JP3225142B2 - Heat transport device - Google Patents

Heat transport device

Info

Publication number
JP3225142B2
JP3225142B2 JP25966993A JP25966993A JP3225142B2 JP 3225142 B2 JP3225142 B2 JP 3225142B2 JP 25966993 A JP25966993 A JP 25966993A JP 25966993 A JP25966993 A JP 25966993A JP 3225142 B2 JP3225142 B2 JP 3225142B2
Authority
JP
Japan
Prior art keywords
pump
condenser
tank
evaporator
heat transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25966993A
Other languages
Japanese (ja)
Other versions
JPH07113561A (en
Inventor
秀明 中里
正喜 中尾
亙 大澤
常雄 植草
勇 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP25966993A priority Critical patent/JP3225142B2/en
Publication of JPH07113561A publication Critical patent/JPH07113561A/en
Application granted granted Critical
Publication of JP3225142B2 publication Critical patent/JP3225142B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/006Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、ポンプの運転による
熱輸送媒体の循環により熱の輸送を行なう熱輸送装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transport apparatus for transporting heat by circulating a heat transport medium by operating a pump.

【0002】[0002]

【従来の技術】熱源側の凝縮器を経た熱輸送媒体たとえ
ば冷媒をタンクに収容し、そのタンク内の冷媒をポンプ
の運転により使用側の蒸発器に通して凝縮器に戻す熱輸
送装置がある。一例を図5に示す。
2. Description of the Related Art There is a heat transport device in which a heat transport medium, for example, a refrigerant, which has passed through a condenser on a heat source side is stored in a tank, and the refrigerant in the tank is passed through an evaporator on a use side and returned to the condenser by operating a pump. . An example is shown in FIG.

【0003】図において、1は熱源であるところの吸収
式冷凍機で、冷媒を凝縮器2で冷却する。この凝縮器2
に管路3を介してタンク4が接続され、そのタンク4に
管路5を介してポンプ6の吸込口が接続される。
In FIG. 1, reference numeral 1 denotes an absorption refrigerator serving as a heat source, and a refrigerant is cooled by a condenser 2. This condenser 2
The tank 4 is connected to the tank 4 via the pipe 3, and the suction port of the pump 6 is connected to the tank 4 via the pipe 5.

【0004】ポンプ6の吐出口に管路7を介してチャッ
キ弁(逆止弁とも称す)8が接続され、そのチャッキ弁
8に管路9を介して使用側であるところの空気調和機1
0の蒸発器11が接続される。そして、蒸発器11と凝
縮器2とが管路12を介して接続される。
A check valve (also referred to as a check valve) 8 is connected to a discharge port of the pump 6 via a pipe 7, and the check valve 8 is connected to the air conditioner 1 on a use side via a pipe 9.
0 evaporator 11 is connected. Then, the evaporator 11 and the condenser 2 are connected via the pipe 12.

【0005】チャッキ弁8と蒸発器11との間の管路9
に温度センサ21が取付けられ、その温度センサ21の
検知出力がコントローラ22に送られる。吸収式冷凍機
1、ポンプ6、および空気調和機10にコントローラ2
3が接続される。
A line 9 between the check valve 8 and the evaporator 11
A temperature sensor 21 is attached to the controller 22, and a detection output of the temperature sensor 21 is sent to the controller 22. Controller 2 for absorption refrigerator 1, pump 6, and air conditioner 10
3 are connected.

【0006】コントローラ23は、吸収式冷凍機1から
の運転指令と空気調和機10からの運転指令に応答し、
ポンプ6を駆動する。
[0006] The controller 23 responds to the operation command from the absorption refrigerator 1 and the operation command from the air conditioner 10,
The pump 6 is driven.

【0007】コントローラ22は、温度センサ21の検
知温度が所定値以下の場合にのみ空気調和機10を運転
オンする。
The controller 22 turns on the operation of the air conditioner 10 only when the temperature detected by the temperature sensor 21 is lower than a predetermined value.

【0008】作用を説明する。The operation will be described.

【0009】吸収式冷凍機1の運転が始まると、凝縮器
2で冷媒が液化され、それがタンク4に収容される。タ
ンク4内の冷媒はポンプ6の運転によって蒸発器11に
送られ、そこで冷媒が室内空気から熱を奪って気化す
る。この蒸発器11を経た冷媒は凝縮器2へと戻され
る。
When the operation of the absorption refrigerator 1 starts, the refrigerant is liquefied in the condenser 2 and stored in the tank 4. The refrigerant in the tank 4 is sent to the evaporator 11 by the operation of the pump 6, where the refrigerant takes heat from room air and evaporates. The refrigerant that has passed through the evaporator 11 is returned to the condenser 2.

【0010】[0010]

【発明が解決しようとする課題】運転開始時、ポンプ6
の起動と同時にタンク4内の冷媒が蒸発器11に送られ
るが、その時点での冷媒温度はタンク4の付近の雰囲気
温度に相等する。このため、蒸発器11においてなかな
か冷却作用が得られず、つまり空気調和機10において
冷房能力が得られず、室内に生暖かい風が送られてしま
う。しかも、冷房能力が得られるまでの間はポンプ6が
無駄な運転をしていることになり、動力費の無駄使いと
なる。
At the start of operation, the pump 6
The refrigerant in the tank 4 is sent to the evaporator 11 at the same time as the start-up, and the refrigerant temperature at that time is equivalent to the ambient temperature in the vicinity of the tank 4. For this reason, a cooling effect is not easily obtained in the evaporator 11, that is, the air conditioner 10 cannot obtain a cooling ability, and a fresh warm air is sent into the room. In addition, the pump 6 is in useless operation until the cooling capacity is obtained, and the power cost is wasted.

【0011】しかも、冷房能力が得られるまでの期間
は、蒸発器11での冷媒の熱交換作用がないため、蒸発
器11から管路12へ、本来の気相もしくは気液二相と
は異なる液状の冷媒が流れ、サイクル全体で冷媒が不足
気味となる。これでは、適正な熱輸送が困難となり、冷
房能力が得られるまでに長い時間がかかってしまう。
In addition, during the period until the cooling capacity is obtained, since there is no heat exchange effect of the refrigerant in the evaporator 11, the gas flows from the evaporator 11 to the pipe 12 differently from the original gas phase or gas-liquid two phase. The liquid refrigerant flows, and the refrigerant becomes short in the entire cycle. In this case, appropriate heat transport becomes difficult, and it takes a long time until the cooling capacity is obtained.

【0012】この対策として、タンク4として大形のも
のを採用し、冷媒封入量を多くする必要があるが、そう
するとコストの上昇を招いてしまう。
As a countermeasure against this, it is necessary to adopt a large tank 4 and increase the amount of refrigerant to be charged, but this will increase the cost.

【0013】一方、運転開始時は管路中の冷媒がまだ雰
囲気温度の飽和状態となっているため、ポンプ6の起動
時にNPSH(吸込み揚程)が不足してキャビテーションが
発生することがある
On the other hand, when the operation is started, the refrigerant in the pipeline is still in the saturated state of the ambient temperature, so that when the pump 6 is started, NPSH (suction head) becomes insufficient and cavitation may occur .

【0014】とくに、気液相変化するフロン系冷媒等の
熱輸送媒体は、温度と圧力の影響を受けて微妙に気液相
変化を起こすため、キャビテーションを完全に防止する
ことは難しいのが実情である。しかも、キャビテーショ
ンの発生を確実に判断できる有効な手段はなかった。
In particular, it is difficult to completely prevent cavitation because a heat transport medium such as a CFC-based refrigerant that changes in gas-liquid phase slightly changes its gas-liquid phase under the influence of temperature and pressure. It is. Moreover, there is no effective means for reliably determining the occurrence of cavitation.

【0015】実際にキャビテーションが発生した場合に
は、ポンプ6内に存する気泡が自然に抜けるまで運転を
中断する必要があり、運転再開までに長い時間を要して
しまう。
When cavitation actually occurs, it is necessary to suspend the operation until bubbles existing in the pump 6 are naturally removed, and it takes a long time to resume the operation.

【0016】この発明は上記事情に鑑みてなされたもの
で、第1の発明の熱輸送装置は、運転開始時、蒸発器側
で十分な能力を迅速に得ることができ、しかもポンプの
無駄な運転を極力防止して動力費の削減が図れ、さらに
はタンクの大形化を招くことなく適正な熱輸送を行なう
ことができることを目的とする。
The present invention has been made in view of the above circumstances, and the heat transport device of the first invention can quickly obtain sufficient capacity on the evaporator side at the start of operation, and furthermore, the wasteful use of the pump. It is an object of the present invention to minimize operation costs by preventing operation as much as possible, and to perform appropriate heat transport without increasing the size of the tank.

【0017】第2の発明の熱輸送装置は、キャビテーシ
ョンを確実に検出してポンプおよび管路の寿命向上が図
れるとともに、キャビテーションを簡単かつ早期に抑制
することができることを目的とする。
According to the heat transport device of the second invention, the life of the pump and the pipeline can be improved by reliably detecting the cavitation .
And reduce cavitation easily and early
The purpose is to be able to.

【0018】[0018]

【課題を解決するための手段】第1の発明の熱輸送装置
は、熱源側の凝縮器を経た熱輸送媒体をタンクに収容
し、そのタンク内の熱輸送媒体をポンプの運転により使
用側の蒸発器に通して凝縮器に戻すものにおいて、蒸発
器に対し並列に接続されたバイパスと、このバイパスに
設けられた弁と、凝縮器の温度を検知する温度センサ
と、この温度センサの検知温度が設定値T2 より高いと
きポンプの運転を禁止する手段と、運転開始時に温度セ
ンサの検知温度が設定値T2 以下に下がるとポンプを回
転数N1 で起動しかつバイパスの弁を開く手段と、ポン
プの起動後は温度センサの検知温度が設定値T1 (<T
2 )以下に下がるとポンプを回転数N2 (>N1 )で運
転しかつバイパスの弁を閉じる手段とを備え、最も低い
位置にポンプが配置され、そのポンプよりやや高い位置
に凝縮器が配置され、その凝縮器より低くポンプより高
い位置にタンクが配置され、最も高い位置に蒸発器が配
置されていることを特徴とする。
According to a first aspect of the present invention, there is provided a heat transport apparatus in which a heat transport medium having passed through a condenser on a heat source side is accommodated in a tank, and the heat transport medium in the tank is operated on a use side by operating a pump. In a device that returns to the condenser through the evaporator, a bypass connected in parallel to the evaporator, a valve provided in the bypass, a temperature sensor for detecting the temperature of the condenser, and a detection temperature of the temperature sensor means but to open and means for inhibiting operation of the pump is higher than the set value T 2, the valve activation to and bypass the detected temperature of the temperature sensor at the start of operation falls below the set value T 2 of the pump at a rotation speed N 1 After the pump is started, the temperature detected by the temperature sensor is set to a set value T 1 (<T
And means for closing the valve and and bypass operation in 2) below drops when the pump speed N 2 (> N 1), the lowest
The pump is located at a position slightly higher than the pump
The condenser is located below the condenser and higher than the pump
Tank at the highest position and the evaporator at the highest position.
It is characterized by being placed.

【0019】第2の発明の熱輸送装置は、熱源側の凝縮
器を経た熱輸送媒体をタンクに収容し、そのタンク内の
熱輸送媒体をポンプの運転により使用側の蒸発器に通し
て凝縮器に戻すものにおいて、ポンプに対し並列に接続
されたバイパスと、このバイパスに設けられた弁と、ポ
ンプの吸込側圧力と吐出側圧力との差を検出する手段
と、この差が設定値以下になると所定時間だけポンプの
運転を停止しかつバイパスの弁を開く手段とを備え、最
も低い位置にポンプが配置され、そのポンプよりやや高
い位置に凝縮器が配置され、その凝縮器より低くポンプ
より高い位置にタンクが配置され、最も高い位置に蒸発
器が配置されていることを特徴とする。
In the heat transport apparatus of the second invention, the heat transport medium that has passed through the condenser on the heat source side is accommodated in a tank, and the heat transport medium in the tank is condensed by operating the pump through the evaporator on the use side. A bypass connected in parallel to the pump, a valve provided in the bypass, a means for detecting a difference between the suction side pressure and the discharge side pressure of the pump, and the difference being equal to or less than a set value. If becomes a means for opening a valve to stop the operation of the predetermined time by the pump and the bypass, the outermost
The pump is located at a lower position, but slightly higher than the pump.
The condenser is placed in a position that is not
The tank is located at a higher position and evaporates to the highest position
The container is arranged.

【0020】[0020]

【作用】第1の発明の熱輸送装置では、凝縮器の温度が
設定値T2 より高いとき、ポンプの運転を禁止する。運
転開始時、凝縮器の温度が設定値T2 以下に下がると、
ポンプを回転数N1 で起動し、かつバイパスの弁を開
き、タンク内の熱輸送媒体をポンプからバイパスおよび
凝縮器へと循環させる。ポンプの起動後は、凝縮器の温
度が設定値T1 (<T2 )以下に下がったところでポン
プを回転数N2 (>N1 )で運転し、かつバイパスの弁
を閉じ、タンク内の熱輸送媒体をポンプから蒸発器およ
び凝縮器へと循環させる。
[Action] In the heat transport device of the first invention, when the temperature of the condenser is higher than the set value T 2, prohibits the operation of the pump. At the start of operation, when the temperature of the condenser falls below the set value T 2,
Start the pump at a rotation speed N 1, and open the bypass valve, it is circulated and the heat transport medium in the tank from the pump to the bypass and the condenser. After the pump is started, when the temperature of the condenser falls below the set value T 1 (<T 2 ), the pump is operated at the rotation speed N 2 (> N 1 ), the bypass valve is closed, and the pressure in the tank is reduced. The heat transport medium is circulated from the pump to the evaporator and the condenser.

【0021】第2の発明の熱輸送装置では、ポンプの吸
込側圧力と吐出側圧力との差を検出し、その差が設定値
以下になると所定時間だけポンプの運転を停止しかつバ
イパスの弁を開く。
In the heat transport apparatus according to the second aspect of the present invention, the difference between the suction side pressure and the discharge side pressure of the pump is detected, and when the difference becomes equal to or less than a set value, the operation of the pump is stopped for a predetermined time and the bypass valve is turned off. open.

【0022】[0022]

【実施例】以下、この発明の第1実施例について図面を
参照して説明する。なお、図面において図5と同一部分
には同一符号を付し、その詳細な説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings. In the drawings, the same parts as those in FIG. 5 are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0023】図1に示すように、チャッキ弁8と蒸発器
11との間の管路9にバイパス31の一端が接続され、
そのバイパス31の他端が蒸発器11と凝縮器2との間
の管路12に接続される。つまり、蒸発器11に対し、
バイパス31が並列に接続される。なお、管路9および
管路12に対するバイパス31の接続位置は、それぞれ
チャッキ弁8側および凝縮器2側に寄っている。
As shown in FIG. 1, one end of a bypass 31 is connected to a pipe 9 between the check valve 8 and the evaporator 11,
The other end of the bypass 31 is connected to the pipe 12 between the evaporator 11 and the condenser 2. That is, for the evaporator 11,
Bypasses 31 are connected in parallel. The connection position of the bypass 31 with respect to the pipe 9 and the pipe 12 is closer to the check valve 8 side and the condenser 2 side, respectively.

【0024】バイパス31に二方弁32が設けられる。The bypass 31 is provided with a two-way valve 32.

【0025】凝縮器2の温度を検知するための温度セン
サ33が吸収式冷凍機1に設けられる。この温度センサ
33は、具体的には、凝縮器2に対して供給される熱源
(たとえば水)の温度を検知する。
A temperature sensor 33 for detecting the temperature of the condenser 2 is provided in the absorption refrigerator 1. Specifically, the temperature sensor 33 detects the temperature of a heat source (for example, water) supplied to the condenser 2.

【0026】吸収式冷凍機1、ポンプ6、二方弁32、
および温度センサ33にコントローラ40が接続され
る。
The absorption refrigerator 1, the pump 6, the two-way valve 32,
The controller 40 is connected to the temperature sensor 33.

【0027】コントローラ40は、吸収式冷凍機1から
の運転/停止指令および温度センサ33の検知温度Tに
応じて、ポンプ6の運転および二方弁32の開閉をそれ
ぞれ制御する機能手段を備える。
The controller 40 has functional means for controlling the operation of the pump 6 and the opening and closing of the two-way valve 32 in accordance with the operation / stop command from the absorption refrigerator 1 and the temperature T detected by the temperature sensor 33, respectively.

【0028】つぎに、図2のフローチャートを参照して
作用を説明する。
Next, the operation will be described with reference to the flowchart of FIG.

【0029】吸収式冷凍機1の運転が始まると、凝縮器
2で冷媒が液化され、それがタンク4に収容される。
When the operation of the absorption refrigerator 1 starts, the refrigerant is liquefied in the condenser 2 and stored in the tank 4.

【0030】この運転開始時、温度センサ33の検知温
度Tと設定値T2 とが比較され、検知温度Tが設定値T
2 より高ければ、ポンプ6は運転が禁止されてまだ起動
されない。
At the start of the operation, the detected temperature T of the temperature sensor 33 is compared with the set value T 2, and the detected temperature T is set to the set value T.
If it is higher than 2 , the operation of the pump 6 is prohibited and the pump 6 is not started yet.

【0031】その後、検知温度Tが設定値T2 以下に下
がると、ポンプ6が回転数N1 で起動され、かつ二方弁
32が開かれる。回転数N1 は、タンク4内の冷媒をポ
ンプ6からバイパス31を通して凝縮器2へと循環させ
るのに必要な最小ポンプ圧力に対応する。
Thereafter, when the detected temperature T falls below the set value T 2 , the pump 6 is started at the rotation speed N 1 and the two-way valve 32 is opened. The rotation speed N 1 corresponds to the minimum pump pressure required to circulate the refrigerant in the tank 4 from the pump 6 through the bypass 31 to the condenser 2.

【0032】こうして、タンク4内の冷媒をポンプ6か
らバイパス31を通して凝縮器2へと循環させ、蒸発器
11には通さないことにより、冷媒を迅速にしかも効率
よく温度を低下させることができる。
In this manner, the refrigerant in the tank 4 is circulated from the pump 6 to the condenser 2 through the bypass 31 and is not passed through the evaporator 11, so that the temperature of the refrigerant can be quickly and efficiently reduced.

【0033】ポンプ6の起動後、検知温度Tが設定値T
1 (<T2 )以下まで下がると、そこでポンプ6が回転
数N2 (>N1 )で定常運転され、かつ二方弁32が閉
じられる。回転数N2 は、タンク4内の冷媒をポンプ6
から蒸発器11を通して凝縮器2へと循環させるのに必
要なポンプ圧力に対応する。
After the pump 6 is started, the detected temperature T becomes equal to the set value T.
When it falls below 1 (<T 2 ), the pump 6 is steadily operated at the rotation speed N 2 (> N 1 ), and the two-way valve 32 is closed. The rotation speed N 2 is controlled by the pump 6
To the condenser 2 through the evaporator 11 to the condenser 2.

【0034】こうして、タンク4内の低温冷媒をポンプ
6から蒸発器11および凝縮器2へと循環させることに
より、蒸発器11ですぐに冷却作用が得られる。したが
って、空気調和機10において十分な冷房能力が発揮さ
れ、室内に冷風が吹き出される。生暖かい不快な風は吹
き出されない。
In this way, by circulating the low-temperature refrigerant in the tank 4 from the pump 6 to the evaporator 11 and the condenser 2, a cooling action can be immediately obtained in the evaporator 11. Therefore, sufficient cooling capacity is exhibited in the air conditioner 10, and cool air is blown into the room. The warm unpleasant wind is not blown out.

【0035】ポンプ6の運転について見ると、その運転
は初めはタンク付近の雰囲気温度に相等しているタンク
4内の冷媒を冷却するためのものであり、その後の運転
は蒸発器11に凝縮器2で冷却された冷媒を輸送するた
めのものである。つまり、従来のようなポンプ6の無駄
な運転は極力防止され、よって動力費の削減となる。
Referring to the operation of the pump 6, the operation is initially for cooling the refrigerant in the tank 4 which is equal to the ambient temperature in the vicinity of the tank. 2 for transporting the refrigerant cooled in 2. In other words, useless operation of the pump 6 as in the related art is prevented as much as possible, thereby reducing the power cost.

【0036】しかも、蒸発器11に送られた冷媒は十分
に気化して管路12に流れるので、従来のように液状冷
媒が管路12に流れることはなく、よってサイクル中の
冷媒量が不足気味になることもなく、適正な熱輸送が可
能である。すなわち、タンク4を大形にして冷媒封入量
を多くする処置は不要であり、コストの上昇が回避され
る。
Moreover, the refrigerant sent to the evaporator 11 is sufficiently vaporized and flows into the pipe 12, so that the liquid refrigerant does not flow into the pipe 12 as in the prior art, so that the amount of refrigerant in the cycle is insufficient. Appropriate heat transport is possible without being awkward. In other words, it is not necessary to increase the tank 4 and increase the amount of the charged refrigerant, thereby avoiding an increase in cost.

【0037】なお、検知温度Tが設定値T1 以下まで下
がった時点で、その旨がフラグfの“1”セットにより
記憶される。
When the detected temperature T falls below the set value T 1 , this fact is stored by setting the flag f to “1”.

【0038】運転中に凝縮能力が低下して検知温度Tが
設定値T2 を超えると、ポンプ6の運転が停止される。
同時に、フラグfが“0”クリアされる。また、吸収式
冷凍機1の運転が停止されると、ポンプ6の運転が停止
される。同時に、フラグfが“0”クリアされる。
If the detected temperature T exceeds the set value T 2 due to a decrease in the condensation capacity during operation, the operation of the pump 6 is stopped.
At the same time, the flag f is cleared to "0". When the operation of the absorption refrigerator 1 is stopped, the operation of the pump 6 is stopped. At the same time, the flag f is cleared to "0".

【0039】フラグfの“0”クリアは、ポンプ6の再
起動に際し、上記した運転開始制御を繰り返すためのも
のである。
Clearing the flag f to "0" is for repeating the above-described operation start control when the pump 6 is restarted.

【0040】次に、この発明の第2実施例について説明
する。
Next, a second embodiment of the present invention will be described.

【0041】ここでは、図3に示すように、ポンプ6お
よびチャッキ弁8に対し、バイパス34が並列に接続さ
れる。このバイパス34に二方弁35が設けられる。
Here, as shown in FIG. 3, a bypass 34 is connected in parallel to the pump 6 and the check valve 8. The bypass 34 is provided with a two-way valve 35.

【0042】ポンプ6の吸込口に接続の管路5に圧力セ
ンサ36が取付けられる。ポンプ6の吐出口に接続の管
路7に圧力センサ37が取付けられる。これら圧力セン
サ36,37の検知出力が差圧スイッチ38に送られ
る。
A pressure sensor 36 is attached to the pipe 5 connected to the suction port of the pump 6. A pressure sensor 37 is attached to the pipe 7 connected to the discharge port of the pump 6. The detection outputs of these pressure sensors 36 and 37 are sent to a differential pressure switch 38.

【0043】差圧スイッチ38は、圧力センサ36の検
知圧力(ポンプ6の吸込側圧力)と圧力センサ37の検
知圧力(ポンプ6の吐出側圧力)との差を検出するため
のもので、圧力差が所定値以下のとき作動する。この差
圧スイッチ38の出力はコントローラ40に送られる。
The differential pressure switch 38 is for detecting the difference between the pressure detected by the pressure sensor 36 (pressure on the suction side of the pump 6) and the pressure detected by the pressure sensor 37 (pressure on the discharge side of the pump 6). Activated when the difference is less than a predetermined value. The output of the differential pressure switch 38 is sent to the controller 40.

【0044】コントローラ40は、第1実施例で述べた
機能手段に加え、差圧スイッチ38の作動時に所定時間
だけポンプ6の運転を停止しかつ二方弁35を開く機能
手段を備える。
The controller 40 has, in addition to the function means described in the first embodiment, a function means for stopping the operation of the pump 6 for a predetermined time and opening the two-way valve 35 when the differential pressure switch 38 is operated.

【0045】なお、図3は、差圧スイッチ38およびコ
ントローラ40を除く部分についての配置を立面図とし
て表わしている。すなわち、最も低い位置にポンプ6が
配置され、そのポンプ6よりやや高い位置に凝縮器2が
配置され、その凝縮器2より低くポンプ6より高い位置
にタンク4が配置され、最も高い位置に蒸発器11が配
置されている。二方弁35は、ポンプ6と比較して若干
高い位置(凝縮器2より低い位置)に配置されている。
他の構成は第1実施例と同じである。
FIG. 3 shows the differential pressure switch 38 and the
The layout of the part except the controller 40 is an elevation view.
Is shown. That is, the pump 6 is located at the lowest position.
The condenser 2 is located at a position slightly higher than the pump 6.
Located at a position lower than the condenser 2 and higher than the pump 6
The tank 4 is arranged at the highest position, and the evaporator 11 is arranged at the highest position.
Is placed. The two-way valve 35 is slightly
It is arranged at a high position (a position lower than the condenser 2).
Other configurations are the same as those of the first embodiment.

【0046】つぎに、図4のフローチャートを参照して
作用を説明する。
Next, the operation will be described with reference to the flowchart of FIG.

【0047】運転開始時の制御については第1実施例と
同じである。
The control at the start of operation is the same as in the first embodiment.

【0048】運転中、ポンプ6に何らかの原因でキャビ
テーションが起こると、ポンプ6の吸込側と吐出側との
間に所定値以下の圧力差が生じ、差圧スイッチ38が作
動する。この作動はキャビテーションの検知となる。こ
の図によると、差圧スイッチ38の検出、すなわちキャ
ビテーションの検出は、ポンプ6の回転数がN2 のとき
のみ行なわれるが、ポンプ6の運転中において、常時検
出してもよい。
During operation, if cavitation occurs in the pump 6 for some reason, a pressure difference between the suction side and the discharge side of the pump 6 becomes smaller than a predetermined value, and the differential pressure switch 38 is operated. This operation is the detection of cavitation. According to this figure, the detection of the differential pressure switch 38, i.e. the detection of cavitation, the rotation speed of the pump 6 is performed only when the N 2, during operation of the pump 6 may be detected at all times.

【0049】差圧スイッチ38が作動すると、ポンプ6
の運転が強制的に停止され、かつ二方弁35が開かれ
る。同時に、タイムカウントtが開始される。ポンプ
6の運転が強制的に停止されることにより、キャビテー
ションが生じた状態での運転が防止され、ポンプ6およ
び管路の寿命向上が図れる。
When the differential pressure switch 38 is operated, the pump 6
Is forcibly stopped, and the two-way valve 35 is opened. At the same time, time count t 1 is started. pump
6 is forcibly stopped,
The operation in the state where the pump has occurred is prevented, and the pump 6 and
And the service life of pipes can be improved.

【0050】ポンプ6の運転が止まり、しかも二方弁3
5が開くと、チャッキ弁8以降の管路9に存している
冷媒がバイパス34を通って管路5側に落下する。落下
した冷媒は管路5およびタンク4に溜まり込み、その
うちにタンク4が冷媒で満杯となり、タンク4で収容
しきれなかった冷媒は凝縮器2にも滞留するようにな
る。
The operation of the pump 6 stops, and the two-way valve 3
When the valve 5 is opened, the liquid refrigerant existing in the pipe 9 after the check valve 8 drops to the pipe 5 through the bypass 34. The dropped liquid refrigerant accumulates in the pipe line 5 and the tank 4, and the tank 4 is filled with the liquid refrigerant, and the liquid refrigerant that cannot be accommodated in the tank 4 stays in the condenser 2.

【0051】このように、ポンプ6の吸込側に液冷媒を
供給して吸込側の液レベルを上昇させることによりNP
SHを十分に確保することが可能となり、キャビテーショ
ンを簡単かつ早期に抑制することができる。つまり、短
時間でポンプ6の運転を再開することができる。
As described above, the liquid refrigerant is supplied to the suction side of the pump 6.
By increasing the liquid level in the suction side supplied, NP
SH can be sufficiently secured, and cavitation can be suppressed easily and early. That is, short
The operation of the pump 6 can be restarted in time.

【0052】[0052]

【0053】タイムカウントt1 が設定値taに達する
と、二方弁35が閉じられるとともに、二方弁32が開
かれてポンプ6が回転数N1 で起動される。同時に、タ
イムカウントt2 が開始される。ここでの二方弁32の
開(バイパス31の導通)およびポンプ6の起動は、タ
ンク4内の冷媒を冷却するためのものである。
When the time count t 1 reaches the set value ta, the two-way valve 35 is closed, the two-way valve 32 is opened, and the pump 6 is started at the rotation speed N 1 . At the same time, time count t 2 is started. Here, the opening of the two-way valve 32 (the conduction of the bypass 31) and the activation of the pump 6 are for cooling the refrigerant in the tank 4.

【0054】タイムカウントt2 が設定値tbに達する
と、二方弁32が閉じられてポンプ6が回転数N2 で運
転される。ここでの二方弁32の閉(バイパス31の遮
断)およびポンプ6の定常運転は、蒸発器11に凝縮器
2で冷やされた冷媒を輸送するためのものである。
When the time count t 2 reaches the set value tb, the two-way valve 32 is closed, and the pump 6 is operated at the rotation speed N 2 . The closing of the two-way valve 32 (the shutoff of the bypass 31) and the steady operation of the pump 6 here are for transporting the refrigerant cooled by the condenser 2 to the evaporator 11.

【0055】なお、この発明は上記各実施例に限定され
るものではなく、要旨を変えない範囲で種々変形実施可
能である。
The present invention is not limited to the above embodiments, but can be variously modified within the scope of the invention.

【0056】[0056]

【発明の効果】以上述べたようにこの発明によれば、第
1の発明の熱輸送装置は、熱源側の凝縮器を経た熱輸送
媒体をタンクに収容し、そのタンク内の熱輸送媒体をポ
ンプの運転により使用側の蒸発器に通して凝縮器に戻す
ものにおいて、蒸発器に対し並列に接続されたバイパス
と、このバイパスに設けられた弁と、凝縮器の温度を検
知する温度センサと、この温度センサの検知温度が設定
値T2 より高いときポンプの運転を禁止する手段と、運
転開始時に温度センサの検知温度が設定値T2 以下に下
がるとポンプを回転数N1 で起動しかつバイパスの弁を
開く手段と、ポンプの起動後は温度センサの検知温度が
設定値T1 (<T2 )以下に下がるとポンプを回転数N
2 (>N1 )で運転しかつバイパスの弁を閉じる手段と
を備え、最も低い位置にポンプが配置され、そのポンプ
よりやや高い位置に凝縮器が配置され、その凝縮器より
低くポンプより高い位置にタンクが配置され、最も高い
位置に蒸発器が配置されている構成としたので、運転開
始時、蒸発器側で十分な能力を迅速に得ることができ、
しかもポンプの無駄な運転を極力防止して動力費の削減
が図れ、さらにはタンクの大形化を招くことなく適正な
熱輸送を行なうことができる。
As described above, according to the present invention, the heat transport device of the first invention accommodates the heat transport medium that has passed through the condenser on the heat source side in a tank, and transfers the heat transport medium in the tank. When the pump is operated and returned to the condenser through the evaporator on the use side, a bypass connected in parallel to the evaporator, a valve provided in the bypass, and a temperature sensor for detecting the temperature of the condenser are provided. activates a means for inhibiting the operation of the pump when the detected temperature of the temperature sensor is higher than the set value T 2, the temperature detected by the temperature sensor at the start of operation falls below the set value T 2 of the pump at a rotation speed N 1 Means for opening the bypass valve, and, when the temperature detected by the temperature sensor drops below the set value T 1 (<T 2 ) after the pump is started, the pump is rotated at the rotation speed N.
Means operating at 2 (> N 1 ) and closing the bypass valve , the pump being located at the lowest position,
The condenser is located at a slightly higher position than the condenser
The tank is located lower and higher than the pump, the highest
Since the evaporator is arranged at the position, it is possible to quickly obtain sufficient capacity on the evaporator side at the start of operation,
In addition, unnecessary operation of the pump can be prevented as much as possible to reduce power cost, and proper heat transport can be performed without increasing the size of the tank.

【0057】第2の発明の熱輸送装置は、熱源側の凝縮
器を経た熱輸送媒体をタンクに収容し、そのタンク内の
熱輸送媒体をポンプの運転により使用側の蒸発器に通し
て凝縮器に戻すものにおいて、ポンプに対し並列に接続
されたバイパスと、このバイパスに設けられた弁と、ポ
ンプの吸込側圧力と吐出側圧力との差を検出する手段
と、この差が設定値以下になると所定時間だけポンプの
運転を停止しかつバイパスの弁を開く手段とを備え、最
も低い位置にポンプが配置され、そのポンプよりやや高
い位置に凝縮器が配置され、その凝縮器より低くポンプ
より高い位置にタンクが配置され、最も高い位置に蒸発
器が配置されている構成としたので、キャビテーション
を確実に検出してポンプおよび管路の寿命向上が図れる
とともに、キャビテーションを簡単かつ早期に抑制する
ことができる。
In the heat transport apparatus of the second invention, the heat transport medium that has passed through the condenser on the heat source side is accommodated in a tank, and the heat transport medium in the tank is condensed by operating the pump through the evaporator on the use side. A bypass connected in parallel to the pump, a valve provided in the bypass, a means for detecting a difference between the suction side pressure and the discharge side pressure of the pump, and the difference being equal to or less than a set value. If becomes a means for opening a valve to stop the operation of the predetermined time by the pump and the bypass, the outermost
The pump is located at a lower position, but slightly higher than the pump.
The condenser is placed in a position that is not
The tank is located at a higher position and evaporates to the highest position
Since the vessel is arranged , cavitation can be reliably detected, the life of the pump and the pipeline can be improved, and cavitation can be suppressed easily and early.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1実施例の構成図。FIG. 1 is a configuration diagram of a first embodiment of the present invention.

【図2】第1実施例の作用を説明するためのフローチャ
ート。
FIG. 2 is a flowchart for explaining the operation of the first embodiment.

【図3】この発明の第2実施例の構成図。FIG. 3 is a configuration diagram of a second embodiment of the present invention.

【図4】第2実施例の作用を説明するためのフローチャ
ート。
FIG. 4 is a flowchart for explaining the operation of the second embodiment.

【図5】従来装置の構成図。FIG. 5 is a configuration diagram of a conventional device.

【符号の説明】[Explanation of symbols]

1…吸収式冷凍機、2…凝縮器、4…タンク、6…ポン
プ、10…空気調和機、11…蒸発器、31,34…バ
イパス、32,35…二方弁、33…温度センサ、3
6,37…圧力センサ、38…差圧スイッチ、40…コ
ントローラ。
DESCRIPTION OF SYMBOLS 1 ... Absorption refrigerator, 2 ... Condenser, 4 ... Tank, 6 ... Pump, 10 ... Air conditioner, 11 ... Evaporator, 31, 34 ... Bypass, 32, 35 ... Two-way valve, 33 ... Temperature sensor, 3
6, 37: pressure sensor, 38: differential pressure switch, 40: controller.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中尾 正喜 東京都港区六本木一丁目4番33号 株式 会社エヌ・ティ・ティファシリティーズ 内 (72)発明者 大澤 亙 東京都港区六本木一丁目4番33号 株式 会社エヌ・ティ・ティファシリティーズ 内 (72)発明者 植草 常雄 東京都港区六本木一丁目4番33号 株式 会社エヌ・ティ・ティファシリティーズ 内 (72)発明者 須藤 勇 東京都港区六本木一丁目4番33号 株式 会社エヌ・ティ・ティファシリティーズ 内 (58)調査した分野(Int.Cl.7,DB名) F24F 5/00 F25B 1/00 399 F25B 15/00 F28D 21/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masayoshi Nakao 1-34 Roppongi, Minato-ku, Tokyo Inside NTT Facilities Co., Ltd. (72) Inventor Wataru Osawa 1-4-4 Roppongi, Minato-ku, Tokyo No. 33 NTT Facilities, Inc. (72) Inventor Tsuneo Uekusa 1-4-3 Roppongi, Minato-ku, Tokyo Inside 33 NTT Corporation, Inc. (72) Inventor Isamu Sudo Roppongi, Minato-ku, Tokyo No. 1-4-33 NTT Facilities Inc. (58) Field surveyed (Int. Cl. 7 , DB name) F24F 5/00 F25B 1/00 399 F25B 15/00 F28D 21/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱源側の凝縮器を経た熱輸送媒体をタン
クに収容し、そのタンク内の熱輸送媒体をポンプの運転
により使用側の蒸発器に通して凝縮器に戻す熱輸送装置
において、 前記蒸発器に対し並列に接続されたバイパスと、 このバイパスに設けられた弁と、 前記凝縮器の温度を検知する温度センサと、 この温度センサの検知温度が設定値T2 より高いとき、
前記ポンプの運転を禁止する手段と、 運転開始時、前記温度センサの検知温度が設定値T2
下に下がると、前記ポンプを回転数N1 で起動し、かつ
前記弁を開く手段と、 前記ポンプの起動後、前記温度センサの検知温度が設定
値T1 (<T2 )以下に下がると、ポンプを回転数N2
(>N1 )で運転し、かつ前記弁を閉じる手段とを備
、最も低い位置に前記ポンプが配置され、そのポンプ
よりやや高い位置に前記凝縮器が配置され、その凝縮器
より低く前記ポンプより高い位置に前記タンクが配置さ
れ、最も高い位置に前記蒸発器が配置されていることを
特徴とする熱輸送装置。
1. A heat transport device in which a heat transport medium having passed through a condenser on a heat source side is accommodated in a tank, and the heat transport medium in the tank is returned to the condenser through an evaporator on a use side by operating a pump. a bypass connected in parallel with the evaporator, a valve provided in the bypass, a temperature sensor for detecting the temperature of the condenser, when the temperature detected by the temperature sensor is higher than the set value T 2,
And means for inhibiting operation of said pump, at the start of operation, when the detected temperature of said temperature sensor falls below the set value T 2, the means for opening the start the pump at a rotation speed N 1, and the valve, the After the pump is started, when the temperature detected by the temperature sensor falls below the set value T 1 (<T 2 ), the pump is rotated at the rotation speed N 2.
(> N 1 ) and means for closing the valve , wherein the pump is located at the lowest position,
The condenser is disposed at a slightly higher position, and the condenser
The tank is located lower and higher than the pump
Wherein the evaporator is disposed at the highest position .
【請求項2】 熱源側の凝縮器を経た熱輸送媒体をタン
クに収容し、そのタンク内の熱輸送媒体をポンプの運転
により使用側の蒸発器に通して凝縮器に戻す熱輸送装置
において、 前記ポンプに対し並列に接続されたバイパスと、 このバイパスに設けられた弁と、 前記ポンプの吸込側圧力と吐出側圧力との差を検出する
手段と、 この差が設定値以下になると、所定時間だけ前記ポンプ
の運転を停止し、かつ前記弁を開く手段と、 を備え、最も低い位置に前記ポンプが配置され、そのポ
ンプよりやや高い位置に前記凝縮器が配置され、その凝
縮器より低く前記ポンプより高い位置に前記タンクが配
置され、最も高い位置に前記蒸発器が配置されている
とを特徴とする熱輸送装置。
2. A heat transport device in which a heat transport medium that has passed through a condenser on a heat source side is stored in a tank, and the heat transport medium in the tank is returned to the condenser through an evaporator on a use side by operating a pump. A bypass connected in parallel to the pump; a valve provided in the bypass; a means for detecting a difference between a suction side pressure and a discharge side pressure of the pump; Means for stopping the operation of the pump for a time and opening the valve , wherein the pump is disposed at the lowest position,
The condenser is located at a position slightly higher than the pump.
The tank is located below the compressor and above the pump.
And the evaporator is disposed at the highest position .
JP25966993A 1993-10-18 1993-10-18 Heat transport device Expired - Lifetime JP3225142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25966993A JP3225142B2 (en) 1993-10-18 1993-10-18 Heat transport device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25966993A JP3225142B2 (en) 1993-10-18 1993-10-18 Heat transport device

Publications (2)

Publication Number Publication Date
JPH07113561A JPH07113561A (en) 1995-05-02
JP3225142B2 true JP3225142B2 (en) 2001-11-05

Family

ID=17337259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25966993A Expired - Lifetime JP3225142B2 (en) 1993-10-18 1993-10-18 Heat transport device

Country Status (1)

Country Link
JP (1) JP3225142B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5966954A (en) * 1996-12-04 1999-10-19 Sanyo Electronic Co., Ltd. Air conditioning system
EP2570752B1 (en) * 2003-11-21 2014-12-10 Mayekawa Mfg. Co., Ltd. Carbon dioxide brine production system
JP2012145261A (en) * 2011-01-11 2012-08-02 Hitachi Plant Technologies Ltd Air conditioning system and method for operating the same
WO2014091953A1 (en) * 2012-12-14 2014-06-19 日本電気株式会社 Cavitation detection device, cavitation detection method, and cavitation detection program
WO2019017297A1 (en) * 2017-07-18 2019-01-24 日本電気株式会社 Phase change refrigerating device and phase change refrigerating method

Also Published As

Publication number Publication date
JPH07113561A (en) 1995-05-02

Similar Documents

Publication Publication Date Title
JP5111475B2 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
US7540163B2 (en) Prevention of flooded starts in heat pumps
JP4273956B2 (en) How to operate the dehumidifier
JP3225142B2 (en) Heat transport device
KR19980064574A (en) Operation stop method of absorption refrigeration unit
JP2006292302A (en) Control method of heat pump device
JP2013139948A (en) Refrigeration device and method for detecting filling of wrong refrigerant
JP2005300057A (en) Heat pump hot water supply system
JP2002276367A (en) Evaporation suppressing device for circulating heating medium
JP2008107057A (en) Air conditioner
JP2002195628A (en) Controller for air conditioner
JPH06249176A (en) Refrigerator lubricating oil adjusting device
JP2004125252A (en) Indoor air conditioner
JPH0914778A (en) Air conditioner
JPH09264620A (en) Cooling device employing combinedly natural circulation loop and operating method thereof
JPH11159906A (en) Absorption heat pump system
JP3615353B2 (en) Operation control method for air conditioner
JP3594453B2 (en) Operating method of air conditioner
JP2004271177A (en) Gas engine-driven air conditioning device
JPH0988601A (en) Engine-driven air conditioner and reserve tank therefor
JPH10318558A (en) Coolant circulating air conditioning system
KR970022868A (en) Control device of vending machine
JPH0642836A (en) Air conditioning/water heating system of heat pump type
JPH07120079A (en) Safety device for compressor
JPS62238969A (en) Water chiller

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090824

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term