JPH0961076A - Heat transfer device and its controlling method - Google Patents

Heat transfer device and its controlling method

Info

Publication number
JPH0961076A
JPH0961076A JP7213438A JP21343895A JPH0961076A JP H0961076 A JPH0961076 A JP H0961076A JP 7213438 A JP7213438 A JP 7213438A JP 21343895 A JP21343895 A JP 21343895A JP H0961076 A JPH0961076 A JP H0961076A
Authority
JP
Japan
Prior art keywords
pump
condenser
pipe
heat
heat transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7213438A
Other languages
Japanese (ja)
Other versions
JP3886174B2 (en
Inventor
Tsuneo Uekusa
常雄 植草
Kazuo Chiba
和男 千葉
Masaki Nakao
正喜 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N T T FACILITIES KK
Nippon Telegraph and Telephone Corp
NTT Facilities Inc
Original Assignee
N T T FACILITIES KK
Nippon Telegraph and Telephone Corp
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N T T FACILITIES KK, Nippon Telegraph and Telephone Corp, NTT Facilities Inc filed Critical N T T FACILITIES KK
Priority to JP21343895A priority Critical patent/JP3886174B2/en
Publication of JPH0961076A publication Critical patent/JPH0961076A/en
Application granted granted Critical
Publication of JP3886174B2 publication Critical patent/JP3886174B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a thermal transferring medium to be prevented from being gasified at a pump suction port without increasing cost by a method wherein an increasing rate of condensing capability at a condenser is controlled in response to a liquid surface height, volume and pressure loss of thermal transferring medium present at a pipe between a condenser and a suction port of a pump. SOLUTION: An evaporator 1, a condenser 2, a tank 3 and a pump 4 are connected in sequence by a pipe 5, and refrigerant acting as thermal transferring medium is enclosed in the pipe 5. A freezer 6 is arranged for use in supplying cold heat to the condenser 2, a cold water circulating pipe 7 is arranged between the freezer 6 and the condenser 2 and then the pipe 7 is provided with a pump 8 for controlling a circulation of the cold water and its amount, and with an opening or closing valve 9. Then, the pump 8, the opening or closing valve 9, a liquid surface height sensor 11, a circulating amount measuring device 12 and a memory 21 are connected to a control part 20. The control part 20 calculates differences ΔH, ΔM, and ΔP between a liquid surface height H, a volume M and a pressure loss P and their reference values Hs, Ms and Ps are to multiply a weighted coefficient and then an amount of feeding water of the pump 8 is controlled in response to a sum of differences ΔH, ΔM, and ΔP.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、熱輸送媒体の相
変化を利用して熱の輸送を行なう熱輸送装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transport device that transports heat by utilizing a phase change of a heat transport medium.

【0002】[0002]

【従来の技術】一般に、熱を輸送する媒体として、水の
温度差(顕熱)が用いられている。冷凍機の凝縮器から
の排熱を冷却塔を使って大気中に放出する際の冷却水も
その一例である。
2. Description of the Related Art Generally, a temperature difference (sensible heat) of water is used as a medium for transporting heat. An example is cooling water when the exhaust heat from the condenser of the refrigerator is released into the atmosphere using the cooling tower.

【0003】しかし、顕熱を利用するよりも潜熱(相変
化)を利用した方が、熱輸送媒体の循環量を少なくでき
ることから、最近では、熱輸送媒体の相変化を利用した
熱輸送システムが導入されてきている。
However, the use of latent heat (phase change) rather than the use of sensible heat makes it possible to reduce the circulation amount of the heat transport medium. Therefore, recently, a heat transport system utilizing phase change of the heat transport medium has been used. It has been introduced.

【0004】熱輸送媒体たとえば冷媒(フロンなど)の
相変化により熱を輸送するシステムとして、蒸発器を凝
縮器よりも低い位置に設置し、液と蒸気の密度差を利用
した自然循環による熱輸送方法が知られている。しか
し、この方法は、蒸発器を凝縮器よりも必ず低い位置に
設置しなければならないという制約条件が存在する。
As a system for transporting heat by a phase change of a heat transport medium such as a refrigerant (CFC, etc.), an evaporator is installed at a position lower than that of a condenser, and heat transport by natural circulation utilizing a density difference between liquid and vapor. The method is known. However, this method has a constraint that the evaporator must be installed lower than the condenser.

【0005】この制約条件を受けない汎用的な方法とし
ては、凝縮器出口にポンプを設けて熱輸送の駆動力を得
る方法と、蒸発器出口に圧縮機等を設けて熱輸送の駆動
力を得る方法がある。
As a general method not subject to this restriction condition, a pump is provided at the outlet of the condenser to obtain a driving force for heat transport, and a compressor is provided at the outlet of the evaporator to provide a driving force for heat transport. There is a way to get it.

【0006】ただし、圧縮機による方法は、ポンプによ
る方法に比べて運転動力が大きくなり、有効な手段とは
言えない。ポンプによる方法は、圧縮機による方法に比
べて運転動力は少ないが、ポンプ吸入口で冷媒がガス化
することがある。冷媒がガス化すると、ポンプが空回り
運転し、熱輸送を継続できなくなる。ポンプに損傷が生
じることもある。
However, the method using the compressor requires a larger driving power than the method using the pump and cannot be said to be an effective means. The pump method has less operating power than the compressor method, but the refrigerant may be gasified at the pump inlet. When the refrigerant is gasified, the pump runs idle and heat transfer cannot be continued. Damage to the pump can also occur.

【0007】このガス化を防ぐためには、凝縮器の位置
とポンプの位置との高低差をポンプ固有の許容NPSH
値以上に設定する必要がある。別の手段として、ポンプ
吸入口に小型の冷凍機を設置し、その冷凍機で冷媒を冷
却することにより、ポンプ吸入口の冷媒を常に液状態に
保つ例も見られる。
In order to prevent this gasification, the height difference between the position of the condenser and the position of the pump is set to the allowable NPSH specific to the pump.
It is necessary to set it higher than the value. As another means, there is also an example in which a small refrigerator is installed at the pump inlet and the refrigerant is cooled by the refrigerator to keep the refrigerant at the pump inlet always in a liquid state.

【0008】[0008]

【発明が解決しようとする課題】上記のように冷凍機を
用いてガス化を防ぐ例は、コストの上昇を招き、得策と
はいえない。凝縮器の位置とポンプの位置との高低差を
ポンプ固有の許容NPSH値以上に設定する例でも、凝
縮器での凝縮能力が急増した場合には、冷媒のガス化が
避けられない状況となる。
The example of preventing gasification by using a refrigerator as described above causes an increase in cost and is not a good solution. Even in the example in which the height difference between the position of the condenser and the position of the pump is set to be equal to or higher than the allowable NPSH value peculiar to the pump, when the condensation capacity in the condenser increases rapidly, gasification of the refrigerant is inevitable. .

【0009】これは、凝縮能力の急増により、冷媒の圧
力が急激に低下し、それに伴って飽和冷媒温度も急激に
低下するのに対し、ポンプ吸入口での冷媒の温度は圧力
よりも伝達速度が遅いことに起因して低下の速さが鈍い
からである。図6に示すように、凝縮能力の急増から数
秒後には冷媒の温度よりも飽和冷媒温度が低くなり、冷
媒がガス化してしまう。
This is because the pressure of the refrigerant sharply decreases due to the rapid increase of the condensing capacity, and the saturated refrigerant temperature also sharply decreases accordingly, whereas the temperature of the refrigerant at the pump suction port is higher than the pressure in the transmission speed. This is because the rate of decrease is slow due to the slowness. As shown in FIG. 6, the saturated refrigerant temperature becomes lower than the refrigerant temperature several seconds after the rapid increase in the condensation capacity, and the refrigerant is gasified.

【0010】この発明は上記の事情を考慮したもので、
第1ないし第5の発明の熱輸送装置は、コストの上昇を
招くことなく、ポンプ吸入口での熱輸送媒体のガス化を
未然に防止することができ、これにより適切な熱輸送を
継続するとともにポンプの損傷を防ぎ、信頼性および安
全性の向上が図れることを目的とする。
[0010] The present invention has been made in view of the above circumstances,
The heat-transporting device of the first to fifth inventions can prevent gasification of the heat-transporting medium at the pump suction port without increasing the cost, thereby continuing appropriate heat-transporting. At the same time, it aims to prevent damage to the pump and improve reliability and safety.

【0011】第6の発明の熱輸送装置の制御方法は、コ
ストの上昇を招くことなく、ポンプ吸入口での熱輸送媒
体のガス化を未然に防止することができ、これにより適
切な熱輸送を継続するとともにポンプの損傷を防ぎ、信
頼性および安全性の向上が図れることを目的とする。
The heat transport device control method of the sixth aspect of the present invention can prevent gasification of the heat transport medium at the pump suction port before the cost is increased, and thus, appropriate heat transport can be achieved. The purpose is to continue pumping, prevent damage to the pump, and improve reliability and safety.

【0012】[0012]

【課題を解決するための手段】第1の発明の熱輸送装置
は、蒸発器、凝縮器、およびポンプを順次に配管接続
し、配管内に封入した熱輸送媒体の相変化により熱の輸
送を行なうものであって、凝縮器とポンプの吸入口との
間の配管に存する熱輸送媒体の液面高さ、量、圧力損失
に基づき、凝縮器での凝縮能力の増加割合を制御する制
御手段、を備えている。
In the heat transport device of the first invention, an evaporator, a condenser, and a pump are sequentially connected by pipes, and heat is transferred by a phase change of a heat transfer medium enclosed in the pipes. Control means for controlling the rate of increase in the condensation capacity of the condenser based on the liquid level height, amount and pressure loss of the heat transport medium existing in the pipe between the condenser and the suction port of the pump. , Are provided.

【0013】第2の発明の熱輸送装置は、蒸発器、凝縮
器、およびポンプを順次に配管接続し、配管内に封入し
た熱輸送媒体の相変化により熱の輸送を行なうものであ
って、凝縮器とポンプの吸入口との間の配管に存する熱
輸送媒体の液面高さを検知する液面高さ検知手段と、凝
縮器とポンプの吸入口との間の配管長および配管径を記
憶した記憶手段と、凝縮器とポンプの吸入口との間の配
管に存する熱輸送媒体の量を、上記液面高さ検知手段の
検知結果および上記記憶手段の記憶内容から演算して求
める第1演算手段と、蒸発器、凝縮器、およびポンプを
通して循環する熱輸送媒体の量を測定する循環量測定手
段と、凝縮器とポンプの吸入口との間の配管に存する熱
輸送媒体の圧力損失を、上記循環量測定手段の測定結果
および上記記憶手段の記憶内容から演算して求める第2
演算手段と、上記液面高さ検知手段の検知結果、上記第
1演算手段の演算結果、および上記第2演算手段の演算
結果に基づき、凝縮器での凝縮能力の増加割合を制御す
る制御手段と、を備えている。
In the heat transport device of the second invention, an evaporator, a condenser, and a pump are sequentially connected by pipes, and heat is transferred by a phase change of the heat transfer medium enclosed in the pipes. Check the liquid level height detecting means for detecting the liquid level of the heat transport medium existing in the pipe between the condenser and the suction port of the pump, and the pipe length and diameter between the condenser and the suction port of the pump. Calculating the amount of the heat transport medium existing in the stored storage means and the pipe between the condenser and the suction port of the pump by calculating from the detection result of the liquid level height detection means and the stored contents of the storage means. 1 Calculation means, circulation amount measuring means for measuring the amount of heat transport medium circulating through the evaporator, condenser, and pump, and pressure loss of the heat transport medium existing in the pipe between the condenser and the suction port of the pump The measurement result of the circulation amount measuring means and the memory Second obtaining by calculating from the stored contents
Control means for controlling the increasing rate of the condensation capacity in the condenser based on the calculation means, the detection result of the liquid level height detection means, the calculation result of the first calculation means, and the calculation result of the second calculation means. And are equipped with.

【0014】第3の発明の熱輸送装置は、蒸発器、凝縮
器、およびポンプを順次に配管接続し、配管内に封入し
た熱輸送媒体の相変化により熱の輸送を行なうものであ
って、凝縮器とポンプの吸入口との間の配管に存する熱
輸送媒体の標準の液面高さおよび量を記憶し、かつ凝縮
器とポンプの吸入口との間の配管長および配管径を記憶
した記憶手段と、蒸発器、凝縮器、およびポンプを通し
て循環する熱輸送媒体の量を測定する循環量測定手段
と、凝縮器とポンプの吸入口との間の配管に存する熱輸
送媒体の圧力損失を、上記循環量測定手段の測定結果お
よび上記記憶手段内の配管長と配管径から演算して求め
る演算手段と、上記記憶手段内の液面高さ、上記記憶手
段内の量、および上記演算手段の演算結果に基づき、凝
縮器での凝縮能力の増加割合を制御する制御手段と、を
備えている。
In the heat transport device of the third invention, an evaporator, a condenser, and a pump are sequentially connected by pipes, and heat is transferred by a phase change of a heat transfer medium enclosed in the pipes. The standard liquid level height and amount of the heat transfer medium existing in the pipe between the condenser and the pump inlet was stored, and the pipe length and pipe diameter between the condenser and the pump inlet were stored. The storage means, the circulation amount measuring means for measuring the amount of the heat transfer medium circulating through the evaporator, the condenser, and the pump, and the pressure loss of the heat transfer medium existing in the pipe between the condenser and the suction port of the pump are measured. Calculating means for calculating from the measurement result of the circulation amount measuring means and the pipe length and the pipe diameter in the storing means, the liquid level in the storing means, the amount in the storing means, and the calculating means Based on the calculation result of Comprises a control means for controlling the pressure ratio, the.

【0015】第4の発明の熱輸送装置は、第2または第
3の発明における循環量測定手段が、ポンプの送出口と
蒸発器との間の配管に設けられ、配管中の冷媒流量から
循環量を測定する。
In the heat transport device of the fourth invention, the circulation amount measuring means in the second or third invention is provided in the pipe between the pump outlet and the evaporator, and circulates from the flow rate of the refrigerant in the pipe. Measure the quantity.

【0016】第5の発明の熱輸送装置は、第2または第
3の発明における循環量測定手段が、ポンプの運転周波
数を検出する検出手段と、ポンプの吸入圧力および吐出
圧力を検知する圧力検知手段と、この圧力検知手段の検
知結果および上記検出手段の検出結果を演算することに
より循環量を求める演算手段と、からなる。
In the heat transport apparatus of the fifth invention, the circulation amount measuring means in the second or third invention detects the operating frequency of the pump and the pressure detecting means for detecting the suction pressure and the discharge pressure of the pump. And means for calculating the circulation amount by calculating the detection result of the pressure detecting means and the detection result of the detecting means.

【0017】第6の発明の熱輸送装置の制御方法は、蒸
発器、凝縮器、およびポンプを順次に配管接続し、配管
内に封入した熱輸送媒体の相変化により熱の輸送を行な
う熱輸送装置において、凝縮器とポンプの吸入口との間
の配管に存する熱輸送媒体の液面高さ、量、圧力損失に
基づき、凝縮器での凝縮能力の増加割合を制御する。
The heat transport apparatus control method of the sixth aspect of the present invention is a heat transport method in which an evaporator, a condenser, and a pump are sequentially connected by pipes, and heat is transported by a phase change of a heat transport medium enclosed in the pipes. In the device, the rate of increase in the condensation capacity of the condenser is controlled based on the liquid level height, amount, and pressure loss of the heat transport medium existing in the pipe between the condenser and the suction port of the pump.

【0018】[0018]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

[1]以下、この発明の第1実施例について図面を参照
して説明する。図1に示すように、蒸発器1、凝縮器
2、タンク3、およびポンプ4が配管5で順次に接続さ
れる。配管5内には熱輸送媒体として冷媒(たとえばフ
ロン)が封入されている。
[1] Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the evaporator 1, the condenser 2, the tank 3, and the pump 4 are sequentially connected by a pipe 5. A refrigerant (for example, CFC) is enclosed in the pipe 5 as a heat transport medium.

【0019】凝縮器2の位置およびポンプ4の位置につ
いては、両者の高低差がポンプ固有の許容NPSH値以
上に設定される。凝縮器2に対する冷熱供給用に冷凍機
6が設けられ、その冷凍機6と凝縮器2との間に冷水循
環用の配管7が設けられる。そして、配管7に、冷水の
循環および量を制御するためのポンプ8および開閉弁9
が設けられる。冷凍機6としては、蒸気圧縮式冷凍機、
吸収式冷凍機、氷蓄熱槽など、種々の適用が可能であ
り、すべての冷熱源を指す。
Regarding the position of the condenser 2 and the position of the pump 4, the height difference between them is set to be equal to or higher than the allowable NPSH value peculiar to the pump. A refrigerator 6 is provided for supplying cold heat to the condenser 2, and a pipe 7 for circulating cold water is provided between the refrigerator 6 and the condenser 2. A pump 8 and an opening / closing valve 9 for controlling the circulation and amount of cold water are provided in the pipe 7.
Is provided. As the refrigerator 6, a vapor compression refrigerator,
Various types of applications such as absorption refrigerators and ice heat storage tanks are possible, and all cold heat sources are indicated.

【0020】すなわち、ポンプ4の送出口から送り出さ
れる液状の冷媒は、蒸発器1で外部から熱を奪って蒸発
する。このガス冷媒は、次に凝縮器2に流れ、そこで冷
凍機6からの冷水に熱を放出して液化する。この液冷媒
は、タンク3を介してポンプ4の吸入口に取込まれ、そ
のポンプ4の送出口から蒸発器1に向けて再び送り出さ
れる。
That is, the liquid refrigerant sent from the outlet of the pump 4 takes heat from the outside in the evaporator 1 and evaporates. This gas refrigerant then flows to the condenser 2 where it radiates heat to the cold water from the refrigerator 6 and liquefies it. The liquid refrigerant is taken into the suction port of the pump 4 via the tank 3 and is again sent from the outlet of the pump 4 toward the evaporator 1.

【0021】こうして、冷凍機6から放出される冷熱
が、蒸発器1側へ輸送される。タンク3は凝縮器2から
の液冷媒を一旦収容するためのものである。このタンク
3と並列に、液面高さ検知器11が連通接続される。液
面高さ検知器11は、凝縮器2とポンプ4の吸入口との
間の配管5に存する冷媒(液状)の液面高さHを検知す
る。
Thus, the cold heat released from the refrigerator 6 is transported to the evaporator 1 side. The tank 3 is for temporarily storing the liquid refrigerant from the condenser 2. A liquid level detector 11 is connected in parallel with the tank 3. The liquid level detector 11 detects the liquid level H of the refrigerant (liquid) existing in the pipe 5 between the condenser 2 and the suction port of the pump 4.

【0022】ポンプ4の送出口と蒸発器1との間の配管
5に、循環量測定器12が設けられる。この循環量測定
器12は、配管5中の冷媒の流量、つまり蒸発器1、凝
縮器2、タンク3、およびポンプ4を通して循環する冷
媒の量を測定する。
A circulation amount measuring device 12 is provided in the pipe 5 between the outlet of the pump 4 and the evaporator 1. The circulation amount measuring device 12 measures the flow rate of the refrigerant in the pipe 5, that is, the amount of the refrigerant circulating through the evaporator 1, the condenser 2, the tank 3, and the pump 4.

【0023】一方、制御部20が設けられる。この制御
部20に、上記ポンプ8、開閉弁9、液面高さ検知器1
1、および循環量測定器12が接続されるとともに、記
憶手段たとえばメモリ21が接続される。メモリ21に
は、凝縮器2とポンプ4の吸入口との間の配管5の長さ
および径が予め記憶されるとともに、タンク3の容量が
予め記憶される。記憶される配管長、配管径、およびタ
ンク容量は、設計時のデータである。
On the other hand, a controller 20 is provided. The control unit 20 includes the pump 8, the on-off valve 9, and the liquid level height detector 1
1, and the circulation amount measuring device 12 are connected, and a storage means such as a memory 21 is connected. In the memory 21, the length and diameter of the pipe 5 between the condenser 2 and the suction port of the pump 4 are stored in advance, and the capacity of the tank 3 is stored in advance. The stored pipe length, pipe diameter, and tank capacity are data at the time of design.

【0024】そして、制御部20は、次の機能手段を備
える。 (1)凝縮器2とポンプ4の吸入口との間の配管5に存
する冷媒の量Mを、液面高さ検知器11の検知結果Hお
よびメモリ21の記憶内容(配管長、配管径、タンク容
量)から演算して求める第1演算手段。
The control unit 20 is equipped with the following functional means. (1) The amount M of the refrigerant existing in the pipe 5 between the condenser 2 and the suction port of the pump 4, the detection result H of the liquid level height detector 11 and the stored contents of the memory 21 (pipe length, pipe diameter, First calculating means for calculating by calculating from the tank capacity).

【0025】(2)凝縮器2とポンプ4の吸入口との間
の配管5に存する冷媒の圧力損失Pを、循環量測定器1
2の測定結果およびメモリ21の記憶内容(配管長、配
管径)から演算して求める第2演算手段。
(2) The pressure loss P of the refrigerant existing in the pipe 5 between the condenser 2 and the suction port of the pump 4 is measured by the circulation amount measuring device 1
Second calculation means for calculating and obtaining from the measurement result of No. 2 and the stored contents (pipe length, pipe diameter) of the memory 21.

【0026】(3)液面高さ検知器11の検知結果H、
第1演算手段の演算結果M、および第2演算手段の演算
結果Pに基づき、凝縮器2での凝縮能力の増加割合を制
御する制御手段。具体的には、ポンプ8の送水量、つま
り冷凍機6から凝縮器2に流れる冷水の量を制御する。
(3) Detection result H of the liquid level detector 11,
Control means for controlling the increasing rate of the condensation capacity in the condenser 2 based on the calculation result M of the first calculation means and the calculation result P of the second calculation means. Specifically, the amount of water sent by the pump 8, that is, the amount of cold water flowing from the refrigerator 6 to the condenser 2 is controlled.

【0027】つぎに、上記の構成の作用を説明する。ポ
ンプ4が運転されると、そのポンプ4から液冷媒が送出
される。この液冷媒は蒸発器1に流れ、そこで外部から
熱を奪って蒸発する。蒸発器1から流出するガス冷媒は
凝縮器2に流れ、そこで冷凍機6からの冷水に熱を放出
して液化する。この液冷媒は、タンク3を介してポンプ
4の吸入口に取込まれ、そのポンプ4の送出口から蒸発
器1に向けて再び送り出される。
Next, the operation of the above configuration will be described. When the pump 4 is operated, the liquid refrigerant is delivered from the pump 4. This liquid refrigerant flows to the evaporator 1, where heat is taken from the outside and evaporated. The gas refrigerant flowing out from the evaporator 1 flows into the condenser 2, where heat is released to the cold water from the refrigerator 6 and liquefied. The liquid refrigerant is taken into the suction port of the pump 4 via the tank 3 and is again sent from the outlet of the pump 4 toward the evaporator 1.

【0028】ところで、凝縮器2の位置とポンプ4の位
置との高低差がたとえポンプ固有の許容NPSH値以上
に設定されていても、凝縮器2での凝縮能力が急増した
とき、たとえば冷凍機6から凝縮器2に供給される冷水
の温度が急激に下がった場合、あるいは冷凍機6から凝
縮器2に供給される冷水の量が急激に増えた場合には、
ポンプ4の吸入口で液冷媒がガス化する虞れがある。
By the way, even when the height difference between the position of the condenser 2 and the position of the pump 4 is set to be equal to or higher than the allowable NPSH value peculiar to the pump, when the condensing capacity of the condenser 2 rapidly increases, for example, a refrigerator. When the temperature of the cold water supplied from 6 to the condenser 2 sharply drops, or when the amount of cold water supplied from the refrigerator 6 to the condenser 2 sharply increases,
The liquid refrigerant may be gasified at the suction port of the pump 4.

【0029】ポンプ4の吸入口で液冷媒がガス化するか
どうかを決める因子としては、凝縮器2とポンプ4の吸
入口との間の配管5に存する冷媒の液面高さH、量
M、圧力損失Pの三つがある。
The factors that determine whether the liquid refrigerant is gasified at the suction port of the pump 4 are the liquid level height H and the amount M of the refrigerant existing in the pipe 5 between the condenser 2 and the pump 4 suction port. , Pressure loss P.

【0030】冷媒の液面高さHは、液面高さ検知器1
1で検知される。 冷媒の量Mは、液面高さ検知器11で検知される液面
高さH、およびメモリ21の記憶内容(配管長、配管
径、タンク容量)、から演算して求められる。
The liquid level height H of the refrigerant is the liquid level height detector 1
1 is detected. The amount M of the refrigerant is calculated and calculated from the liquid level height H detected by the liquid level height detector 11 and the stored contents (pipe length, pipe diameter, tank capacity) of the memory 21.

【0031】冷媒の圧力損失Pは、配管抵抗に対応す
るもので、循環量測定器12で測定される循環量、およ
びメモリ21の記憶内容(配管5の長さおよび径)、か
ら演算して求められる。これら三つの因子H、M、Pが
どのような状態のときにガス化が生じるかをまとめたの
が下記表である。
The pressure loss P of the refrigerant corresponds to the pipe resistance and is calculated from the circulation amount measured by the circulation amount measuring device 12 and the stored contents (length and diameter of the pipe 5) of the memory 21. Desired. The table below summarizes under what conditions these three factors H, M and P cause gasification.

【0032】[0032]

【表1】 [Table 1]

【0033】すなわち、冷媒の液面高さHが低いとき、
ガス化し易い。冷媒の量Mが多いとき、ガス化し易い。
冷媒の圧力損失Pが大きいとき、ガス化し易い。これら
ガス化し易い条件を考慮し、三つの因子H、M、Pに対
してそれぞれ基準値Hs 、Ms 、Ps が定められ、これ
ら基準値が制御部20の内部メモリに予め記憶されてい
る。
That is, when the liquid level height H of the refrigerant is low,
Easy to gasify. When the amount M of the refrigerant is large, it is easy to gasify.
When the pressure loss P of the refrigerant is large, it is easy to gasify. In consideration of these gasification-prone conditions, reference values Hs, Ms, and Ps are set for the three factors H, M, and P, respectively, and these reference values are stored in the internal memory of the control unit 20 in advance.

【0034】制御部20では、液面高さH、量M、圧力
損失Pとそれぞれ基準値Hs 、Ms、Ps との差ΔH、
ΔM、ΔPが求められ、その差ΔH、ΔM、ΔPにそれ
ぞれ固有の重み係数が乗算される。各重み係数も、制御
部20の内部メモリに予め記憶されている。
In the control section 20, the difference ΔH between the liquid level height H, the amount M, the pressure loss P and the reference values Hs, Ms and Ps, respectively,
ΔM and ΔP are obtained, and the differences ΔH, ΔM, and ΔP are multiplied by their own weighting factors. Each weighting factor is also stored in advance in the internal memory of the control unit 20.

【0035】そして、それぞれ重み係数の乗算がなされ
た差ΔH、ΔM、ΔPの総和が求められ、その総和に従
ってポンプ8の送水量が制御される。すなわち、ポンプ
4の吸入口で冷媒がガス化しそうな状況になると、ポン
プ8の送水量が抑制され、これにより凝縮器2での凝縮
能力の増加割合が抑制される。
Then, the sum of the differences ΔH, ΔM, and ΔP, which have been respectively multiplied by the weighting factors, is obtained, and the water supply amount of the pump 8 is controlled according to the sum. That is, when the refrigerant is likely to be gasified at the suction port of the pump 4, the amount of water sent by the pump 8 is suppressed, and thus the rate of increase in the condensation capacity of the condenser 2 is suppressed.

【0036】たとえば、冷凍機6から凝縮器2に供給さ
れる冷水の温度が12.5℃から 7.5℃に急激に下がった場
合、そのまま何もしなければ、図6に示したように、冷
水温度の急激な低下から数秒後には、ポンプ吸入口にお
ける冷媒の温度よりも飽和冷媒温度が低くなり、冷媒が
ガス化してしまう。
For example, when the temperature of the cold water supplied from the refrigerator 6 to the condenser 2 suddenly drops from 12.5 ° C to 7.5 ° C, if nothing is done as it is, as shown in FIG. After several seconds, the saturated refrigerant temperature becomes lower than the refrigerant temperature at the pump suction port, and the refrigerant gasifies.

【0037】これに対し、上記のようにポンプ8の送水
量を抑制すれば、ポンプ吸入口における冷媒圧力の低下
速度が遅くなり、それに伴って飽和冷媒温度の低下速度
も遅くなる。したがって、図2に示すように、飽和冷媒
温度が冷媒温度よりも低下する事態が回避され、よって
ポンプ吸入口での冷媒のガス化を防止することができ
る。
On the other hand, if the water supply amount of the pump 8 is suppressed as described above, the rate of decrease of the refrigerant pressure at the pump inlet becomes slower, and the rate of decrease of the saturated refrigerant temperature becomes slower accordingly. Therefore, as shown in FIG. 2, a situation in which the saturated refrigerant temperature becomes lower than the refrigerant temperature is avoided, and thus gasification of the refrigerant at the pump suction port can be prevented.

【0038】図2において、冷媒の液面高さHの影響お
よび冷媒の圧力損失Pの影響は、図示A部分の温度差
(飽和冷媒温度と冷媒温度との差)に現われる。液面高
さHが高いほど、また圧力損失Pが小さいほど、図示A
部分の温度差が大きくなり、ポンプ吸入口での冷媒のガ
ス化を防ぐことができる。
In FIG. 2, the influence of the liquid level height H of the refrigerant and the influence of the pressure loss P of the refrigerant appear in the temperature difference (the difference between the saturated refrigerant temperature and the refrigerant temperature) at the portion A in the figure. As the liquid level height H is higher and the pressure loss P is smaller, the figure A
The temperature difference between the parts becomes large, and the gasification of the refrigerant at the pump inlet can be prevented.

【0039】冷媒の量Mの影響は、図示B部分の時間
(冷媒温度の低下にかかる時間)に現われる。量Mが少
ないほど、図示B部分の時間が短くなり、ポンプ吸入口
での冷媒のガス化を防ぐことができる。
The influence of the amount M of the refrigerant appears in the time of the portion B in the figure (the time taken for the temperature of the refrigerant to decrease). The smaller the amount M, the shorter the time of the portion B in the drawing, and the gasification of the refrigerant at the pump suction port can be prevented.

【0040】このように、ポンプ4の吸入口において冷
媒がガス化しそうな状況にあるかどうかを冷媒の液面高
さH、量M、圧力損失Pから判断し、ガス化しそうな場
合は凝縮器2での凝縮能力の増加割合を抑制して冷媒の
ガス化を未然に防止することにより、ポンプ1の空回り
運転が回避される。よって、適切な熱輸送を継続できる
とともにポンプ4の損傷を防止でき、信頼性および安全
性の向上が図れる。しかも、従来のように小型の冷凍機
を用いる必要がないので、コストの上昇は生じない。
As described above, whether or not the refrigerant is likely to be gasified at the suction port of the pump 4 is judged from the liquid level height H, the amount M, and the pressure loss P of the refrigerant. The idling operation of the pump 1 is avoided by suppressing the gasification of the refrigerant by suppressing the increase rate of the condensation capacity in the vessel 2. Therefore, appropriate heat transport can be continued, damage to the pump 4 can be prevented, and reliability and safety can be improved. Moreover, since it is not necessary to use a small refrigerator as in the conventional case, the cost does not increase.

【0041】[2]第2実施例について説明する。第2
実施例は、液面高さ検知器11の取付けができない場合
に対処しており、配管構成は、液面高さ検知器11がな
い点を除き、第1実施例と同じである。
[2] A second embodiment will be described. Second
The embodiment deals with the case where the liquid surface height detector 11 cannot be attached, and the piping configuration is the same as that of the first embodiment except that the liquid surface height detector 11 is not provided.

【0042】メモリ21には、凝縮器2とポンプ4の吸
入口との間の配管5の長さおよび径が予め記憶され、か
つタンク3の容量が予め記憶されるとともに、凝縮器2
とポンプ4の吸入口との間の配管5に存する冷媒の標準
の液面高さHa および量Maが予め記憶される。標準の
液面高さHa は、設計時のデータ、あるいは通常運転時
の実測データである。標準の量Ma は、標準の液面高さ
Ha 、配管長、配管径、タンク容量から演算して求める
ことができる。
In the memory 21, the length and diameter of the pipe 5 between the condenser 2 and the suction port of the pump 4 are stored in advance, and the capacity of the tank 3 is stored in advance.
The standard liquid level height Ha and the amount Ma of the refrigerant existing in the pipe 5 between the pump and the suction port of the pump 4 are stored in advance. The standard liquid level height Ha is data at the time of design or actual measurement data at the time of normal operation. The standard amount Ma can be calculated from the standard liquid level height Ha, the pipe length, the pipe diameter, and the tank capacity.

【0043】制御部20は、次の機能手段を備える。 (1)凝縮器2とポンプ4の吸入口との間の配管5に存
する冷媒の圧力損失Pを、循環量測定器12の測定結果
およびメモリ21の記憶内容(配管長、配管径)から演
算して求める演算手段。
The control unit 20 has the following functional means. (1) The pressure loss P of the refrigerant existing in the pipe 5 between the condenser 2 and the suction port of the pump 4 is calculated from the measurement result of the circulation amount measuring device 12 and the stored contents (pipe length, pipe diameter) of the memory 21. The calculation means to be obtained.

【0044】(2)メモリ21内の液面高さHa と量M
a 、および演算手段の演算結果Pに基づき、凝縮器2で
の凝縮能力の増加割合を制御する制御手段。具体的に
は、ポンプ8の送水量、つまり冷凍機6から凝縮器2に
流れる冷水の量を制御する。
(2) Liquid level height Ha and amount M in the memory 21
Control means for controlling the increasing rate of the condensation capacity in the condenser 2 based on a and the calculation result P of the calculation means. Specifically, the amount of water sent by the pump 8, that is, the amount of cold water flowing from the refrigerator 6 to the condenser 2 is controlled.

【0045】作用については、液面高さHに代えて標準
の液面高さHa を用い、量Mに代えて標準の量Ma を用
いるほかは、第1実施例と同じである。液面高さおよび
量が定数として扱われることになり、凝縮器2の能力増
加の割合は、循環量測定器12で測定される循環量の関
数として表わされる。
The operation is the same as that of the first embodiment except that the standard liquid level height Ha is used in place of the liquid level height H and the standard amount Ma is used in place of the amount M. The liquid level height and amount are treated as constants, and the rate of increase in the capacity of the condenser 2 is expressed as a function of the circulation amount measured by the circulation amount measuring device 12.

【0046】この場合も、冷媒のガス化を未然に防止し
てポンプ1の空回り運転を回避することができ、適切な
熱輸送が継続し、かつポンプ4の損傷を防止できる。 [3]第3実施例について説明する。
Also in this case, it is possible to prevent the gasification of the refrigerant in advance and avoid the idling operation of the pump 1, so that proper heat transport can be continued and the pump 4 can be prevented from being damaged. [3] A third embodiment will be described.

【0047】この第3実施例では、図4に示すように、
循環量測定器12に代えて周波数検出器13が設けられ
る。周波数検出器13は、ポンプ4の運転周波数fを検
出する。運転周波数fは、ポンプ4の駆動モータ(図示
しない)に供給される駆動電力の周波数のことであり、
高いほどポンプ4の回転数が増大し、送出される冷媒の
量が増大する。
In the third embodiment, as shown in FIG.
A frequency detector 13 is provided instead of the circulation amount measuring device 12. The frequency detector 13 detects the operating frequency f of the pump 4. The operating frequency f is the frequency of the drive power supplied to the drive motor (not shown) of the pump 4,
The higher the rotational speed of the pump 4, the greater the amount of refrigerant delivered.

【0048】さらに、ポンプ4の吸入口に圧力センサ3
1、ポンプ4の送出口に圧力センサ32が取付けられ
る。圧力センサ31は、ポンプ4の吸入圧力を検知す
る。圧力センサ32は、ポンプ4の吐出圧力を検知す
る。
Further, the pressure sensor 3 is provided at the suction port of the pump 4.
1. A pressure sensor 32 is attached to the delivery port of the pump 4. The pressure sensor 31 detects the suction pressure of the pump 4. The pressure sensor 32 detects the discharge pressure of the pump 4.

【0049】周波数検出器13の検出結果、圧力センサ
31の検知結果、圧力センサ32の検知結果は、制御部
20に送られる。制御部20は、圧力センサ31の検知
結果と圧力センサ32の検知結果との差を求め、その圧
力差と周波数検出器13の検出結果との演算により、蒸
発器1、凝縮器2、タンク3、およびポンプ4を通して
循環する冷媒の量を求める。すなわち、制御部20の演
算手段、周波数検出器13、および圧力センサ31,3
2により、循環量測定手段が構成される。
The detection result of the frequency detector 13, the detection result of the pressure sensor 31, and the detection result of the pressure sensor 32 are sent to the control unit 20. The control unit 20 obtains a difference between the detection result of the pressure sensor 31 and the detection result of the pressure sensor 32, and calculates the pressure difference and the detection result of the frequency detector 13 to calculate the evaporator 1, the condenser 2, and the tank 3. , And the amount of refrigerant circulating through the pump 4. That is, the calculation means of the control unit 20, the frequency detector 13, and the pressure sensors 31, 3
2 constitutes a circulation amount measuring means.

【0050】このように周波数検出器13を用いて循環
量を測定する以外は、第2実施例と同じ構成および作用
である。 [4]変形例 なお、上記各実施例では、凝縮器2とポンプ4との間に
タンク3を設けたが、タンク3がない場合にも同様に実
施可能であり、その場合は演算式からタンク3の容量デ
ータが除外される。
The configuration and operation are the same as those of the second embodiment except that the circulation amount is measured using the frequency detector 13 as described above. [4] Modifications In each of the above-described embodiments, the tank 3 is provided between the condenser 2 and the pump 4, but the present invention can be carried out in the same manner even if the tank 3 is not provided. The capacity data of the tank 3 is excluded.

【0051】各実施例では、凝縮器2での凝縮能力とし
て、ポンプ8の送水量を制御したが、図1、図3、図4
にそれぞれ破線矢印で示すように冷凍機6の冷凍能力を
制御し、ポンプ8の送水量は常に一定としてもよい。
In each of the examples, the water supply amount of the pump 8 was controlled as the condensing capacity of the condenser 2.
It is also possible to control the refrigerating capacity of the refrigerator 6 as indicated by broken line arrows and to keep the water supply amount of the pump 8 constant.

【0052】各実施例では、冷凍機6から凝縮器2に冷
水を供給する構成としたが、図5に示すように、冷凍機
6内の凝縮器をそのまま凝縮器2として用いる構成とし
てもよい。この場合、凝縮器2での凝縮能力として、冷
凍機6の冷凍能力を制御することになる。
In each of the embodiments, the cold water is supplied from the refrigerator 6 to the condenser 2. However, as shown in FIG. 5, the condenser in the refrigerator 6 may be used as it is as the condenser 2. . In this case, the refrigerating capacity of the refrigerator 6 is controlled as the condensing capacity of the condenser 2.

【0053】[0053]

【発明の効果】以上述べたようにこの発明によれば、第
1ないし第5の発明の熱輸送装置は、凝縮器とポンプの
吸入口との間の配管に存する熱輸送媒体の液面高さ、
量、圧力損失に基づき、凝縮器での凝縮能力の増加割合
を制御する構成としたので、コストの上昇を招くことな
く、ポンプ吸入口での熱輸送媒体のガス化を未然に防止
することができ、これにより適切な熱輸送を継続すると
ともにポンプの損傷を防ぎ、信頼性および安全性の向上
を図ることができる。
As described above, according to the present invention, in the heat transport device of the first to fifth inventions, the liquid level height of the heat transport medium existing in the pipe between the condenser and the suction port of the pump is high. Well,
Since the rate of increase in the condensation capacity of the condenser is controlled based on the amount and pressure loss, it is possible to prevent gasification of the heat transfer medium at the pump inlet without increasing the cost. This makes it possible to continue appropriate heat transfer, prevent damage to the pump, and improve reliability and safety.

【0054】第6の発明の熱輸送装置の制御方法は、凝
縮器とポンプの吸入口との間の配管に存する熱輸送媒体
の液面高さ、量、圧力損失に基づき、凝縮器での凝縮能
力の増加割合を制御するようにしたので、コストの上昇
を招くことなく、ポンプ吸入口での熱輸送媒体のガス化
を未然に防止することができ、これにより適切な熱輸送
を継続するとともにポンプの損傷を防ぎ、信頼性および
安全性の向上を図ることができる。
The heat transport device control method according to the sixth aspect of the present invention is based on the liquid level height, amount and pressure loss of the heat transport medium existing in the pipe between the condenser and the suction port of the pump. Since the rate of increase in the condensation capacity is controlled, it is possible to prevent gasification of the heat transfer medium at the pump inlet without increasing the cost, and to continue appropriate heat transfer. At the same time, damage to the pump can be prevented, and reliability and safety can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の構成を示す図。FIG. 1 is a diagram showing a configuration of a first embodiment.

【図2】各実施例における冷媒温度と飽和冷媒温度との
関係を示す図。
FIG. 2 is a diagram showing a relationship between a refrigerant temperature and a saturated refrigerant temperature in each example.

【図3】第2実施例の構成を示す図。FIG. 3 is a diagram showing a configuration of a second embodiment.

【図4】第3実施例の構成を示す図。FIG. 4 is a diagram showing a configuration of a third embodiment.

【図5】各実施例の変形例の構成を示す図。FIG. 5 is a diagram showing a configuration of a modified example of each embodiment.

【図6】従来装置における冷媒温度と飽和冷媒温度との
関係を示す図。
FIG. 6 is a diagram showing a relationship between a refrigerant temperature and a saturated refrigerant temperature in a conventional device.

【符号の説明】[Explanation of symbols]

1…蒸発器、2…凝縮器、3…タンク、4…ポンプ、5
…配管、6…冷凍機、7…配管、8…ポンプ、9…開閉
弁、11…液面高さ検知器、12…循環量測定器、13
…周波数検出器、20…制御部、21…メモリ(記憶手
段)、31…圧力センサ、32…圧力センサ。
1 ... Evaporator, 2 ... Condenser, 3 ... Tank, 4 ... Pump, 5
... Piping, 6 ... Refrigerator, 7 ... Piping, 8 ... Pump, 9 ... Open / close valve, 11 ... Liquid level height detector, 12 ... Circulation amount measuring device, 13
... frequency detector, 20 ... control unit, 21 ... memory (storage means), 31 ... pressure sensor, 32 ... pressure sensor.

フロントページの続き (72)発明者 千葉 和男 東京都港区六本木一丁目4番33号 株式会 社エヌ・ティ・ティファシリティーズ内 (72)発明者 中尾 正喜 東京都港区六本木一丁目4番33号 株式会 社エヌ・ティ・ティファシリティーズ内Front page continuation (72) Inventor Kazuo Chiba 1-34 Roppongi, Minato-ku, Tokyo Inside NTT Ft. Stock companies NTT FACILITIES

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器、凝縮器、およびポンプを順次に
配管接続し、配管内に封入した熱輸送媒体の相変化によ
り熱の輸送を行なう熱輸送装置において、 前記凝縮器と前記ポンプの吸入口との間の配管に存する
熱輸送媒体の液面高さ、量、圧力損失に基づき、前記凝
縮器での凝縮能力の増加割合を制御する制御手段、 を具備したことを特徴とする熱輸送装置。
1. A heat-transporting device in which an evaporator, a condenser, and a pump are sequentially connected by piping, and heat is transported by a phase change of a heat-transporting medium enclosed in the piping, wherein suction of the condenser and the pump A heat transfer medium characterized by comprising a control means for controlling the rate of increase in the condensation capacity of the condenser based on the liquid level height, amount, and pressure loss of the heat transfer medium existing in the pipe between the mouth and the port. apparatus.
【請求項2】 蒸発器、凝縮器、およびポンプを順次に
配管接続し、配管内に封入した熱輸送媒体の相変化によ
り熱の輸送を行なう熱輸送装置において、 前記凝縮器と前記ポンプの吸入口との間の配管に存する
熱輸送媒体の液面高さを検知する液面高さ検知手段と、 前記凝縮器と前記ポンプの吸入口との間の配管長および
配管径を記憶した記憶手段と、 前記凝縮器と前記ポンプの吸入口との間の配管に存する
熱輸送媒体の量を、前記液面高さ検知手段の検知結果お
よび前記記憶手段の記憶内容から演算して求める第1演
算手段と、 前記蒸発器、前記凝縮器、および前記ポンプを通して循
環する熱輸送媒体の量を測定する循環量測定手段と、 前記凝縮器と前記ポンプの吸入口との間の配管に存する
熱輸送媒体の圧力損失を、前記循環量測定手段の測定結
果および前記記憶手段の記憶内容から演算して求める第
2演算手段と、 前記液面高さ検知手段の検知結果、前記第1演算手段の
演算結果、および前記第2演算手段の演算結果に基づ
き、前記凝縮器での凝縮能力の増加割合を制御する制御
手段と、 を具備したことを特徴とする熱輸送装置。
2. A heat transport device in which an evaporator, a condenser, and a pump are sequentially connected in a pipe, and heat is transported by a phase change of a heat transport medium enclosed in the pipe, and suction of the condenser and the pump. A liquid level height detecting means for detecting the liquid level height of the heat transport medium existing in the pipe between the mouth and the storage means for storing the pipe length and the pipe diameter between the condenser and the suction port of the pump. And a first calculation for calculating the amount of the heat transport medium existing in the pipe between the condenser and the suction port of the pump from the detection result of the liquid level height detection means and the stored contents of the storage means. Means, circulation amount measuring means for measuring the amount of the heat transport medium circulating through the evaporator, the condenser, and the pump, and the heat transport medium existing in the pipe between the condenser and the suction port of the pump. The pressure loss of the Second calculation means obtained by calculation from the measurement result and the storage content of the storage means, the detection result of the liquid level height detection means, the calculation result of the first calculation means, and the calculation result of the second calculation means. And a control means for controlling an increasing rate of the condensation capacity of the condenser based on the above.
【請求項3】 蒸発器、凝縮器、およびポンプを順次に
配管接続し、配管内に封入した熱輸送媒体の相変化によ
り熱の輸送を行なう熱輸送装置において、 前記凝縮器と前記ポンプの吸入口との間の配管に存する
熱輸送媒体の標準の液面高さおよび量を記憶し、かつ前
記凝縮器と前記ポンプの吸入口との間の配管長および配
管径を記憶した記憶手段と、 前記蒸発器、前記凝縮器、および前記ポンプを通して循
環する熱輸送媒体の量を測定する循環量測定手段と、 前記凝縮器と前記ポンプの吸入口との間の配管に存する
熱輸送媒体の圧力損失を、前記循環量測定手段の測定結
果および前記記憶手段内の配管長と配管径から演算して
求める演算手段と、 前記記憶手段内の液面高さ、前記記憶手段内の量、およ
び前記演算手段の演算結果に基づき、前記凝縮器での凝
縮能力の増加割合を制御する制御手段と、 を具備したことを特徴とする熱輸送装置。
3. An evaporator, a condenser, and a pump are sequentially connected by pipes, and a heat transport device for transporting heat by a phase change of a heat transport medium enclosed in the pipes, wherein the condenser and the pump are sucked. Storage means for storing the standard liquid level height and amount of the heat transfer medium existing in the pipe between the mouth and the pipe length and pipe diameter between the condenser and the suction port of the pump; Circulation amount measuring means for measuring the amount of the heat transport medium circulating through the evaporator, the condenser, and the pump, and the pressure loss of the heat transport medium existing in the pipe between the condenser and the suction port of the pump. Is calculated from the measurement result of the circulation amount measuring means and the pipe length and the pipe diameter in the storage means, the liquid level in the storage means, the amount in the storage means, and the calculation Based on the calculation result of the means, Serial condenser, and a control means for controlling the rate of increase in condensation capacity of the by equipped with a heat transport apparatus according to claim.
【請求項4】 請求項2または請求項3に記載の熱輸送
装置において、 前記循環量測定手段は、前記ポンプの送出口と蒸発器と
の間の配管に設けられ、配管中の冷媒流量から循環量を
測定することを特徴とする熱輸送装置。
4. The heat transport apparatus according to claim 2 or 3, wherein the circulation amount measuring means is provided in a pipe between the delivery port of the pump and the evaporator, and measures the flow rate of the refrigerant in the pipe. A heat transport device characterized by measuring the amount of circulation.
【請求項5】 請求項2または請求項3に記載の熱輸送
装置において、 前記循環量測定手段は、前記ポンプの運転周波数を検出
する検出手段と、前記ポンプの吸入圧力および吐出圧力
を検知する圧力検知手段と、この圧力検知手段の検知結
果および前記検出手段の検出結果を演算することにより
循環量を求める演算手段と、からなることを特徴とする
熱輸送装置。
5. The heat transport apparatus according to claim 2 or 3, wherein the circulation amount measuring means detects an operating frequency of the pump, and suction pressure and discharge pressure of the pump. A heat transport device comprising: a pressure detection means; and a calculation means for calculating a circulation amount by calculating a detection result of the pressure detection means and a detection result of the detection means.
【請求項6】 蒸発器、凝縮器、およびポンプを順次に
配管接続し、配管内に封入した熱輸送媒体の相変化によ
り熱の輸送を行なう熱輸送装置において、 凝縮器とポンプの吸入口との間の配管に存する熱輸送媒
体の液面高さ、量、圧力損失に基づき、凝縮器での凝縮
能力の増加割合を制御することを特徴とする熱輸送装置
の制御方法。
6. A heat-transporting device in which an evaporator, a condenser, and a pump are sequentially connected by piping, and heat is transported by a phase change of a heat-transporting medium sealed in the piping, wherein a condenser and a suction port of the pump are provided. A method for controlling a heat-transporting device, characterized in that the rate of increase in the condensation capacity of the condenser is controlled based on the liquid level height, the amount, and the pressure loss of the heat-transporting medium existing in the pipe between them.
JP21343895A 1995-08-22 1995-08-22 Heat transport device and control method thereof Expired - Lifetime JP3886174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21343895A JP3886174B2 (en) 1995-08-22 1995-08-22 Heat transport device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21343895A JP3886174B2 (en) 1995-08-22 1995-08-22 Heat transport device and control method thereof

Publications (2)

Publication Number Publication Date
JPH0961076A true JPH0961076A (en) 1997-03-07
JP3886174B2 JP3886174B2 (en) 2007-02-28

Family

ID=16639239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21343895A Expired - Lifetime JP3886174B2 (en) 1995-08-22 1995-08-22 Heat transport device and control method thereof

Country Status (1)

Country Link
JP (1) JP3886174B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006400A1 (en) * 2004-07-12 2006-01-19 Sharp Kabushiki Kaisha Refrigerator and method of operating the same
JP2019120755A (en) * 2017-12-28 2019-07-22 セイコーエプソン株式会社 Cooling device and projector
JP2019120756A (en) * 2017-12-28 2019-07-22 セイコーエプソン株式会社 Cooling device and projector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006400A1 (en) * 2004-07-12 2006-01-19 Sharp Kabushiki Kaisha Refrigerator and method of operating the same
JP2019120755A (en) * 2017-12-28 2019-07-22 セイコーエプソン株式会社 Cooling device and projector
JP2019120756A (en) * 2017-12-28 2019-07-22 セイコーエプソン株式会社 Cooling device and projector

Also Published As

Publication number Publication date
JP3886174B2 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
CN102575886B (en) The operation of refrigerant vapor compression system
US9909786B2 (en) Refrigerant distribution apparatus and methods for transport refrigeration system
CN103062968B (en) Cooling system and cooling means
US20050217292A1 (en) Refrigeration system
JP2001296066A (en) Refrigerating cycle
CS207345B2 (en) Method of and cooling system for increasing cooling output and cooling factor
JPH0263149B2 (en)
US7541009B2 (en) Apparatus for producing hydrate slurry
US20240288212A1 (en) Refrigeration system and method of determining a state of charge of refrigerant therein
US6779355B2 (en) Refrigeration device
JPH0961076A (en) Heat transfer device and its controlling method
JPH10238872A (en) Carbon-dioxide refrigerating cycle
CN110470093A (en) A kind of integrally cooling unit can be used for automatic vending machine
WO2006006400A1 (en) Refrigerator and method of operating the same
KR102388766B1 (en) Refrigeration device using ejector
JP3457790B2 (en) Heat transport device
JP2004245497A (en) Method of controlling supply of refrigerant liquid to liquid reservoir in refrigerating plant and its device
JP4731042B2 (en) High pressure gas supply equipment
JP3225142B2 (en) Heat transport device
JP2000146374A (en) Refrigerator
JP2642048B2 (en) Heat storage type air conditioner using midnight power
JP2004132606A (en) Heat pump hot-water supplier
JP2001208436A (en) Compression freezing device for common use in subcritical operation and supercritical operation
JP2002276367A (en) Evaporation suppressing device for circulating heating medium
US20230278399A1 (en) Hydrogen gas system for combined refrigeration and power

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061121

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term