JP2006292302A - Control method of heat pump device - Google Patents

Control method of heat pump device Download PDF

Info

Publication number
JP2006292302A
JP2006292302A JP2005115310A JP2005115310A JP2006292302A JP 2006292302 A JP2006292302 A JP 2006292302A JP 2005115310 A JP2005115310 A JP 2005115310A JP 2005115310 A JP2005115310 A JP 2005115310A JP 2006292302 A JP2006292302 A JP 2006292302A
Authority
JP
Japan
Prior art keywords
pressure
evaporator
refrigerant
heat pump
pump device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005115310A
Other languages
Japanese (ja)
Inventor
Teruo Fujikoso
輝夫 藤社
Yasushi Watabe
安司 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005115310A priority Critical patent/JP2006292302A/en
Publication of JP2006292302A publication Critical patent/JP2006292302A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump device with high usability by attaining a stable refrigerating cycle without an increase in cost in a heat pump device using a refrigerant out of critical pressure. <P>SOLUTION: In a heat pump device comprising a refrigerant circuit constituted by successively connecting a compressor 1, a radiator 2, a decompression means 3, and an evaporator 4, a heat absorbing quantity change means 11 adjusting the capability of the evaporator 4, and a temperature detection means 14 detecting the temperature of air supplied to the evaporator 4, pressure in the evaporator 4 is reduced by the change means 11 when a detection value of the temperature detection means 13 reaches the vicinity of a temperature equal to the critical pressure of the used refrigerant or exceeds it. A stable refrigerating cycle is attained without an increase in cost in the heat pump device using the refrigerant out of the critical pressure, whereby a heat pump device with high usability can be obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、臨界圧力を超えた範囲で使用するヒ−トポンプ装置の制御方法に関するものである。   The present invention relates to a control method for a heat pump device used in a range exceeding a critical pressure.

従来の技術として、ヒ−トポンプ装置は、図5に示すような、圧縮機1、放熱(凝縮)器2、減圧手段3、蒸発器4を環状に接続して構成され、特に臨界圧力以上まで加圧される冷媒(例えば二酸化炭素)を使用した場合、このヒ−トポンプ装置のモリエル線図は、図6に示すようになる(例えば、特許文献1参照)。
特表平3−503206号公報
As a conventional technique, a heat pump device is configured by connecting a compressor 1, a heat dissipation (condenser) 2, a decompression means 3, and an evaporator 4 in a ring shape as shown in FIG. When a pressurized refrigerant (for example, carbon dioxide) is used, the Mollier diagram of the heat pump device is as shown in FIG. 6 (see, for example, Patent Document 1).
Japanese National Patent Publication No. 3-503206

ここで、日本での過負荷条件(外気温度43℃)で蒸発器が空冷式のファンによって吸込空気から吸熱する場合、図2に示すようなモリエル線図となる。つまり、蒸発器内の圧力が臨界圧力Pcに近づくことにより、蒸発潜熱△heが急激に減少する。この装置の圧縮機運転回転数、減圧手段の絞り開度、放熱量が一定とした場合、この吸熱側の過負荷条件により、蒸発器の能力は著しく低下し、吐出圧力及び吐出温度等の冷凍サイクルが不安定になる。   Here, when the evaporator absorbs heat from the intake air by an air-cooled fan under an overload condition (outside air temperature 43 ° C.) in Japan, a Mollier diagram as shown in FIG. 2 is obtained. That is, when the pressure in the evaporator approaches the critical pressure Pc, the latent heat of evaporation Δhe is rapidly reduced. If the compressor operating speed, the throttle opening of the decompression means, and the heat release amount are constant, the capacity of the evaporator will be significantly reduced due to the overload condition on the endothermic side, and the refrigeration such as discharge pressure and discharge temperature will be reduced. The cycle becomes unstable.

更に、前記減圧手段の弁開度が電気的に調整可能な場合、吐出温度等の急激な変化によって弁開度の増減が発生し、圧力の増減を生じる。圧力の急増は、設計圧力の増大に至り、ひいては冷凍サイクル部品の耐圧強化のため多大なコストを招き、また安全保護装置として圧力スイッチにより高圧保護制御を行っている場合、頻繁に高圧保護制御が作動し、運転できないといった問題を生じる。   Further, when the valve opening degree of the pressure reducing means can be adjusted electrically, the valve opening degree increases or decreases due to a sudden change in the discharge temperature or the like, and the pressure increases or decreases. The sudden increase in pressure leads to an increase in design pressure, which in turn increases costs for strengthening the pressure resistance of refrigeration cycle components, and when high-pressure protection control is performed using a pressure switch as a safety protection device, high-pressure protection control is frequently performed. This causes problems such as operation and inability to drive.

本発明は、前記従来の課題を解決するもので、臨界圧力を超えた状態で冷媒を使用するヒ−トポンプ装置において、コスト増加を招くことなく、安定した冷凍サイクルを実現することで、使用性の高いヒ−トポンプ装置の制御方法を提供することを目的とする。   The present invention solves the above-described conventional problems, and in a heat pump device that uses a refrigerant in a state where the critical pressure is exceeded, by realizing a stable refrigeration cycle without increasing the cost, the usability It is an object of the present invention to provide a control method for a heat pump device having a high height.

上記課題を解決するために本発明のヒ−トポンプ装置の制御方法は、圧縮機、放熱器、減圧手段、蒸発器を順次接続して構成された冷媒回路と、前記蒸発器の能力を調整する吸熱量変化手段と、前記蒸発器に供給される空気の温度を検出する温度検知手段とを備え、前記温度検出手段の検出値が、使用されている冷媒の臨界圧力に相当する温度近傍に達する、または、それを超えると、前記吸熱量変化手段により前記蒸発器内の圧力を減少させる構成としたもので、蒸発器の負荷が高い等によって発生する臨界圧力付近までの圧力上昇を未然に検知し、吸熱量を減少させることにより、蒸発器における蒸発潜熱を確保し、安定した運転が確保できる。その結果、蒸発器の負荷が高い状態でも急激な圧力上昇及び減少変化が発生せず、圧力容器や機能部品(電磁膨張弁、開閉弁等)の設計圧力低減が可能となり、信頼性確保の為のコスト増大(肉圧アップ等)を防止できる。吸熱量変化手段は、蒸発器に設けた既存部品を使用することが可能となり、機能付加によるコスト増大を防止することが可能である。   In order to solve the above-described problems, a control method for a heat pump device according to the present invention adjusts the capacity of the evaporator, and a refrigerant circuit configured by sequentially connecting a compressor, a radiator, a decompression unit, and an evaporator. An endothermic amount changing means and a temperature detecting means for detecting the temperature of the air supplied to the evaporator are provided, and the detected value of the temperature detecting means reaches the vicinity of the temperature corresponding to the critical pressure of the refrigerant used. Or, if it exceeds that, the heat absorption amount changing means will reduce the pressure in the evaporator, and it will detect the pressure rise to near the critical pressure caused by the high load of the evaporator, etc. In addition, by reducing the amount of heat absorption, the latent heat of vaporization in the evaporator can be secured, and stable operation can be secured. As a result, even when the evaporator load is high, there is no sudden pressure increase or decrease, and the design pressure of pressure vessels and functional parts (electromagnetic expansion valves, open / close valves, etc.) can be reduced, ensuring reliability. Cost increase (such as increased meat pressure) can be prevented. The heat absorption amount changing means can use existing parts provided in the evaporator, and can prevent an increase in cost due to the addition of functions.

本発明によれば、臨界圧力を超えた状態で冷媒を使用するヒ−トポンプ装置において、コスト増加を招くことなく、安定した冷凍サイクルを実現することで、使用性の高いヒ−
トポンプ装置を提供できる。
According to the present invention, in a heat pump device that uses a refrigerant in a state where the critical pressure is exceeded, a stable refrigeration cycle is realized without causing an increase in cost.
A pumping device can be provided.

第1の発明は、圧縮機、放熱器、減圧手段、蒸発器を順次接続して構成された冷媒回路と、前記蒸発器の能力を調整する吸熱量変化手段と、前記蒸発器に供給される空気の温度を検出する温度検知手段とを備え、前記温度検出手段の検出値が、使用されている冷媒の臨界圧力に相当する温度近傍に達する、または、それを超えると、前記吸熱量変化手段により前記蒸発器内の圧力を減少させる構成としたヒ−トポンプ装置の制御方法で、蒸発器の負荷が高い等によって発生する臨界圧力付近までの圧力上昇を未然に検知し、吸熱量を減少させることにより、蒸発器における蒸発潜熱を確保し、安定した運転が確保できる。その結果、蒸発器の負荷が高い状態でも急激な圧力上昇及び減少変化が発生せず、圧力容器や機能部品(電磁膨張弁、開閉弁等)の設計圧力低減が可能となり、信頼性確保の為のコスト増大(肉圧アップ等)を防止できる。吸熱量変化手段は、蒸発器に設けた既存部品を使用することが可能となり、機能付加によるコスト増大を防止することが可能である。   A first aspect of the invention is a refrigerant circuit configured by sequentially connecting a compressor, a radiator, a decompression unit, and an evaporator, an endothermic amount changing unit that adjusts the capability of the evaporator, and is supplied to the evaporator Temperature detection means for detecting the temperature of the air, and when the detected value of the temperature detection means reaches or exceeds the temperature corresponding to the critical pressure of the refrigerant being used, the endothermic change means By the heat pump device control method configured to reduce the pressure in the evaporator, the pressure increase to near the critical pressure generated due to the high load of the evaporator is detected in advance, and the heat absorption amount is reduced. As a result, the latent heat of vaporization in the evaporator can be secured and stable operation can be secured. As a result, even when the evaporator load is high, there is no sudden pressure increase or decrease, and the design pressure of pressure vessels and functional parts (electromagnetic expansion valves, on-off valves, etc.) can be reduced, ensuring reliability. Cost increase (such as increased meat pressure) can be prevented. The heat absorption amount changing means can use existing parts provided in the evaporator, and can prevent an increase in cost due to the addition of functions.

吸熱量変化手段は、室外機の設置状態により蒸発器の開口面積を減少させたり、吸熱負荷より低い媒体を付加(例えば、冷却水噴霧等)する付加手段も同様の効果がある。   The endothermic amount changing means has the same effect as the adding means for reducing the opening area of the evaporator depending on the installation state of the outdoor unit or adding a medium lower than the endothermic load (for example, cooling water spray).

また蒸発器に供給される空気の温度(外気温度)を検出することにより、蒸発器の圧力を相関的に検出することを推定可能となる為、圧力検出手段(圧力スイッチ、圧力センサ、蒸発器に配設された熱交換器温度センサ)等の複雑な構造及びシ−ル機能を有しない安価な外気温度センサで、低圧側の圧力を推定することができる。   In addition, by detecting the temperature of the air supplied to the evaporator (outside air temperature), it is possible to estimate that the pressure of the evaporator is detected in a correlated manner, so that pressure detection means (pressure switch, pressure sensor, evaporator) The pressure on the low-pressure side can be estimated with an inexpensive outside temperature sensor that does not have a complicated structure and a sealing function, such as a heat exchanger temperature sensor provided in the above.

第2の発明は、特に第1の発明において、蒸発器に外気を供給するファンを備え、前記ファンの回転速度を通常運転より減少させる、または、前記ファンを停止させることで、蒸発器内の圧力を減少させる構成としたもので、また、蒸発器の空気吸い込み側で常時外気温度センサによる検知を行い、蒸発圧力を推定している為、過渡的な冷媒流動変動による蒸発圧力の変化に誤差を生じさせること無く、過負荷条件下での蒸発圧力の上昇を抑制することができる。   In a second aspect of the invention, in particular, in the first aspect of the invention, a fan for supplying outside air to the evaporator is provided, and the rotation speed of the fan is reduced from that of normal operation, or the fan is stopped to It is configured to reduce the pressure, and since the evaporating pressure is estimated by constantly detecting by the outside air temperature sensor on the air suction side of the evaporator, there is an error in the evaporating pressure change due to transient refrigerant flow fluctuation Without increasing the evaporating pressure under overload conditions.

第3の発明は、特に第1または第2の発明において、冷媒は二酸化炭素であることを特徴とするもので、この場合、サイクル内の圧力が冷媒の臨界圧力以上まで加圧されるが、低圧側部品を臨界圧力以下で運転することができ、急激な高圧上昇を防止することで高圧部品の設計圧力、更には耐圧部品を臨界圧力以下で運転することで低圧部品の設計圧力を各々抑制させ、圧力容器(蒸発器)や機能部品(膨張弁)のシステムコストを抑制することができる。   The third invention is characterized in that, in particular, in the first or second invention, the refrigerant is carbon dioxide, and in this case, the pressure in the cycle is increased to a critical pressure or higher of the refrigerant. The low-pressure side parts can be operated below the critical pressure, and the design pressure of the high-pressure parts can be suppressed by preventing a sudden rise in high pressure, and further the design pressure of the low-pressure parts can be suppressed by operating the pressure-resistant parts below the critical pressure. It is possible to suppress the system cost of the pressure vessel (evaporator) and the functional component (expansion valve).

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiment.

(実施の形態1)
図1は、第1の実施の形態におけるヒ−トポンプ装置を示したものである。本実施の形態のヒ−トポンプ装置は、圧縮機1、放熱(凝縮)器2、減圧手段3、蒸発器4を冷媒配管5によって環状に接続して構成された冷媒回路を備え、冷媒として二酸化炭素を使用している。図2は、本装置におけるモリエル線図(P−h線図)を示したものである。
(Embodiment 1)
FIG. 1 shows a heat pump device according to the first embodiment. The heat pump device according to the present embodiment includes a refrigerant circuit configured by connecting a compressor 1, a heat radiating (condensing) device 2, a pressure reducing means 3, and an evaporator 4 in an annular shape by a refrigerant pipe 5, and uses carbon dioxide as a refrigerant. Carbon is used. FIG. 2 shows a Mollier diagram (Ph diagram) in the present apparatus.

圧縮機1は、吸引した冷媒を臨界圧力Pc以上まで圧縮して吐出し、吐出された高温高圧の冷媒は、貯湯槽6内から供給された液体(水)と放熱器2を介して熱交換される。放熱器2を流れる冷媒(二酸化炭素)は圧縮機1によって臨界圧力Pc以上に加圧されている為、放熱器2を通過する液体に放熱して温度低下しても凝縮(冷媒2相域)することは
ない。減圧手段3は、放熱器2から流出する冷媒(二酸化炭素)を減圧する装置のことで、毛細管によるキャピラリ−チュ−ブや制御装置によって弁開度を電気的に制御する電磁式膨張弁である。冷媒(二酸化炭素)は、この減圧手段3によって冷媒2相域となるまで減圧されたのち、蒸発器4によって吸熱冷媒が蒸発気化した後、再び圧縮機1に吸引される。
The compressor 1 compresses and discharges the sucked refrigerant to a critical pressure Pc or higher, and the discharged high-temperature and high-pressure refrigerant exchanges heat with the liquid (water) supplied from the hot water tank 6 through the radiator 2. Is done. Since the refrigerant (carbon dioxide) flowing through the radiator 2 is pressurized to a critical pressure Pc or higher by the compressor 1, it condenses even if the temperature is lowered by radiating heat to the liquid passing through the radiator 2 (refrigerant two-phase region). Never do. The decompression means 3 is a device for decompressing the refrigerant (carbon dioxide) flowing out from the radiator 2, and is an electromagnetic expansion valve that electrically controls the valve opening degree by a capillary tube or a control device using a capillary tube. . The refrigerant (carbon dioxide) is decompressed by the decompression means 3 until it reaches the refrigerant two-phase region, and after the endothermic refrigerant evaporates by the evaporator 4, it is sucked into the compressor 1 again.

しかし、図2に示すように、蒸発器側の負荷が過負荷条件(空冷の場合、吸込空気温度が43℃以上、水冷の場合、入水温度が45℃以上)となると、蒸発器内圧力△Pe(図2では減圧手段出口〜蒸発器入口での圧力)が臨界圧力Pcに近づくことにより、蒸発潜熱△heが急激に減少する。この装置の圧縮機運転回転数、減圧手段の絞り開度、放熱量が一定とした場合、この吸熱側の過負荷条件により、蒸発器の能力は著しく低下し、吐出圧力及び吐出温度等の冷凍サイクルが不安定になる。   However, as shown in FIG. 2, when the load on the evaporator side becomes an overload condition (in the case of air cooling, the intake air temperature is 43 ° C. or higher, and in the case of water cooling, the incoming water temperature is 45 ° C. or higher) As Pe (pressure at the outlet of the pressure reducing means to the inlet of the evaporator in FIG. 2) approaches the critical pressure Pc, the latent heat of vaporization Δhe decreases rapidly. If the compressor operating speed, the throttle opening of the decompression means, and the heat release amount are constant, the capacity of the evaporator will be significantly reduced due to the overload condition on the endothermic side, and the refrigeration such as discharge pressure and discharge temperature will be reduced. The cycle becomes unstable.

更に、前記減圧手段3の弁開度が電気的に調整可能な場合、吐出温度等の急激な変化によって弁開度の増減が発生し、更に圧力の増減を生じる。圧力の急増は、設計圧力の増大につながり冷凍サイクル部品の耐圧強化のため多大なコストを招き、また安全保護装置として圧力スイッチにより高圧保護制御を行っている場合、頻繁に高圧保護制御が作動し、運転できないといった問題を生じる。   Further, when the valve opening of the pressure reducing means 3 can be adjusted electrically, the valve opening is increased or decreased due to a sudden change in the discharge temperature or the like, and further the pressure is increased or decreased. A sudden increase in pressure leads to an increase in design pressure, resulting in a great cost for strengthening the pressure resistance of refrigeration cycle components, and when high-pressure protection control is performed using a pressure switch as a safety protection device, the high-pressure protection control is frequently activated. This causes problems such as inability to drive.

このような課題を解決する為に、本発明は減圧手段3出口から圧縮機1までの低圧側に圧力検出手段12を具備し、圧力検出手段12が使用する冷媒の臨界圧力Pcに近づくまたは超えると、マイクロコンピュ−タ10により蒸発器側の冷凍能力を減少させる吸熱量変化手段(図1の場合、蒸発器側ファン11)を通常運転時より減少または停止させることにより、蒸発器4内の圧力を減少させ、定格条件に近い蒸発圧力Pe1を得ることができ、圧縮機の吐出・吸入における圧力及び温度を安定して運転させることができる。   In order to solve such a problem, the present invention includes a pressure detection means 12 on the low pressure side from the outlet of the pressure reduction means 3 to the compressor 1, and approaches or exceeds the critical pressure Pc of the refrigerant used by the pressure detection means 12. By reducing or stopping the heat absorption amount changing means (in the case of FIG. 1, the evaporator side fan 11) for reducing the refrigerating capacity on the evaporator side by the microcomputer 10, the inside of the evaporator 4 is reduced. The evaporation pressure Pe1 close to the rated condition can be obtained by reducing the pressure, and the pressure and temperature in the discharge / suction of the compressor can be stably operated.

前記吸熱量変化手段は、水冷における蒸発器4側ポンプの速度を減少または停止させたり、蒸発器4の開口面積を減少させたり、吸熱負荷より低い媒体を付加(例えば、冷却水噴霧等)する付加手段も同様の効果がある。   The endothermic amount changing means reduces or stops the speed of the evaporator 4 side pump in water cooling, reduces the opening area of the evaporator 4, or adds a medium lower than the endothermic load (for example, cooling water spray or the like). The additional means has the same effect.

図3は、本実施の形態におけるヒ−トポンプ装置を流れる冷媒状態を示したものである。図5の圧力検出手段12として、低圧側ヒ−トポンプ装置の蒸発器吸い込み空気側に外気温度検出手段14を設ける構成としている。本実施の形態におけるヒ−トポンプ装置は、蒸発器4に外気を供給し、減圧手段3通過後の冷媒を蒸発させる構成としている。   FIG. 3 shows the state of refrigerant flowing through the heat pump device in the present embodiment. As the pressure detection means 12 in FIG. 5, an outside air temperature detection means 14 is provided on the evaporator suction air side of the low-pressure side heat pump device. The heat pump device in the present embodiment is configured to supply outside air to the evaporator 4 and evaporate the refrigerant after passing through the decompression means 3.

これによれば、外気温度(蒸発器4の吸い込み空気の温度)を検出し、蒸発圧力を相関的に推定可能となる為、圧力検出手段(圧力スイッチ、圧力センサ、蒸発器に配設された熱交換器温度センサ)等の複雑な構造及びシ−ル機能を有しない安価な温度センサで、低圧側の圧力を推定することができる。   According to this, since the outside air temperature (the temperature of the intake air of the evaporator 4) can be detected and the evaporation pressure can be estimated in correlation, the pressure detecting means (pressure switch, pressure sensor, evaporator) The pressure on the low pressure side can be estimated with an inexpensive temperature sensor that does not have a complicated structure and a sealing function such as a heat exchanger temperature sensor.

ここで本実施の形態の作用を図3及び図4を用いて説明する。図3は、ヒ−トポンプ装置における圧縮機1等の機能部品が動作し、冷凍サイクルの各部の圧力及び温度が安定した状態を示したものであり、図4は、圧縮機1が起動した時や負荷が急変した場合の過渡的な状態を示したものである。図3より、使用される冷媒が二酸化炭素で安定した状態の場合、圧縮機1から吐出された高温高圧の冷媒は放熱(凝縮)器2の入口から減圧手段入口3−aまで臨界圧力域の冷媒状態となり、減圧手段3により気液2相の冷媒状態16−bとなり、蒸発器4により冷媒は蒸発し,放熱器4を出た後、冷媒は気相域16−cとなり圧縮機1に吸引されるため、外気温度検出手段14により、蒸発器空気吸い込み側の外気温度を検出することにより、外気温度と相関的に低圧側圧力を推定することが可能である。   Here, the operation of the present embodiment will be described with reference to FIGS. FIG. 3 shows a state in which functional parts such as the compressor 1 in the heat pump device are operated and the pressure and temperature of each part of the refrigeration cycle are stabilized. FIG. 4 shows a state in which the compressor 1 is started. It shows a transitional state when the load or load suddenly changes. From FIG. 3, when the refrigerant used is stable with carbon dioxide, the high-temperature and high-pressure refrigerant discharged from the compressor 1 is in the critical pressure region from the inlet of the heat dissipation (condenser) 2 to the decompression means inlet 3-a. The refrigerant enters the refrigerant state 16-b of gas-liquid two-phase by the decompression means 3, and the refrigerant evaporates by the evaporator 4, and after exiting the radiator 4, the refrigerant becomes the gas phase region 16-c and enters the compressor 1. Since the air is sucked, it is possible to estimate the low-pressure side pressure in correlation with the outside air temperature by detecting the outside air temperature on the evaporator air suction side by the outside air temperature detecting means 14.

しかし、図4のような蒸発器側の負荷が高くなる過負荷条件では、図2で説明した通り、蒸発器4内の圧力が臨界圧力Pcに近づき蒸発潜熱△Peが減少する為に、蒸発器中間点から蒸発器出口まで気相域の冷媒状態15−cとなり、安定した運転状態でも蒸発圧力検出手段12では、冷媒気相(過熱)域での圧力を検出することができず、正確な圧力を推定することができない。そこで、蒸発器4の空気吸い込み側に温度検出手段14を設け、外気温度変化に応じた冷媒状態を推定し、外気温度に対して蒸発器のファン速度を変化させることにより、過負荷における冷凍サイクル安定運転状態や圧縮機起動等の過渡運転時での冷凍サイクル不安定状態を圧力センサや熱交換器温度センサで検知状態が不安定に認識することなく、吸い込み側空気の外気温度と気液二相域冷媒状態における相関特性により蒸発圧力を推定することが可能となる。   However, in the overload condition in which the load on the evaporator side becomes high as shown in FIG. 4, as explained in FIG. 2, the pressure in the evaporator 4 approaches the critical pressure Pc, and the latent heat of evaporation ΔPe decreases. The refrigerant state 15-c in the gas phase region from the intermediate point of the evaporator to the evaporator outlet is obtained, and the evaporating pressure detecting means 12 cannot accurately detect the pressure in the refrigerant gas phase (overheating) region even in a stable operation state. It is impossible to estimate the correct pressure. Therefore, the temperature detection means 14 is provided on the air suction side of the evaporator 4 to estimate the refrigerant state according to the change in the outside air temperature, and to change the fan speed of the evaporator with respect to the outside air temperature. The refrigeration cycle instability during transient operation such as stable operation and compressor start-up is not recognized by the pressure sensor or heat exchanger temperature sensor as unstable, and the outside air temperature and gas-liquid It is possible to estimate the evaporation pressure from the correlation characteristics in the phase region refrigerant state.

したがって、使用する冷媒が二酸化炭素のような過負荷時に低圧側圧力が臨界圧力に近づく二酸化炭素のような冷媒でも、外気温度検出手段13により低圧側ヒ−トポンプ装置の圧力を推定し、吸熱量変化手段、すなわち吸熱側ファン11の速度を減少または停止させることにより、安定運転可能な圧力まで低圧側ヒ−トポンプ装置の圧力を減少させることが可能である。   Therefore, even if the refrigerant to be used is a refrigerant such as carbon dioxide whose low pressure side pressure approaches the critical pressure when overloaded, such as carbon dioxide, the outside air temperature detecting means 13 estimates the pressure of the low pressure side heat pump device, and the amount of heat absorbed. By reducing or stopping the speed of the changing means, that is, the heat absorption side fan 11, it is possible to reduce the pressure of the low-pressure side heat pump device to a pressure at which stable operation is possible.

なお、本実施の形態に示したように、貯湯槽6内の液体は、給湯用に用いるだけではなく、床暖房用、室内空調ようとしても使用して良く、また、放熱器2の放熱手段として貯湯槽6の液体を用いず、ファン14により放熱しても良い。更に、圧縮機1の冷媒吸込側に冷媒を貯留するアキュムレ−タが設置されていても、本実施の形態の効果は同様に得られる。また、減圧手段3において弁開度を電気的に制御可能な電磁式膨張弁によって、蒸発器4内の圧力を減圧することが可能であるが、その際、吐出圧力が急増するため、得策ではないことを付記する。   As shown in the present embodiment, the liquid in the hot water storage tank 6 may be used not only for hot water supply but also for floor heating and indoor air conditioning. As an alternative, heat may be radiated by the fan 14 without using the liquid in the hot water tank 6. Furthermore, even if an accumulator for storing the refrigerant is installed on the refrigerant suction side of the compressor 1, the effect of the present embodiment can be obtained similarly. In addition, the pressure in the evaporator 4 can be reduced by an electromagnetic expansion valve that can electrically control the valve opening degree in the pressure reducing means 3, but at that time, the discharge pressure rapidly increases. Note that there is no.

本発明の第1の実施の形態におけるヒ−トポンプ装置の冷凍サイクル図Refrigeration cycle diagram of the heat pump device in the first embodiment of the present invention 同ヒ−トポンプ装置の運転動作の説明図(モリエル線図)Explanatory drawing of the operation of the heat pump device (Mollier diagram) 同ヒ−トポンプ装置の冷媒状態説明図(標準負荷・定格運転時)Refrigerant state explanatory diagram of the heat pump device (at standard load and rated operation) 同ヒ−トポンプ装置の冷媒状態説明図(過負荷条件・定格運転時)Refrigerant state explanatory diagram of the heat pump device (overload condition / rated operation) 従来のヒ−トポンプ装置の冷凍サイクル図Refrigeration cycle diagram of a conventional heat pump device 従来の実施の形態における運転動作の説明図(モリエル線図)Explanatory drawing (Mollier diagram) of the driving | running operation | movement in conventional embodiment

符号の説明Explanation of symbols

1 圧縮機
2 放熱器
3 減圧手段
3−a 減圧手段入口
3−b 減圧手段出口
4 蒸発器
4−a 蒸発器中間点
5 冷媒配管
6 貯湯槽
7 ポンプ(ウォ−タ−ポンプ)
8 水配管
10 マイクロコンピュ−タ(制御部)
11 蒸発器側ファン
12 圧力検出手段
13 熱交換器(蒸発器)温度検出センサ
14 外気温度検出手段(センサ)
15 放熱器側ファン
16 管内冷媒状態(二酸化炭素)
16−a 臨界圧力域の冷媒状態
16−b 気液二相域の冷媒状態
16−c 気相(過熱)域の冷媒状態

DESCRIPTION OF SYMBOLS 1 Compressor 2 Radiator 3 Pressure reducing means 3-a Pressure reducing means inlet 3-b Pressure reducing means outlet 4 Evaporator 4-a Evaporator midpoint 5 Refrigerant piping 6 Hot water tank 7 Pump (water pump)
8 Water piping 10 Microcomputer (control unit)
DESCRIPTION OF SYMBOLS 11 Evaporator side fan 12 Pressure detection means 13 Heat exchanger (evaporator) temperature detection sensor 14 Outside temperature detection means (sensor)
15 Radiator-side fan 16 In-pipe refrigerant condition (carbon dioxide)
16-a Refrigerant state in critical pressure region 16-b Refrigerant state in gas-liquid two-phase region 16-c Refrigerant state in gas phase (overheating) region

Claims (3)

圧縮機、放熱器、減圧手段、蒸発器を順次接続して構成された冷媒回路と、前記蒸発器の能力を調整する吸熱量変化手段と、前記蒸発器に供給される空気の温度を検出する温度検知手段とを備え、前記温度検出手段の検出値が、使用されている冷媒の臨界圧力に相当する温度近傍に達する、または、それを超えると、前記吸熱量変化手段により前記蒸発器内の圧力を減少させる構成としたヒ−トポンプ装置の制御方法。 A refrigerant circuit configured by sequentially connecting a compressor, a radiator, a decompression unit, and an evaporator, a heat absorption amount changing unit that adjusts the capability of the evaporator, and a temperature of air supplied to the evaporator Temperature detection means, and when the detected value of the temperature detection means reaches or exceeds the temperature corresponding to the critical pressure of the refrigerant being used, the endothermic amount changing means A control method of a heat pump device configured to reduce pressure. 蒸発器に外気を供給するファンを備え、前記ファンの回転速度を通常運転より減少させる、または、前記ファンを停止させることで、蒸発器内の圧力を減少させる構成とした請求項1記載のヒ−トポンプ装置の制御方法。 The fan according to claim 1, further comprising a fan for supplying outside air to the evaporator, wherein the rotation speed of the fan is reduced from that of normal operation or the pressure in the evaporator is reduced by stopping the fan. -Control method of the pumping device. 冷媒は二酸化炭素であることを特徴とする請求項1または2項に記載のヒ−トポンプ装置。 The heat pump apparatus according to claim 1 or 2, wherein the refrigerant is carbon dioxide.
JP2005115310A 2005-04-13 2005-04-13 Control method of heat pump device Pending JP2006292302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005115310A JP2006292302A (en) 2005-04-13 2005-04-13 Control method of heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005115310A JP2006292302A (en) 2005-04-13 2005-04-13 Control method of heat pump device

Publications (1)

Publication Number Publication Date
JP2006292302A true JP2006292302A (en) 2006-10-26

Family

ID=37413048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005115310A Pending JP2006292302A (en) 2005-04-13 2005-04-13 Control method of heat pump device

Country Status (1)

Country Link
JP (1) JP2006292302A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299908A (en) * 2008-06-10 2009-12-24 Corona Corp Heat pump type hot-water supply device
JP2011085267A (en) * 2009-10-13 2011-04-28 Ntt Facilities Inc Air conditioning control system and method of operating the same
JP2014062675A (en) * 2012-09-20 2014-04-10 Denso Corp Refrigeration cycle control device
CN114016268A (en) * 2021-11-19 2022-02-08 珠海格力电器股份有限公司 Clothes treatment equipment with heat pump drying function and control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329313A (en) * 2002-05-13 2003-11-19 Denso Corp Vapor compression type refrigerating machine
JP2004329313A (en) * 2003-04-30 2004-11-25 Daikoku Denki Co Ltd Pachinko game machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329313A (en) * 2002-05-13 2003-11-19 Denso Corp Vapor compression type refrigerating machine
JP2004329313A (en) * 2003-04-30 2004-11-25 Daikoku Denki Co Ltd Pachinko game machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299908A (en) * 2008-06-10 2009-12-24 Corona Corp Heat pump type hot-water supply device
JP2011085267A (en) * 2009-10-13 2011-04-28 Ntt Facilities Inc Air conditioning control system and method of operating the same
JP2014062675A (en) * 2012-09-20 2014-04-10 Denso Corp Refrigeration cycle control device
CN114016268A (en) * 2021-11-19 2022-02-08 珠海格力电器股份有限公司 Clothes treatment equipment with heat pump drying function and control method
CN114016268B (en) * 2021-11-19 2022-11-25 珠海格力电器股份有限公司 Clothes treatment equipment with heat pump drying function and control method

Similar Documents

Publication Publication Date Title
CN110914609B (en) Control method for an economizer of a transport refrigeration unit
JP2009243793A (en) Heat pump type hot water supply outdoor unit
JP3915770B2 (en) Heat pump water heater
JP2006517643A (en) Supercritical pressure regulation of vapor compression system
JP2009097779A (en) Supercritical refrigerating cycle
JP2007147267A (en) Natural refrigerant cooling system
JP2006292302A (en) Control method of heat pump device
JP2005147610A (en) Heat pump water heater
JP4858399B2 (en) Refrigeration cycle
JP2009186033A (en) Two-stage compression type refrigerating device
JP2009264715A (en) Heat pump hot water system
JP5934916B2 (en) Refrigeration cycle apparatus and hot water generator provided with the same
JP4631721B2 (en) Vapor compression refrigeration cycle
JP2011247547A (en) Refrigerating cycle device
JP2004309027A (en) Control method for heat pump device
JP2004309027A5 (en)
JP2003004316A (en) Method for controlling refrigeration unit
JP5052631B2 (en) Heat pump type hot water supply device
JP4786599B2 (en) Cooling system
JP2006017377A (en) Heat pump water heater
JP4725591B2 (en) Refrigeration cycle equipment
JP4928357B2 (en) Cooling system
JP4631365B2 (en) Heat pump heating device
JP2008202868A (en) Air conditioner
JP5793715B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080317

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080414

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005