temperature increase by the condenser 12 and a temperature decrease by the evaporator 14.
  • the heat medium can be pumped only by at least one of the first pump 21 and the second pump 22.
  • a sufficient circulating flow rate of the heat medium in the heat medium circuit 20 can be obtained by operating the two pumps 21 and 22.
  • All of the first to third switching valves 31 to 33 are electrically operated valves that can be controlled to open and close based on commands from the control device 5, and are configured to be able to switch the heat medium flow path.
  • the first to third switching valves 31 to 33 can be replaced with an appropriate number of electrically operated valves having an appropriate structure in order to set a path in the heat medium circuit 20 that is necessary to realize the required operation mode.
  • control device 5 corresponds to a computer including a memory 501, a calculation section 502, a storage section 503, and an input/output section 504, as shown in FIG. "Computer” also includes programmable logic controllers (PLCs).
  • PLCs programmable logic controllers
  • the control device 5 controls the rotation speed of the compressor 11 according to the heat load, and increases/decreases the circulating flow rate of the refrigerant, thereby increasing/decreasing the cooling capacity and the heating capacity, respectively. Further, the control device 5 detects physical quantities correlated with the room temperature, such as room temperature, outside air temperature, heat medium temperature, refrigerant temperature or pressure, using a sensor, and eliminates the deviation between the detected value and the target value. The room temperature can be adjusted to the target temperature by feedback controlling the rotation speed of the compressor 11 and the like.
  • a computer program configured to be able to execute the mode selection unit 50 is stored in the storage unit 503.
  • the mode selection unit 50 selects heat pump mode HP and heater Select one of the modes HT.
  • the mode selection unit 50 may be included in a computer separate from the control device 5.
  • the heat pump mode HP corresponds to a mode that heats the inside of the vehicle interior 8, and heat is pumped up from the outside air as a heat source to a high-temperature heat medium whose temperature is higher than the outside air temperature, and transported to the vehicle interior 8. Heat the inside.
  • a circuit corresponding to the heat pump mode HP is set in the heat medium circuit 20 based on control commands for the first to third switching valves 31 to 33, the condenser flow rate adjustment valve 12V, and the evaporator flow rate adjustment valve 14V. .
  • the temperature control system 1 is operated using parallel circuits C1 and C2.
  • a high temperature heat medium is supplied to the indoor heat exchanger 25, and a low temperature heat medium is supplied to the outdoor heat exchanger 23. That is, the low-temperature heat medium flowing out of the evaporator 14 flows into the outdoor heat exchanger 23 via the second switching valve 32, as shown by the solid arrow.
  • the heat medium that has absorbed heat from the outside air returns to the evaporator 14 via the first switching valve 31 and the evaporator flow rate adjustment valve 14V.
  • the refrigerant evaporates due to heat absorption from the heat medium flowing into the evaporator 14 and is sucked into the compressor 11.
  • the refrigerant discharged from the compressor 11 is condensed in the condenser 12 by releasing heat to the heat medium, and the temperature of the heat medium increases accordingly.
  • the entire amount of the heat medium flowing from the first switching valve 31 toward the evaporator 14 does not flow into the evaporator bypass path 14A, but instead flows into the evaporator bypass path 14A. 14.
  • the high-temperature heat medium flowing out of the condenser 12 flows into the indoor heat exchanger 25 via the third switching valve 33, as shown by the dashed-dotted arrow.
  • the heat medium that has warmed the interior of the vehicle compartment 8 returns to the condenser 12 via the first switching valve 31 and the condenser flow rate adjustment valve 12V.
  • the entire amount of the heat medium flowing from the first switching valve 31 toward the condenser 12 does not flow into the condenser bypass path 12A, but instead flows into the condenser bypass path 12A. 12.
  • the heat pump mode HP can secure heating capacity while suppressing increases in power of the compressor 11, pumps 21, 22, etc.
  • the heater mode HT which is an operation mode using the series circuit CC, will be described.
  • the outside temperature is significantly lower than 0°C, for example, when the outside temperature drops to -20°C or less, the amount of heat that can be absorbed from the outside air to the heat medium by the heat pump mode HP described above decreases, and the compressor The density of the refrigerant sucked into the compressor 11 decreases, and the power of the compressor 11 decreases. Even in such a case, heating operation can be performed using the compressor 11 as a heat source in the heater mode HT.
  • the power of the compressor 11 is used to heat the temperature-controlled object.
  • the heater mode HT for example, similar to a resistance heating type electric heater, heat of an amount corresponding to the supplied power is supplied to the temperature controlled object. Therefore, although it is called a "heater" mode, the name of the heater mode HT is not necessarily limited to this.
  • the heater mode at startup HT0 which will be described later, is a mode that assumes transition to heater mode HT, so the same name as heater mode HT is used, but the name of heater mode at startup HT0 does not necessarily correspond to this. Not limited.
  • the specific flow of the heat medium in heater mode HT will be explained.
  • the heat medium is detoured from the outdoor heat exchanger 23 through the outdoor bypass path 24.
  • the operation of the outdoor blower 23A may be stopped.
  • the control device 5 switches to the heater mode HT by sending commands to the first switching valve 31, the second switching valve 32, the evaporator flow rate adjustment valve 14V, the condenser flow rate adjustment valve 12V, the outdoor blower 23A, and the indoor blower 25A.
  • a corresponding path is set in the heat medium circuit 20.
  • the heat medium that has absorbed heat from the refrigerant by the condenser 12 flows into the indoor heat exchanger 25 via the third switching valve 33 and is used to heat the interior of the vehicle 8. Then, the heat medium flowing out from the indoor heat exchanger 25 passes through the first switching valve 31 and the evaporator flow rate adjustment valve 14V, flows into at least the evaporator 14 among the evaporator 14 and the evaporator bypass path 14A, and flows into the refrigerant. Heat is radiated to.
  • the heat medium flowing out from the evaporator 14 flows into the outdoor bypass path 24 from the second switching valve 32, and is transferred from the first switching valve 31 to the condenser 12 between the first switching valve 31 and the condenser flow rate adjustment valve 12V. After joining the flow toward the refrigerant, the refrigerant flows into at least the condenser 12 and the condenser bypass path 12A, and absorbs heat from the refrigerant.
  • the heat medium receives heat generated by the power of the compressor 11 from the refrigerant and conveys it to the temperature control target while flowing through the outdoor bypass path 24 avoiding heat radiation to the outside air.
  • the heater mode HT since the system is operated with no exchange of heat with the outside air, the interior of the vehicle interior 8 can be continuously heated regardless of the outside temperature.
  • FIG. 4(a) shows correlation data DT between the characteristic OH1 and the characteristic OH2.
  • the "heating capacity” corresponds to the heating capacity when the rotation speed of the compressor 11 is maximum (hereinafter referred to as maximum heating capacity). At this time, the rotational speed of the pumps 21 and 22 also reaches its maximum. At the maximum heating capacity of the heat pump mode HP, the entire amount of the heat medium flowing from the first switching valve 31 toward the evaporator 14 flows into the evaporator 14, and the amount of heat medium flowing from the first switching valve 31 toward the condenser 12 flows into the evaporator 14. The entire amount flows into the condenser 12.
  • the entire amount of the heat medium flowing from the first switching valve 31 toward the evaporator 14 flows into the evaporator 14, and the heat medium flowing from the first switching valve 31 toward the condenser 12 The entire amount flows into the condenser 12.
  • the heating capacity CP gradually decreases as the outside air temperature T decreases. Further, according to the characteristic OH2, in the heater mode HT, the heating capacity CP is constant regardless of the outside temperature T. Based on the characteristics OH1 and OH2, the line indicating the characteristic OH1 and the line indicating the characteristic OH2 intersect. The outside air temperature corresponding to the intersection X of these lines is referred to as the intersection outside air temperature T.sub.X. A switching outside air temperature T S is set at this intersection outside air temperature T X.
  • the mode selection unit 50 selects the heat pump mode HP when the outside air temperature T detected by the outside air temperature sensor 51 is higher than the outside air temperature T S for switching, and selects the heat pump mode HP for the outside air temperature T S detected by the outside air temperature sensor 51.
  • the heater mode HT is selected.
  • the heating capacity CP of the region R2 in the characteristic OH1 of the heat pump mode HP corresponding to the detected outside air temperature T is higher than the heating capacity of the heater mode HT. Higher than CP.
  • the heating capacity CP of the heater mode HT is higher than the heating capacity CP of the region R1 of the characteristic OH1 of the heat pump mode HP corresponding to the outside air temperature T. higher than The control device 5 can set either the heat pump mode HP or the heater mode HT as the operation mode of the temperature control system 1 based on the determination of the outside air temperature T using the switching outside air temperature T S as a threshold value.
  • a mode is selected according to the air conditioning load L of the temperature adjustment system 1
  • the mode selection unit 50 does not select a mode based on the following determination, but determines the selected mode to be the heat pump mode HP (step S02).
  • step S01 if the heater mode HT is selected based on the above-mentioned judgment of the outside air temperature T (first judgment) (Yes in step S01), that is, if the heating capacity CP of region R1 of characteristic OH1 of the heat pump mode HP corresponding to the detected outside air temperature T is inferior to the heating capacity CP of the heater mode HT, it is preferable to determine the operating mode according to the air conditioning load L by the second judgment described below (steps S03 to S05).
  • FIG. 4B shows L 1 and L 2 as an example of the air conditioning load L, which is the heating load of the temperature control system 1.
  • L 1 ⁇ L 2 Both of the air conditioning loads L 1 and L 2 are heating loads, and the heating loads become smaller as the outside temperature rises.
  • the "air conditioning load” is defined by the following equation (1).
  • the air temperature in the formula is strictly air enthalpy. Strictly speaking, the air volume in the formula is the mass flow rate.
  • Air conditioning load L air volume Q ⁇ (target outlet air temperature T T - suction air temperature T I )...(1)
  • the air volume Q refers to the volumetric flow rate of air sent to the indoor heat exchanger 25 by the indoor blower 25A and the running of the vehicle.
  • the air volume Q can be obtained from, for example, the number of stages set by the occupant or the number of stages set by the temperature control system 1, and the blowout mode (Face/Foot/Defogger, etc.).
  • the target blown air temperature T T is the target temperature of the air blown into the vehicle interior 8 from the HVAC unit U, and is set from the target temperature of the air within the vehicle interior 8 .
  • the target blown air temperature T T is calculated by the room temperature sensor 52 or the like.
  • the suction air temperature T I refers to the temperature of air introduced into the indoor heat exchanger 25 by the indoor blower 25A and the running of the vehicle.
  • the intake air temperature TI corresponds to the room temperature detected by the room temperature sensor 52 when the inside air circulation is set, and corresponds to the outside temperature detected by the outside temperature sensor 51 when the outside air intake is set. Equivalent to. When the outside temperature is significantly below 0°C, the air conditioning load is high because the difference ⁇ T between T T and T I is large.
  • the mode selection unit 50 calculates the air conditioning load L using the above equation and sets the switching outside air temperature TSL according to the air conditioning load L. For example, if the air conditioning load is L1 , the switching outside temperature TSL is set to the temperature T1 corresponding to the intersection X1 of the air conditioning load L1 and the outside temperature-heating capacity characteristic OH1 of the heat pump mode HP. Further, if the air conditioning load is L 2 , the switching outside temperature T SL is set to the temperature T 2 corresponding to the intersection point X 2 of the air conditioning load L 1 and the outside temperature-heating capacity characteristic OH1 of the heat pump mode HP.
  • the mode selection unit 50 selects the heat pump mode HP (step S04) when the outside air temperature T is high (No in step S03) with respect to the switching outside air temperature TSL set according to the air conditioning load L, and selects the switching outside air temperature If the outside air temperature T is lower than TSL (Yes in step S03), heater mode HT is selected (step S05).
  • the control device 5 can set either the heat pump mode HP or the heater mode HT as the operation mode of the temperature control system 1 based on the determination of the outside air temperature T using the switching outside air temperature TSL as a threshold value.
  • the mode selection unit 50 determines mode selection using the switching outside air temperature T S set based on the correlation data DT of the outside air temperature-heating capacity characteristics OH1 and OH2 of the heat pump mode HP and the heater mode HT, respectively, as a threshold. be able to. Then, the heat pump mode HP or the heater mode HT can be appropriately selected based on the heating capacity CP which depends on the outside air temperature T.
  • the heater mode HT which operates using the compressor 11 as the heat source, is selected, so that capacity shortages do not occur regardless of the outside air temperature T. It is possible to heat the object without heating.
  • the heater mode HT is more suitable than the heat pump mode HP in terms of the amount of heat input into the heat medium that exchanges heat with the condenser 12, the characteristics of the outside air temperature T and the heating capacity CP Based on OH1 and OH2, it is possible to select a heat pump mode HP that can be operated with low power consumption by absorbing heat from the outside air. Then, if the heating capacity obtained by the heat pump mode HP is sufficient for the required heating capacity, the heater mode HT, which obtains the necessary amount of heat by supplying power to the compressor 11, is not selected, resulting in economical operation. becomes possible.
  • an operating mode sufficient for the air conditioning load L can be selected from the heat pump mode HP and the heater mode HT using the switching outside air temperature TSL set to a temperature corresponding to the temperature.
  • the heat medium flows in parallel to the condenser 12 and the evaporator 14.
  • the temperature of the heat medium flowing out from the condenser 12 can be raised more quickly than in the case where the heat medium flows out from the condenser 12.
  • the amount of heat medium circulated through the indoor heat exchanger 25 is large, the amount of heat exchanged between the heat medium and the air becomes large.
  • the heat medium that has passed through the condenser 12 and the indoor heat exchanger 25 is radiated to the refrigerant by the evaporator 14, so that the low pressure in the refrigerant circuit 10 increases compared to the heat pump mode HP.
  • the density of the refrigerant sucked into the compressor 11 increases accordingly, the circulating flow rate of the refrigerant increases. Since the heat exchange capacity is improved by increasing the refrigerant circulation flow rate, and the heating capacity can be improved, the temperature inside the vehicle compartment 8 can be brought to the target temperature quickly.
  • the temperature control system 1 by providing at least the heater mode HT, even in situations where it is difficult to secure a heat source due to low outside temperature, heating can be performed while supplying the power necessary for securing the heat source to the compressor 11, etc. ability can be guaranteed.
  • the switching outside air temperature T S may be set to be shifted to a lower temperature side than the intersection outside air temperature T X.
  • the mode is selected based only on the first determination (step S01) described above, when the outside air temperature T is higher than the switching outside air temperature T S , the heating capacity CP is inferior to the heater mode HT. Heat pump mode HP may be selected.
  • the heating capacity CP of the characteristics OH1 and OH2 is the maximum heating capacity, the heating capacity necessary for the actual air conditioning load L is not insufficient in most cases. Therefore, by setting the switching outside air temperature T S to an outside air temperature that is lower by a predetermined temperature difference ⁇ x than the intersection outside air temperature T It can be operated economically.
  • the switching outside air temperature T S can also be set to an outside air temperature that is lower by the temperature difference ⁇ x' from the intersection point outside air temperature T X to the intersection point X max based on the maximum air conditioning load (T S ′).
  • the intersection point X max is the intersection point between the maximum air conditioning load L max assuming outside air introduction and the maximum air volume, and the characteristic OH1.
  • the temperature control system 1 of the embodiment described above may include a startup heater mode HT0 as a startup heater mode shown in FIG. 7 .
  • the startup heater mode HT0 and the heater mode HT will be explained.
  • the control device 5 implements the startup heater mode HT0 prior to the heater mode HT. By doing so, heating operation can be started earlier.
  • the temperature of the heat medium is also low like the outside temperature. Therefore, immediately after the temperature control system 1 is started, the low pressure of the refrigerant circuit 10 decreases as the refrigerant is cooled by the heat medium, and the evaporation temperature of the refrigerant becomes lower than the outside air temperature. Therefore, when the temperature control system 1 is started, the startup heater mode HT0 gives priority to heating the passenger compartment 8 and transfers the heat absorbed from the outside air to the heat medium by the outdoor heat exchanger 23 to the refrigerant. It is better to warm up the refrigerant.
  • the low pressure of the refrigerant circuit 10 rises to a predetermined value, and the refrigerant circuit 10 operates steadily, making it possible to heat the temperature-controlled object with the heat extracted from the power of the compressor 11 into the heat medium. It is better to switch to mode HT.
  • the action of the startup heater mode HT0 using the series circuit CC will be described along with the specific flow of the heat medium.
  • the heat medium is caused to flow into the outdoor heat exchanger 23 in order for the outdoor heat exchanger 23 to absorb heat from the outside air to the heat medium.
  • the heat medium is not allowed to flow into the condenser 12, but is detoured to the condenser bypass path 12A, thereby preventing heat radiation of the refrigerant to the heat medium.
  • the evaporator 14 heat is radiated from the heat medium to the refrigerant.
  • the heat medium is detoured from the condenser 12, so the pressure loss of the heat medium is smaller than when the heat medium flows through the condenser 12.
  • the heat medium flowing out from the evaporator 14 flows into the outdoor heat exchanger 23 via the second switching valve 32 and absorbs heat from the outside air.
  • the heat medium whose temperature has increased due to heat absorption from the outside air is indicated by a dashed line.
  • the heat medium flowing out from the outdoor heat exchanger 23 bypasses the condenser 12 by flowing into the condenser bypass path 12A via the first switching valve 31 and the condenser flow rate adjustment valve 12V.
  • the heat medium flowing out from the condenser bypass path 12A flows into the indoor heat exchanger 25 via the third switching valve 33. However, since the indoor blower 25A is stopped, heat exchange between the heat medium in the indoor heat exchanger 25 and unconditioned cold air is suppressed.
  • the heat medium flowing out of the indoor heat exchanger 25 returns to the evaporator 14 via the first switching valve 31 and the evaporator flow path adjustment valve 14V. Then, the heat is radiated to the refrigerant by the evaporator 14 and flows out from the evaporator 14 as a low-temperature heat medium.
  • the area extends from the outlet of the outdoor heat exchanger 23 to the inlet of the evaporator 14 via the condenser bypass path 12A and the indoor heat exchanger 25, and exchanges heat between the heat medium and the refrigerant, and between the heat medium and air. Transfer of heat between the two is suppressed.
  • the heat medium that has absorbed heat from the outside air passes through the condenser bypass path 12A and the indoor heat exchanger 25, and carries the heat to the evaporator 14 through which the refrigerant flows.
  • the compressor 11 is started by starting the temperature control system 1, and immediately after the refrigeration cycle is started, the refrigerant cools the heat medium.
  • the startup heater mode HT0 by continuously transmitting the heat absorbed by the heat medium from the outside air to the refrigerant, the low pressure of the refrigerant circuit 10 gradually increases, and the evaporation temperature also increases. In the process, the temperature of the heat medium that exchanges heat with the refrigerant also rises.
  • the control device 5 preferably shifts the temperature control system 1 to the heater mode HT when the heat medium approaches the outside air temperature.
  • the control device 5 preferably shifts to the heater mode HT when the temperature of the heat medium approaches the outside air temperature.
  • a threshold value t3 which is lower by a predetermined temperature difference ⁇ than the outside air temperature (for example, ⁇ 20° C.).
  • the difference between the outside temperature and the threshold value is determined by the temperature difference corresponding to the time required for the flow of the heat medium to switch in response to a command to switch the operating mode.
  • the control device 5 When the heating operation is selected by the occupant's operation or by the temperature control system 1, the control device 5 causes the mode selection unit 50 to select the heat pump mode HP or the heater mode based on the comparison between the switching outside air temperature TS and the outside air temperature T. HT can be selected. Furthermore, if the outside air temperature T is higher than the threshold value t 2 (eg -15° C.) lower than the switching outside air temperature T S , the control device 5 selects the heat pump mode HP and If the temperature is low, startup heater mode HT0 can be selected.
  • the threshold value t 2 eg -15° C.
  • the control device 5 switches the heater on without comparing the outside air temperature T and the threshold value t2 .
  • the startup heater mode HT0 can be selected prior to the mode HT. Alternatively, immediately after startup when the outside air temperature T is lower than the switching outside air temperature TS , first select the heater mode HT, and apply a predetermined threshold to the temperature of the heat medium or refrigerant detected at that time. Then, it may be determined whether to continue the heater mode HT or switch to the startup heater mode HT0.
  • the control device 5 waits until the refrigerant circuit 10 is in a steady state while operating the temperature control system 1 in the startup heater mode HT0, for example.
  • the temperature of the heat medium exceeds a predetermined threshold value t3 , the operation mode can be switched from the startup heater mode HT0 for startup to the steady state heater mode HT.
  • the threshold value is not limited to the temperature of the heat medium or refrigerant, but it is also possible to use a physical quantity such as a pressure that indicates a state similar to the state of the heat medium or refrigerant indicated by the temperature threshold. After switching from the startup heater mode HT0 to the heater mode HT, it is preferable to gradually increase the flow rate of the heat medium flowing into the condenser 12 using the condenser flow rate adjustment valve 12V.
  • the temperature control system 1 may include other temperature control devices such as a battery device.
  • the heat medium circuit 20 includes a path for cooling or heating other temperature control devices with the heat medium.
  • a temperature control system for a vehicle A refrigerant circuit (10) including a compressor 11, a high-pressure side heat exchanger (12), a pressure reducing section (13), and a low-pressure side heat exchanger (14), and configured to allow refrigerant to circulate according to a refrigeration cycle; A heat medium circuit (20) configured to allow circulation of a heat medium that transfers heat to and receives heat from the refrigerant,
  • the heat medium circuit (20) includes: the high-pressure side heat exchanger (12) for exchanging heat between the refrigerant and the heat medium; the low pressure side heat exchanger (14) for exchanging heat between the refrigerant and the heat medium;
  • a temperature control device (25) corresponding to a temperature control object heated or cooled by the heat medium or used for heating
  • the mode selection section (50) includes: The intersection point outside air temperature (T X ) corresponding to the intersection point ( X ) of the outside air temperature-heating capacity characteristics (OH1, OH2) of each of the heat pump mode (HP) and the compressor heat source mode (HT), or the intersection point outside air The heat pump mode ( HP), and when the outside air temperature (T) is low, the compressor heat source mode (HT) is selected; Vehicle temperature control system.
  • the mode selection unit (50) selects a region (R1) in which the heating capacity (CP) is inferior to the compressor heat source mode (HT) in the outside air temperature-heating capacity characteristic (OH1) of the heat pump mode (HP). ), the switching outside air temperature (T SL ) is configured to be settable according to the heating load (L 1 , L 2 ).
  • the vehicle temperature control system according to item [1].
  • a high-pressure side flow rate adjustment valve (12V) configured to be able to adjust the flow rate ratio of the heat medium between the high-pressure side heat exchanger (12) and the high-pressure side bypass path,
  • the heat medium flowing out from the high pressure side heat exchanger (12) flows into the low pressure side heat exchanger (14), further passes through the outdoor heat exchanger (23), and then flows into the high pressure side heat exchanger (12).
  • HT0 start-up compressor heat source mode
  • the start-up compressor heat source mode causes the heat medium flowing out of the low-pressure side heat exchanger (14) to flow into the outdoor heat exchanger (23).
  • a temperature control method using a vehicle temperature control system is A refrigerant circuit (10) including a compressor 11, a high-pressure side heat exchanger (12), a pressure reduction section (13), and a low-pressure side heat exchanger (14), and configured to allow refrigerant to circulate according to a refrigeration cycle; a heat medium circuit (20) configured to allow circulation of a heat medium that transfers heat to and receives heat from the refrigerant;
  • the heat medium circuit (20) includes: the high-pressure side heat exchanger (12) for exchanging heat between the refrigerant and the heat medium; the low pressure side heat exchanger (14) for exchanging heat between the refrigerant and the heat medium; A first pump (21) and a second pump (22), both of which are configured to be able to pump the heat medium; an outdoor heat exchanger (23) that exchanges heat between outside
  • a heat pump mode in which a high pressure side circuit (C2) in which the heat medium circulates through the temperature control device (25) by the second pump (22) is formed;
  • the heat medium flowing out from the high pressure side heat exchanger (12) flows into the low pressure side heat exchanger (14) via the temperature control device (25), and further flows through the outdoor bypass path (24).
  • Temperature control system 5 Control device 8 Compartment 10 Refrigerant circuit 11 Compressor 12 Condenser 12A Condenser bypass path 12V Condenser flow rate adjustment valve 13 Expansion valve (pressure reducing section) 14 Evaporator 14A Evaporator bypass path 14V Evaporator flow rate adjustment valve 20 Heat medium circuit 21 First pump 22 Second pump 23 Outdoor heat exchanger 23A Outdoor blower 24 Outdoor bypass path 25 Indoor heat exchanger 25A Indoor blower 31 First switching Valve 32 Second switching valve 33 Third switching valve 50 Mode selection section 51 Outside temperature sensor 52 Room temperature sensor 501 Memory 502 Arithmetic section 503 Storage section 504 Input/output section C1 Low pressure side circuit C2 High pressure side circuit CC Series circuit CP Heating capacity DT Correlation Data R1, R2 Area HP Heat pump mode HT Heater mode (compressor heat source mode) HT0 Start-up heater mode (start-up compressor heat source mode) L, L 1 , L 2 Air conditioning load OH1, OH2 Outside air temperature - heating capacity characteristics T, T 1 , T

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Provided are a vehicle temperature control system and method which are capable of ensuring heating capacity even when the outdoor temperature is low, and capable of heating a thermal load via more appropriate mode switching. This vehicle temperature control system is equipped with: a coolant circuit; a heating medium circuit; a heat pump mode in which a low-pressure-side circuit through which a heating medium circulates and a high-pressure-side circuit through which a heating medium circulates are formed; a compressor heat source mode in which a heating medium discharged from a high-pressure-side heat exchanger flows into a low-pressure-side heat exchanger via a temperature control device, passes through an outdoor bypass path, and flows into the high-pressure-side heat exchanger; and a mode selection unit. The mode selection unit is configured so as to select the heat pump mode when the detected outdoor temperature is higher than a switching outdoor temperature pertaining to the outdoor temperature/heating capacity properties intersection for each of the heat pump mode and the compressor heat source mode, and to select the compressor heat source mode when the outdoor temperature is lower than said switching outdoor temperature.

Description

車両用の温調システムおよび温調方法Vehicle temperature control system and temperature control method
 本開示は、車両に装備される温調システム、およびそれを用いる温調方法に関する。 The present disclosure relates to a temperature control system installed in a vehicle and a temperature control method using the same.
 電気自動車や、エンジンおよび電動機から車両走行用の駆動力を得る所謂ハイブリッド自動車等の車両においては、熱源が不足しがちな中、冷暖房、除湿、換気等の車両に要求される空調機能の他、バッテリー等の車載機器の熱管理や排熱利用が要求される。そうした要求に対して、従来、ヒートポンプシステムに加え、バッテリーを冷却するチラーやバッテリーを加温するヒータを含むシステム、あるいは、ラジエーターの排熱により加温された水をポンプで温調対象に搬送するシステム等の複数のシステムが用いられてきた。 Vehicles such as electric vehicles and so-called hybrid vehicles that obtain driving power from engines and electric motors tend to lack heat sources, but in addition to air conditioning functions required for vehicles such as heating, cooling, dehumidification, and ventilation, Thermal management and waste heat utilization of in-vehicle equipment such as batteries is required. In order to meet these demands, in addition to heat pump systems, conventional systems include systems that include a chiller to cool the battery and a heater to warm the battery, or a system that uses a pump to transport water heated by the exhaust heat of a radiator to the temperature controlled target. A number of systems have been used, such as the
 空調および機器の熱管理を統合可能な車両用熱管理システムとしては、冷媒が冷凍サイクルに従って循環する一次ループと、一次ループの冷媒に対して熱を授受する熱媒体(水等)をポンプにより車載機器に搬送する二次ループとを備えたシステムが提案されている(例えば、特許文献1)。 A vehicle heat management system that can integrate air conditioning and equipment heat management includes a primary loop in which refrigerant circulates according to the refrigeration cycle, and a heat medium (such as water) that transfers heat to and from the refrigerant in the primary loop, which is mounted on the vehicle using a pump. A system including a secondary loop for transporting to equipment has been proposed (for example, Patent Document 1).
 特許文献1に記載の熱管理システムは、冷媒回路の蒸発器および熱媒体外気熱交換器が配置される第1熱媒体回路と、冷媒回路の凝縮器および車室空調ユニットのヒータコアが配置される第2熱媒体回路とを備えている。第1熱媒体回路と第2熱媒体回路とは、第1切替手段および第2切替手段による流路の切り替えにより、非連結の状態(非連結モード)と、低外気温を想定した連結の状態(連結モード)とに切り替えられる。 The heat management system described in Patent Document 1 includes a first heat medium circuit in which an evaporator of a refrigerant circuit and a heat medium outside air heat exchanger are arranged, and a condenser of the refrigerant circuit and a heater core of a cabin air conditioning unit are arranged. and a second heat medium circuit. The first heat medium circuit and the second heat medium circuit are in an unconnected state (unconnected mode) and a connected state assuming low outside temperature by switching the flow paths by the first switching means and the second switching means. (concatenated mode).
 非連結モード時には、外気の熱を第2熱媒体回路の熱媒体へ汲み上げるヒートポンプ運転が行われる。連結モード時には、蒸発器から流出した熱媒体を熱媒体外気熱交換器へ流入させることなく、凝縮器から流出した熱媒体と合流させ、蒸発器および凝縮器に対して熱媒体を並列に流入させる。このとき第1熱媒体回路と第2熱媒体回路とが、蒸発器および凝縮器を介して連結されている。 In the uncoupled mode, a heat pump operation is performed in which heat from the outside air is pumped into the heat medium of the second heat medium circuit. In the coupled mode, the heat medium flowing out from the evaporator is not flowed into the heat medium outside air heat exchanger, but is combined with the heat medium flowing out from the condenser, and the heat medium is flowed into the evaporator and condenser in parallel. . At this time, the first heat medium circuit and the second heat medium circuit are connected via the evaporator and the condenser.
 上記特許文献1では、連結モード時の第2熱媒体回路における熱媒体温度に関連する物理量(ρ2)に基づき、下記の数式を満たす場合には、連結モード時に第2熱媒体回路の熱媒体に投入できる熱量の方が、非連結モード時に第2熱媒体回路の熱媒体に投入できる熱量よりも大きくなると推定されるため、非連結モードから連結モードに切り替えている。
 ρ2>A1×ρ1
 ここで、ρ1は、非連結モード時に圧縮機が吸入する冷媒の密度であり、ρ2は、非連結モード時に圧縮機11が吸入する冷媒の密度である。A1は、非連結モード時の冷凍サイクルの成績係数(COP;Coefficient of Performance)である。
In the above-mentioned Patent Document 1, based on a physical quantity (ρ2) related to the heat medium temperature in the second heat medium circuit in the connected mode, when the following formula is satisfied, it is estimated that the amount of heat that can be input to the heat medium of the second heat medium circuit in the connected mode is greater than the amount of heat that can be input to the heat medium of the second heat medium circuit in the unconnected mode, and therefore the mode is switched from the unconnected mode to the connected mode.
ρ2>A1×ρ1
Here, ρ1 is the density of the refrigerant sucked into the compressor in the non-connected mode, ρ2 is the density of the refrigerant sucked into the compressor 11 in the non-connected mode, and A1 is the coefficient of performance (COP) of the refrigeration cycle in the non-connected mode.
特許第6083304号Patent No. 6083304
 特許文献1では、ヒートポンプ運転に相当する非連結モードから、連結モードへの切替条件として、非連結モード時および連結モード時のそれぞれの圧縮機吸入密度と、外気温に応じたCOPとに基づく指標を用いている。こうしたモード切替条件は、非連結モード時の熱媒体への入熱量と、連結モード時の熱媒体への入熱量とを比べて、より入熱量の大きい方を選択する。つまり、特許文献1は、暖房能力をより十分に確保することを指向しているが、暖房のために消費される電力が増加する可能性がある。 In Patent Document 1, as a condition for switching from a non-coupled mode corresponding to heat pump operation to a coupled mode, an index based on the compressor suction density in the non-coupled mode and the coupled mode and COP according to the outside temperature is used. is used. These mode switching conditions are such that the amount of heat input to the heat medium in the uncoupled mode is compared with the amount of heat input to the heat medium in the coupled mode, and the one with the larger amount of heat input is selected. In other words, although Patent Document 1 aims to secure more sufficient heating capacity, there is a possibility that the power consumed for heating will increase.
 また、特許文献1の連結モード時には、蒸発器から流出した熱媒体と、凝縮器から流出した熱媒体とが混合されることで、混合前のそれぞれの熱媒体の温度の中間の温度となって蒸発器および凝縮器に流入する。そのため、非連結モードと比べて、凝縮器より流出する熱媒体の温度上昇に時間がかかる。また、室内熱交換器に流入する熱媒体の流量が低下するので、加熱能力には改善の余地がある。 Further, in the connection mode of Patent Document 1, the heat medium flowing out from the evaporator and the heat medium flowing out from the condenser are mixed, so that the temperature becomes intermediate between the temperatures of the respective heat mediums before mixing. Flows into the evaporator and condenser. Therefore, compared to the non-coupled mode, it takes time for the temperature of the heat medium flowing out from the condenser to rise. Furthermore, since the flow rate of the heat medium flowing into the indoor heat exchanger decreases, there is room for improvement in the heating capacity.
 本開示は、外気温が低いため熱源の確保が難しい状況であっても加熱能力を担保することが可能であるとともに、より適切なモード切替による温調対象の加熱が可能な車両用の温調システムおよび温調方法を提供することを目的とする。 The present disclosure provides temperature control for vehicles that can ensure heating capacity even in situations where it is difficult to secure a heat source due to low outside temperatures, and that can heat the temperature-controlled target by switching modes more appropriately. The purpose is to provide a system and temperature control method.
 本開示は、車両用温調システムであって、圧縮機、高圧側熱交換器、減圧部、および低圧側熱交換器を含み、冷凍サイクルに従って冷媒が循環可能に構成される冷媒回路と、冷媒に対して熱を授受する熱媒体が循環可能に構成される熱媒体回路と、を備える。
 熱媒体回路は、冷媒と熱媒体とを熱交換させる高圧側熱交換器と、冷媒と熱媒体とを熱交換させる低圧側熱交換器と、いずれも熱媒体を圧送可能に構成される第1ポンプおよび第2ポンプと、外気と熱媒体とを熱交換させる室外熱交換器と、熱媒体により加熱または冷却される温調対象に相当する、または前記温調対象の加熱または冷却に用いられる温調機器と、室外熱交換器から熱媒体を迂回させる室外バイパス経路と、を含む。
 温調システムは、運転モードとして、低圧側熱交換器および室外熱交換器を熱媒体が第1ポンプにより循環する低圧側回路と、高圧側熱交換器および温調機器を熱媒体が第2ポンプにより循環する高圧側回路とが形成されるヒートポンプモードと、高圧側熱交換器から流出した熱媒体が、温調機器を経由して低圧側熱交換器に流入し、さらに室外バイパス経路を通り、高圧側熱交換器に流入する圧縮機熱源モードと、を備えるとともに、ヒートポンプモードまたは圧縮機熱源モードを選択可能に構成されるモード選択部と、外気温度を検知する外気温センサと、を備える。
 モード選択部は、ヒートポンプモードおよび圧縮機熱源モードのそれぞれの外気温度-加熱能力特性の交点に対応する交点外気温度、または、交点外気温度よりも低い温度に設定される切替外気温度に対し、外気温センサにより検知される外気温度が高い場合はヒートポンプモードを選択し、外気温度が低い場合は圧縮機熱源モードを選択するように構成される。
The present disclosure relates to a temperature control system for a vehicle, which includes a refrigerant circuit that includes a compressor, a high-pressure side heat exchanger, a pressure reduction section, and a low-pressure side heat exchanger, and is configured to allow refrigerant to circulate according to a refrigeration cycle; and a heat medium circuit configured to allow circulation of a heat medium that transfers heat to and receives heat from the heat transfer medium.
The heat medium circuit includes a high-pressure side heat exchanger that exchanges heat between the refrigerant and the heat medium, and a low-pressure side heat exchanger that exchanges heat between the refrigerant and the heat medium, both of which are configured to be able to pump the heat medium. A pump and a second pump, an outdoor heat exchanger that exchanges heat between outside air and a heat medium, and a temperature control object that corresponds to a temperature control object that is heated or cooled by the heat medium or that is used for heating or cooling the temperature control object. and an outdoor bypass path that detours the heat medium from the outdoor heat exchanger.
The temperature control system has two operating modes: a low-pressure side circuit in which a heat medium circulates through a low-pressure side heat exchanger and an outdoor heat exchanger by a first pump, and a second circuit in which a heat medium circulates through a high-pressure side heat exchanger and temperature control equipment. In the heat pump mode, a circulating high pressure side circuit is formed, and the heat medium flowing out from the high pressure side heat exchanger flows into the low pressure side heat exchanger via the temperature control device, and further passes through the outdoor bypass route. A compressor heat source mode that flows into the high-pressure side heat exchanger, a mode selection section configured to be able to select a heat pump mode or a compressor heat source mode, and an outside temperature sensor that detects outside air temperature.
The mode selection section selects an outside air temperature that corresponds to the intersection of the outside air temperature and heating capacity characteristics of the heat pump mode and the compressor heat source mode, or a switching outside air temperature that is set to a temperature lower than the outside air temperature of the intersection. The heat pump mode is selected when the outside air temperature detected by the air temperature sensor is high, and the compressor heat source mode is selected when the outside air temperature is low.
 また、本開示は、車両用の温調方法にも展開することができる。 Furthermore, the present disclosure can also be applied to a temperature control method for vehicles.
 本開示によれば、モード選択部により、ヒートポンプモードおよび圧縮機熱源モードのそれぞれの外気温度-加熱能力特性の相関データに基づいて設定される切替外気温度を閾値として、モード選択の判定が行われる。そうすると、外気温度に依存する加熱能力に基づき、適切にヒートポンプモードまたは圧縮機熱源モードを選択することができる。
 例えば、高圧側熱交換器と熱交換される熱媒体に投入される熱量の大きさで言うとヒートポンプモードよりも圧縮機熱源モードが適するのだとしても、外気温度と加熱能力との特性に基づき、外気からの吸熱により省電力で運転可能なヒートポンプモードを選択することが可能となる。そうすると、必要な加熱能力に対してヒートポンプモードにより得られる加熱能力が十分である場合には、圧縮機への電力投入により必要な熱量を得る圧縮機熱源モードが選択されないので、経済的な運転が可能となる。
According to the present disclosure, the mode selection unit determines mode selection using a switching outside air temperature that is set based on correlation data of outside air temperature-heating capacity characteristics of each of the heat pump mode and the compressor heat source mode as a threshold. . Then, the heat pump mode or the compressor heat source mode can be appropriately selected based on the heating capacity that depends on the outside air temperature.
For example, even if compressor heat source mode is more suitable than heat pump mode in terms of the amount of heat input into the heat medium that is heat exchanged with the high-pressure heat exchanger, based on the characteristics of outside air temperature and heating capacity, , it is possible to select a heat pump mode that can be operated with less power by absorbing heat from the outside air. Then, if the heating capacity obtained by the heat pump mode is sufficient for the required heating capacity, the compressor heat source mode, which obtains the necessary amount of heat by supplying power to the compressor, will not be selected, making economical operation possible. It becomes possible.
 圧縮機熱源モードのとき、高圧側熱交換器と低圧側熱交換器とは直列に接続されているので、高圧側熱交換器と低圧側熱交換器とに対して熱媒体を並列に流入させる場合と比べて、高圧側熱交換器から流出した熱媒体の温度を早く上昇させることができる。また、温調機器の熱媒体循環量が大きいため、熱媒体と温調対象との熱交換量が大きくなる。 When in the compressor heat source mode, the high-pressure side heat exchanger and the low-pressure side heat exchanger are connected in series, so the heat medium flows in parallel to the high-pressure side heat exchanger and the low-pressure side heat exchanger. The temperature of the heat medium flowing out from the high-pressure side heat exchanger can be raised more quickly than in the case where the heat exchanger flows out from the high-pressure side heat exchanger. Furthermore, since the amount of heat medium circulated through the temperature control device is large, the amount of heat exchanged between the heat medium and the object of temperature control becomes large.
 さらに、圧縮機熱源モードのとき、高圧側熱交換器および室内熱交換器を経た熱媒体が、低圧側熱交換器により冷媒へと放熱されることにより、ヒートポンプモードと比べて冷媒回路の低圧が上昇し、それに伴い圧縮機に吸入される冷媒の密度が増加することで、冷媒の循環流量が増加する。冷媒循環流量の増加により熱交換能力が向上し、加熱能力を向上させることができるから、温調対象の温度を早期に目標温度まで到達させることができる。 Furthermore, in the compressor heat source mode, the heat medium that has passed through the high-pressure side heat exchanger and the indoor heat exchanger radiates heat to the refrigerant by the low-pressure side heat exchanger, so that the low pressure in the refrigerant circuit is lower than in the heat pump mode. As the density of the refrigerant sucked into the compressor increases accordingly, the circulating flow rate of the refrigerant increases. Since the heat exchange ability is improved by increasing the refrigerant circulation flow rate, and the heating ability can be improved, the temperature of the temperature-controlled object can quickly reach the target temperature.
 熱交換システムによれば、少なくとも圧縮機熱源モードを備えることにより、外気温が低いため熱源の確保が厳しい状況であっても、熱源確保に必要な電力を圧縮機等に供給しながら、加熱能力を担保することができる。 According to the heat exchange system, by having at least a compressor heat source mode, even in situations where it is difficult to secure a heat source due to low outside temperatures, the heating capacity can be increased while supplying the compressor with the power necessary to secure the heat source. can be guaranteed.
本開示の実施形態に係る車両用温調システムを示す回路図である(ヒートポンプモード)。FIG. 1 is a circuit diagram showing a vehicle temperature control system according to an embodiment of the present disclosure (heat pump mode). 図1に記載のシステムのヒータモードによる運転状態を示す図である。FIG. 2 is a diagram showing an operating state of the system shown in FIG. 1 in a heater mode. モード選択部を含む制御装置のハードウェア構成を示すブロック図である。FIG. 2 is a block diagram showing the hardware configuration of a control device including a mode selection section. (a)および(b)は、ヒートポンプモードおよびヒータモードのそれぞれの外気温度-加熱能力特性を示すグラフである。(a) and (b) are graphs showing the outside air temperature vs. heating capacity characteristics in the heat pump mode and the heater mode, respectively. モード判定の一例を示すフロー図である。FIG. 3 is a flow diagram showing an example of mode determination. 本開示の第1変形例に係るモード選択を説明するためのグラフである。It is a graph for explaining mode selection according to a first modification example of the present disclosure. 本開示の第2変形例に係る車両用温調システムを示す回路図である(起動時ヒータモード)。FIG. 3 is a circuit diagram showing a vehicle temperature control system according to a second modified example of the present disclosure (heater mode at startup).
 以下、添付図面を参照しながら、本開示の一実施形態について説明する。
[実施形態]
 図1に示す車両用の温調システム1は、例えば、エンジンを備えておらず走行用電動モータから車両走行用の駆動力を得る電気自動車、あるいは、エンジンおよび電動機から車両走行用の駆動力を得る所謂ハイブリッド自動車等の図示しない車両に装備されている。温調システム1は、乗員が搭乗する車室8の冷暖房、除湿、換気等の空調の他、車両に搭載されているバッテリー装置(電源装置)、走行用モータ、発熱する電子機器等の車載装置の熱管理、排熱回収等を担う。適切な温度や湿度に空調したり、車載装置を適温に管理したりすることを「熱管理」と総称するものとする。
 温調システム1およびその他の車載装置に備わる電動機器や電子機器には、車載のバッテリー装置に蓄えられた電力が供給される。車載のバッテリー装置は、車両停止時に外部電源から充電される。
Hereinafter, one embodiment of the present disclosure will be described with reference to the accompanying drawings.
[Embodiment]
The temperature control system 1 for a vehicle shown in FIG. 1 is applicable, for example, to an electric vehicle that does not have an engine and obtains driving force for running the vehicle from an electric motor for running, or for an electric vehicle that does not have an engine and receives driving force for running the vehicle from an engine and an electric motor. It is equipped on a vehicle (not shown) such as a so-called hybrid vehicle. The temperature control system 1 includes air conditioning such as heating and cooling, dehumidification, ventilation, etc. for the passenger compartment 8 in which passengers board, as well as in-vehicle devices such as a battery device (power supply device), a driving motor, and electronic devices that generate heat. Responsible for heat management, waste heat recovery, etc. The general term ``thermal management'' refers to air conditioning to the appropriate temperature and humidity, and controlling in-vehicle equipment to an appropriate temperature.
Electrical equipment and electronic devices included in the temperature control system 1 and other in-vehicle devices are supplied with electric power stored in an in-vehicle battery device. An on-vehicle battery device is charged from an external power source when the vehicle is stopped.
〔全体構成〕
 温調システム1は、冷媒が循環可能に構成される冷媒回路10と、冷媒に対して熱を授受する熱媒体が循環可能に構成される熱媒体回路20と、温調システム1を所定の運転モードに設定し、運転モードに応じて温調システム1の運転状態を制御する制御装置5とを備えている。
 また、温調システム1は、外気温度を検知する外気温センサ51、車室8内の温度(室温)を検知する室温センサ52等のセンサを含む。
〔overall structure〕
The temperature control system 1 includes a refrigerant circuit 10 configured to allow circulation of a refrigerant, a heat medium circuit 20 configured to allow circulation of a heat medium that transfers heat to and from the refrigerant, and a temperature control system 1 configured to operate the temperature control system 1 in a predetermined manner. mode, and a control device 5 that controls the operating state of the temperature control system 1 according to the operating mode.
The temperature control system 1 also includes sensors such as an outside temperature sensor 51 that detects the outside temperature, and a room temperature sensor 52 that detects the temperature (room temperature) inside the vehicle interior 8.
 温調システム1は、乗員によりあるいは制御装置5により選択される複数の運転モードを備えている。本実施形態の温調システム1の運転モードのうち、ヒートポンプモードHP(図1)と、ヒータモードHT(図2)とについて後述する。
 温調システム1は、ヒートポンプモードHPとヒータモードHTとを選択可能に構成されるモード選択部50を備えている。モード選択部50は、制御装置5に含まれていてもよい。
The temperature control system 1 includes a plurality of operation modes selected by a passenger or by the control device 5. Among the operation modes of the temperature control system 1 of this embodiment, the heat pump mode HP (FIG. 1) and the heater mode HT (FIG. 2) will be described later.
The temperature control system 1 includes a mode selection unit 50 configured to be able to select between a heat pump mode HP and a heater mode HT. The mode selection unit 50 may be included in the control device 5.
〔冷媒回路の構成〕
 冷媒回路10は、図1に構成の一例を示すように、圧縮機11と、凝縮器12と、膨張弁13と、蒸発器14とを備えている。冷媒回路10には、冷凍サイクルに従って冷媒が循環する。
 冷媒回路10に封入される冷媒としては、公知の適宜な単一冷媒あるいは混合冷媒を用いることができる。例えば、本実施形態の冷媒として、R410A、R32等のHFC(Hydro Fluoro Carbon)冷媒や、R1234ze、R1234yf等のHFO(Hydro Fluoro Olefin)冷媒、あるいは、プロパン、イソブタン等の炭化水素(HC)系冷媒を用いることが可能である。特に、本実施形態の冷媒としてR1234yfを用いることが好ましい。
[Refrigerant circuit configuration]
The refrigerant circuit 10 includes a compressor 11, a condenser 12, an expansion valve 13, and an evaporator 14, as an example of the configuration is shown in FIG. Refrigerant circulates in the refrigerant circuit 10 according to a refrigeration cycle.
As the refrigerant sealed in the refrigerant circuit 10, any known appropriate single refrigerant or mixed refrigerant can be used. For example, as the refrigerant of this embodiment, HFC (Hydro Fluoro Carbon) refrigerants such as R410A and R32, HFO (Hydro Fluoro Olefin) refrigerants such as R1234ze and R1234yf, or hydrocarbon (HC) refrigerants such as propane and isobutane are used. It is possible to use In particular, it is preferable to use R1234yf as the refrigerant in this embodiment.
 上記に列挙したフロン系または炭化水素系の冷媒を用いる場合は、高圧側の冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルが構成される。
 冷媒として二酸化炭素(CO)を用いる場合は、高圧側の冷媒圧力が冷媒の臨界圧力を超える遷臨界冷凍サイクルが構成される。その場合でも、本実施形態の凝縮器12と同様に高圧側熱交換器により冷媒が放熱し、本実施形態の蒸発器14と同様に低圧側熱交換器により冷媒が吸熱する作用が得られるから、二酸化炭素冷媒のように遷臨界冷凍サイクルを構成する冷媒も冷媒回路10に採用することができる。
When using the fluorocarbon-based or hydrocarbon-based refrigerants listed above, a subcritical refrigeration cycle is constructed in which the refrigerant pressure on the high-pressure side does not exceed the critical pressure of the refrigerant.
When carbon dioxide (CO 2 ) is used as the refrigerant, a transcritical refrigeration cycle is configured in which the refrigerant pressure on the high pressure side exceeds the critical pressure of the refrigerant. Even in that case, the refrigerant can radiate heat by the high-pressure side heat exchanger like the condenser 12 of this embodiment, and the refrigerant can absorb heat by the low-pressure side heat exchanger like the evaporator 14 of this embodiment. A refrigerant constituting a transcritical refrigeration cycle, such as carbon dioxide refrigerant, can also be employed in the refrigerant circuit 10.
 圧縮機11は、図示しないバッテリー装置から供給される電力により駆動されるモータを備えた電動圧縮機に相当する。圧縮機11は、図示しないハウジング内に吸入される冷媒を圧縮機構により断熱圧縮して吐出する。
 凝縮器12は、圧縮機11から吐出された冷媒ガスを熱媒体と熱交換させる。
 膨張弁13(減圧部)は、凝縮器12から流出した冷媒を減圧させることで断熱膨張させる。膨張弁13としては、制御装置5からの指令に基づき開度を制御可能な電子膨張弁を採用することが好ましい。但し、温度式膨張弁を採用したり、膨張弁13の代わりにキャピラリーチューブを採用したりすることも許容される。
The compressor 11 corresponds to an electric compressor equipped with a motor driven by electric power supplied from a battery device (not shown). The compressor 11 uses a compression mechanism to adiabatically compress refrigerant sucked into a housing (not shown) and then discharges the refrigerant.
The condenser 12 exchanges heat between the refrigerant gas discharged from the compressor 11 and a heat medium.
The expansion valve 13 (pressure reducing section) reduces the pressure of the refrigerant flowing out from the condenser 12 to adiabatically expand the refrigerant. As the expansion valve 13, it is preferable to employ an electronic expansion valve whose opening degree can be controlled based on a command from the control device 5. However, it is also permissible to employ a temperature-type expansion valve or to employ a capillary tube instead of the expansion valve 13.
 蒸発器14は、膨張弁13から流出した冷媒を熱媒体と熱交換させる。蒸発器14により蒸発した冷媒は、圧縮機11により吸入される。
 蒸発器14と圧縮機11との間には、図示しないアキュムレータ(気液分離器)を設けることができる。
The evaporator 14 causes the refrigerant flowing out from the expansion valve 13 to exchange heat with a heat medium. The refrigerant evaporated by the evaporator 14 is sucked into the compressor 11.
An accumulator (gas-liquid separator), not shown, can be provided between the evaporator 14 and the compressor 11.
 凝縮器12には相対的に高い冷媒圧力(高圧)が与えられ、蒸発器14には相対的に低い冷媒圧力(低圧)が与えられる。冷媒は、高圧と低圧との圧力差に基づき冷媒回路10を循環する。
 図1において、低圧側の冷媒の流れは太い実線により示され、高圧側の冷媒の流れは太い破線により示されている。図2以下でも同様である。
A relatively high refrigerant pressure (high pressure) is applied to the condenser 12, and a relatively low refrigerant pressure (low pressure) is applied to the evaporator 14. The refrigerant circulates through the refrigerant circuit 10 based on the pressure difference between high pressure and low pressure.
In FIG. 1, the flow of refrigerant on the low pressure side is shown by a thick solid line, and the flow of refrigerant on the high pressure side is shown by a thick broken line. The same applies to FIG. 2 and subsequent figures.
〔熱媒体回路の構成〕
 熱媒体回路20は、凝縮器12および蒸発器14により冷媒と熱を授受可能な熱媒体が循環可能に構成されている。熱媒体は、少なくとも1つ以上の温調対象の冷却または加熱に用いられる。本実施形態における温調対象の一つは、車室8内の空気に相当する。
 熱媒体回路20に封入される熱媒体は、液相の状態を維持して熱媒体回路20を循環する水やブライン等の液体である。ブラインとしては、例えば、水およびプロピレングリコールの混合液、あるいは、水およびエチレングリコールの混合液を例示することができる。
[Configuration of heat medium circuit]
The heat medium circuit 20 is configured such that a heat medium capable of exchanging heat with a refrigerant can be circulated through the condenser 12 and the evaporator 14 . The heat medium is used for cooling or heating at least one temperature-controlled object. One of the objects of temperature control in this embodiment corresponds to the air inside the vehicle compartment 8.
The heat medium sealed in the heat medium circuit 20 is a liquid such as water or brine that circulates through the heat medium circuit 20 while maintaining a liquid phase state. Examples of the brine include a mixture of water and propylene glycol, or a mixture of water and ethylene glycol.
 熱媒体回路20は、図1に構成の一例を示すように、凝縮器12と、蒸発器14と、第1ポンプ21および第2ポンプ22と、室外熱交換器23と、室外バイパス経路24と、室内熱交換器25と、複数の流路切替弁としての第1切替弁31、第2切替弁32、および第3切替弁33とを備えている。 As an example of the configuration is shown in FIG. 1, the heat medium circuit 20 includes a condenser 12, an evaporator 14, a first pump 21 and a second pump 22, an outdoor heat exchanger 23, and an outdoor bypass path 24. , an indoor heat exchanger 25, and a first switching valve 31, a second switching valve 32, and a third switching valve 33 as a plurality of flow path switching valves.
 本実施形態において、第1切替弁31および第2切替弁32は四方弁であり、第3切替弁33は三方弁に相当する。図1に示すヒートポンプモードHPにおいて、第1切替弁31には、凝縮器12から流出した熱媒体と、蒸発器14から流出した熱媒体との両方が流通する。 In this embodiment, the first switching valve 31 and the second switching valve 32 are four-way valves, and the third switching valve 33 corresponds to a three-way valve. In the heat pump mode HP shown in FIG. 1, both the heat medium flowing out from the condenser 12 and the heat medium flowing out from the evaporator 14 flow through the first switching valve 31.
 熱媒体回路20は、凝縮器12から熱媒体を迂回させる凝縮器バイパス経路12Aと、蒸発器14から熱媒体を迂回させる蒸発器バイパス経路14Aとを備えることが好ましい。その場合、熱媒体回路20は、凝縮器12と凝縮器バイパス経路12Aとの熱媒体の流量比を調整可能に構成される凝縮器流量調整弁12Vと、蒸発器14と蒸発器バイパス経路14Aとの熱媒体の流量比を調整可能に構成される蒸発器流量調整弁14Vとを備えることが好ましい。 Preferably, the heat medium circuit 20 includes a condenser bypass path 12A that detours the heat medium from the condenser 12, and an evaporator bypass path 14A that detours the heat medium from the evaporator 14. In that case, the heat medium circuit 20 includes a condenser flow rate adjustment valve 12V configured to be able to adjust the flow rate ratio of the heat medium between the condenser 12 and the condenser bypass path 12A, and a condenser flow rate adjustment valve 12V that is configured to adjust the flow rate ratio of the heat medium between the condenser 12 and the condenser bypass path 12A, and the evaporator 14 and the evaporator bypass path 14A. It is preferable to include an evaporator flow rate adjustment valve 14V configured to be able to adjust the flow rate ratio of the heat medium.
 第1ポンプ21は、蒸発器14から流出した熱媒体を吸入して吐出することで熱媒体を圧送する。第2ポンプ22は、凝縮器12から流出した熱媒体を吸入して吐出することで熱媒体を圧送する。 The first pump 21 pumps the heat medium by sucking in the heat medium flowing out from the evaporator 14 and discharging it. The second pump 22 pumps the heat medium by sucking in the heat medium flowing out from the condenser 12 and discharging it.
 室外熱交換器23は、車室8の外側の外気と、熱媒体とを熱交換させる。室外熱交換器23は、例えば、車両の空気導入口の付近に配置されるラジエーターに相当する。車両の走行と、室外送風機23Aの動作とによって室外熱交換器23に供給される外気は、外気と熱媒体との温度差に基づいて、放熱または吸熱する。 The outdoor heat exchanger 23 exchanges heat between the outside air outside the vehicle compartment 8 and the heat medium. The outdoor heat exchanger 23 corresponds to, for example, a radiator placed near an air inlet of a vehicle. The outside air supplied to the outdoor heat exchanger 23 due to the running of the vehicle and the operation of the outdoor blower 23A radiates or absorbs heat based on the temperature difference between the outside air and the heat medium.
 室外バイパス経路24は、室外熱交換器23から熱媒体を迂回させる。 The outdoor bypass path 24 detours the heat medium from the outdoor heat exchanger 23.
 室内熱交換器25は、室内送風機25Aにより送られる空気と熱媒体とを熱交換させることで車室8内に空調空気を与える。室内送風機25Aは、車室8内の空気(内気)または外気を室内熱交換器25に向けて吹き付ける。
 HVAC(Heating, Ventilation, and Air Conditioning)ユニットUは、室内熱交換器25と、室内送風機25Aと、室内送風機25Aにより送られる空気が流れる図示しないダクトとを含んで構成されている。
The indoor heat exchanger 25 provides conditioned air into the vehicle interior 8 by exchanging heat between the air sent by the indoor blower 25A and a heat medium. The indoor blower 25A blows air (inside air) inside the vehicle interior 8 or outside air toward the indoor heat exchanger 25.
The HVAC (Heating, Ventilation, and Air Conditioning) unit U includes an indoor heat exchanger 25, an indoor blower 25A, and a duct (not shown) through which air sent by the indoor blower 25A flows.
 第1~第3切替弁31,32,33の少なくとも1つにより熱媒体の流れが切り替えられることで、熱媒体回路20は、低圧側回路C1および高圧側回路C2を並列的に設定可能に構成されるとともに(図1)、直列回路CCを設定可能に構成される(図2)。 By switching the flow of the heat medium by at least one of the first to third switching valves 31, 32, and 33, the heat medium circuit 20 is configured such that the low pressure side circuit C1 and the high pressure side circuit C2 can be set in parallel. (FIG. 1), and is configured such that a series circuit CC can be set (FIG. 2).
 凝縮器12から流出して凝縮器12に戻る熱媒体の高圧側回路C2と、蒸発器14から流出して蒸発器14に戻る低圧側回路C1とは、互いに分離している。以下において、低圧側回路C1および高圧側回路C2のことを並列回路C1,C2と称する場合がある。
 凝縮器12を含む高圧側回路C2の熱媒体と、蒸発器14を含む低圧側回路C1の熱媒体とは相互に混合されない。
A high-pressure side circuit C2 for the heat medium that flows out of the condenser 12 and returns to the condenser 12, and a low-pressure side circuit C1 that flows out of the evaporator 14 and returns to the evaporator 14 are separated from each other. Below, the low voltage side circuit C1 and the high voltage side circuit C2 may be referred to as parallel circuits C1 and C2.
The heat medium of the high pressure side circuit C2 including the condenser 12 and the heat medium of the low pressure side circuit C1 including the evaporator 14 are not mixed with each other.
 並列回路C1,C2を示す図1において、低圧側回路C1を循環する相対的に低温の熱媒体(低温熱媒体)の流れが実線で示され、高圧側回路C2を循環する相対的に高温の熱媒体(高温熱媒体)の流れが一点鎖線で示されている。このとき、熱媒体回路20上の位置Aから位置Bまでは低温媒体のみが流れ、位置Cから位置Dまでは高温媒体のみが流れる。低温熱媒体および高温熱媒体のいずれも圧送されていない経路は、破線で示されている。 In FIG. 1 showing the parallel circuits C1 and C2, the flow of a relatively low temperature heat medium (low temperature heat medium) circulating in the low pressure side circuit C1 is shown by a solid line, and the flow of a relatively high temperature heat medium (low temperature heat medium) circulating in the high pressure side circuit C2 is shown as a solid line. The flow of the heat medium (high-temperature heat medium) is shown by a dashed line. At this time, only the low temperature medium flows from position A to position B on the heat medium circuit 20, and only the high temperature medium flows from position C to position D. Paths in which neither the low-temperature heat medium nor the high-temperature heat medium is pumped are indicated by broken lines.
 一方、直列回路CCは、直列に配置される蒸発器14および凝縮器12を含む一つの連続した回路に相当する。直列回路CCが設定されるとき、例えば、図2に示すように、凝縮器12から流出した熱媒体が蒸発器14に流入し、さらに凝縮器12に流入する。
 直列回路CCを示す図2においても、相対的に低温の熱媒体の流れが実線で示され、相対的に高温の熱媒体の流れが一点鎖線により示されている。図2を参照すると、並列回路C1,C2が設定される場合とは異なり、蒸発器14から流出し、凝縮器12に流入するまでの熱媒体の流れが実線で示され、凝縮器12から流出し、蒸発器14に流入するまでの熱媒体の流れが一点鎖線で示されている。これは、熱媒体が蒸発器14に流入すると、冷媒への放熱により熱媒体の温度が低下することを表し、熱媒体が凝縮器12に流入すると、冷媒からの吸熱により熱媒体の温度が上昇することを表している。
On the other hand, the series circuit CC corresponds to one continuous circuit including the evaporator 14 and the condenser 12 arranged in series. When the series circuit CC is set, for example, as shown in FIG. 2, the heat medium flowing out of the condenser 12 flows into the evaporator 14 and then into the condenser 12.
Also in FIG. 2 showing the series circuit CC, the flow of a relatively low-temperature heat medium is shown by a solid line, and the flow of a relatively high-temperature heat medium is shown by a dashed-dotted line. Referring to FIG. 2, unlike the case where parallel circuits C1 and C2 are set, the flow of the heat medium from the evaporator 14 to the condenser 12 is shown by a solid line, and the heat medium flows from the condenser 12 to the condenser 12. However, the flow of the heat medium until it flows into the evaporator 14 is shown by a dashed-dotted line. This means that when the heat medium flows into the evaporator 14, the temperature of the heat medium decreases due to heat radiation to the refrigerant, and when the heat medium flows into the condenser 12, the temperature of the heat medium rises due to heat absorption from the refrigerant. represents something to do.
 直列回路CCが設定されるとき、熱媒体は、凝縮器12による温度上昇および蒸発器14による温度低下を繰り返しながら、凝縮器12と蒸発器14とを循環する。このとき、熱媒体回路20には、一つの連続した回路が形成されるので、第1ポンプ21および第2ポンプ22の少なくとも一方のみによって、熱媒体を圧送することができる。
 但し、直列回路CCを用いる運転モードでも、2つのポンプ21,22を作動させることで、熱媒体回路20における熱媒体の循環流量を十分に得ることができる。
When the series circuit CC is set, the heat medium circulates between the condenser 12 and the evaporator 14 while repeating a temperature increase by the condenser 12 and a temperature decrease by the evaporator 14. At this time, since one continuous circuit is formed in the heat medium circuit 20, the heat medium can be pumped only by at least one of the first pump 21 and the second pump 22.
However, even in the operation mode using the series circuit CC, a sufficient circulating flow rate of the heat medium in the heat medium circuit 20 can be obtained by operating the two pumps 21 and 22.
 第1~第3切替弁31~33のいずれも、制御装置5からの指令に基づき開閉制御が可能な電動弁であり、熱媒体の流路を切り替え可能に構成される。
 第1~第3切替弁31~33は、必要な運転モードの実現に必要な経路を熱媒体回路20に設定するために、適宜な構造の適宜な数の電動弁に代替可能である。
All of the first to third switching valves 31 to 33 are electrically operated valves that can be controlled to open and close based on commands from the control device 5, and are configured to be able to switch the heat medium flow path.
The first to third switching valves 31 to 33 can be replaced with an appropriate number of electrically operated valves having an appropriate structure in order to set a path in the heat medium circuit 20 that is necessary to realize the required operation mode.
〔制御装置の構成〕
 制御装置5は、図3に示すように、メモリ501、演算部502、記憶部503、および入出力部504を含むコンピュータに相当する。「コンピュータ」には、プログラマブルロジックコントローラ(PLC;programmable logic controller)も含まれる。
[Configuration of control device]
The control device 5 corresponds to a computer including a memory 501, a calculation section 502, a storage section 503, and an input/output section 504, as shown in FIG. "Computer" also includes programmable logic controllers (PLCs).
 制御装置5は、熱負荷に応じて圧縮機11の回転数制御等を行い、冷媒の循環流量を増減させることで、冷房能力および暖房能力をそれぞれ増減させることができる。
 また、制御装置5は、例えば、室温、外気温度、熱媒体温度、冷媒の温度または圧力等、室温に相関する物理量をセンサにより検知し、検知された値と目標値との偏差を解消させるように圧縮機11の回転数等をフィードバック制御することにより、室温を目標温度に調整することができる。
The control device 5 controls the rotation speed of the compressor 11 according to the heat load, and increases/decreases the circulating flow rate of the refrigerant, thereby increasing/decreasing the cooling capacity and the heating capacity, respectively.
Further, the control device 5 detects physical quantities correlated with the room temperature, such as room temperature, outside air temperature, heat medium temperature, refrigerant temperature or pressure, using a sensor, and eliminates the deviation between the detected value and the target value. The room temperature can be adjusted to the target temperature by feedback controlling the rotation speed of the compressor 11 and the like.
 記憶部503には、モード選択部50を実行可能に構成されているコンピュータ・プログラムが記憶されている。 A computer program configured to be able to execute the mode selection unit 50 is stored in the storage unit 503.
 モード選択部50は、コンピュータ・プログラムが実行されることにより、ヒートポンプモードHPおよびヒータモードHTのそれぞれの外気温度-加熱能力特性OH1,OH2(図4(a))に基づき、ヒートポンプモードHPおよびヒータモードHTのいずれかを選択する。
 モード選択部50は、制御装置5とは別のコンピュータに含まれていてもよい。
By executing a computer program, the mode selection unit 50 selects heat pump mode HP and heater Select one of the modes HT.
The mode selection unit 50 may be included in a computer separate from the control device 5.
〔ヒートポンプモードの説明〕
 次に、図1を参照し、ヒートポンプモードHP時の温調システム1の作用を説明する。
 ヒートポンプモードHPは、車室8内を暖房するモードに相当し、熱源としての外気から、外気温よりも温度が高い高温熱媒体に熱を汲み上げて車室8まで搬送することで、車室8内を暖房する。
 熱媒体回路20には、第1~第3切替弁31~33、凝縮器流量調整弁12V、および蒸発器流量調整弁14Vに対する制御指令に基づいて、ヒートポンプモードHPに対応する回路が設定される。
[Explanation of heat pump mode]
Next, with reference to FIG. 1, the operation of the temperature control system 1 in the heat pump mode HP will be described.
The heat pump mode HP corresponds to a mode that heats the inside of the vehicle interior 8, and heat is pumped up from the outside air as a heat source to a high-temperature heat medium whose temperature is higher than the outside air temperature, and transported to the vehicle interior 8. Heat the inside.
A circuit corresponding to the heat pump mode HP is set in the heat medium circuit 20 based on control commands for the first to third switching valves 31 to 33, the condenser flow rate adjustment valve 12V, and the evaporator flow rate adjustment valve 14V. .
 ヒートポンプモードHP時に温調システム1は並列回路C1,C2を使用して運転される。ヒートポンプモードHP時は、高温熱媒体が室内熱交換器25に供給され、低温熱媒体が室外熱交換器23に供給される。
 つまり、蒸発器14から流出した低温熱媒体は、実線の矢印で示すように、第2切替弁32を経由して室外熱交換器23へと流入する。外気から吸熱した熱媒体は、第1切替弁31および蒸発器流量調整弁14Vを経由して蒸発器14へと戻る。
 蒸発器14に流入した熱媒体からの吸熱により冷媒は蒸発し、圧縮機11へと吸入される。圧縮機11から吐出された冷媒は、凝縮器12で熱媒体への放熱により凝縮し、これに伴い熱媒体は昇温する。
In the heat pump mode HP, the temperature control system 1 is operated using parallel circuits C1 and C2. In the heat pump mode HP, a high temperature heat medium is supplied to the indoor heat exchanger 25, and a low temperature heat medium is supplied to the outdoor heat exchanger 23.
That is, the low-temperature heat medium flowing out of the evaporator 14 flows into the outdoor heat exchanger 23 via the second switching valve 32, as shown by the solid arrow. The heat medium that has absorbed heat from the outside air returns to the evaporator 14 via the first switching valve 31 and the evaporator flow rate adjustment valve 14V.
The refrigerant evaporates due to heat absorption from the heat medium flowing into the evaporator 14 and is sucked into the compressor 11. The refrigerant discharged from the compressor 11 is condensed in the condenser 12 by releasing heat to the heat medium, and the temperature of the heat medium increases accordingly.
 図1に示す例では、蒸発器流量調整弁14Vによる流量調整により、第1切替弁31から蒸発器14に向けて流れる熱媒体の全量が、蒸発器バイパス経路14Aへは流入せずに蒸発器14へと流入する。 In the example shown in FIG. 1, by adjusting the flow rate with the evaporator flow rate adjustment valve 14V, the entire amount of the heat medium flowing from the first switching valve 31 toward the evaporator 14 does not flow into the evaporator bypass path 14A, but instead flows into the evaporator bypass path 14A. 14.
 凝縮器12から流出した高温熱媒体は、一点鎖線の矢印で示すように、第3切替弁33を経由して室内熱交換器25へと流入する。車室8内を温めた熱媒体は、第1切替弁31および凝縮器流量調整弁12Vを経由して凝縮器12へと戻る。 The high-temperature heat medium flowing out of the condenser 12 flows into the indoor heat exchanger 25 via the third switching valve 33, as shown by the dashed-dotted arrow. The heat medium that has warmed the interior of the vehicle compartment 8 returns to the condenser 12 via the first switching valve 31 and the condenser flow rate adjustment valve 12V.
 図1に示す例では、凝縮器流量調整弁12Vによる流量調整により、第1切替弁31から凝縮器12に向けて流れる熱媒体の全量が、凝縮器バイパス経路12Aへは流入せずに凝縮器12へと流入する。 In the example shown in FIG. 1, by adjusting the flow rate by the condenser flow rate adjustment valve 12V, the entire amount of the heat medium flowing from the first switching valve 31 toward the condenser 12 does not flow into the condenser bypass path 12A, but instead flows into the condenser bypass path 12A. 12.
 ヒートポンプモードHPは、外気を熱源の一部として利用することにより、圧縮機11やポンプ21,22等の動力増加を抑えつつ、暖房能力を担保することができる。 By using outside air as part of the heat source, the heat pump mode HP can secure heating capacity while suppressing increases in power of the compressor 11, pumps 21, 22, etc.
〔ヒータモードの説明〕
 次に、図2を参照し、直列回路CCを用いる運転モードであるヒータモードHTについて説明する。外気温が0℃を大幅に下回る場合、例えば-20℃以下にまで外気温が低下した場合は、上述のヒートポンプモードHPにより外気から熱媒体に吸熱することができる熱量が少なくなるとともに、圧縮機11の吸入冷媒密度が低下し、圧縮機11の動力が小さくなる。そうした場合でも、ヒータモードHTにより、圧縮機11を熱源として暖房運転を行うことができる。ヒータモードHTは、圧縮機11の動力を温調対象の加熱に用いる。
[Explanation of heater mode]
Next, referring to FIG. 2, the heater mode HT, which is an operation mode using the series circuit CC, will be described. When the outside temperature is significantly lower than 0℃, for example, when the outside temperature drops to -20℃ or less, the amount of heat that can be absorbed from the outside air to the heat medium by the heat pump mode HP described above decreases, and the compressor The density of the refrigerant sucked into the compressor 11 decreases, and the power of the compressor 11 decreases. Even in such a case, heating operation can be performed using the compressor 11 as a heat source in the heater mode HT. In the heater mode HT, the power of the compressor 11 is used to heat the temperature-controlled object.
 ヒータモードHTは、例えば抵抗加熱式の電気ヒータと同様に、供給電力に相応の熱量の熱が温調対象に供給される。そのため、「ヒータ」モードと称するが、ヒータモードHTの名称は、必ずしもこれに限られない。
 なお、後述する起動時ヒータモードHT0は、ヒータモードHTへの移行を前提とするモードであるため、ヒータモードHTと同様の名称を使用するが、起動時ヒータモードHT0の名称も、必ずしもこれに限られない。
In the heater mode HT, for example, similar to a resistance heating type electric heater, heat of an amount corresponding to the supplied power is supplied to the temperature controlled object. Therefore, although it is called a "heater" mode, the name of the heater mode HT is not necessarily limited to this.
Note that the heater mode at startup HT0, which will be described later, is a mode that assumes transition to heater mode HT, so the same name as heater mode HT is used, but the name of heater mode at startup HT0 does not necessarily correspond to this. Not limited.
 ヒータモードHT時の熱媒体の具体的な流れを説明する。熱媒体から外気への放熱を防ぐため、室外バイパス経路24を通じて室外熱交換器23から熱媒体を迂回させる。このとき室外送風機23Aの作動は停止させてよい。
 制御装置5は、第1切替弁31、第2切替弁32、蒸発器流量調整弁14V、凝縮器流量調整弁12V、室外送風機23A、および室内送風機25Aに指令を送ることで、ヒータモードHTに対応する経路を熱媒体回路20に設定する。
The specific flow of the heat medium in heater mode HT will be explained. In order to prevent heat radiation from the heat medium to the outside air, the heat medium is detoured from the outdoor heat exchanger 23 through the outdoor bypass path 24. At this time, the operation of the outdoor blower 23A may be stopped.
The control device 5 switches to the heater mode HT by sending commands to the first switching valve 31, the second switching valve 32, the evaporator flow rate adjustment valve 14V, the condenser flow rate adjustment valve 12V, the outdoor blower 23A, and the indoor blower 25A. A corresponding path is set in the heat medium circuit 20.
 凝縮器12により冷媒から吸熱した熱媒体は、第3切替弁33を経由して室内熱交換器25へと流入して車室8内の暖房に供される。そして、室内熱交換器25から流出した熱媒体は、第1切替弁31および蒸発器流量調整弁14Vを経由し、蒸発器14および蒸発器バイパス経路14Aのうち少なくとも蒸発器14に流入して冷媒へと放熱される。
 蒸発器14から流出した熱媒体は、第2切替弁32から室外バイパス経路24に流入し、第1切替弁31と凝縮器流量調整弁12Vとの間で、第1切替弁31から凝縮器12に向かう流れに合流した後、凝縮器12および凝縮器バイパス経路12Aのうち少なくとも凝縮器12に流入して冷媒から吸熱する。
The heat medium that has absorbed heat from the refrigerant by the condenser 12 flows into the indoor heat exchanger 25 via the third switching valve 33 and is used to heat the interior of the vehicle 8. Then, the heat medium flowing out from the indoor heat exchanger 25 passes through the first switching valve 31 and the evaporator flow rate adjustment valve 14V, flows into at least the evaporator 14 among the evaporator 14 and the evaporator bypass path 14A, and flows into the refrigerant. Heat is radiated to.
The heat medium flowing out from the evaporator 14 flows into the outdoor bypass path 24 from the second switching valve 32, and is transferred from the first switching valve 31 to the condenser 12 between the first switching valve 31 and the condenser flow rate adjustment valve 12V. After joining the flow toward the refrigerant, the refrigerant flows into at least the condenser 12 and the condenser bypass path 12A, and absorbs heat from the refrigerant.
 ヒータモードHTにおいて、熱媒体は、外気への放熱を避けて室外バイパス経路24を流れつつ、圧縮機11の動力により発生した熱を冷媒から受け取り温調対象に搬送する。ヒータモードHTによれば、外気との熱の出入りがない系により運転されるので、外気温によらず、車室8内の暖房を継続して行うことができる。 In the heater mode HT, the heat medium receives heat generated by the power of the compressor 11 from the refrigerant and conveys it to the temperature control target while flowing through the outdoor bypass path 24 avoiding heat radiation to the outside air. According to the heater mode HT, since the system is operated with no exchange of heat with the outside air, the interior of the vehicle interior 8 can be continuously heated regardless of the outside temperature.
〔モード選択の説明〕
 モード選択部50によるヒートポンプモードHPとヒータモードHTとのモード選択を説明する。
 図4(a)の横軸は外気温度Tであり、縦軸は加熱能力CPである。図4(a)には、ヒートポンプモードHPの外気温度-加熱能力特性OH1が実線で示され、ヒータモードHTの外気温度-加熱能力特性OH2が一点鎖線で示されている。図4(a)は、特性OH1と特性OH2との相関データDTを示している。
[Explanation of mode selection]
Mode selection between the heat pump mode HP and the heater mode HT by the mode selection unit 50 will be explained.
The horizontal axis in FIG. 4(a) is the outside air temperature T, and the vertical axis is the heating capacity CP. In FIG. 4(a), the outside air temperature vs. heating capacity characteristic OH1 in the heat pump mode HP is shown by a solid line, and the outside air temperature vs. heating ability characteristic OH2 in the heater mode HT is shown by a dashed-dotted line. FIG. 4(a) shows correlation data DT between the characteristic OH1 and the characteristic OH2.
 ここで、「加熱能力」は、圧縮機11の回転数が最大のときの加熱能力(以下、最大加熱能力と言う)に相当する。このときポンプ21,22の回転数も最大となる。ヒートポンプモードHPの最大加熱能力時には、第1切替弁31から蒸発器14に向けて流れる熱媒体の全量が蒸発器14に流入し、第1切替弁31から凝縮器12に向けて流れる熱媒体の全量が凝縮器12に流入する。
 ヒータモードHTの最大加熱能力のとき、第1切替弁31から蒸発器14に向けて流れる熱媒体の全量が蒸発器14に流入し、第1切替弁31から凝縮器12に向けて流れる熱媒体の全量が凝縮器12に流入する。
Here, the "heating capacity" corresponds to the heating capacity when the rotation speed of the compressor 11 is maximum (hereinafter referred to as maximum heating capacity). At this time, the rotational speed of the pumps 21 and 22 also reaches its maximum. At the maximum heating capacity of the heat pump mode HP, the entire amount of the heat medium flowing from the first switching valve 31 toward the evaporator 14 flows into the evaporator 14, and the amount of heat medium flowing from the first switching valve 31 toward the condenser 12 flows into the evaporator 14. The entire amount flows into the condenser 12.
At the maximum heating capacity in heater mode HT, the entire amount of the heat medium flowing from the first switching valve 31 toward the evaporator 14 flows into the evaporator 14, and the heat medium flowing from the first switching valve 31 toward the condenser 12 The entire amount flows into the condenser 12.
 特性OH1より、ヒートポンプモードHP時には、外気温度Tが低下するにつれて次第に加熱能力CPが低下する。また、特性OH2より、ヒータモードHT時には、外気温度Tにかかわらず、加熱能力CPは一定である。
 特性OH1,OH2に基づき、特性OH1を示す線と特性OH2を示す線とは交差する。これらの線の交点Xに対応する外気温度を交点外気温度Tと称する。この交点外気温度Tには切替外気温度Tが設定されている。
According to the characteristic OH1, in the heat pump mode HP, the heating capacity CP gradually decreases as the outside air temperature T decreases. Further, according to the characteristic OH2, in the heater mode HT, the heating capacity CP is constant regardless of the outside temperature T.
Based on the characteristics OH1 and OH2, the line indicating the characteristic OH1 and the line indicating the characteristic OH2 intersect. The outside air temperature corresponding to the intersection X of these lines is referred to as the intersection outside air temperature T.sub.X. A switching outside air temperature T S is set at this intersection outside air temperature T X.
 モード選択部50は、切替外気温度Tに対し、外気温センサ51により検知される外気温度Tが高い場合はヒートポンプモードHPを選択し、切替外気温度Tに対し、外気温センサ51により検知される外気温度Tが低い場合はヒータモードHTを選択する。
 切替外気温度Tよりも高い外気温度Tが検知されるときは、検知された外気温度Tに対応するヒートポンプモードHPの特性OH1における領域R2の加熱能力CPの方が、ヒータモードHTの加熱能力CPよりも高い。
 一方、切替外気温度Tよりも低い外気温度Tが検知されるときは、ヒータモードHTの加熱能力CPの方が、外気温度Tに対応するヒートポンプモードHPの特性OH1の領域R1の加熱能力CPよりも高い。
 制御装置5は、切替外気温度Tを閾値とする外気温度Tの判定に基づき、ヒートポンプモードHPおよびヒータモードHTのいずれか一方を温調システム1の運転モードとして設定することができる。
The mode selection unit 50 selects the heat pump mode HP when the outside air temperature T detected by the outside air temperature sensor 51 is higher than the outside air temperature T S for switching, and selects the heat pump mode HP for the outside air temperature T S detected by the outside air temperature sensor 51. When the outside air temperature T is low, the heater mode HT is selected.
When an outside air temperature T higher than the switching outside air temperature T S is detected, the heating capacity CP of the region R2 in the characteristic OH1 of the heat pump mode HP corresponding to the detected outside air temperature T is higher than the heating capacity of the heater mode HT. Higher than CP.
On the other hand, when an outside air temperature T lower than the switching outside air temperature TS is detected, the heating capacity CP of the heater mode HT is higher than the heating capacity CP of the region R1 of the characteristic OH1 of the heat pump mode HP corresponding to the outside air temperature T. higher than
The control device 5 can set either the heat pump mode HP or the heater mode HT as the operation mode of the temperature control system 1 based on the determination of the outside air temperature T using the switching outside air temperature T S as a threshold value.
 続いて、図4(b)を参照し、温調システム1の空調負荷Lに応じてモードを選択する場合の一例を説明する。図5に示すように、上記の外気温度Tの判定によりヒートポンプモードHPが選択される場合には(ステップS01でNo)、モード選択部50は、以下の判定によるモード選択は行わずに、選択されるモードをヒートポンプモードHPに決定する(ステップS02)。
 一方、上記の外気温度Tの判定(第1の判定)によりヒータモードHTが選択される場合(ステップS01でYes)、つまり、検知された外気温度Tに対応するヒートポンプモードHPの特性OH1の領域R1の加熱能力CPが、ヒータモードHTの加熱能力CPよりも劣る場合は、以下に説明する第2の判定により、空調負荷Lに応じて運転モードを決定することが好ましい(ステップS03~S05)。
Next, referring to Fig. 4(b), an example of a case where a mode is selected according to the air conditioning load L of the temperature adjustment system 1 will be described. As shown in Fig. 5, when the heat pump mode HP is selected based on the determination of the outside air temperature T described above (No in step S01), the mode selection unit 50 does not select a mode based on the following determination, but determines the selected mode to be the heat pump mode HP (step S02).
On the other hand, if the heater mode HT is selected based on the above-mentioned judgment of the outside air temperature T (first judgment) (Yes in step S01), that is, if the heating capacity CP of region R1 of characteristic OH1 of the heat pump mode HP corresponding to the detected outside air temperature T is inferior to the heating capacity CP of the heater mode HT, it is preferable to determine the operating mode according to the air conditioning load L by the second judgment described below (steps S03 to S05).
 図4(b)には、温調システム1の加熱負荷である空調負荷Lの一例としてのL,Lが示されている。L<Lである。空調負荷L,Lのいずれも暖房負荷であり、暖房負荷は外気温が上昇するにつれて小さくなる。
 ここで、「空調負荷」は、下記の式(1)により定義される。式中の空気温度は、厳密には空気エンタルピである。式中の風量は、厳密には質量流量である。
 空調負荷L=風量Q×(目標吹き出し空気温度T- 吸い込み空気温度T)…(1)
FIG. 4B shows L 1 and L 2 as an example of the air conditioning load L, which is the heating load of the temperature control system 1. L 1 <L 2 . Both of the air conditioning loads L 1 and L 2 are heating loads, and the heating loads become smaller as the outside temperature rises.
Here, the "air conditioning load" is defined by the following equation (1). The air temperature in the formula is strictly air enthalpy. Strictly speaking, the air volume in the formula is the mass flow rate.
Air conditioning load L = air volume Q × (target outlet air temperature T T - suction air temperature T I )…(1)
 風量Qは、室内送風機25Aおよび車両の走行により室内熱交換器25に送られる空気の体積流量を言う。風量Qは、例えば、乗員による設定段数もしくは温調システム1による設定段数と、吹き出しモード(Face/Foot/Defogger等)とから取得可能である。
 目標吹き出し空気温度Tは、HVACユニットUから車室8内に吹き出される空気の目標温度であり、車室8内の空気の目標温度から設定される。目標吹き出し空気温度Tは、室温センサ52等より算出される。
 吸い込み空気温度Tは、室内送風機25Aおよび車両の走行により室内熱交換器25に導入される空気の温度を言う。吸い込み空気温度Tは、内気循環が設定されている場合は、室温センサ52により検知される室温に相当し、外気導入が設定されている場合は、外気温センサ51により検知される外気温に相当する。
 外気温が0℃を大幅に下回る場合は、TとTとの差ΔTが大きいので空調負荷が高い。
The air volume Q refers to the volumetric flow rate of air sent to the indoor heat exchanger 25 by the indoor blower 25A and the running of the vehicle. The air volume Q can be obtained from, for example, the number of stages set by the occupant or the number of stages set by the temperature control system 1, and the blowout mode (Face/Foot/Defogger, etc.).
The target blown air temperature T T is the target temperature of the air blown into the vehicle interior 8 from the HVAC unit U, and is set from the target temperature of the air within the vehicle interior 8 . The target blown air temperature T T is calculated by the room temperature sensor 52 or the like.
The suction air temperature T I refers to the temperature of air introduced into the indoor heat exchanger 25 by the indoor blower 25A and the running of the vehicle. The intake air temperature TI corresponds to the room temperature detected by the room temperature sensor 52 when the inside air circulation is set, and corresponds to the outside temperature detected by the outside temperature sensor 51 when the outside air intake is set. Equivalent to.
When the outside temperature is significantly below 0°C, the air conditioning load is high because the difference ΔT between T T and T I is large.
 モード選択部50は、上記の式により空調負荷Lを演算し、空調負荷Lに応じて切替外気温度TSLを設定することが好ましい。例えば、空調負荷がLであるのならば、空調負荷LとヒートポンプモードHPの外気温-加熱能力特性OH1との交点X1に対応する温度Tに切替外気温TSLを設定する。また、空調負荷がLであるのならば、空調負荷LとヒートポンプモードHPの外気温-加熱能力特性OH1との交点X2に対応する温度Tに切替外気温TSLを設定する。
 モード選択部50は、空調負荷Lに応じて設定された切替外気温度TSLに対し、外気温度Tが高い場合は(ステップS03でNo)ヒートポンプモードHPを選択し(ステップS04)、切替外気温度TSLに対し、外気温度Tが低い場合は(ステップS03でYes)ヒータモードHTを選択する(ステップS05)。
It is preferable that the mode selection unit 50 calculates the air conditioning load L using the above equation and sets the switching outside air temperature TSL according to the air conditioning load L. For example, if the air conditioning load is L1 , the switching outside temperature TSL is set to the temperature T1 corresponding to the intersection X1 of the air conditioning load L1 and the outside temperature-heating capacity characteristic OH1 of the heat pump mode HP. Further, if the air conditioning load is L 2 , the switching outside temperature T SL is set to the temperature T 2 corresponding to the intersection point X 2 of the air conditioning load L 1 and the outside temperature-heating capacity characteristic OH1 of the heat pump mode HP.
The mode selection unit 50 selects the heat pump mode HP (step S04) when the outside air temperature T is high (No in step S03) with respect to the switching outside air temperature TSL set according to the air conditioning load L, and selects the switching outside air temperature If the outside air temperature T is lower than TSL (Yes in step S03), heater mode HT is selected (step S05).
 例えば、外気温度TがTであって、空調負荷がLである場合は、TSL=Tとなるため(ステップS03でNo)、ヒートポンプモードHPが選択される(ステップS04)。
 一方、外気温度Tが同様にTであって、空調負荷がLよりも大きいLである場合は、TSL>Tとなるため(ステップS03でYes)、ヒータモードHTが選択される(ステップS05)。
For example, when the outside air temperature T is T1 and the air conditioning load is L1 , TSL =T (No in step S03), so the heat pump mode HP is selected (step S04).
On the other hand, if the outside air temperature T is also T1 and the air conditioning load is L2 , which is larger than L1 , TSL >T (Yes in step S03), so the heater mode HT is selected. (Step S05).
 外気温度TがTであって、空調負荷がLである場合は、TSL<Tとなるため(ステップS03でNo)、ヒートポンプモードHPが選択される(ステップS04)。
 また、外気温度Tが同様にTであって、空調負荷がLよりも大きいLである場合も、TSL=Tとなるから(ステップS03でNo)、ヒートポンプモードHPが選択される(ステップS04)。但し、外気温度Tが変わらずTであっても、空調負荷がLよりも高くなれば、TSL>Tとなるため(ステップS03でYes)、ヒータモードHTが選択される(ステップS05)
When the outside air temperature T is T2 and the air conditioning load is L1 , TSL <T (No in step S03), so the heat pump mode HP is selected (step S04).
Also, when the outside air temperature T is T2 and the air conditioning load is L2 , which is larger than L1 , TSL = T (No in step S03), so the heat pump mode HP is selected. (Step S04). However, even if the outside temperature T remains unchanged at T2 , if the air conditioning load becomes higher than L2 , TSL >T (Yes in step S03), so the heater mode HT is selected (step S05). )
 制御装置5は、切替外気温度TSLを閾値とする外気温度Tの判定に基づき、ヒートポンプモードHPおよびヒータモードHTのいずれか一方を温調システム1の運転モードとして設定することができる。 The control device 5 can set either the heat pump mode HP or the heater mode HT as the operation mode of the temperature control system 1 based on the determination of the outside air temperature T using the switching outside air temperature TSL as a threshold value.
〔本実施形態による主な作用効果〕 [Main effects of this embodiment]
 モード選択部50により、ヒートポンプモードHPおよびヒータモードHTのそれぞれの外気温度-加熱能力特性OH1,OH2の相関データDTに基づいて設定される切替外気温度Tを閾値として、モード選択の判定を行うことができる。そうすると、外気温度Tに依存する加熱能力CPに基づき、適切にヒートポンプモードHPまたはヒータモードHTを選択することができる。
 外気温度Tが0℃を大幅に下回る場合など、空調負荷Lが高い場合は、圧縮機11を熱源として動作するヒータモードHTが選択されることで、外気温度Tによらず、能力不足を起こさずに加熱対象を加熱することができる。
 また、仮に、凝縮器12と熱交換される熱媒体に投入される熱量の大きさで言うとヒートポンプモードHPよりもヒータモードHTが適するのだとしても、外気温度Tと加熱能力CPとの特性OH1,OH2に基づき、外気からの吸熱により省電力で運転可能なヒートポンプモードHPを選択することができる。そうすると、必要な加熱能力に対してヒートポンプモードHPにより得られる加熱能力が十分である場合には、圧縮機11への電力投入により必要な熱量を得るヒータモードHTが選択されないので、経済的な運転が可能となる。
The mode selection unit 50 determines mode selection using the switching outside air temperature T S set based on the correlation data DT of the outside air temperature-heating capacity characteristics OH1 and OH2 of the heat pump mode HP and the heater mode HT, respectively, as a threshold. be able to. Then, the heat pump mode HP or the heater mode HT can be appropriately selected based on the heating capacity CP which depends on the outside air temperature T.
When the air conditioning load L is high, such as when the outside air temperature T is significantly below 0°C, the heater mode HT, which operates using the compressor 11 as the heat source, is selected, so that capacity shortages do not occur regardless of the outside air temperature T. It is possible to heat the object without heating.
Furthermore, even if the heater mode HT is more suitable than the heat pump mode HP in terms of the amount of heat input into the heat medium that exchanges heat with the condenser 12, the characteristics of the outside air temperature T and the heating capacity CP Based on OH1 and OH2, it is possible to select a heat pump mode HP that can be operated with low power consumption by absorbing heat from the outside air. Then, if the heating capacity obtained by the heat pump mode HP is sufficient for the required heating capacity, the heater mode HT, which obtains the necessary amount of heat by supplying power to the compressor 11, is not selected, resulting in economical operation. becomes possible.
 さらに、ヒータモードHTの加熱能力CPに対してヒートポンプモードHPの加熱能力CPが劣る領域R1については、空調負荷L(L,L)とヒートポンプモードHPの特性OH1との交点(X1,X2)に対応する温度に設定される切替外気温度TSLを用いて、ヒートポンプモードHPおよびヒータモードHTのうち、空調負荷Lに足りる運転モードを選択することができる。このように空調負荷Lに基づいて適切にモードが選択されることによれば、より一層経済的な運転が可能となる。 Furthermore, regarding the region R1 where the heating capacity CP of the heat pump mode HP is inferior to the heating capacity CP of the heater mode HT , the intersection point (X1, ), an operating mode sufficient for the air conditioning load L can be selected from the heat pump mode HP and the heater mode HT using the switching outside air temperature TSL set to a temperature corresponding to the temperature. By appropriately selecting the mode based on the air conditioning load L in this way, even more economical operation becomes possible.
 以上に加えて、直列回路CCを用いるヒータモードHTのとき、凝縮器12と蒸発器14とは直列に接続されているので、凝縮器12と蒸発器14とに対して熱媒体を並列に流入させる場合と比べて、凝縮器12から流出した熱媒体の温度を早く上昇させることができる。また、室内熱交換器25の熱媒体循環量が大きいため、熱媒体と空気との熱交換量
が大きくなる。
In addition to the above, in the heater mode HT using the series circuit CC, since the condenser 12 and the evaporator 14 are connected in series, the heat medium flows in parallel to the condenser 12 and the evaporator 14. The temperature of the heat medium flowing out from the condenser 12 can be raised more quickly than in the case where the heat medium flows out from the condenser 12. Furthermore, since the amount of heat medium circulated through the indoor heat exchanger 25 is large, the amount of heat exchanged between the heat medium and the air becomes large.
 さらに、ヒータモードHTのとき、凝縮器12および室内熱交換器25を経た熱媒体が、蒸発器14により冷媒へと放熱されることにより、ヒートポンプモードHPと比べて冷媒回路10の低圧が上昇し、それに伴い圧縮機11に吸入される冷媒の密度が増加することで、冷媒の循環流量が増加する。冷媒循環流量の増加により熱交換能力が向上し、暖房能力を向上させることができるから、車室8内の温度を早期に目標温度まで到達させることができる。 Furthermore, in the heater mode HT, the heat medium that has passed through the condenser 12 and the indoor heat exchanger 25 is radiated to the refrigerant by the evaporator 14, so that the low pressure in the refrigerant circuit 10 increases compared to the heat pump mode HP. As the density of the refrigerant sucked into the compressor 11 increases accordingly, the circulating flow rate of the refrigerant increases. Since the heat exchange capacity is improved by increasing the refrigerant circulation flow rate, and the heating capacity can be improved, the temperature inside the vehicle compartment 8 can be brought to the target temperature quickly.
 温調システム1によれば、少なくともヒータモードHTを備えることにより、外気温が低いため熱源の確保が厳しい状況であっても、熱源確保に必要な電力を圧縮機11等に供給しながら、加熱能力を担保することができる。 According to the temperature control system 1, by providing at least the heater mode HT, even in situations where it is difficult to secure a heat source due to low outside temperature, heating can be performed while supplying the power necessary for securing the heat source to the compressor 11, etc. ability can be guaranteed.
[第1変形例]
 図6に示すように、切替外気温度Tは、交点外気温度Tよりも低温側にシフトして設定されていても良い。この場合に、上述の第1の判定(ステップS01)のみに基づいてモード選択を行うとすると、切替外気温度Tよりも外気温度Tが高いとき、ヒータモードHTに対して加熱能力CPが劣るヒートポンプモードHPが選択される場合がある。
 しかし、特性OH1,OH2の加熱能力CPは、最大加熱能力であるため、殆どの場合、実際の空調負荷Lに対して必要な加熱能力は不足しない。そのため、切替外気温度Tを交点外気温度Tに対して所定の温度差Δxだけ低い外気温度に設定しておくことで、外気温が低下してもヒートポンプモードHPの運転を出来るだけ継続させて経済的に運転することができる。
[First modification]
As shown in FIG. 6, the switching outside air temperature T S may be set to be shifted to a lower temperature side than the intersection outside air temperature T X. In this case, if the mode is selected based only on the first determination (step S01) described above, when the outside air temperature T is higher than the switching outside air temperature T S , the heating capacity CP is inferior to the heater mode HT. Heat pump mode HP may be selected.
However, since the heating capacity CP of the characteristics OH1 and OH2 is the maximum heating capacity, the heating capacity necessary for the actual air conditioning load L is not insufficient in most cases. Therefore, by setting the switching outside air temperature T S to an outside air temperature that is lower by a predetermined temperature difference Δx than the intersection outside air temperature T It can be operated economically.
 また、切替外気温度Tは、最大の空調負荷に基づき、交点外気温度Tから交点Xmaxまで温度差Δx´だけ低い外気温度に設定することもできる(T´)。交点Xmaxは、外気導入および風量最大を想定した最大の空調負荷Lmaxと、特性OH1との交点である。 Furthermore, the switching outside air temperature T S can also be set to an outside air temperature that is lower by the temperature difference Δx' from the intersection point outside air temperature T X to the intersection point X max based on the maximum air conditioning load (T S ′). The intersection point X max is the intersection point between the maximum air conditioning load L max assuming outside air introduction and the maximum air volume, and the characteristic OH1.
[第2変形例]
 上記実施形態の温調システム1は、図7に示す起動時用のヒータモードとしての起動時ヒータモードHT0を備えていてもよい。
[Second modification]
The temperature control system 1 of the embodiment described above may include a startup heater mode HT0 as a startup heater mode shown in FIG. 7 .
 例えば車両が長時間停止した後に温調システム1が起動される場合を想定して、起動時ヒータモードHT0およびヒータモードHTを説明する。温調システム1の起動後、制御装置5は、ヒータモードHTに先行して起動時ヒータモードHT0を実施することが好ましい。そうすることで、暖房運転をより早期に立ち上げることができる。 For example, assuming a case where the temperature control system 1 is started after the vehicle has stopped for a long time, the startup heater mode HT0 and the heater mode HT will be explained. After starting the temperature control system 1, it is preferable that the control device 5 implements the startup heater mode HT0 prior to the heater mode HT. By doing so, heating operation can be started earlier.
 車両の長時間停止後の温調システム1の起動時に外気温が0℃を大幅に下回る場合、熱媒体の温度も外気温と同様に低い。そのため、温調システム1が始動された直後は、熱媒体により冷媒が冷却されることで冷媒回路10の低圧が降下し、冷媒の蒸発温度は外気温よりも低くなる。そのため、温調システム1の起動時には、起動時ヒータモードHT0により、車室8内の暖房に優先して、室外熱交換器23により外気から熱媒体に吸熱させた熱を冷媒に伝達することで冷媒を加温すると良い。その後、冷媒回路10の低圧が所定値まで上昇し、冷媒回路10が定常運転することで、圧縮機11の動力から熱媒体に取り出した熱により温調対象を加熱することが可能となるのでヒータモードHTに移行すると良い。 If the outside temperature is significantly lower than 0° C. when the temperature control system 1 is started after the vehicle has stopped for a long time, the temperature of the heat medium is also low like the outside temperature. Therefore, immediately after the temperature control system 1 is started, the low pressure of the refrigerant circuit 10 decreases as the refrigerant is cooled by the heat medium, and the evaporation temperature of the refrigerant becomes lower than the outside air temperature. Therefore, when the temperature control system 1 is started, the startup heater mode HT0 gives priority to heating the passenger compartment 8 and transfers the heat absorbed from the outside air to the heat medium by the outdoor heat exchanger 23 to the refrigerant. It is better to warm up the refrigerant. Thereafter, the low pressure of the refrigerant circuit 10 rises to a predetermined value, and the refrigerant circuit 10 operates steadily, making it possible to heat the temperature-controlled object with the heat extracted from the power of the compressor 11 into the heat medium. It is better to switch to mode HT.
〔起動時ヒータモードの説明〕
 図7を参照し、熱媒体の具体的な流れと共に、直列回路CCを用いる起動時ヒータモードHT0の作用を説明する。起動時ヒータモードHT0では、室外熱交換器23により外気から熱媒体に吸熱させるため、室外熱交換器23に熱媒体を流入させる。また、冷媒の加温を車室8内の暖房に優先させるため、凝縮器12に熱媒体を流入させずに凝縮器バイパス経路12Aへと迂回させることで、冷媒の熱媒体への放熱を防ぐ。そして、蒸発器14において熱媒体から冷媒へと放熱させる。
 さらには、室内熱交換器25における空気と熱媒体との熱交換を抑えるために、室内送風機25Aの作動を停止させることが好ましい。
[Explanation of heater mode at startup]
With reference to FIG. 7, the action of the startup heater mode HT0 using the series circuit CC will be described along with the specific flow of the heat medium. In the startup heater mode HT0, the heat medium is caused to flow into the outdoor heat exchanger 23 in order for the outdoor heat exchanger 23 to absorb heat from the outside air to the heat medium. In addition, in order to give priority to heating the refrigerant over heating the interior of the vehicle compartment 8, the heat medium is not allowed to flow into the condenser 12, but is detoured to the condenser bypass path 12A, thereby preventing heat radiation of the refrigerant to the heat medium. . Then, in the evaporator 14, heat is radiated from the heat medium to the refrigerant.
Furthermore, in order to suppress heat exchange between the air and the heat medium in the indoor heat exchanger 25, it is preferable to stop the operation of the indoor blower 25A.
 起動時ヒータモードHT0では、凝縮器12から熱媒体を迂回させているため、凝縮器12を熱媒体が流れる場合と比べて熱媒体の圧力損失が小さい。 In the startup heater mode HT0, the heat medium is detoured from the condenser 12, so the pressure loss of the heat medium is smaller than when the heat medium flows through the condenser 12.
 蒸発器14から流出した熱媒体は、第2切替弁32を経由して室外熱交換器23へと流入し、外気から吸熱する。図7では、外気からの吸熱により昇温した熱媒体を一点鎖線で示している。室外熱交換器23から流出した熱媒体は、第1切替弁31、凝縮器流量調整弁12Vを経由して凝縮器バイパス経路12Aに流入することで、凝縮器12を迂回する。凝縮器バイパス経路12Aから流出した熱媒体は、第3切替弁33を経由して室内熱交換器25に流入する。しかし、室内送風機25Aが停止しているため、室内熱交換器25における熱媒体と、未空調の冷たい空気との熱交換は抑えられている。室内熱交換器25から流出した熱媒体は、第1切替弁31、および蒸発器流路調整弁14Vを経由して蒸発器14へと戻る。そして、蒸発器14により冷媒へと放熱され、低温熱媒体となって蒸発器14から流出する。 The heat medium flowing out from the evaporator 14 flows into the outdoor heat exchanger 23 via the second switching valve 32 and absorbs heat from the outside air. In FIG. 7, the heat medium whose temperature has increased due to heat absorption from the outside air is indicated by a dashed line. The heat medium flowing out from the outdoor heat exchanger 23 bypasses the condenser 12 by flowing into the condenser bypass path 12A via the first switching valve 31 and the condenser flow rate adjustment valve 12V. The heat medium flowing out from the condenser bypass path 12A flows into the indoor heat exchanger 25 via the third switching valve 33. However, since the indoor blower 25A is stopped, heat exchange between the heat medium in the indoor heat exchanger 25 and unconditioned cold air is suppressed. The heat medium flowing out of the indoor heat exchanger 25 returns to the evaporator 14 via the first switching valve 31 and the evaporator flow path adjustment valve 14V. Then, the heat is radiated to the refrigerant by the evaporator 14 and flows out from the evaporator 14 as a low-temperature heat medium.
 室外熱交換器23の出口から、凝縮器バイパス経路12Aおよび室内熱交換器25を経て蒸発器14の入口までの間に亘り、熱媒体と冷媒との間の熱の授受、および熱媒体と空気との間の熱の授受は抑えられている。外気から吸熱した熱媒体は、凝縮器バイパス経路12Aと室内熱交換器25とを通過して、冷媒が流れる蒸発器14まで熱を搬送する。 The area extends from the outlet of the outdoor heat exchanger 23 to the inlet of the evaporator 14 via the condenser bypass path 12A and the indoor heat exchanger 25, and exchanges heat between the heat medium and the refrigerant, and between the heat medium and air. Transfer of heat between the two is suppressed. The heat medium that has absorbed heat from the outside air passes through the condenser bypass path 12A and the indoor heat exchanger 25, and carries the heat to the evaporator 14 through which the refrigerant flows.
 外気温が氷点下の非常に低い状態で車両が停止している間に、熱媒体および冷媒のそれぞれの温度は外気温と同程度にまで下がっている。そのため、温調システム1の起動により圧縮機11の起動が開始され、冷凍サイクルが始動した直後は、冷媒が熱媒体を冷却する。しかし、起動時ヒータモードHT0によれば、外気から熱媒体に吸熱した熱を冷媒に継続的に伝達することで、冷媒回路10の低圧が次第に上昇し、蒸発温度も上昇する。その過程で、冷媒と熱を授受する熱媒体の温度も上昇する。 While the vehicle is stopped in a state where the outside temperature is very low, below freezing, the respective temperatures of the heat medium and the refrigerant drop to the same level as the outside temperature. Therefore, the compressor 11 is started by starting the temperature control system 1, and immediately after the refrigeration cycle is started, the refrigerant cools the heat medium. However, according to the startup heater mode HT0, by continuously transmitting the heat absorbed by the heat medium from the outside air to the refrigerant, the low pressure of the refrigerant circuit 10 gradually increases, and the evaporation temperature also increases. In the process, the temperature of the heat medium that exchanges heat with the refrigerant also rises.
 熱媒体の温度が外気温を超えると外気からの吸熱が不十分となるので、制御装置5は、熱媒体が外気温に近づいた時に温調システム1をヒータモードHTに移行させると良い。例えば、外気温(例えば-20℃)に対して所定の温度差αだけ低い閾値tを熱媒体の温度が上回った時にヒータモードHTに移行させるとよい。外気温と閾値との差は、運転モードを切り替える指令に対して熱媒体の流れが切り替わるまでに要する時間に対応する温度差等により決定される。 If the temperature of the heat medium exceeds the outside air temperature, heat absorption from the outside air becomes insufficient, so the control device 5 preferably shifts the temperature control system 1 to the heater mode HT when the heat medium approaches the outside air temperature. For example, it is preferable to shift to the heater mode HT when the temperature of the heat medium exceeds a threshold value t3 , which is lower by a predetermined temperature difference α than the outside air temperature (for example, −20° C.). The difference between the outside temperature and the threshold value is determined by the temperature difference corresponding to the time required for the flow of the heat medium to switch in response to a command to switch the operating mode.
 乗員の操作により又は温調システム1により暖房運転が選択される場合、制御装置5は、モード選択部50により、切替外気温度Tと外気温度Tとの比較に基づき、ヒートポンプモードHPまたはヒータモードHTを選択することができる。さらに、制御装置5は、切替外気温度Tよりも低い閾値t(例えば-15℃)に対して外気温度Tが高いのならば、ヒートポンプモードHPを選択し、閾値tに対して外気温が低いのならば起動時ヒータモードHT0を選択することができる。 When the heating operation is selected by the occupant's operation or by the temperature control system 1, the control device 5 causes the mode selection unit 50 to select the heat pump mode HP or the heater mode based on the comparison between the switching outside air temperature TS and the outside air temperature T. HT can be selected. Furthermore, if the outside air temperature T is higher than the threshold value t 2 (eg -15° C.) lower than the switching outside air temperature T S , the control device 5 selects the heat pump mode HP and If the temperature is low, startup heater mode HT0 can be selected.
 検知された外気温度Tが切替外気温度Tに対して低く、かつ温調システム1の起動直後であるならば、制御装置5は、外気温度Tと閾値tとを比較することなく、ヒータモードHTに先行して起動時ヒータモードHT0を選択することができる。あるいは、外気温度Tが切替外気温度Tに対して低い場合の起動直後には、先ずヒータモードHTを選択し、そのときに検知された熱媒体や冷媒の温度に所定の閾値を適用することで、ヒータモードHTを続行するか、起動時ヒータモードHT0に切り替えるかを判定しても良い。 If the detected outside air temperature T is lower than the switching outside air temperature TS and immediately after the temperature control system 1 is started, the control device 5 switches the heater on without comparing the outside air temperature T and the threshold value t2 . The startup heater mode HT0 can be selected prior to the mode HT. Alternatively, immediately after startup when the outside air temperature T is lower than the switching outside air temperature TS , first select the heater mode HT, and apply a predetermined threshold to the temperature of the heat medium or refrigerant detected at that time. Then, it may be determined whether to continue the heater mode HT or switch to the startup heater mode HT0.
 ヒータモードHTに先行して起動時ヒータモードHT0が行われる場合、制御装置5は、温調システム1を起動時ヒータモードHT0にて運転させながら、冷媒回路10が定常状態となるまで待ち、例えば熱媒体の温度が所定の閾値tを超えると、起動用の起動時ヒータモードHT0から、定常状態のヒータモードHTへと運転モードを切り替えることができる。閾値として熱媒体、冷媒の温度には限らず、温度の閾値が示す熱媒体や冷媒の状態と同様の状態を示す圧力等の物理量を用いることも可能である。
 起動時ヒータモードHT0からヒータモードHTへの切り替え後、凝縮器流量調整弁12Vにより、凝縮器12に流入する熱媒体の流量を次第に増加させると良い。
When the startup heater mode HT0 is performed prior to the heater mode HT, the control device 5 waits until the refrigerant circuit 10 is in a steady state while operating the temperature control system 1 in the startup heater mode HT0, for example. When the temperature of the heat medium exceeds a predetermined threshold value t3 , the operation mode can be switched from the startup heater mode HT0 for startup to the steady state heater mode HT. The threshold value is not limited to the temperature of the heat medium or refrigerant, but it is also possible to use a physical quantity such as a pressure that indicates a state similar to the state of the heat medium or refrigerant indicated by the temperature threshold.
After switching from the startup heater mode HT0 to the heater mode HT, it is preferable to gradually increase the flow rate of the heat medium flowing into the condenser 12 using the condenser flow rate adjustment valve 12V.
 上記以外にも、上記実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
 温調システム1は、温調機器としての室内熱交換器25に加えて、あるいは室内熱交換器25に代えて、バッテリー装置等の他の温調機器を備えていてもよい。その場合、熱媒体回路20は、他の温調機器を熱媒体により冷却または加熱するための経路を含む。
In addition to the above, it is possible to select the configurations mentioned in the above embodiments or to change them to other configurations as appropriate.
In addition to or in place of the indoor heat exchanger 25 as a temperature control device, the temperature control system 1 may include other temperature control devices such as a battery device. In that case, the heat medium circuit 20 includes a path for cooling or heating other temperature control devices with the heat medium.
[付記]
 以上の開示により、以下に記す構成が把握される。
〔1〕車両用の温調システムであって、
 圧縮機11、高圧側熱交換器(12)、減圧部(13)、および低圧側熱交換器(14)を含み、冷凍サイクルに従って冷媒が循環可能に構成される冷媒回路(10)と、
 前記冷媒に対して熱を授受する熱媒体が循環可能に構成される熱媒体回路(20)と、を備え、
 前記熱媒体回路(20)は、
 前記冷媒と前記熱媒体とを熱交換させる前記高圧側熱交換器(12)と、
 前記冷媒と前記熱媒体とを熱交換させる前記低圧側熱交換器(14)と、
 いずれも前記熱媒体を圧送可能に構成される第1ポンプ(21)および第2ポンプ(22)と、
 外気と前記熱媒体とを熱交換させる室外熱交換器(23)と、
 前記熱媒体により加熱または冷却される温調対象に相当する、または前記温調対象の加熱または冷却に用いられる温調機器(25)と、
 前記室外熱交換器(23)から前記熱媒体を迂回させる室外バイパス経路(24)と、を含み、
 前記温調システムは、運転モードとして、
 前記低圧側熱交換器(14)および前記室外熱交換器(23)を前記熱媒体が前記第1ポンプ(21)により循環する低圧側回路(C1)と、前記高圧側熱交換器(12)および前記温調機器(25)を前記熱媒体が前記第2ポンプ(22)により循環する高圧側回路(C2)とが形成されるヒートポンプモード(HP)と、
 前記高圧側熱交換器(12)から流出した前記熱媒体が、前記温調機器(25)を経由して前記低圧側熱交換器(14)に流入し、さらに前記室外バイパス経路(24)を通り、前記高圧側熱交換器(12)に流入する圧縮機熱源モード(HT)と、を備えるとともに、
 前記ヒートポンプモード(HP)または前記圧縮機熱源モードを選択可能に構成されるモード選択部(50)と、
 外気温度を検知する外気温センサ(51)と、を備え、
 前記モード選択部(50)は、
 前記ヒートポンプモード(HP)および前記圧縮機熱源モード(HT)のそれぞれの外気温度-加熱能力特性(OH1,OH2)の交点(X)に対応する交点外気温度(T)、または、前記交点外気温度(T)よりも低い温度に設定される切替外気温度(T,TSL)に対し、前記外気温センサ(51)により検知される外気温度(T)が高い場合は前記ヒートポンプモード(HP)を選択し、前記外気温度(T)が低い場合は前記圧縮機熱源モード(HT)を選択するように構成される、
車両用温調システム。
[Additional notes]
From the above disclosure, the configuration described below can be understood.
[1] A temperature control system for a vehicle,
A refrigerant circuit (10) including a compressor 11, a high-pressure side heat exchanger (12), a pressure reducing section (13), and a low-pressure side heat exchanger (14), and configured to allow refrigerant to circulate according to a refrigeration cycle;
A heat medium circuit (20) configured to allow circulation of a heat medium that transfers heat to and receives heat from the refrigerant,
The heat medium circuit (20) includes:
the high-pressure side heat exchanger (12) for exchanging heat between the refrigerant and the heat medium;
the low pressure side heat exchanger (14) for exchanging heat between the refrigerant and the heat medium;
A first pump (21) and a second pump (22), both of which are configured to be able to pump the heat medium;
an outdoor heat exchanger (23) that exchanges heat between outside air and the heat medium;
A temperature control device (25) corresponding to a temperature control object heated or cooled by the heat medium or used for heating or cooling the temperature control object;
an outdoor bypass path (24) that detours the heat medium from the outdoor heat exchanger (23),
The temperature control system has the following operating modes:
a low-pressure side circuit (C1) in which the heat medium circulates through the low-pressure side heat exchanger (14) and the outdoor heat exchanger (23) by the first pump (21); and the high-pressure side heat exchanger (12). and a heat pump mode (HP) in which a high pressure side circuit (C2) in which the heat medium circulates through the temperature control device (25) by the second pump (22) is formed;
The heat medium flowing out of the high-pressure side heat exchanger (12) flows into the low-pressure side heat exchanger (14) via the temperature control device (25), and further flows through the outdoor bypass path (24). a compressor heat source mode (HT) flowing into the high pressure side heat exchanger (12);
a mode selection unit (50) configured to be able to select the heat pump mode (HP) or the compressor heat source mode;
An outside temperature sensor (51) that detects outside air temperature,
The mode selection section (50) includes:
The intersection point outside air temperature (T X ) corresponding to the intersection point ( X ) of the outside air temperature-heating capacity characteristics (OH1, OH2) of each of the heat pump mode (HP) and the compressor heat source mode (HT), or the intersection point outside air The heat pump mode ( HP), and when the outside air temperature (T) is low, the compressor heat source mode (HT) is selected;
Vehicle temperature control system.
〔2〕前記モード選択部(50)は、前記ヒートポンプモード(HP)の前記外気温度-加熱能力特性(OH1)における前記圧縮機熱源モード(HT)よりも加熱能力(CP)が劣る領域(R1)においては、前記切替外気温度(TSL)を加熱負荷(L,L)に応じて設定可能に構成される、
〔1〕項に記載の車両用温調システム。
[2] The mode selection unit (50) selects a region (R1) in which the heating capacity (CP) is inferior to the compressor heat source mode (HT) in the outside air temperature-heating capacity characteristic (OH1) of the heat pump mode (HP). ), the switching outside air temperature (T SL ) is configured to be settable according to the heating load (L 1 , L 2 ).
[1] The vehicle temperature control system according to item [1].
〔3〕前記ヒートポンプモード(HP)の前記外気温度-加熱能力特性(OH1)においては、前記外気温度(T)が低下するにつれて前記加熱能力(CP)は低下し、
 前記加熱負荷(L,L)と前記ヒートポンプモード(HP)の前記外気温度-加熱能力特性との交点(X1,X2)に対応する前記切替外気温(TSL)に対し、前記外気温度(T)が高い場合は前記ヒートポンプモード(HP)を選択し、前記外気温度(T)が低い場合は前記圧縮機熱源モード(HT)を選択可能に構成される、
〔2〕項に記載の車両用温調システム。
[3] In the outside air temperature-heating capacity characteristic (OH1) of the heat pump mode (HP), as the outside air temperature (T) decreases, the heating capacity (CP) decreases,
With respect to the switching outside temperature (T SL ) corresponding to the intersection (X1, X2) of the heating load (L 1 , L 2 ) and the outside temperature-heating capacity characteristic of the heat pump mode (HP), the outside air temperature (T) is high, the heat pump mode (HP) is selected, and when the outside air temperature (T) is low, the compressor heat source mode (HT) is selectable;
[2] The vehicle temperature control system according to item [2].
〔4〕前記高圧側熱交換器(12)から前記熱媒体を迂回させる高圧側バイパス経路(12A)と、
 前記高圧側熱交換器(12)と前記高圧側バイパス経路との前記熱媒体の流量比を調整可能に構成される高圧側流量調整弁(12V)と、を備え、
 前記運転モードとして、
 前記高圧側熱交換器(12)から流出した前記熱媒体が、前記低圧側熱交換器(14)に流入し、さらに前記室外熱交換器(23)を通り、前記高圧側熱交換器(12)および前記高圧側バイパス経路(12A)のうち少なくとも前記高圧側バイパス経路(12A)に流入する起動時圧縮機熱源モード(HT0)を備える、
〔1〕から〔3〕のいずれか一項に記載の車両用温調システム。
[4] A high-pressure side bypass path (12A) that detours the heat medium from the high-pressure side heat exchanger (12);
A high-pressure side flow rate adjustment valve (12V) configured to be able to adjust the flow rate ratio of the heat medium between the high-pressure side heat exchanger (12) and the high-pressure side bypass path,
As the driving mode,
The heat medium flowing out from the high pressure side heat exchanger (12) flows into the low pressure side heat exchanger (14), further passes through the outdoor heat exchanger (23), and then flows into the high pressure side heat exchanger (12). ) and a start-up compressor heat source mode (HT0) flowing into at least the high pressure side bypass path (12A) among the high pressure side bypass path (12A),
The vehicle temperature control system according to any one of [1] to [3].
〔5〕前記起動時圧縮機熱源モード(HT0)は、前記低圧側熱交換器(14)から流出した前記熱媒体を前記室外熱交換器(23)に流入させる、
〔6〕車両用の温調システムを用いる温調方法であって、
 前記温調システムは、
 圧縮機11、高圧側熱交換器(12)、減圧部(13)、および低圧側熱交換器(14)を含み、冷凍サイクルに従って冷媒が循環可能に構成される冷媒回路(10)と、
 前記冷媒に対して熱を授受する熱媒体が循環可能に構成される熱媒体回路(20)と、を備え、
 前記熱媒体回路(20)は、
 前記冷媒と前記熱媒体とを熱交換させる前記高圧側熱交換器(12)と、
 前記冷媒と前記熱媒体とを熱交換させる前記低圧側熱交換器(14)と、
 いずれも前記熱媒体を圧送可能に構成される第1ポンプ(21)および第2ポンプ(22)と、
 外気と前記熱媒体とを熱交換させる室外熱交換器(23)と、
 前記熱媒体により加熱または冷却される温調対象に相当する、または前記温調対象の加熱または冷却に用いられる温調機器(25)と、
 前記室外熱交換器(23)から前記熱媒体を迂回させる室外バイパス経路(24)と、
を含み、
 前記温調方法は、
 前記低圧側熱交換器(14)および前記室外熱交換器(23)を前記熱媒体が前記第1ポンプ(21)により循環する低圧側回路(C1)と、前記高圧側熱交換器(12)および前記温調機器(25)を前記熱媒体が前記第2ポンプ(22)により循環する高圧側回路(C2)とが形成されるヒートポンプモード(HP)と、
 前記高圧側熱交換器(12)から流出した前記熱媒体が、前記温調機器(25)を経由して前記低圧側熱交換器(14)に流入し、さらに前記室外バイパス経路(24)を通り、前記高圧側熱交換器(12)に流入する圧縮機熱源モード(HT)との一方を選択するにあたり、
 前記ヒートポンプモード(HP)および前記圧縮機熱源モード(HT)のそれぞれの外気温度-加熱能力特性(OH1,OH2)の交点(X)に対応する交点外気温度(T)、または、前記交点外気温度(T)よりも低い温度に設定される切替外気温度(T,TSL)に対し、検知される外気温度(T)が高い場合は前記ヒートポンプモード(HP)を選択し、前記外気温度(T)が低い場合は前記圧縮機熱源モード(HT)を選択する、
車両用温調方法。
[5] The start-up compressor heat source mode (HT0) causes the heat medium flowing out of the low-pressure side heat exchanger (14) to flow into the outdoor heat exchanger (23).
[6] A temperature control method using a vehicle temperature control system,
The temperature control system is
A refrigerant circuit (10) including a compressor 11, a high-pressure side heat exchanger (12), a pressure reduction section (13), and a low-pressure side heat exchanger (14), and configured to allow refrigerant to circulate according to a refrigeration cycle;
a heat medium circuit (20) configured to allow circulation of a heat medium that transfers heat to and receives heat from the refrigerant;
The heat medium circuit (20) includes:
the high-pressure side heat exchanger (12) for exchanging heat between the refrigerant and the heat medium;
the low pressure side heat exchanger (14) for exchanging heat between the refrigerant and the heat medium;
A first pump (21) and a second pump (22), both of which are configured to be able to pump the heat medium;
an outdoor heat exchanger (23) that exchanges heat between outside air and the heat medium;
A temperature control device (25) corresponding to a temperature control object heated or cooled by the heat medium or used for heating or cooling the temperature control object;
an outdoor bypass path (24) that detours the heat medium from the outdoor heat exchanger (23);
including;
The temperature control method is
a low-pressure side circuit (C1) in which the heat medium circulates through the low-pressure side heat exchanger (14) and the outdoor heat exchanger (23) by the first pump (21); and the high-pressure side heat exchanger (12). and a heat pump mode (HP) in which a high pressure side circuit (C2) in which the heat medium circulates through the temperature control device (25) by the second pump (22) is formed;
The heat medium flowing out from the high pressure side heat exchanger (12) flows into the low pressure side heat exchanger (14) via the temperature control device (25), and further flows through the outdoor bypass path (24). In selecting one of the compressor heat source mode (HT) flowing into the high pressure side heat exchanger (12),
The intersection point outside air temperature (T x ) corresponding to the intersection point ( X ) of the outside air temperature-heating capacity characteristics (OH1, OH2) of each of the heat pump mode (HP) and the compressor heat source mode (HT), or the intersection point outside air When the detected outside air temperature (T) is higher than the outside air temperature (T S , T SL ) which is set to a lower temperature than the outside air temperature (T X ), the heat pump mode (HP) is selected and the outside air If the temperature (T) is low, select the compressor heat source mode (HT);
Vehicle temperature control method.
1    温調システム
5    制御装置
8    車室
10   冷媒回路
11   圧縮機
12   凝縮器
12A  凝縮器バイパス経路
12V  凝縮器流量調整弁
13   膨張弁(減圧部)
14   蒸発器
14A  蒸発器バイパス経路
14V  蒸発器流量調整弁
20   熱媒体回路
21   第1ポンプ
22   第2ポンプ
23   室外熱交換器
23A  室外送風機
24   室外バイパス経路
25   室内熱交換器
25A  室内送風機
31   第1切替弁
32   第2切替弁
33   第3切替弁
50   モード選択部
51   外気温センサ
52   室温センサ
501  メモリ
502  演算部
503  記憶部
504  入出力部
C1   低圧側回路
C2   高圧側回路
CC   直列回路
CP   加熱能力
DT   相関データ
R1,R2   領域
HP   ヒートポンプモード
HT   ヒータモード(圧縮機熱源モード)
HT0  起動時ヒータモード(起動時圧縮機熱源モード)
L,L,L   空調負荷
OH1,OH2  外気温度-加熱能力特性
T,T,T   外気温度
,TSL   切替外気温度
   交点外気温度
U    ユニット
X    交点
Δx   温度差
1 Temperature control system 5 Control device 8 Compartment 10 Refrigerant circuit 11 Compressor 12 Condenser 12A Condenser bypass path 12V Condenser flow rate adjustment valve 13 Expansion valve (pressure reducing section)
14 Evaporator 14A Evaporator bypass path 14V Evaporator flow rate adjustment valve 20 Heat medium circuit 21 First pump 22 Second pump 23 Outdoor heat exchanger 23A Outdoor blower 24 Outdoor bypass path 25 Indoor heat exchanger 25A Indoor blower 31 First switching Valve 32 Second switching valve 33 Third switching valve 50 Mode selection section 51 Outside temperature sensor 52 Room temperature sensor 501 Memory 502 Arithmetic section 503 Storage section 504 Input/output section C1 Low pressure side circuit C2 High pressure side circuit CC Series circuit CP Heating capacity DT Correlation Data R1, R2 Area HP Heat pump mode HT Heater mode (compressor heat source mode)
HT0 Start-up heater mode (start-up compressor heat source mode)
L, L 1 , L 2 Air conditioning load OH1, OH2 Outside air temperature - heating capacity characteristics T, T 1 , T 2 Outside air temperature T S , T SL switching outside air temperature T X Intersection outside air temperature U Unit X Intersection Δx Temperature difference

Claims (6)

  1.  車両用の温調システムであって、
     圧縮機、高圧側熱交換器、減圧部、および低圧側熱交換器を含み、冷凍サイクルに従って冷媒が循環可能に構成される冷媒回路と、
     前記冷媒に対して熱を授受する熱媒体が循環可能に構成される熱媒体回路と、を備え、
     前記熱媒体回路は、
     前記冷媒と前記熱媒体とを熱交換させる前記高圧側熱交換器と、
     前記冷媒と前記熱媒体とを熱交換させる前記低圧側熱交換器と、
     いずれも前記熱媒体を圧送可能に構成される第1ポンプおよび第2ポンプと、
     外気と前記熱媒体とを熱交換させる室外熱交換器と、
     前記熱媒体により加熱または冷却される温調対象に相当する、または前記温調対象の加熱または冷却に用いられる温調機器と、
     前記室外熱交換器から前記熱媒体を迂回させる室外バイパス経路と、を含み、
     前記温調システムは、運転モードとして、
     前記低圧側熱交換器および前記室外熱交換器を前記熱媒体が前記第1ポンプにより循環する低圧側回路と、前記高圧側熱交換器および前記温調機器を前記熱媒体が前記第2ポンプにより循環する高圧側回路とが形成されるヒートポンプモードと、
     前記高圧側熱交換器から流出した前記熱媒体が、前記温調機器を経由して前記低圧側熱交換器に流入し、さらに前記室外バイパス経路を通り、前記高圧側熱交換器に流入する圧縮機熱源モードと、を備えるとともに、
     前記ヒートポンプモードまたは前記圧縮機熱源モードを選択可能に構成されるモード選択部と、
     外気温度を検知する外気温センサと、を備え、
     前記モード選択部は、
     前記ヒートポンプモードおよび前記圧縮機熱源モードのそれぞれの外気温度-加熱能力特性の交点に対応する交点外気温度に設定されるか、または、前記交点外気温度よりも低い温度に設定される切替外気温度に対し、前記外気温センサにより検知される前記外気温度が高い場合は前記ヒートポンプモードを選択し、前記外気温度が低い場合は前記圧縮機熱源モードを選択するように構成される、
    車両用温調システム。
    A temperature control system for a vehicle,
    A refrigerant circuit including a compressor, a high-pressure side heat exchanger, a pressure reduction section, and a low-pressure side heat exchanger, and configured to allow refrigerant to circulate according to a refrigeration cycle;
    a heat medium circuit configured to allow circulation of a heat medium that transfers heat to and receives heat from the refrigerant;
    The heat medium circuit is
    the high-pressure side heat exchanger that exchanges heat between the refrigerant and the heat medium;
    the low-pressure side heat exchanger that exchanges heat between the refrigerant and the heat medium;
    a first pump and a second pump, both of which are configured to be able to pump the heat medium;
    an outdoor heat exchanger that exchanges heat between outside air and the heat medium;
    A temperature control device corresponding to a temperature control object heated or cooled by the heat medium or used for heating or cooling the temperature control object;
    an outdoor bypass path that detours the heat medium from the outdoor heat exchanger,
    The temperature control system has the following operating modes:
    a low-pressure side circuit in which the heat medium circulates through the low-pressure side heat exchanger and the outdoor heat exchanger by the first pump; and a low-pressure side circuit in which the heat medium circulates through the high-pressure side heat exchanger and the temperature control device by the second pump. A heat pump mode in which a circulating high pressure side circuit is formed;
    The heat medium flowing out from the high-pressure side heat exchanger flows into the low-pressure side heat exchanger via the temperature control device, and further passes through the outdoor bypass path and flows into the high-pressure side heat exchanger. In addition to being equipped with a machine heat source mode,
    a mode selection unit configured to be able to select the heat pump mode or the compressor heat source mode;
    Equipped with an outside temperature sensor that detects outside air temperature,
    The mode selection section includes:
    The switching outside air temperature is set to an intersection outside temperature corresponding to the intersection of the outside air temperature-heating capacity characteristics of the heat pump mode and the compressor heat source mode, or is set to a temperature lower than the intersection outside air temperature. On the other hand, when the outside air temperature detected by the outside air temperature sensor is high, the heat pump mode is selected, and when the outside air temperature is low, the compressor heat source mode is selected.
    Vehicle temperature control system.
  2.  前記モード選択部は、前記ヒートポンプモードの前記外気温度-加熱能力特性における前記圧縮機熱源モードよりも加熱能力が劣る領域においては、前記切替外気温度を加熱負荷に応じて設定可能に構成される、
    請求項1に記載の車両用温調システム。
    The mode selection unit is configured to be able to set the switching outside air temperature in accordance with the heating load in a region where the heating ability is inferior to the compressor heat source mode in the outside air temperature-heating ability characteristic of the heat pump mode.
    The vehicle temperature control system according to claim 1.
  3.  前記ヒートポンプモードの前記外気温度-加熱能力特性においては、前記外気温度が低下するにつれて前記加熱能力は低下し、
     前記モード選択部は、前記加熱負荷と前記ヒートポンプモードの前記外気温度-加熱能力特性との交点に対応する前記切替外気温度に対し、前記外気温度が高い場合は前記ヒートポンプモードを選択し、前記外気温度が低い場合は前記圧縮機熱源モードを選択するように構成される、
    請求項2に記載の車両用温調システム。
    In the outside air temperature-heating capacity characteristic of the heat pump mode, as the outside air temperature decreases, the heating ability decreases,
    The mode selection unit selects the heat pump mode when the outside air temperature is high with respect to the switching outside air temperature corresponding to the intersection of the heating load and the outside air temperature-heating capacity characteristic of the heat pump mode, and selects the heat pump mode when the outside air temperature is high. configured to select the compressor heat source mode when the temperature is low;
    The vehicle temperature control system according to claim 2.
  4.  前記高圧側熱交換器から前記熱媒体を迂回させる高圧側バイパス経路と、
     前記高圧側熱交換器と前記高圧側バイパス経路との前記熱媒体の流量比を調整可能に構成される高圧側流量調整弁と、を備え、
     前記運転モードとして、
     前記低圧側熱交換器から流出した前記熱媒体が、前記室外熱交換器に流入し、さらに前記高圧側バイパス経路に流入する起動時圧縮機熱源モードを備える、
    請求項1から3のいずれか一項に記載の車両用温調システム。
    a high-pressure side bypass path that detours the heat medium from the high-pressure side heat exchanger;
    a high-pressure side flow rate adjustment valve configured to be able to adjust a flow rate ratio of the heat medium between the high-pressure side heat exchanger and the high-pressure side bypass path;
    As the driving mode,
    a start-up compressor heat source mode in which the heat medium flowing out of the low-pressure side heat exchanger flows into the outdoor heat exchanger and further flows into the high-pressure side bypass path;
    The vehicle temperature control system according to any one of claims 1 to 3.
  5.   送られる空気と前記熱媒体とを熱交換させる室内熱交換器を備え、
     前記起動時圧縮機熱源モードは、前記高圧側バイパス経路を流れた前記熱媒体を前記室外熱交換器に流入させた後に前記低圧側熱交換器に戻す、
    請求項4に記載の車両用温調システム。
    an indoor heat exchanger for exchanging heat between the air sent and the heat medium;
    In the start-up compressor heat source mode, the heat medium flowing through the high-pressure side bypass path is returned to the low-pressure side heat exchanger after flowing into the outdoor heat exchanger.
    The vehicle temperature control system according to claim 4.
  6.  車両用の温調システムを用いる温調方法であって、
     前記温調システムは、
     圧縮機、高圧側熱交換器、減圧部、および低圧側熱交換器を含み、冷凍サイクルに従って冷媒が循環可能に構成される冷媒回路と、
     前記冷媒に対して熱を授受する熱媒体が循環可能に構成される熱媒体回路と、を備え、
     前記熱媒体回路は、
     前記冷媒と前記熱媒体とを熱交換させる前記高圧側熱交換器と、
     前記冷媒と前記熱媒体とを熱交換させる前記低圧側熱交換器と、
     いずれも前記熱媒体を圧送可能に構成される第1ポンプおよび第2ポンプと、
     外気と前記熱媒体とを熱交換させる室外熱交換器と、
     前記熱媒体により加熱または冷却される温調対象に相当する、または前記温調対象の加熱または冷却に用いられる温調機器と、
     前記室外熱交換器から前記熱媒体を迂回させる室外バイパス経路と、を含み、
     前記温調方法は、
     前記低圧側熱交換器および前記室外熱交換器を前記熱媒体が前記第1ポンプにより循環する低圧側回路と、前記高圧側熱交換器および前記温調機器を前記熱媒体が前記第2ポンプにより循環する高圧側回路とが形成されるヒートポンプモードと、
     前記高圧側熱交換器から流出した前記熱媒体が、前記温調機器を経由して前記低圧側熱交換器に流入し、さらに前記室外バイパス経路を通り、前記高圧側熱交換器に流入する圧縮機熱源モードとの一方を選択するにあたり、
     前記ヒートポンプモードおよび前記圧縮機熱源モードのそれぞれの外気温度-加熱能力特性の交点に対応する交点外気温度、または、前記交点外気温度よりも低い温度に設定される切替外気温度に対し、検知される外気温度が高い場合は前記ヒートポンプモードを選択し、前記外気温度が低い場合は前記圧縮機熱源モードを選択する、
     車両用温調方法。
     
    A temperature control method using a vehicle temperature control system,
    The temperature control system is
    A refrigerant circuit including a compressor, a high-pressure side heat exchanger, a pressure reduction section, and a low-pressure side heat exchanger, and configured to allow refrigerant to circulate according to a refrigeration cycle;
    a heat medium circuit configured to allow circulation of a heat medium that transfers heat to and receives heat from the refrigerant;
    The heat medium circuit is
    the high-pressure side heat exchanger that exchanges heat between the refrigerant and the heat medium;
    the low-pressure side heat exchanger that exchanges heat between the refrigerant and the heat medium;
    a first pump and a second pump, both of which are configured to be able to pump the heat medium;
    an outdoor heat exchanger that exchanges heat between outside air and the heat medium;
    A temperature control device corresponding to a temperature control object heated or cooled by the heat medium or used for heating or cooling the temperature control object;
    an outdoor bypass path that detours the heat medium from the outdoor heat exchanger,
    The temperature control method is
    a low-pressure side circuit in which the heat medium circulates through the low-pressure side heat exchanger and the outdoor heat exchanger by the first pump; and a low-pressure side circuit in which the heat medium circulates through the high-pressure side heat exchanger and the temperature control device by the second pump. A heat pump mode in which a circulating high pressure side circuit is formed;
    The heat medium flowing out from the high-pressure side heat exchanger flows into the low-pressure side heat exchanger via the temperature control device, and further passes through the outdoor bypass path and flows into the high-pressure side heat exchanger. When selecting one of the machine heat source modes,
    Detected for an intersection outside temperature corresponding to the intersection of the outside air temperature-heating capacity characteristics of the heat pump mode and the compressor heat source mode, or a switching outside air temperature that is set to a temperature lower than the intersection outside air temperature. When the outside air temperature is high, the heat pump mode is selected, and when the outside air temperature is low, the compressor heat source mode is selected.
    Vehicle temperature control method.
PCT/JP2023/033043 2022-09-16 2023-09-11 Vehicle temperature control system and temperature control method WO2024058123A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-148256 2022-09-16
JP2022148256A JP7325593B1 (en) 2022-09-16 2022-09-16 Vehicle temperature control system and temperature control method

Publications (1)

Publication Number Publication Date
WO2024058123A1 true WO2024058123A1 (en) 2024-03-21

Family

ID=87563173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033043 WO2024058123A1 (en) 2022-09-16 2023-09-11 Vehicle temperature control system and temperature control method

Country Status (2)

Country Link
JP (1) JP7325593B1 (en)
WO (1) WO2024058123A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015107589A1 (en) * 2014-01-15 2015-07-23 株式会社デンソー Vehicular heat management system
JP6083304B2 (en) * 2013-04-03 2017-02-22 株式会社デンソー Thermal management system for vehicles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022169906A (en) 2021-04-28 2022-11-10 三菱重工サーマルシステムズ株式会社 Vehicular air-conditioning system and vehicular air-conditioning method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6083304B2 (en) * 2013-04-03 2017-02-22 株式会社デンソー Thermal management system for vehicles
WO2015107589A1 (en) * 2014-01-15 2015-07-23 株式会社デンソー Vehicular heat management system

Also Published As

Publication number Publication date
JP7325593B1 (en) 2023-08-14
JP2024043205A (en) 2024-03-29

Similar Documents

Publication Publication Date Title
US20190111756A1 (en) Refrigeration cycle device
US20220032732A1 (en) Battery heating device for vehicle
CN113646595B (en) Refrigeration cycle device
US20220234416A1 (en) Refrigeration cycle device
US11506404B2 (en) Refrigeration cycle device
WO2020110509A1 (en) Vehicle air conditioner
CN113646594B (en) Air conditioner
JP2019104394A (en) Heat management system
WO2022158153A1 (en) Heat management system
JP4055739B2 (en) Air conditioner for vehicles
US20220136747A1 (en) Refrigeration cycle device
CN110998209A (en) Composite heat exchanger
WO2024058118A1 (en) Vehicular temperature control system and temperature control method
JP2022128546A (en) Air conditioner
WO2024058123A1 (en) Vehicle temperature control system and temperature control method
JP2020199871A (en) Vehicular heat control system
JP7487562B2 (en) Refrigeration Cycle Equipment
CN117136144A (en) Vehicle air conditioning system and vehicle air conditioning method
JP7361176B1 (en) Vehicle temperature control system and temperature control method
JP7372414B1 (en) Vehicle temperature control system and temperature control method
JP7288127B1 (en) Vehicle temperature control system and temperature control method
WO2024075715A1 (en) Vehicle temperature control system
WO2024057865A1 (en) Vehicle temperature control system and temperature control method
JP7361177B1 (en) Vehicle temperature control system and temperature control method
WO2021261320A1 (en) Vehicle cooling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865476

Country of ref document: EP

Kind code of ref document: A1