JP2642048B2 - Heat storage type air conditioner using midnight power - Google Patents

Heat storage type air conditioner using midnight power

Info

Publication number
JP2642048B2
JP2642048B2 JP29392893A JP29392893A JP2642048B2 JP 2642048 B2 JP2642048 B2 JP 2642048B2 JP 29392893 A JP29392893 A JP 29392893A JP 29392893 A JP29392893 A JP 29392893A JP 2642048 B2 JP2642048 B2 JP 2642048B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
heat
heat storage
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29392893A
Other languages
Japanese (ja)
Other versions
JPH07120015A (en
Inventor
哲義 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKURIKU DENRYOKU KK
Original Assignee
HOKURIKU DENRYOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKURIKU DENRYOKU KK filed Critical HOKURIKU DENRYOKU KK
Priority to JP29392893A priority Critical patent/JP2642048B2/en
Publication of JPH07120015A publication Critical patent/JPH07120015A/en
Application granted granted Critical
Publication of JP2642048B2 publication Critical patent/JP2642048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、深夜電力を利用する蓄
熱式冷暖房装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerative cooling and heating system using midnight power.

【0002】[0002]

【従来の技術】昼間と深夜の電力負荷の違いを平準化す
るために深夜電力を動力源として利用する蓄熱式冷暖房
装置としては、図5に示すように、電気モータ100の
駆動によりフロンガスを圧縮する圧縮機101と、冷却
水107を通して圧縮フロンガスを液化する凝縮器10
2と、フロンの圧力を降下させる膨張弁106と、蓄熱
槽105から供給される水を冷却または加熱する蒸発器
103と、蒸発器103により生成した冷水又は温水を
蓄える蓄熱槽105とから構成されていた。そして、冷
房運転時には、深夜電力により圧縮機101を駆動する
と共にフロンを図5の矢印方向に循環させることによっ
て、冷水を蓄熱槽105に蓄え、冷房のための冷水需要
が生じたときに該蓄熱槽105内の冷水を取り出してい
た。また、暖房運転時には、図5の破線矢印方向にフロ
ンを循環させることによって、温水を蓄熱槽105内に
蓄え、暖房のための温水需要が生じたときに該蓄熱槽1
05内の温水を取り出していた。
2. Description of the Related Art As a regenerative cooling / heating device using nighttime power as a power source to level the difference between daytime and midnight power loads, as shown in FIG. And a condenser 10 for liquefying the compressed chlorofluorocarbon gas through the cooling water 107.
2, an expansion valve 106 for lowering the pressure of Freon, an evaporator 103 for cooling or heating water supplied from the heat storage tank 105, and a heat storage tank 105 for storing cold or hot water generated by the evaporator 103. I was During the cooling operation, the compressor 101 is driven by the midnight power and the chlorofluorocarbon is circulated in the direction of the arrow in FIG. 5 so that the cold water is stored in the heat storage tank 105, and when the cold water demand for cooling is generated, the heat storage is performed. The cold water in the tank 105 was taken out. Further, during the heating operation, the circulating Freon in the direction of the dashed arrow in FIG. 5 stores hot water in the heat storage tank 105, and when there is a demand for hot water for heating, the heat storage tank 1
The hot water in 05 was taken out.

【0003】ところで、上記従来装置で蓄熱材として使
用されている水は、その使用温度範囲が冷房運転モード
時では6℃から12℃の範囲であり、暖房運転モード時
では39℃から45℃で、いずれの場合も小さく、1立
方メートルの水につき6,000キロカロリーと単位容
積当りの保有熱量が少ないため、水を入れるための蓄熱
槽が必然的に大きくなり、装置コストが高くなる欠点が
あった。
[0003] By the way, the water used as a heat storage material in the above-mentioned conventional apparatus has a use temperature range of 6 ° C to 12 ° C in the cooling operation mode and 39 ° C to 45 ° C in the heating operation mode. In each case, the size was small, and the amount of heat retained per unit volume was small at 6,000 kilocalories per cubic meter of water. Therefore, the heat storage tank for injecting water was inevitably large, and the cost of the apparatus was high. .

【0004】この欠点の解消のために、本出願人は特願
平5−241938として、顕熱蓄熱材を用いた高温蓄
熱槽と吸収式冷凍機からなる蓄熱式冷暖房装置を出願し
た。そして、この蓄熱式冷暖房装置によれば、深夜電力
で蓄熱槽内に熱エネルギーを蓄え、出熱需要時には、蓄
えられた熱エネルギーを取り出して吸収式冷凍機を運転
し、冷房運転あるいは暖房運転するものである。この高
温蓄熱槽を有する冷暖房装置では、蓄熱層が従来の水蓄
熱槽の1/46〜1/71に小型化でき、装置コストを
大幅に低減することができる。
[0004] In order to solve this drawback, the present applicant has filed a Japanese Patent Application No. 5-241938 for a regenerative air-conditioning apparatus comprising a high-temperature heat storage tank using a sensible heat storage material and an absorption refrigerator. According to this regenerative cooling / heating device, thermal energy is stored in the thermal storage tank by midnight power, and when heat output is required, the stored thermal energy is taken out to operate the absorption refrigerator to perform cooling operation or heating operation. Things. In the cooling and heating apparatus having the high-temperature heat storage tank, the heat storage layer can be reduced in size to 1/46 to 1/71 of the conventional water heat storage tank, and the apparatus cost can be significantly reduced.

【0005】しかし、上記高温蓄熱槽を有する蓄熱式冷
暖房装置は、蓄熱材の温度が120℃〜550℃の広い
範囲で変化するために、このままでは蓄熱槽から安定し
た熱エネルギーの取り出しが困難であるという問題点が
ある。
However, in the regenerative air conditioner having the above-described high-temperature heat storage tank, since the temperature of the heat storage material changes in a wide range of 120 ° C. to 550 ° C., it is difficult to stably extract heat energy from the heat storage tank. There is a problem that there is.

【0006】すなわち、蓄熱槽から吸収式冷凍機への熱
の移送は、蓄熱槽内の伝熱管と吸収式冷凍機の再生器内
の伝熱管とを閉流路で連通し、この閉流路内に水を注入
して行われる。蓄熱槽の伝熱管内で水が加熱されて蒸気
となり、再生器の伝熱管ではこの蒸気が冷却されて水に
戻される。この加熱と冷却によって、蓄熱槽から再生器
に熱エネルギーが移送される。ところで、蓄熱材温度が
高い場合には蓄熱槽からの循環水の殆どが蒸気となって
循環水量の少ない乾き蒸気となり、再生器で熱エネルギ
ーの取り出しがスムーズに行なわれるが、一方蓄熱材温
度が低い場合は、蓄熱槽からの循環水に蒸気化しない水
が残って循環水量の多い湿り蒸気となるため、熱伝達に
関与しない水分の存在によって熱エネルギーの取り出し
循環が悪くなる。
That is, heat is transferred from the heat storage tank to the absorption refrigerator by connecting the heat transfer tube in the heat storage tank and the heat transfer tube in the regenerator of the absorption refrigerator with a closed flow path. It is done by injecting water into it. Water is heated in the heat transfer tube of the heat storage tank to become steam, and the steam is cooled and returned to water in the heat transfer tube of the regenerator. By this heating and cooling, heat energy is transferred from the heat storage tank to the regenerator. By the way, when the temperature of the heat storage material is high, most of the circulating water from the heat storage tank becomes steam and becomes dry steam with a small amount of circulating water, and the heat energy is smoothly taken out by the regenerator. If the temperature is low, water that does not evaporate remains in the circulating water from the heat storage tank and becomes wet steam having a large amount of circulating water. Therefore, the presence of moisture that does not participate in heat transfer deteriorates the circulation of heat energy.

【0007】また、蓄熱槽から発生する蒸気の流れが悪
くなると、蓄熱槽内の伝熱管内圧力及び再生器内部の伝
熱管内圧力が上昇する。蓄熱槽内の伝熱管内圧力が上昇
すると、発生蒸気の温度も上昇するため、蓄熱材との温
度差が少なくなって蓄熱槽から有効に取り出すことがで
きる熱量が減少する結果となる。また、再生器内部の伝
熱管内圧力が上昇すると、その伝熱管の温度が高くなっ
て局所的な腐蝕が激しくなり、短時間の内に伝熱管が破
損するという問題点もある。
When the flow of steam generated from the heat storage tank deteriorates, the pressure inside the heat transfer pipe inside the heat storage tank and the pressure inside the heat transfer pipe inside the regenerator increase. When the pressure in the heat transfer tube in the heat storage tank increases, the temperature of the generated steam also increases, so that the temperature difference between the heat storage material and the heat storage material decreases and the amount of heat that can be effectively extracted from the heat storage tank decreases. In addition, when the pressure in the heat transfer tube inside the regenerator increases, the temperature of the heat transfer tube increases, and local corrosion becomes severe, and the heat transfer tube is damaged within a short time.

【0008】[0008]

【発明が解決しようとする課題】そこで本発明は、前記
事情に基づいてなされたものであり、蓄熱材の温度が変
化しても、蓄熱槽から取り出す熱量が減少することなく
高い水準で安定して取り出し得ると共に、再生器内部の
伝熱管に局所的な腐蝕の生じることがない深夜電力利用
の蓄熱式冷暖房装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and even if the temperature of the heat storage material changes, the amount of heat taken out of the heat storage tank can be stabilized at a high level without decreasing. It is an object of the present invention to provide a regenerative cooling / heating device using midnight power, which can be taken out and does not cause local corrosion in a heat transfer tube inside a regenerator.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明は、冷房及び(又は)暖房する吸収式冷凍機
と、該吸収式冷凍機の動力源となる熱エネルギーを蓄え
る蓄熱槽を具備し、蓄熱槽内には電気ヒータ及び伝熱管
を配置すると共に蓄熱材を充填し、伝熱管内を通す熱媒
体に気液相変化する流体を用いて熱エネルギーを吸収式
冷凍機に供給する蓄熱式冷暖房装置において、前記蓄熱
槽内の伝熱管と蓄熱槽からの熱エネルギーを受ける吸収
式冷凍機にある再生器内の伝熱管とを連結して循環路を
構成し、再生器の伝熱管から蓄熱槽の伝熱管への流路の
途中に流量調節弁を設け、流量調節弁には蓄熱槽の伝熱
管の出口温度と入口温度とを検出して出口温度が入口温
度より高くなるように流体の流量を制御するための流量
制御部が接続していることを特徴とする
SUMMARY OF THE INVENTION To achieve the above object, the present invention provides an absorption refrigerator for cooling and / or heating, and a heat storage tank for storing thermal energy serving as a power source of the absorption refrigerator. In the heat storage tank, an electric heater and a heat transfer tube are arranged, and a heat storage material is filled, and heat energy is supplied to the absorption refrigerator using a fluid that changes in gas-liquid phase as a heat medium passing through the heat transfer tube. In the regenerative cooling / heating apparatus, a heat transfer tube in the regenerator is connected to a heat transfer tube in the regenerator in the absorption refrigerator that receives heat energy from the heat storage tank. A flow control valve is provided in the middle of the flow path to the heat transfer tube of the heat storage tank, and the flow control valve detects the outlet temperature and the inlet temperature of the heat transfer tube of the heat storage tank so that the outlet temperature is higher than the inlet temperature. A flow control unit for controlling the flow rate of the fluid is connected. Characterized in that

【0010】また、前記再生器の伝熱管の出口と流量調
節弁との間に、管内に溜まる過剰な流体を溜めるための
調整タンクを設けてもよい。さらに、前記蓄熱槽内の伝
熱管の位置は、再生器の伝熱管の位置よりも低くしても
よい。
[0010] Further, between the outlet of the heat transfer tube of the regenerator and the flow control valve, there may be provided an adjusting tank for storing excess fluid accumulated in the tube. Further, the position of the heat transfer tube in the heat storage tank may be lower than the position of the heat transfer tube of the regenerator.

【0011】[0011]

【作用】蓄熱槽の伝熱管から発生する蒸気は、水分が含
まれていないときには乾き蒸気となって、飽和温度より
も高い温度となる。一方、蒸気に水分を含むようになる
と湿り蒸気となって、その温度は飽和温度となる。とこ
ろで、蓄熱槽の伝熱管から発生する蒸気が再生器の伝熱
管において冷却されて凝縮し、再び蓄熱槽の伝熱管に供
給される水の温度は、飽和状態であるから常に飽和温度
である。従って、蓄熱槽の伝熱管の出口温度が入口温度
より高温であれば、蓄熱槽の伝熱管から発生する蒸気は
乾き蒸気と判定でき、一方、同温度であれば、水分を含
む湿り蒸気と判定できる。
The steam generated from the heat transfer tube of the heat storage tank becomes dry steam when no moisture is contained, and has a temperature higher than the saturation temperature. On the other hand, when steam contains moisture, it becomes wet steam and its temperature becomes the saturation temperature. By the way, the steam generated from the heat transfer tube of the heat storage tank is cooled and condensed in the heat transfer tube of the regenerator, and the temperature of the water supplied to the heat transfer tube of the heat storage tank is always in a saturated state since it is in a saturated state. Therefore, if the outlet temperature of the heat transfer tube of the heat storage tank is higher than the inlet temperature, the steam generated from the heat transfer tube of the heat storage tank can be determined to be dry steam, while at the same temperature, it is determined to be wet steam containing moisture. it can.

【0012】そこで、蓄熱槽の伝熱管への入口側に流量
調節弁を設けて蓄熱槽の伝熱管に入る水量を調節する。
すなわち、流量調節弁に接続した流量制御部によって、
蓄熱槽の伝熱管における入口温度と出口温度が同温であ
るならば、流量調節弁を水の流量が減少させる方向へ作
動させ、蓄熱槽の伝熱管から発生する蒸気を乾き蒸気に
する。また、蓄熱槽の伝熱管における出口温度が入口温
度よりも一定基準以上に高くなっている場合には、流量
調節弁を循環する水の流量を増やす方向へ作動させ、熱
エネルギーの移送量を多くするようにする。
Therefore, a flow control valve is provided on the inlet side of the heat storage tank to the heat transfer pipe to adjust the amount of water entering the heat transfer pipe of the heat storage tank.
That is, by the flow control unit connected to the flow control valve,
If the inlet temperature and the outlet temperature in the heat transfer tube of the heat storage tank are the same, the flow control valve is operated in a direction to decrease the flow rate of water, and the steam generated from the heat transfer tube of the heat storage tank is dried. In addition, when the outlet temperature of the heat transfer tube of the heat storage tank is higher than the inlet temperature by a certain level or more, the flow rate control valve is operated in a direction to increase the flow rate of the circulating water to increase the transfer amount of the heat energy. To do it.

【0013】また、再生器の伝熱管の出口と流量調節弁
との間に、調整タンクを設けておけば、流量調節弁によ
る水量調節によって、伝熱管内に溜まる過剰な循環水を
一時的に溜めておくことが可能である。さらに、再生器
を蓄熱槽より高い位置に設置することによって、伝熱管
を介在して蓄熱槽から再生器への水蒸気による熱移送及
び再生器から蓄熱槽への凝縮水の戻りが水と蒸気の比重
の違いを動力として円滑な自然循環が可能である。
If a regulating tank is provided between the outlet of the heat transfer pipe of the regenerator and the flow control valve, excess water circulating in the heat transfer pipe is temporarily removed by adjusting the amount of water by the flow control valve. It is possible to store. Furthermore, by installing the regenerator at a higher position than the heat storage tank, heat transfer by steam from the heat storage tank to the regenerator and return of condensed water from the regenerator to the heat storage tank via the heat transfer tube are caused by water and steam. Smooth natural circulation is possible using the difference in specific gravity as power.

【0014】[0014]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1は、本発明の蓄熱式冷暖房装置の一実
施例を示す概略説明図である。本装置は、蓄熱槽1と単
効用の吸収式冷凍機2から構成されている。
FIG. 1 is a schematic explanatory view showing one embodiment of the regenerative cooling and heating apparatus of the present invention. The present apparatus includes a heat storage tank 1 and a single-effect absorption refrigerator 2.

【0016】蓄熱槽1は、内部に伝熱管21及び電気ヒ
ータ22が配置され、更にその周囲に蓄熱材23として
のマグネシアが充填されている。そして、深夜時におい
て、電気ヒータ22に通電して蓄熱材23を加熱するこ
とにより蓄熱槽1内に熱エネルギーを蓄え、出熱需要時
には、伝熱管21内に水などの気液相変化する流体を流
して前記蓄熱槽1から熱エネルギーを取り出し、この熱
エネルギーを用いて単効用の吸収式冷凍機2を運転す
る。
The heat storage tank 1 has a heat transfer tube 21 and an electric heater 22 arranged inside, and the periphery thereof is filled with magnesia as a heat storage material 23. Then, at midnight, heat is stored in the heat storage tank 1 by energizing the electric heater 22 to heat the heat storage material 23, and when heat output is required, a fluid such as water or the like that changes gas-liquid phase in the heat transfer tube 21. To extract heat energy from the heat storage tank 1 and operate the single-effect absorption refrigerator 2 using this heat energy.

【0017】単効用の吸収式冷凍機2は、再生器11、
凝縮器13、蒸発器14、吸収器15及び熱交換器16
から構成されており、再生器11、凝縮器13、蒸発器
14及び吸収器15の各内部には、それぞれ伝熱管2
4,25,26,27が配設されている。また、再生器
11の内部には臭化リチウムを主成分とする水溶液(以
下、「臭化リチウム液」と称する。)が注入されてい
る。
The single-effect absorption refrigerator 2 includes a regenerator 11,
Condenser 13, evaporator 14, absorber 15, and heat exchanger 16
Each of the regenerator 11, the condenser 13, the evaporator 14, and the absorber 15 has a heat transfer tube 2 therein.
4, 25, 26, 27 are provided. An aqueous solution containing lithium bromide as a main component (hereinafter, referred to as “lithium bromide solution”) is injected into the regenerator 11.

【0018】前記蓄熱槽1内部の伝熱管21と再生器1
1内部の伝熱管24とは、循環路となるように無端状に
連結されており、前記伝熱管24から伝熱管21への流
路の途中に管内を流れる水の流量を調整するための流量
調節弁41が設けてある。この流量調節弁41は循環す
る水の流量の加減を自動的に制御する流量制御部42と
接続している。流量制御部42は伝熱管21の入口と出
口にそれぞれ配設した温度センサー40,44からの信
号を受けて入口温度と出口温度が同温であると、循環す
る水の流量を減少させるために流量調節弁41の開度を
小さくする方向へ作動させる制御を行い、また、出口温
度が入口温度よりも一定基準以上に高くなれば、流量調
節弁41の開度を大きくする方向へ作動させて循環水路
を増やすように制御する。このように伝熱管21に入る
水の量を流量制御部42の制御を受けて流量調節弁41
により調節することによって、伝熱管21の出口温度を
その入口温度よりも常に高くなるように維持することが
可能となり、蓄熱槽1の伝熱管21から乾き蒸気を発生
させることができることになる。
The heat transfer tube 21 inside the heat storage tank 1 and the regenerator 1
1 is connected endlessly so as to form a circulation path with the heat transfer pipe 24 inside, and a flow rate for adjusting the flow rate of water flowing in the pipe in the middle of the flow path from the heat transfer pipe 24 to the heat transfer pipe 21. A control valve 41 is provided. The flow control valve 41 is connected to a flow control unit 42 that automatically controls the flow rate of circulating water. The flow control unit 42 receives signals from the temperature sensors 40 and 44 disposed at the inlet and the outlet of the heat transfer tube 21 and reduces the flow rate of the circulating water when the inlet temperature and the outlet temperature are the same. Control is performed to reduce the opening of the flow control valve 41, and if the outlet temperature is higher than the inlet temperature by a certain level or more, the control is performed to increase the opening of the flow control valve 41. Control to increase the number of circulation waterways. In this way, the amount of water entering the heat transfer tube 21 is controlled by the flow control unit 42 to control the flow control valve 41.
Thus, it is possible to maintain the outlet temperature of the heat transfer tube 21 to be always higher than the inlet temperature thereof, and to generate dry steam from the heat transfer tube 21 of the heat storage tank 1.

【0019】単効用の吸収式冷凍機の冷房運転は、次の
ようにして行われる。まず、蓄熱槽1内から伝熱管2
1,24の流体を介在して取り出した熱エネルギーによ
って、再生器11内において内部の臭化リチウム液31
が加熱され沸騰する。この沸騰によって生じた水蒸気3
3は凝縮器13に供給され、伝熱管25内を流れる冷却
水38により冷却されて凝縮する。
The cooling operation of the single-effect absorption refrigerator is performed as follows. First, heat transfer tubes 2
Lithium bromide liquid 31 inside regenerator 11 is generated by heat energy taken out via fluids 1 and 24.
Is heated and boiled. Steam 3 generated by this boiling
3 is supplied to the condenser 13 and is cooled and condensed by the cooling water 38 flowing in the heat transfer tube 25.

【0020】次いで、凝縮器13内で生成された凝縮水
35は、蒸発器14内に供給される時には圧力の低下に
よって低温の水となっている。この水は蒸発器14内に
おいて伝熱管26を流れる冷水39によって加熱されて
水蒸気36となる。この際、伝熱管26内の冷水39は
逆に熱が奪われて冷房用に利用される。
Next, when the condensed water 35 generated in the condenser 13 is supplied into the evaporator 14, it becomes low-temperature water due to a decrease in pressure. This water is heated in the evaporator 14 by the cold water 39 flowing through the heat transfer tube 26 to become steam 36. At this time, the cold water 39 in the heat transfer tube 26 is deprived of heat and used for cooling.

【0021】一方、吸収器15に供給された水蒸気36
は、この吸収器15内において、再生器11内で濃縮さ
れ熱交換器16を経て供給される臭化リチウム液31に
吸収される。そして、水蒸気を吸収した臭化リチウム液
32は熱交換器16を経て再び再生器11に戻される。
On the other hand, the water vapor 36 supplied to the absorber 15
Is absorbed in the lithium bromide liquid 31 which is concentrated in the regenerator 11 and supplied through the heat exchanger 16 in the absorber 15. Then, the lithium bromide liquid 32 having absorbed the water vapor is returned to the regenerator 11 again through the heat exchanger 16.

【0022】次に、単効用の吸収式冷凍機の暖房運転
は、凝縮器13の伝熱管25内を通る冷却水38の通水
を停止することにより、冷房運転時の冷水39が加熱さ
れて温水に代わり、暖房用に利用される。このとき、再
生器11への供給熱量と同量の熱量が暖房熱量となる。
尚、図中において45及び46で示すのは循環ポンプで
ある。
Next, in the heating operation of the single-effect absorption refrigerator, the cooling water 38 in the cooling operation is heated by stopping the flow of the cooling water 38 passing through the heat transfer tube 25 of the condenser 13. It is used for heating instead of hot water. At this time, the same amount of heat as the amount of heat supplied to the regenerator 11 is the heating amount of heat.
In the drawing, reference numerals 45 and 46 denote circulation pumps.

【0023】冷暖房運転時における蓄熱材の使用温度
は、最高温度が電気ヒータ22の絶縁抵抗の制限から5
50℃で、最低温度が単効用吸収式冷凍機の有効温度の
制限から120℃とした。また、蓄熱材23には、運転
条件において蒸気分圧が大気以下(好ましくは殆んど
0)となる、マグネタイト、マグネシアの固体蓄熱材、
硝酸ナトリウムと亜硝酸ナトリウムと硝酸カリウムとの
混合材等の液体蓄熱材が適している。
The maximum temperature of the heat storage material during the cooling / heating operation is set to 5 due to the limitation of the insulation resistance of the electric heater 22.
At 50 ° C., the minimum temperature was set to 120 ° C. due to the limitation of the effective temperature of the single-effect absorption refrigerator. The heat storage material 23 is a solid heat storage material of magnetite or magnesia whose vapor partial pressure is equal to or lower than the atmosphere (preferably almost 0) under operating conditions.
A liquid heat storage material such as a mixture of sodium nitrate, sodium nitrite and potassium nitrate is suitable.

【0024】図2は、本発明の蓄熱式冷暖房装置の他の
実施例を示すもので、前記実施例と相違するところは、
再生器11の伝熱管24の出口と流量調節弁41との間
に調整タンク43を設けた点にある。この調整タンク4
3の内容積は、伝熱管21と伝熱管24とからなる循環
流路内に注入されている水の容積とほぼ同等になってい
る。この調整タンク43が存在することによって、流量
調節弁41の開度を小さくしたとき、循環水が伝熱管2
4内に溜まらないようにするものである。
FIG. 2 shows another embodiment of the regenerative cooling / heating apparatus of the present invention.
The point is that an adjustment tank 43 is provided between the outlet of the heat transfer tube 24 of the regenerator 11 and the flow rate control valve 41. This adjustment tank 4
The internal volume of 3 is substantially equal to the volume of water injected into the circulation channel including the heat transfer tubes 21 and 24. Due to the presence of the adjustment tank 43, when the opening of the flow control valve 41 is reduced, the circulating water
4 so that it does not accumulate inside.

【0025】もし、伝熱管24内に循環水が溜まると、
伝熱管24の有効伝熱面積が減少すると共に、水・蒸気
の循環を阻害するため蓄熱槽1内の伝熱管21内の圧力
及び再生器11内部の伝熱管24内の圧力が上昇するの
で、これに伴なう不都合を前記調整タンク43によって
解消することができることになる。すなわち、伝熱管2
4の有効伝熱面積が減少することによって一部の伝熱面
に熱伝達が集中するため、局所的な伝熱管の腐蝕が激し
くなって短時間で破損するおそれがあるという不都合
や、蓄熱槽1内の伝熱管21内の圧力が上昇することに
よって蒸気温度が高くなるため、蓄熱槽1から取り出す
熱量が減少するという不都合を、それぞれ解消すること
ができるものである。
If circulating water accumulates in the heat transfer tube 24,
Since the effective heat transfer area of the heat transfer tube 24 decreases and the pressure in the heat transfer tube 21 in the heat storage tank 1 and the pressure in the heat transfer tube 24 inside the regenerator 11 increase to inhibit circulation of water and steam, The inconvenience accompanying this can be eliminated by the adjustment tank 43. That is, the heat transfer tube 2
Heat transfer concentrates on a part of the heat transfer surface due to the decrease of the effective heat transfer area of No. 4, which causes inconvenience that the local heat transfer tube is corroded intensely and may be damaged in a short time. The inconvenience that the amount of heat taken out from the heat storage tank 1 decreases because the steam temperature increases due to an increase in the pressure in the heat transfer tube 21 in the heat transfer tube 1 can be eliminated.

【0026】図3に示すグラフは、外径12.7mm、
肉厚0.8mmで長さが30mの伝熱管を有する蓄熱槽
で、押し込み圧力が2mAqで、1atg の蒸気を発生する
条件において、本発明装置における流量調節弁41によ
る発生蒸気を乾き蒸気にする制御及び調整タンク43を
設けた場合と、無対策の場合とのそれぞれ蓄熱槽から取
り出される熱量を比較したものである。これによれば、
本発明装置では無対策の場合と比べて、蓄熱材の温度が
300℃以下であっても蓄熱槽からの熱量の取り出しが
安定して行われていることが判る。
The graph shown in FIG. 3 shows an outer diameter of 12.7 mm,
A heat storage tank having a heat transfer tube having a wall thickness of 0.8 mm and a length of 30 m, under the conditions of a pushing pressure of 2 mAq and generating 1 atg of steam, the steam generated by the flow control valve 41 in the apparatus of the present invention is dried. The comparison shows the amount of heat taken out of the heat storage tank when the control and adjustment tank 43 is provided and when there is no countermeasure. According to this,
It can be seen that in the apparatus of the present invention, even when the temperature of the heat storage material is 300 ° C. or lower, the amount of heat extracted from the heat storage tank is stably performed, as compared with the case where no measures are taken.

【0027】図4は本発明の蓄熱式冷暖房装置の更なる
他の実施例を示したもので、この実施例においては、再
生器11の設置位置を蓄熱槽1よりも高い位置になるよ
うに配設したものである。これによれば、水と蒸気との
比重の違いを循環の動力として、伝熱管23から発生す
る水蒸気が伝熱管24で凝縮して水に戻されて再び伝熱
管23で水蒸気となる自然循環が容易になり、蓄熱槽1
から再生器11への熱移送がスムーズに行われることに
なる。
FIG. 4 shows still another embodiment of the regenerative air conditioner of the present invention. In this embodiment, the position of the regenerator 11 is set higher than that of the regenerator 1. It is arranged. According to this, using the difference in specific gravity between water and steam as power for circulation, the natural circulation in which steam generated from the heat transfer tube 23 is condensed in the heat transfer tube 24 and returned to water, and becomes steam again in the heat transfer tube 23. Easy, heat storage tank 1
The heat transfer to the regenerator 11 is smoothly performed.

【0028】以下の各実施例においては、吸収式冷凍機
には単効用の装置を用いたが、本発明においては二重効
用の装置にも適用できることは言うまでもない。
In each of the following embodiments, a single-effect device is used for the absorption refrigerator, but it goes without saying that the present invention can also be applied to a double-effect device.

【0029】[0029]

【発明の効果】以上説明したように本発明の深夜電力利
用の蓄熱式冷暖房装置によれば、蓄熱槽の伝熱管に入る
水の量を調節する流量調節弁を設けることによって、蓄
熱槽の伝熱管から発生する蒸気は乾き蒸気となるので、
蓄熱槽から取り出す熱量が減少する問題及び再生器内部
の伝熱管に局所的な腐蝕が生じる問題を抑制できる効果
がある(請求項1)。
As described above, according to the regenerative air-conditioning system using late-night power of the present invention, by providing a flow control valve for adjusting the amount of water entering the heat transfer tube of the heat storage tank, the transfer of the heat storage tank is achieved. Since the steam generated from the heat tube becomes dry steam,
This has the effect of suppressing the problem that the amount of heat extracted from the heat storage tank decreases and the problem that local corrosion occurs in the heat transfer tube inside the regenerator (claim 1).

【0030】また、再生器の伝熱管内に水が溜まらなく
するための調整タンクを設けることによって、再生器の
伝熱管の伝熱面が均等に利用されるようになると共に蓄
熱槽内の伝熱管内の圧力が下がって蒸気温度が低下する
ため、伝熱管の腐蝕の大きな原因が解消し、しかも蓄熱
槽から取り出す熱量を高い水準で安定して取り出すこと
ができる効果がある(請求項2)。
Further, by providing an adjusting tank for preventing water from collecting in the heat transfer tube of the regenerator, the heat transfer surface of the heat transfer tube of the regenerator can be used evenly and the heat transfer in the heat storage tank can be performed. Since the pressure in the heat pipe is reduced and the steam temperature is lowered, a major cause of corrosion of the heat transfer pipe is eliminated, and moreover, there is an effect that the amount of heat taken out of the heat storage tank can be stably taken out at a high level. .

【0031】さらに、再生器の伝熱管内に水が溜まらな
くするための調整タンクを設けることによって、再生器
の伝熱管の伝熱面が均等に利用されるようになると共に
蓄熱槽内の伝熱管内の圧力が下がって蒸気温度が低下す
るため、伝熱管の腐蝕の大きな原因が解消し、しかも蓄
熱槽から取り出す熱量を高い水準で安定して取り出すこ
とができる効果がある(請求項2)。
Further, by providing an adjusting tank for preventing water from collecting in the heat transfer tube of the regenerator, the heat transfer surface of the heat transfer tube of the regenerator can be used evenly and the heat transfer in the heat storage tank can be performed. Since the pressure in the heat pipe is reduced and the steam temperature is lowered, a major cause of corrosion of the heat transfer pipe is eliminated, and moreover, there is an effect that the amount of heat taken out of the heat storage tank can be stably taken out at a high level. .

【0032】さらに、再生器の位置を蓄熱槽よりも高い
位置に配置することによって、循環ポンプを用いること
なく水・蒸気を循環できるようになるため、装置コスト
及び運転コストを低減できる効果がある(請求項3)。
Further, by arranging the regenerator at a position higher than the heat storage tank, water and steam can be circulated without using a circulation pump, so that there is an effect that the apparatus cost and the operating cost can be reduced. (Claim 3).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明装置の一実施例を示す概略説明図であ
る。
FIG. 1 is a schematic explanatory view showing an embodiment of the apparatus of the present invention.

【図2】本発明装置の他の実施例を示す概略説明図であ
る。
FIG. 2 is a schematic explanatory view showing another embodiment of the device of the present invention.

【図3】本発明装置の効果をグラフで示す説明図であ
る。
FIG. 3 is an explanatory diagram showing the effect of the apparatus of the present invention in a graph.

【図4】本発明装置の更なる他の実施例を示す概略説明
図である。
FIG. 4 is a schematic explanatory view showing still another embodiment of the device of the present invention.

【図5】従来装置の一例を示す概略説明図である。FIG. 5 is a schematic explanatory view showing an example of a conventional device.

【符号の説明】[Explanation of symbols]

1 蓄熱槽 2 吸収式冷凍機 11 再生器 21 蓄熱槽の伝熱管 22 電気ヒータ 23 蓄熱材 24 再生器の伝熱管 41 流量調節弁 42 流量制御部 43 調整タンク REFERENCE SIGNS LIST 1 heat storage tank 2 absorption refrigerator 11 regenerator 21 heat transfer tube of heat storage tank 22 electric heater 23 heat storage material 24 heat transfer tube of regenerator 41 flow control valve 42 flow control unit 43 adjustment tank

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 冷房及び(又は)暖房する吸収式冷凍機
(2)と、該吸収式冷凍機の動力源となる熱エネルギー
を蓄える蓄熱槽(1)とを具備し、該蓄熱槽(1)内に
は電気ヒータ(22)及び伝熱管(21)を配置すると
共に、蓄熱材を充填し、伝熱管(21)内を通す熱媒体
に気液相変化する流体を用いて熱エネルギーを吸収式冷
凍機(2)に供給する蓄熱式冷暖房装置において、前記
蓄熱槽(1)内の伝熱管(21)と蓄熱槽(1)からの
熱エネルギーを受ける吸収式冷凍機(2)にある再生器
(11)内の伝熱管(24)とを連結して循環路を構成
し、再生器の伝熱管(24)から蓄熱槽の伝熱管(2
1)への流路の途中に流量調節弁(41)を設け、流量
調節弁(41)には蓄熱槽の伝熱管(21)の出口温度
と入口温度とを検出して出口温度が入口温度より高くな
るように流体の流量を制御するための流量制御部(4
2)が接続していることを特徴とする深夜電力利用の蓄
熱式冷暖房装置。
1. An absorption refrigerator (2) for cooling and / or heating, and a heat storage tank (1) for storing thermal energy serving as a power source of the absorption refrigerator. An electric heater (22) and a heat transfer tube (21) are arranged in the parentheses, and a heat storage material is filled therein to absorb heat energy by using a fluid that undergoes a gas-liquid phase change in a heat medium passing through the heat transfer tube (21). In the regenerative cooling / heating device to be supplied to the refrigerating machine (2), the regenerator in the absorption refrigerating machine (2) which receives the heat energy from the heat transfer tube (21) in the regenerative tank (1) and the regenerator (1) The heat transfer tube (24) in the regenerator (11) is connected to form a circulation path, and the heat transfer tube (24) of the regenerator is connected to the heat transfer tube (2) of the heat storage tank.
A flow control valve (41) is provided in the middle of the flow path to 1), and the flow control valve (41) detects the outlet temperature and the inlet temperature of the heat transfer tube (21) of the heat storage tank and changes the outlet temperature to the inlet temperature. A flow control unit (4) for controlling the flow rate of the fluid so as to be higher.
(2) A regenerative cooling / heating device utilizing midnight power, wherein the device is connected to (2).
【請求項2】 再生器の伝熱管(24)の出口と流量調
節弁(41)との間に、管内に溜まる過剰な流体を溜め
るための調整タンク(43)を設けてあることを特徴と
する請求項1記載の深夜電力利用の蓄熱式冷暖房装置。
2. An adjusting tank (43) is provided between an outlet of a heat transfer tube (24) of a regenerator and a flow control valve (41) for storing excess fluid accumulated in the tube. The regenerative cooling and heating device using midnight power according to claim 1.
【請求項3】 前記蓄熱槽(1)内の伝熱管(21)の
位置は、再生器(11)の伝熱管(24)の位置よりも
低いことを特徴とする請求項1または2記載の深夜電力
利用の蓄熱式冷暖房装置。
3. The heat transfer tube according to claim 1, wherein a position of the heat transfer tube in the heat storage tank is lower than a position of the heat transfer tube of the regenerator. A regenerative cooling and heating system that uses midnight power.
JP29392893A 1993-10-28 1993-10-28 Heat storage type air conditioner using midnight power Expired - Fee Related JP2642048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29392893A JP2642048B2 (en) 1993-10-28 1993-10-28 Heat storage type air conditioner using midnight power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29392893A JP2642048B2 (en) 1993-10-28 1993-10-28 Heat storage type air conditioner using midnight power

Publications (2)

Publication Number Publication Date
JPH07120015A JPH07120015A (en) 1995-05-12
JP2642048B2 true JP2642048B2 (en) 1997-08-20

Family

ID=17800983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29392893A Expired - Fee Related JP2642048B2 (en) 1993-10-28 1993-10-28 Heat storage type air conditioner using midnight power

Country Status (1)

Country Link
JP (1) JP2642048B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4318567B2 (en) * 2004-03-03 2009-08-26 三菱電機株式会社 Cooling system
KR102291024B1 (en) * 2020-06-12 2021-08-19 주식회사 와이에스 냉동산업 Hybrid Heat System using the solar heat and water heat
CN115325719A (en) * 2022-07-19 2022-11-11 秦皇岛昌浦集团有限公司 Heat-storage absorption type refrigerating unit

Also Published As

Publication number Publication date
JPH07120015A (en) 1995-05-12

Similar Documents

Publication Publication Date Title
KR100716706B1 (en) Operating Method of Single or Double Effect Absorption Refrigerator
JP2642048B2 (en) Heat storage type air conditioner using midnight power
CN111207570A (en) Energy-saving heat pump drying system and control method thereof
US6116047A (en) Double effect absorbtion cold or hot water generating machine
JP2000121196A (en) Cooling/heating system utilizing waste heat
KR200431243Y1 (en) air cooling and heating system
JP3245116B2 (en) Waste heat absorption chiller / heater with load fluctuation control function
JP3986122B2 (en) Exhaust heat absorption type absorption air conditioner
JPH1038347A (en) Heat accumulative type air conditioner
JP4308076B2 (en) Absorption refrigerator
JPH0989407A (en) Absorption refrigerator
JPH04143562A (en) Low temperature waste heat utilizing absorption type refrigerating plant and controlling method therefor
JP2567662B2 (en) Air-cooled double-effect absorption refrigerator
JP3434280B2 (en) Absorption refrigerator and its operation method
JPH0198865A (en) Absorption refrigerator
KR200142462Y1 (en) Absorption type cooler
JP3434279B2 (en) Absorption refrigerator and how to start it
JPS5944498B2 (en) Exhaust heat utilization equipment
JP3280261B2 (en) Absorption refrigeration equipment
JPS6110149Y2 (en)
JP3902912B2 (en) Control device
JP2977999B2 (en) Absorption refrigerator
JPS5921957A (en) Absorption cold and hot water machine
JPH08121900A (en) Absorption type refrigerating machine using engine exhaust heat
JPS6157537B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090502

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100502

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees