JP2008202868A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2008202868A
JP2008202868A JP2007040222A JP2007040222A JP2008202868A JP 2008202868 A JP2008202868 A JP 2008202868A JP 2007040222 A JP2007040222 A JP 2007040222A JP 2007040222 A JP2007040222 A JP 2007040222A JP 2008202868 A JP2008202868 A JP 2008202868A
Authority
JP
Japan
Prior art keywords
compressor
temperature
heat exchanger
detection sensor
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007040222A
Other languages
Japanese (ja)
Inventor
Hideyuki Kanzaki
秀幸 神崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007040222A priority Critical patent/JP2008202868A/en
Publication of JP2008202868A publication Critical patent/JP2008202868A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve reliability of a compressor, by securing lubricating oil inside of the compressor, by controlling opening of an orifice device of a refrigerating cycle, by detecting a lubricating oil dilution degree by a simple means, in an air conditioner. <P>SOLUTION: A delivery temperature detecting sensor 11 detecting the delivery temperature and a compressor vessel bottom part temperature detecting sensor 12 detecting the compressor vessel bottom part temperature, are composed of a highly versatile temperature sensor. When a temperature difference between the delivery temperature and the compressor vessel bottom part temperature exceeds a predetermined value, control is performed so as to reduce a refrigerant flow rate by restricting the opening of the orifice device 4, and the lubricating oil inside of the compressor is secured. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、空気調和機に係り、圧縮機近傍の温度検出によって、絞りを制御する空気調和機に関するものである。   The present invention relates to an air conditioner, and more particularly to an air conditioner that controls a throttle by detecting a temperature in the vicinity of a compressor.

従来、この種の空気調和機の絞り装置の制御は、室内側熱交換器における冷媒の飽和温度を検出する飽和温度検出センサと圧縮機に吸入される冷媒の吸入温度を検出する吸入温度検出センサによって得られる検出温度によって制御されていた。   Conventionally, this type of air conditioner throttle device is controlled by a saturation temperature detection sensor for detecting the saturation temperature of the refrigerant in the indoor heat exchanger and an intake temperature detection sensor for detecting the intake temperature of the refrigerant sucked into the compressor. Was controlled by the detected temperature obtained by

一般に室内熱交換器から排出された冷媒は圧縮機に戻される際に圧縮機の潤滑油の中にいくらか溶け込む。潤滑油に溶け込んだ冷媒の割合を示す希釈度は、(潤滑油に溶け込んだ冷媒重量)/(潤滑油に溶け込んだ冷媒重量+潤滑油重量)として定義される。   Generally, the refrigerant discharged from the indoor heat exchanger is somewhat dissolved in the lubricating oil of the compressor when returned to the compressor. The dilution indicating the ratio of the refrigerant dissolved in the lubricating oil is defined as (refrigerant weight dissolved in lubricating oil) / (refrigerant weight dissolved in lubricating oil + lubricating oil weight).

希釈度が所定の値より高い場合、すなわち潤滑油に溶け込んだ冷媒重量が所定値より多い場合は、圧縮機は円滑に作動しにくくなり、停止する恐れがある。このような事を避けるために、例えば一例として図5に示すように、圧縮機内に潤滑油に溶け込んだ冷媒の割合を示す希釈度測定用の希釈度センサ20を設け、この希釈度センサに希釈度が所定値を越えた場合には、絞り装置にて流量を小さくしている(例えば特許文献1参照)。
特開平5−005562号公報
When the degree of dilution is higher than a predetermined value, that is, when the refrigerant weight dissolved in the lubricating oil is larger than the predetermined value, the compressor becomes difficult to operate smoothly and may stop. In order to avoid such a situation, for example, as shown in FIG. 5 as an example, a dilution sensor 20 for measuring the dilution indicating the ratio of the refrigerant dissolved in the lubricating oil is provided in the compressor, and the dilution sensor is used for dilution. When the degree exceeds a predetermined value, the flow rate is reduced by a throttling device (see, for example, Patent Document 1).
JP-A-5-005562

しかしながら、前記特許文献1記載の構成では、汎用性の少ない希釈度センサのコストが高いことや組立における生産性が悪いという課題を有していた。   However, the configuration described in Patent Document 1 has a problem that the cost of a dilution sensor with low versatility is high and the productivity in assembly is poor.

本発明は、圧縮機近傍の温度検出によって絞りを制御し、圧縮機内の潤滑油を確保するため、特殊な希釈度センサを圧縮機に設置する必要がなく、低コストで生産性に優れた空気調和機を提供することができるものである。   Since the present invention controls the throttle by detecting the temperature in the vicinity of the compressor and secures lubricating oil in the compressor, there is no need to install a special dilution sensor in the compressor, and the air is excellent in productivity at low cost. A harmonic machine can be provided.

従来の課題を解決するため、本発明の空気調和機は、圧縮機出口の吐出温度と圧縮機容器底部の温度を検出し、これらの温度差(温度差=吐出温度−圧縮機容器底部温度)が、所定値を超えた場合、絞り装置にて流量を少なくするものである。   In order to solve the conventional problems, the air conditioner of the present invention detects the discharge temperature at the compressor outlet and the temperature at the bottom of the compressor container, and the temperature difference between these (temperature difference = discharge temperature−compressor container bottom temperature). However, when it exceeds a predetermined value, the flow rate is reduced by the throttle device.

これによって、汎用性のある温度検出センサを使用することで、生産性に優れ、高価な希釈度センサを使用することなく、圧縮機内部の冷媒と潤滑油の状態を把握し、絞り装置にて制御することができる。   In this way, by using a versatile temperature detection sensor, it is possible to grasp the state of refrigerant and lubricating oil inside the compressor without using an expensive dilution sensor, and use a throttling device. Can be controlled.

本発明の空気調和機は、圧縮機内の潤滑油不足を未然に防ぎ、低コストで生産性に優れた空気調和機を提供することができる。   The air conditioner of the present invention can prevent a shortage of lubricating oil in the compressor, and can provide an air conditioner that is low in cost and excellent in productivity.

本発明の空気調和機は、圧縮機の吐出温度を検出する吐出温度検出センサと圧縮機容器底部の温度を検出する圧縮機容器底部温度検出センサを設置し、前記の吐出温度と圧縮機容器底部の温度差が第1所定値より低い場合、絞り装置にて流量を少なくし、圧縮機内部の希釈度を低くすることができ、圧縮機内の潤滑油不足を防ぐことができる。また、前記
の吐出温度と圧縮機容器底部の温度差が第2所定値より高い場合は絞り装置にて流量を多くすることにより、圧縮機内部の冷媒不足による温度上昇を抑制することができる。
The air conditioner of the present invention is provided with a discharge temperature detection sensor for detecting the discharge temperature of the compressor and a compressor container bottom temperature detection sensor for detecting the temperature of the compressor container bottom, and the discharge temperature and the compressor container bottom When the temperature difference is lower than the first predetermined value, the flow rate can be reduced by the throttle device, the dilution degree inside the compressor can be lowered, and the lack of lubricating oil in the compressor can be prevented. Further, when the temperature difference between the discharge temperature and the compressor container bottom is higher than the second predetermined value, the flow rate is increased by the expansion device, so that the temperature rise due to the shortage of refrigerant inside the compressor can be suppressed.

以下本発明の実施の形態について、図面を参照しながら説明する。なお、以下に記載する実施の形態により本発明が限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. In addition, this invention is not limited by embodiment described below.

(実施の形態1)
図1は本発明の実施の形態におけるブロック図である。
(Embodiment 1)
FIG. 1 is a block diagram in an embodiment of the present invention.

図1において、矢印は冷房運転時におけるフロン等の冷媒の流れを表す。圧縮機1は低圧の気体状態にある冷媒を断熱圧縮する。圧縮機1の出口には圧縮機の吐出温度を検出する吐出温度検出センサ11と圧縮機1の容器底部には、圧縮機容器底部の温度を検出する圧縮機容器底部温度検出センサ12が設けられている。   In FIG. 1, arrows indicate the flow of refrigerant such as chlorofluorocarbon during cooling operation. The compressor 1 adiabatically compresses the refrigerant in a low-pressure gas state. A discharge temperature detection sensor 11 for detecting the discharge temperature of the compressor is provided at the outlet of the compressor 1, and a compressor container bottom temperature detection sensor 12 for detecting the temperature of the compressor container bottom is provided at the container bottom of the compressor 1. ing.

圧縮機1から排出された高圧常温の気体状態にある冷媒は、冷房サイクルと暖房サイクルとの切り替えをする四方弁2を介して室外側熱交換器3に送られる。室外熱交換器3に入った高圧常温の気体状態にある冷媒は、室外側送風機(図示せず)によって、外部へ放熱し、高圧常温の液体状態となる。   The refrigerant in the gaseous state at high pressure and normal temperature discharged from the compressor 1 is sent to the outdoor heat exchanger 3 via the four-way valve 2 that switches between the cooling cycle and the heating cycle. The refrigerant in the gaseous state at high pressure and normal temperature that has entered the outdoor heat exchanger 3 is radiated to the outside by an outdoor blower (not shown) to be in a liquid state at high pressure and normal temperature.

室外熱交換器3から排出される液体状態の冷媒は絞り装置4に入り、ここで冷媒は断熱膨張して低圧低温の液体と気体の混合状態になる。絞り装置4から排出された冷媒は室内側熱交換器5に送られる。   The liquid refrigerant discharged from the outdoor heat exchanger 3 enters the expansion device 4 where the refrigerant is adiabatically expanded to be in a mixed state of low pressure and low temperature liquid and gas. The refrigerant discharged from the expansion device 4 is sent to the indoor heat exchanger 5.

室内側熱交換器5に送られた液体と気体の混合状態にある冷媒の液体部分は、室内側熱交換器5の入口から出口へ移動する間に、室内側送風機(図示せず)によって、室内空気等の被冷却物から潜熱として熱を奪い被冷却物を冷却しながら気体状態になる。   While the liquid portion of the refrigerant in a mixed state of the liquid and gas sent to the indoor heat exchanger 5 moves from the inlet to the outlet of the indoor heat exchanger 5, an indoor blower (not shown) Heat is taken as latent heat from the object to be cooled, such as room air, and the object to be cooled is in a gaseous state while being cooled.

室内側熱交換器5から排出された冷媒は四方弁2を介して圧縮機1に戻される。   The refrigerant discharged from the indoor heat exchanger 5 is returned to the compressor 1 through the four-way valve 2.

また室内側熱交換器5には、冷媒の飽和温度を検出する飽和温度検出センサ13が設けられている。また四方弁2から圧縮機1に至る管路には、圧縮機1に吸入される冷媒の吸入温度を検出する吸入温度検出センサ14が設けられている。これらの飽和温度検出センサ13および吸入温度検出センサ14は、これらの検出温度から室内熱交換器5の加熱度を演算するためのものである。   The indoor heat exchanger 5 is provided with a saturation temperature detection sensor 13 for detecting the saturation temperature of the refrigerant. An intake temperature detection sensor 14 for detecting the intake temperature of the refrigerant sucked into the compressor 1 is provided in the pipe line from the four-way valve 2 to the compressor 1. The saturation temperature detection sensor 13 and the suction temperature detection sensor 14 are for calculating the heating degree of the indoor heat exchanger 5 from these detection temperatures.

図2は本発明の実施の形態における制御手段と温度センサの関係を示すブロック図である。   FIG. 2 is a block diagram showing the relationship between the control means and the temperature sensor in the embodiment of the present invention.

図2に示すように、吐出温度検出センサ11、圧縮機容器底部温度検出センサ12、飽和温度検出センサ13、吸入温度検出センサ14の出力信号は制御手段としてのマイクロコンピュータ15のI/O端子に送られる。また、マイクロコンピュータ15のI/O端子には絞り装置4の制御端子が接続されている。符号16は電源であり、圧縮機1とマイクロコンピュータ15に電流を供給する。   As shown in FIG. 2, the output signals of the discharge temperature detection sensor 11, the compressor container bottom temperature detection sensor 12, the saturation temperature detection sensor 13, and the suction temperature detection sensor 14 are sent to an I / O terminal of a microcomputer 15 as control means. Sent. The control terminal of the diaphragm device 4 is connected to the I / O terminal of the microcomputer 15. Reference numeral 16 denotes a power source that supplies current to the compressor 1 and the microcomputer 15.

図3は絞り装置による流量変化と吐出温度および圧縮機容器底部温度の関係を示すグラフである。   FIG. 3 is a graph showing the relationship between the flow rate change by the expansion device, the discharge temperature, and the compressor container bottom temperature.

図3に示すように、絞り装置によって流量を多くすると、吐出温度と圧縮機容器底部温度は低下していき、その温度差は小さくなり、絞り装置によって流量を少なくすると、吐出温度と圧縮機容器底部温度は上昇していき、その温度差は大きくなる。   As shown in FIG. 3, when the flow rate is increased by the squeezing device, the discharge temperature and the compressor container bottom temperature decrease, the temperature difference decreases, and when the flow rate is decreased by the squeezing device, the discharge temperature and the compressor container are reduced. The bottom temperature increases and the temperature difference increases.

図4は吐出温度と圧縮機容器底部温度の差(吐出温度−圧縮機容器底部温度)と圧縮機内部の希釈度の関係を示すグラフである。   FIG. 4 is a graph showing the relationship between the difference between the discharge temperature and the compressor container bottom temperature (discharge temperature−compressor container bottom temperature) and the dilution inside the compressor.

図4に示すように、吐出温度と圧縮機容器底部温度の差が大きいと希釈度は低くなり、吐出温度と圧縮機容器底部温度の差が小さいと希釈度は高くなる。   As shown in FIG. 4, when the difference between the discharge temperature and the compressor container bottom temperature is large, the dilution is low, and when the difference between the discharge temperature and the compressor container bottom temperature is small, the dilution is high.

つまり、絞り装置による流量変化によって、吐出温度と圧縮機容器底部温度が変化し、前記吐出温度と圧縮機容器底部温度の差から、希釈度を求めることができる。   That is, the discharge temperature and the compressor container bottom temperature change due to the flow rate change by the expansion device, and the dilution degree can be obtained from the difference between the discharge temperature and the compressor container bottom temperature.

次にこのような構成からなる本実施例の作用について説明する。   Next, the operation of the present embodiment having such a configuration will be described.

吐出温度検出センサ11および圧縮機容器底部温度検出センサ12による測定結果が、マイクロコンピュータ15に送られる。この測定結果から希釈度をマイクロコンピュータ15で演算して求められ、メモリに記憶される。またマイクロコンピュータ15のメモリには、室内側熱交換器5の加熱度を設定する値である加熱度設定値が記憶されている。   Measurement results by the discharge temperature detection sensor 11 and the compressor container bottom temperature detection sensor 12 are sent to the microcomputer 15. The dilution is calculated from the measurement result by the microcomputer 15 and stored in the memory. The memory of the microcomputer 15 stores a heating degree setting value that is a value for setting the heating degree of the indoor heat exchanger 5.

また、飽和温度検出センサ13および吸入温度検出センサ14による測定結果が、マイクロコンピュータ15に送られる。この測定結果から室内側熱交換器5の実際の加熱度がマイクロコンピュータ15で演算して求められ、メモリに記憶される。   Further, the measurement results by the saturation temperature detection sensor 13 and the suction temperature detection sensor 14 are sent to the microcomputer 15. From this measurement result, the actual heating degree of the indoor heat exchanger 5 is calculated by the microcomputer 15 and stored in the memory.

次に希釈度の値が予め設定された所定の値の範囲にあるか否かが判定される。希釈度の値が所定の値の範囲にある場合には、加熱度設定値として通常の値の加熱度設定値が記憶される。次に飽和温度検出センサ13および吸入温度検出センサ14による測定結果から求められた加熱度がメモリに記憶されている通常の加熱度設定値と比較して高すぎるか低すぎるかが判断される。室内側熱交換器5の実際の加熱度が高すぎると判断された場合は、絞り装置4の弁の開度は大きくなるように制御される。また室内側熱交換器5の実際の加熱度が低すぎると判断された場合は、絞り装置4の弁の開度は小さくなるように制御される。絞り装置4の弁の開度を調整する制御信号はマイクロコンピュータ15から絞り装置4の図示しない制御端子に送られる。   Next, it is determined whether or not the value of the dilution is in a predetermined value range. When the value of the dilution level is within a predetermined value range, a normal heating degree setting value is stored as the heating degree setting value. Next, it is determined whether the heating degree obtained from the measurement results by the saturation temperature detection sensor 13 and the suction temperature detection sensor 14 is too high or too low as compared with the normal heating degree set value stored in the memory. When it is determined that the actual heating degree of the indoor heat exchanger 5 is too high, the opening degree of the valve of the expansion device 4 is controlled to be large. When it is determined that the actual heating degree of the indoor heat exchanger 5 is too low, the opening degree of the valve of the expansion device 4 is controlled to be small. A control signal for adjusting the opening of the valve of the expansion device 4 is sent from the microcomputer 15 to a control terminal (not shown) of the expansion device 4.

一方、希釈度の値が予め設定された所定の値の範囲を越えたと判定された場合は、メモリに記憶されていた通常の加熱度設定値は通常よりも高い値の加熱度設定値に置換される。そして、飽和温度検出センサ13および吸入温度検出センサ14による測定結果から求めた加熱度がこの高い値に設定された加熱度設定値と比較して高すぎるか低すぎるかが判断される。次に希釈度の値が所定の値の範囲にある場合と同様に、絞り装置4の弁の開度の調節が行われる。   On the other hand, if it is determined that the dilution value exceeds the predetermined range, the normal heating degree setting value stored in the memory is replaced with a heating degree setting value that is higher than normal. Is done. Then, it is determined whether the degree of heating obtained from the measurement results by the saturation temperature detection sensor 13 and the suction temperature detection sensor 14 is too high or too low compared to the heating degree set value set to this high value. Next, the opening degree of the valve of the expansion device 4 is adjusted in the same manner as in the case where the value of the dilution is within the predetermined value range.

ここで、希釈度の値が所定の値の範囲を越えた場合に、加熱度設定値を通常の値よりも高い値の加熱度設定値に置換する理由は次の理由による。すなわち加熱度設定値を高くして実質的により高い加熱度で室内側熱交換器5を作動させることにより、室内側熱交換器5から排出される混合状態にある冷媒のうち液体状態にある冷媒の割合を減少させることができる。このように液体状態にある冷媒の割合を減少させることにより、希釈度を減少させることができる。   Here, the reason why the heating degree setting value is replaced with a heating degree setting value higher than the normal value when the value of the degree of dilution exceeds the predetermined value range is as follows. That is, a refrigerant in a liquid state among refrigerants in a mixed state discharged from the indoor heat exchanger 5 by operating the indoor heat exchanger 5 at a substantially higher heating degree by increasing the heating degree set value. The ratio of can be reduced. By reducing the ratio of the refrigerant in the liquid state in this way, the dilution can be reduced.

以上のように構成された空気調和機であれば、汎用性のある温度検出センサを使用にて希釈度を求め、制御手段により絞り装置の弁の開度を調節することができるので、高い希釈度における空気調和機の運転を抑制することが出来るとともに、潤滑油不足による圧縮機の作動停止のおそれを防止することができる。   In the air conditioner configured as described above, the dilution degree can be obtained by using a versatile temperature detection sensor, and the opening degree of the valve of the throttle device can be adjusted by the control means. It is possible to suppress the operation of the air conditioner at a temperature and to prevent the compressor from being stopped due to lack of lubricating oil.

以上のように、本発明にかかる空気調和機は、圧縮機を搭載して、冷凍サイクルを構成するものであれば、空気調和機ばかりではなく、除湿機や乾燥機などにも適用できる。   As described above, the air conditioner according to the present invention can be applied not only to an air conditioner but also to a dehumidifier or a dryer as long as it is equipped with a compressor and constitutes a refrigeration cycle.

本発明の実施の形態におけるブロック図Block diagram in an embodiment of the present invention 本発明の実施の形態における制御手段と温度センサの関係を示すブロック図The block diagram which shows the relationship between the control means and temperature sensor in embodiment of this invention 絞り装置による流量変化と吐出温度および圧縮機容器底部温度の関係を示すグラフGraph showing the relationship between flow rate change by the throttle device, discharge temperature and compressor container bottom temperature 吐出温度と圧縮機容器底部温度の差と圧縮機内部の希釈度の関係を示すグラフA graph showing the relationship between the difference between the discharge temperature and the compressor container bottom temperature and the degree of dilution inside the compressor 従来の空気調和機におけるブロック図Block diagram of a conventional air conditioner

符号の説明Explanation of symbols

1 圧縮機
2 四方弁
3 室外側熱交換器
4 絞り装置
5 室内側熱交換器
11 吐出温度検出センサ
12 圧縮機容器底部温度検出センサ
13 飽和温度検出センサ
14 吸入温度検出センサ
15 マイクロコンピュータ
16 電源
20 希釈度センサ
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4 Throttle device 5 Indoor heat exchanger 11 Discharge temperature detection sensor 12 Compressor container bottom temperature detection sensor 13 Saturation temperature detection sensor 14 Suction temperature detection sensor 15 Microcomputer 16 Power supply 20 Dilution sensor

Claims (1)

室内空気吸込み口と室内側熱交換器と室内側送風機と室内空気吹出し口からなる室内送風回路と、室外空気吸込み口と室外側熱交換器と室外側送風機と室外空気吹出し口からなる室外送風回路と、室内側熱交換器と室外側熱交換器と圧縮機と絞り装置を配管で連接した冷凍サイクルと、制御装置からなる空気調和機において、圧縮機の吐出温度を検出する吐出温度検出センサと圧縮機容器底部の温度を検出する圧縮機容器底部温度検出センサを設置し、前記の吐出温度と圧縮機容器底部の温度差が所定値より越えた場合、絞り装置にて流量を少なくすることを特徴とする空気調和機。 An indoor fan circuit comprising an indoor air inlet, an indoor heat exchanger, an indoor fan, and an indoor air outlet, and an outdoor fan circuit comprising an outdoor air inlet, an outdoor heat exchanger, an outdoor fan, and an outdoor air outlet. A refrigeration cycle in which an indoor heat exchanger, an outdoor heat exchanger, a compressor and a throttle device are connected by piping, and a discharge temperature detection sensor for detecting a discharge temperature of the compressor in an air conditioner including a control device, A compressor container bottom temperature detection sensor that detects the temperature of the compressor container bottom is installed, and when the temperature difference between the discharge temperature and the compressor container bottom exceeds a predetermined value, the flow rate is reduced by the expansion device. A featured air conditioner.
JP2007040222A 2007-02-21 2007-02-21 Air conditioner Pending JP2008202868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007040222A JP2008202868A (en) 2007-02-21 2007-02-21 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007040222A JP2008202868A (en) 2007-02-21 2007-02-21 Air conditioner

Publications (1)

Publication Number Publication Date
JP2008202868A true JP2008202868A (en) 2008-09-04

Family

ID=39780567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007040222A Pending JP2008202868A (en) 2007-02-21 2007-02-21 Air conditioner

Country Status (1)

Country Link
JP (1) JP2008202868A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190679A (en) * 2014-03-28 2015-11-02 株式会社富士通ゼネラル air conditioner
CN111237977A (en) * 2020-01-15 2020-06-05 四川长虹空调有限公司 Refrigerant fluorine-deficient state self-checking method and air conditioner
CN115164458A (en) * 2022-07-26 2022-10-11 海信空调有限公司 Air conditioner and oil blockage prevention control method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190679A (en) * 2014-03-28 2015-11-02 株式会社富士通ゼネラル air conditioner
CN111237977A (en) * 2020-01-15 2020-06-05 四川长虹空调有限公司 Refrigerant fluorine-deficient state self-checking method and air conditioner
CN115164458A (en) * 2022-07-26 2022-10-11 海信空调有限公司 Air conditioner and oil blockage prevention control method thereof
CN115164458B (en) * 2022-07-26 2023-10-13 海信空调有限公司 Air conditioner and oil blocking prevention control method thereof

Similar Documents

Publication Publication Date Title
US11378316B2 (en) Diagnostic mode of operation to detect refrigerant leaks in a refrigeration circuit
US20230341140A1 (en) Systems for refrigerant leak detection and management
US7856836B2 (en) Refrigerating air conditioning system
US8522568B2 (en) Refrigeration system
US10508845B2 (en) Refrigeration cycle system
US20120117995A1 (en) Energy Saving Device And Method For Cooling And Heating Apparatus
JP6628833B2 (en) Refrigeration cycle device
US20150153085A1 (en) Refrigerating device
KR101151321B1 (en) Multi system air conditioner and control method thereof
JP5020114B2 (en) Air conditioner
JP2008202868A (en) Air conditioner
JP2018146142A (en) Air conditioner
KR102558826B1 (en) Air conditioner system and control method
JP2008249288A (en) Air conditioner
JP2011149611A (en) Air-conditioning apparatus
KR100565995B1 (en) Method for Operating of Multi Type Air-conditioner by Install Position of Indoor-unit
JP7350151B2 (en) Refrigeration cycle equipment
US10914487B2 (en) Low load mode of HVAC system
JP2003254587A (en) Air conditioner
JP2018105597A (en) Air conditioner
JP2010007993A (en) Refrigerant amount determining method of air conditioning device, and air conditioning device
JP2010133636A (en) Refrigerating device
JP4736970B2 (en) Air conditioner
KR100544707B1 (en) Water Cooling Type Air Conditioner And Method Of Controlling The Same
JP7466786B2 (en) Air Conditioning Equipment