JP2007147267A - Natural refrigerant cooling system - Google Patents

Natural refrigerant cooling system Download PDF

Info

Publication number
JP2007147267A
JP2007147267A JP2006294102A JP2006294102A JP2007147267A JP 2007147267 A JP2007147267 A JP 2007147267A JP 2006294102 A JP2006294102 A JP 2006294102A JP 2006294102 A JP2006294102 A JP 2006294102A JP 2007147267 A JP2007147267 A JP 2007147267A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
cooling system
cooler
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006294102A
Other languages
Japanese (ja)
Inventor
Hideto Miura
英人 三浦
Kimihide Saishoji
公英 最勝寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seisakusho KK
Original Assignee
Toyo Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seisakusho KK filed Critical Toyo Seisakusho KK
Priority to JP2006294102A priority Critical patent/JP2007147267A/en
Publication of JP2007147267A publication Critical patent/JP2007147267A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling system that has high following capability to rapid variation of a load and can be always stably operated. <P>SOLUTION: The natural refrigerant cooling system has a primary refrigerant circuit 1 and a secondary refrigerant circuit 2, condenses the refrigerant in the secondary refrigerant circuit with cryogenic power generated by the primary refrigerant circuit, stores it in a receiver 7, and supplies the liquid refrigerant in the receiver to a cooler 9 on the load side with a liquid pump 8. This cooling system also has a pressure sensor 15 for detecting evaporating pressure of the refrigerant in the receiver 7. This cooling system also has a controlling means 18 of refrigerant supply amount that supplies a certain amount of refrigerant to the cooler when the pressure detected by the sensor is under a preset value, or reduces the refrigerant supply amount to the cooler 9 according to the increment of pressure when pressure increases with variation of the load and becomes a preset value or higher. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は1次冷媒回路と2次冷媒回路を有し、1次冷媒回路の冷媒と2次冷媒回路の冷媒の少なくともいずれか一方に自然冷媒であるアンモニア、二酸化炭素、水を使用する自然冷媒冷却システムに関する。   The present invention has a primary refrigerant circuit and a secondary refrigerant circuit, and uses natural refrigerants such as ammonia, carbon dioxide, and water as at least one of the refrigerant in the primary refrigerant circuit and the refrigerant in the secondary refrigerant circuit. Relates to the cooling system.

地球温暖化の問題によって地球温暖化係数が0かほぼ0に近い冷媒の採用が求められ、冷媒として利用技術が確立されているアンモニアなどの自然冷媒を使用するケースが増えてきている。   Due to the problem of global warming, the adoption of a refrigerant having a global warming potential of 0 or nearly zero is required, and there are increasing cases of using natural refrigerants such as ammonia, whose utilization technology has been established as the refrigerant.

上記アンモニアは人体に有毒であるので、アンモニアをそのまま負荷側に供給すると漏洩時にアンモニアが冷却空気等の被冷却流体に拡散し、危険性が高い。そこで、従来からアンモニア冷媒回路は機械室等の限られた空間に設置し、負荷側冷却器との間における冷熱の移動にブラインを利用する構成のものがある。   Since ammonia is toxic to the human body, if ammonia is supplied to the load as it is, the ammonia diffuses into the fluid to be cooled such as cooling air at the time of leakage, which is highly dangerous. Therefore, conventionally, there is a configuration in which an ammonia refrigerant circuit is installed in a limited space such as a machine room and brine is used to transfer cold heat to and from a load side cooler.

しかし、ブラインにより冷熱を移送する場合にはブラインを送るポンプに大なる動力を要し、ランニングコストが嵩み、省エネルギー化に資することができない。   However, in the case where cold heat is transferred by brine, a large amount of power is required for the pump for sending the brine, and the running cost increases, which cannot contribute to energy saving.

そこで、アンモニア冷媒回路とは別に二酸化炭素等の他の安全な冷媒を用いた2次冷媒回路を設け、アンモニア冷媒回路により生成した冷熱を2次冷媒回路における冷媒の凝縮用冷熱として利用し、2次冷媒回路で生成した冷熱を負荷側に供給する構成とした装置がある(例えば、特許文献1参照)。   Therefore, a secondary refrigerant circuit using another safe refrigerant such as carbon dioxide is provided separately from the ammonia refrigerant circuit, and the cold generated by the ammonia refrigerant circuit is used as cold for condensing the refrigerant in the secondary refrigerant circuit. There is an apparatus configured to supply cold heat generated in the next refrigerant circuit to a load side (see, for example, Patent Document 1).

上述した装置では、1次冷媒回路たるアンモニア冷媒回路の冷熱によって凝縮された液冷媒を負荷側冷却器に液ポンプで送るのが一般的であるが、この液ポンプにより冷却器に送られる冷媒量は基本的に一定に制御される。   In the apparatus described above, the liquid refrigerant condensed by the cold heat of the ammonia refrigerant circuit as the primary refrigerant circuit is generally sent to the load-side cooler by a liquid pump, but the amount of refrigerant sent to the cooler by this liquid pump Is basically controlled to be constant.

ところで、冷却器内の液冷媒量は負荷の変動に伴って変化し、定常負荷の場合には冷却器内の液冷媒量は適正に保たれて安定した運転が行われるが、負荷が減少すると冷媒の蒸発量が小となって冷却器内の液冷媒量が増加する。   By the way, the amount of liquid refrigerant in the cooler changes as the load fluctuates, and in the case of a steady load, the amount of liquid refrigerant in the cooler is maintained properly and stable operation is performed, but when the load decreases The amount of refrigerant evaporated becomes small, and the amount of liquid refrigerant in the cooler increases.

上述した状態で負荷が急激に増大すると冷媒の蒸発圧力が上昇するが、冷却器内には前記液ポンプによって一定量の液冷媒が送り込まれるため、さらに冷媒の蒸発圧力が上昇し、2次冷媒回路における運転が不安定なままの状態が解消されない。   When the load suddenly increases in the above-described state, the evaporation pressure of the refrigerant increases. However, since a certain amount of liquid refrigerant is sent into the cooler by the liquid pump, the evaporation pressure of the refrigerant further increases and the secondary refrigerant The state where the operation in the circuit remains unstable is not solved.

しかも、2次冷媒回路における冷媒の蒸発圧力の上昇は、1次冷媒回路における蒸発圧力にも影響を及ぼし、1次冷媒回路の運転も不安定となる。
特開2003−166765号公報(第1〜4頁、図1、2)
Moreover, the increase in the evaporation pressure of the refrigerant in the secondary refrigerant circuit also affects the evaporation pressure in the primary refrigerant circuit, and the operation of the primary refrigerant circuit becomes unstable.
JP 2003-166765 A (pages 1 to 4, FIGS. 1 and 2)

本発明は、負荷の急激な変動に対して追従性が高く、常に安定して運転することができる冷却システムを提供することを目的としている。   An object of the present invention is to provide a cooling system that has high followability with respect to a sudden change in load and can always be operated stably.

上記課題を解決するために、本発明の請求項1に係る冷却システムは、少なくともいずれか一方に自然冷媒が循環される1次冷媒回路と2次冷媒回路を備え、1次冷媒回路にて生じる冷熱により、2次冷媒回路の冷媒を凝縮してレシーバーに貯留し、同レシーバー内の液冷媒を液ポンプによって負荷側の冷却器に送る自然冷媒冷却システムにおいて、前記レシーバー内における冷媒の蒸発圧力を検出する圧力センサを備え、同センサにより検出される圧力が予め設定された値未満である場合には前記冷却器に一定量の冷媒を供給するが、負荷の変動に伴って前記圧力が増大し、この圧力が予め設定された値以上になると、圧力の増大分に応じて冷却器への冷媒供給量を減少せしめる冷媒供給量制御手段を備える構成のものとしてある。   In order to solve the above problems, a cooling system according to claim 1 of the present invention includes a primary refrigerant circuit and a secondary refrigerant circuit in which natural refrigerant is circulated in at least one of them, and is generated in the primary refrigerant circuit. In the natural refrigerant cooling system that condenses the refrigerant in the secondary refrigerant circuit by cold heat and stores it in the receiver, and sends the liquid refrigerant in the receiver to the load side cooler by the liquid pump, the evaporation pressure of the refrigerant in the receiver is When the pressure detected by the sensor is less than a preset value, a certain amount of refrigerant is supplied to the cooler, but the pressure increases as the load fluctuates. When the pressure becomes equal to or higher than a preset value, the refrigerant supply amount control means for reducing the refrigerant supply amount to the cooler according to the increase in pressure is provided.

本発明の請求項2に係る冷却システムは、前記冷媒供給量制御手段を、前記液ポンプと冷却器との間における冷媒間の途中に一端が接続され、他端が前記レシーバーに接続されたバイパス管と、同バイパス管の途中に設けられ、前記圧力センサにより検出される冷媒の蒸発圧力に応じて開度が調節される自動調節弁で構成したものとしてある。   In the cooling system according to claim 2 of the present invention, the refrigerant supply amount control means includes a bypass in which one end is connected in the middle of the refrigerant between the liquid pump and the cooler, and the other end is connected to the receiver. And an automatic control valve which is provided in the middle of the bypass pipe and whose opening degree is adjusted according to the evaporation pressure of the refrigerant detected by the pressure sensor.

本発明の請求項3に係る冷却システムは、前記冷媒供給量制御手段を、前記液ポンプと、前記圧力センサにより検出される冷媒の蒸発圧力に応じて前記液ポンプの駆動回転数制御を行うインバータ装置とで構成したものとしてある。   In the cooling system according to claim 3 of the present invention, the refrigerant supply amount control means is an inverter that controls the rotational speed of the liquid pump according to the liquid pump and the evaporation pressure of the refrigerant detected by the pressure sensor. It is assumed that it is composed of a device.

本発明の請求項4に係る冷却システムは、前記冷媒供給量制御手段を、前記液ポンプと冷却器との間における冷媒間の途中に設けられ、前記圧力センサにより検出される冷媒の蒸発圧力に応じて開度が調節される自動調節弁で構成したものとしてある。   In the cooling system according to claim 4 of the present invention, the refrigerant supply amount control means is provided in the middle of the refrigerant between the liquid pump and the cooler, and the refrigerant evaporating pressure detected by the pressure sensor is set. It is configured with an automatic control valve whose opening is adjusted accordingly.

本発明によれば、レシーバー内における冷媒の蒸発圧力が増大すると、冷却器への供給冷媒量が減少させられ、冷却器内における液冷媒量が適正に維持されて蒸発圧力の急激な上昇が防止され、負荷の変動に対する追従性に優れた冷却システムを実現することができ、常に安定した運転を行うことができる。   According to the present invention, when the evaporation pressure of the refrigerant in the receiver increases, the amount of refrigerant supplied to the cooler is reduced, and the amount of liquid refrigerant in the cooler is properly maintained to prevent a rapid increase in evaporation pressure. Therefore, it is possible to realize a cooling system that has excellent followability to load fluctuations, and can always perform stable operation.

また、2次冷媒回路の運転が常に安定して行われるので、1次冷媒回路の冷却能力にさほどの余裕を持たせる必要がなく、システム全体の簡素化、小型化、低ランニングコスト化を期すことができる。   In addition, since the operation of the secondary refrigerant circuit is always performed stably, there is no need to allow a large margin for the cooling capacity of the primary refrigerant circuit, and the entire system is simplified, downsized, and the running cost is reduced. be able to.

さらに、構成が簡単で特殊な構成を要しないので、既存のシステムへの適用が容易であるという実用上の大なるメリットもある。   Furthermore, since the configuration is simple and does not require a special configuration, there is a great practical advantage that it can be easily applied to an existing system.

以下、本発明に係る冷却システムの実施例を添付図面に示す具体例に基づいて詳細に説明する。
本実施例の冷却システムは、冷媒をアンモニアとする1次冷媒回路1と、冷媒を二酸化炭素とする2次冷媒回路2を備えている。
Embodiments of the cooling system according to the present invention will be described below in detail based on specific examples shown in the accompanying drawings.
The cooling system of the present embodiment includes a primary refrigerant circuit 1 that uses ammonia as a refrigerant and a secondary refrigerant circuit 2 that uses carbon dioxide as a refrigerant.

前記1次冷媒回路1においては、アンモニア冷凍機3の吐出側に一端が接続されたアンモニア冷媒往管4の他端がカスケードコンデンサ5の1次側入口に接続され、同カスケードコンデンサの1次側出口に一端が接続されたアンモニア冷媒復管6の他端が前記アンモニア冷凍機3の吸入側に接続されている。   In the primary refrigerant circuit 1, the other end of the ammonia refrigerant forward pipe 4 connected at one end to the discharge side of the ammonia refrigerator 3 is connected to the primary side inlet of the cascade capacitor 5, and the primary side of the cascade condenser The other end of the ammonia refrigerant return pipe 6 having one end connected to the outlet is connected to the suction side of the ammonia refrigerator 3.

前記2次冷媒回路2は、レシーバー7、液ポンプ8、冷却器9を備え、レシーバーの液相に一端が接続された二酸化炭素冷媒往管10の他端が調整弁11を介して冷却器9の冷媒入口に接続され、同冷媒出口に一端が接続された二酸化炭素冷媒復管12の他端が前記レシーバー7の気相接続されている。   The secondary refrigerant circuit 2 includes a receiver 7, a liquid pump 8, and a cooler 9, and the other end of the carbon dioxide refrigerant forward pipe 10 whose one end is connected to the liquid phase of the receiver is connected to the cooler 9 via the adjustment valve 11. The other end of the carbon dioxide refrigerant return pipe 12 is connected to the refrigerant inlet of the receiver 7 and connected to the gas phase of the receiver 7.

また、前記レシーバー7の気相に一端が接続された再凝縮用冷媒送り管13の他端が前記カスケードコンデンサの2次側入口に接続され、同カスケードコンデンサの2次側出口に一端が接続された凝縮冷媒戻り管14の他端がレシーバーに接続されている。   The other end of the recondensing refrigerant feed pipe 13 having one end connected to the gas phase of the receiver 7 is connected to the secondary side inlet of the cascade condenser, and one end is connected to the secondary side outlet of the cascade condenser. The other end of the condensed refrigerant return pipe 14 is connected to the receiver.

しかして、前記レシーバー7にはレシーバー内における冷媒の蒸発圧力を検出する圧力センサを設けてあり、このセンサは検出した圧力に基づいて後述する制御信号を送出する制御装置15と一体のもので構成してある。   Thus, the receiver 7 is provided with a pressure sensor for detecting the evaporation pressure of the refrigerant in the receiver, and this sensor is constituted integrally with a control device 15 for sending a control signal to be described later based on the detected pressure. It is.

また、前記二酸化炭素冷媒往管10における液ポンプ8と手動調整弁11との途中に一端が接続されたバイパス管16の他端をレシーバー7に接続してあって、バイパス管の途中には、前記制御装置15からの信号線17が接続され、制御装置の圧力センサにより検出されるレシーバー内の冷媒の蒸発圧力に応じて開度が調節される自動調節弁18と、手動式の調整弁19を設けてある。   In addition, the other end of the bypass pipe 16 having one end connected to the liquid pump 8 and the manual adjustment valve 11 in the carbon dioxide refrigerant forward pipe 10 is connected to the receiver 7, and in the middle of the bypass pipe, A signal line 17 from the control device 15 is connected, and an automatic adjustment valve 18 whose opening is adjusted according to the evaporation pressure of the refrigerant in the receiver detected by the pressure sensor of the control device, and a manual adjustment valve 19. Is provided.

すなわち、液ポンプ8は常に一定流量の液冷媒を送出し、前記制御装置15、バイパス管16、信号線17、自動調節弁18とで冷媒供給制御手段を構成し、前記制御装置の圧力センサにより検出される圧力が予め設定された値未満である場合には自動調節弁18が閉止されて前記冷却器に一定量の冷媒を供給するが、負荷の変動に伴って前記圧力が増大し、この圧力が予め設定された値以上になると、圧力の増大分に応じて自動調節弁18の開度を大ならしめ、バイパス管16への冷媒流量を増加せしめて冷却器を通過せずにレシーバーに戻される冷媒量を大ならしめることにより、冷却器9への冷媒供給量を減少せしめ、かくすることにより冷却器内の液冷媒量が適正に保たれるように構成してある。
なお、図中の符号20は安全弁を示している。
That is, the liquid pump 8 always delivers a liquid refrigerant at a constant flow rate, and the control device 15, the bypass pipe 16, the signal line 17, and the automatic adjustment valve 18 constitute a refrigerant supply control means, and the pressure sensor of the control device When the detected pressure is less than a preset value, the automatic control valve 18 is closed and a certain amount of refrigerant is supplied to the cooler. However, the pressure increases as the load fluctuates. When the pressure exceeds a preset value, the opening of the automatic control valve 18 is increased in accordance with the increase in pressure, and the refrigerant flow rate to the bypass pipe 16 is increased so that the refrigerant does not pass through the cooler. By increasing the amount of refrigerant returned, the amount of refrigerant supplied to the cooler 9 is decreased, and thus the amount of liquid refrigerant in the cooler is appropriately maintained.
In addition, the code | symbol 20 in a figure has shown the safety valve.

上述した実施例のものでは、前記液ポンプ8による送液量を負荷の変動にかかわらず常に一定に保つ構成としてあるが、前記バイパス管16を設けず、液ポンプの送液量を調節する構成とする場合もあり、図2に基づいて説明する。   In the above-described embodiment, the amount of liquid fed by the liquid pump 8 is always kept constant regardless of the fluctuation of the load, but the bypass pipe 16 is not provided and the amount of liquid fed by the liquid pump is adjusted. And will be described with reference to FIG.

図2に示す実施例のものは、図1の実施例におけるバイパス管16とこのバイパス管に付随する調節弁18、手動調整弁19を設けず、液ポンプ8の駆動回転数をインバータ装置21によって制御し、冷却器への送液量を制御できるように構成してある。   The embodiment shown in FIG. 2 does not include the bypass pipe 16 and the adjustment valve 18 and manual adjustment valve 19 associated with the bypass pipe in the embodiment of FIG. It is configured so that the amount of liquid fed to the cooler can be controlled.

すなわち、この図2に示される実施例のものでは前記制御装置15からの信号線22がインバータ装置21に接続されており、前記制御装置15、信号線22、インバータ装置21とで冷媒供給制御手段を構成し、前記制御装置の圧力センサにより検出される圧力が予め設定された値未満である場合には液ポンプ8が所定の送液量を維持するよう駆動されるが、負荷の変動に伴って前記圧力が増大し、この圧力が予め設定された値以上になると、圧力の増大分に応じてインバータ装置21が液ポンプの駆動回転数を低下させ、冷却器9への冷媒供給量を減少せしめ、かくすることにより冷却器内の液冷媒量が適正に保たれるように構成してある。   That is, in the embodiment shown in FIG. 2, the signal line 22 from the control device 15 is connected to the inverter device 21, and the control device 15, the signal line 22, and the inverter device 21 combine the refrigerant supply control means. When the pressure detected by the pressure sensor of the control device is less than a preset value, the liquid pump 8 is driven so as to maintain a predetermined liquid supply amount. When the pressure increases and becomes equal to or higher than a preset value, the inverter device 21 decreases the driving speed of the liquid pump in accordance with the increase in pressure, and decreases the amount of refrigerant supplied to the cooler 9. By doing so, the amount of liquid refrigerant in the cooler is appropriately maintained.

図3に示す実施例のものは、前記二酸化炭素冷媒往管10の途中における液ポンプ8と手動調整弁11との間に、自動調節弁23を設け、同自動調節弁23の開度が調節されることにより冷却器への送液量を制御できるように構成してある。   In the embodiment shown in FIG. 3, an automatic adjustment valve 23 is provided between the liquid pump 8 and the manual adjustment valve 11 in the middle of the carbon dioxide refrigerant outgoing pipe 10, and the opening degree of the automatic adjustment valve 23 is adjusted. By doing so, the amount of liquid fed to the cooler can be controlled.

すなわち、この図3に示される実施例のものでは前記制御装置15からの信号線24が上述した自動調節弁23に接続されており、前記制御装置15、信号線24、自動調節弁23とで冷媒供給制御手段を構成し、前記制御装置の圧力センサにより検出される圧力が予め設定された値未満である場合には自動調節弁23が全開または予め設定された開度とされているが、負荷の変動に伴って前記圧力が増大し、この圧力が予め設定された値以上になると、圧力の増大分に応じて自動調節弁23の開度が小となるように制御され、冷却器9への冷媒供給量を減少せしめ、かくすることにより冷却器内の液冷媒量が適正に保たれるように構成してある。   That is, in the embodiment shown in FIG. 3, the signal line 24 from the control device 15 is connected to the above-described automatic control valve 23, and the control device 15, the signal line 24, and the automatic control valve 23 The refrigerant supply control means is configured, and when the pressure detected by the pressure sensor of the control device is less than a preset value, the automatic adjustment valve 23 is fully opened or set to a preset opening degree. When the pressure increases as the load fluctuates, and the pressure exceeds a preset value, the opening of the automatic adjustment valve 23 is controlled to be small according to the increase in pressure, and the cooler 9 In this way, the amount of liquid refrigerant in the cooler is appropriately maintained.

なお、上述した実施例における冷媒供給制御手段は図1乃至3に示されるように個別に設けるようにする場合もあるし、組み合わせて設ける場合もある。   It should be noted that the refrigerant supply control means in the above-described embodiments may be provided individually as shown in FIGS. 1 to 3 or may be provided in combination.

また、上述した実施例においては自然冷媒としてアンモニア、二酸化炭素を使用する場合について説明したが、他の自然冷媒として水を使用する場合もあるし、一方の冷媒回路においては自然冷媒に代えて、R318、R245fa、R404A、R410A、R407C、R407E、R507A、R134aなどのフロン系冷媒を使用する場合もある。   Further, in the above-described embodiment, the case where ammonia and carbon dioxide are used as the natural refrigerant has been described, but water may be used as another natural refrigerant, and in one refrigerant circuit, instead of the natural refrigerant, CFC refrigerants such as R318, R245fa, R404A, R410A, R407C, R407E, R507A, R134a may be used.

本発明に係る冷却システムの実施例を示す構成図。The block diagram which shows the Example of the cooling system which concerns on this invention. 本発明に係る冷却システムの他の実施例を示す構成図。The block diagram which shows the other Example of the cooling system which concerns on this invention. 本発明に係る冷却システムのさらに他の実施例を示す構成図。The block diagram which shows the further another Example of the cooling system which concerns on this invention.

符号の説明Explanation of symbols

1 1次冷媒回路
2 2次冷媒回路
3 アンモニア冷凍機
4 アンモニア冷媒往管
5 カスケードコンデンサ
6 アンモニア冷媒復管
7 レシーバー
8 液ポンプ
9 冷却器
10 二酸化炭素冷媒往管
11 手動調整弁
12 二酸化炭素冷媒復管
13 再凝縮用冷媒送り管
14 凝縮冷媒戻り管
15 制御装置
16 バイパス管
17 信号線
18 自動調節弁
19 手動調整弁
20 安全弁
21 インバータ装置
22 信号線
23 自動調節弁
24 信号線
DESCRIPTION OF SYMBOLS 1 Primary refrigerant circuit 2 Secondary refrigerant circuit 3 Ammonia refrigerator 4 Ammonia refrigerant outgoing pipe 5 Cascade capacitor 6 Ammonia refrigerant return pipe 7 Receiver 8 Liquid pump 9 Cooler 10 Carbon dioxide refrigerant outgoing pipe 11 Manual adjustment valve 12 Carbon dioxide refrigerant recovery Pipe 13 Recondensation refrigerant feed pipe 14 Condensed refrigerant return pipe 15 Controller 16 Bypass pipe 17 Signal line 18 Automatic adjustment valve 19 Manual adjustment valve 20 Safety valve 21 Inverter device 22 Signal line 23 Automatic adjustment valve 24 Signal line

Claims (4)

少なくともいずれか一方に自然冷媒が循環される1次冷媒回路と2次冷媒回路を備え、1次冷媒回路にて生じる冷熱により、2次冷媒回路の冷媒を凝縮してレシーバーに貯留し、同レシーバー内の液冷媒を液ポンプによって負荷側の冷却器に送る自然冷媒冷却システムにおいて、前記レシーバー内における冷媒の蒸発圧力を検出する圧力センサを備え、同センサにより検出される圧力が予め設定された値未満である場合には前記冷却器に一定量の冷媒を供給するが、負荷の変動に伴って前記圧力が増大し、この圧力が予め設定された値以上になると、圧力の増大分に応じて冷却器への冷媒供給量を減少せしめる冷媒供給量制御手段を備える自然冷媒冷却システム。   A primary refrigerant circuit and a secondary refrigerant circuit in which natural refrigerant is circulated in at least one of them, and the refrigerant in the secondary refrigerant circuit is condensed by cold heat generated in the primary refrigerant circuit and stored in the receiver. In the natural refrigerant cooling system for sending the liquid refrigerant in the receiver to the load side cooler by the liquid pump, a pressure sensor for detecting the evaporation pressure of the refrigerant in the receiver is provided, and the pressure detected by the sensor is a preset value. When the pressure is less than the predetermined amount, a certain amount of refrigerant is supplied to the cooler. However, when the pressure increases as the load fluctuates, and this pressure exceeds a preset value, the pressure increases. A natural refrigerant cooling system comprising a refrigerant supply amount control means for reducing a refrigerant supply amount to a cooler. 前記冷媒供給量制御手段を、前記液ポンプと冷却器との間における冷媒間の途中に一端が接続され、他端が前記レシーバーに接続されたバイパス管と、同バイパス管の途中に設けられ、前記圧力センサにより検出される冷媒の蒸発圧力に応じて開度が調節される自動調節弁で構成してなる請求項1に記載の自然冷媒冷却システム。   The refrigerant supply amount control means is provided in the middle of the bypass pipe with one end connected in the middle between the refrigerant between the liquid pump and the cooler, and the other end connected to the receiver, The natural refrigerant cooling system according to claim 1, wherein the natural refrigerant cooling system is configured by an automatic control valve whose opening degree is adjusted according to the evaporation pressure of the refrigerant detected by the pressure sensor. 前記冷媒供給量制御手段を、前記液ポンプと、前記圧力センサにより検出される冷媒の蒸発圧力に応じて前記液ポンプの駆動回転数制御を行うインバータ装置とで構成してなる請求項1に記載の自然冷媒冷却システム。   The said refrigerant | coolant supply amount control means is comprised with the said liquid pump and the inverter apparatus which performs the drive rotation speed control of the said liquid pump according to the evaporation pressure of the refrigerant | coolant detected by the said pressure sensor. Natural refrigerant cooling system. 前記冷媒供給量制御手段を、前記液ポンプと冷却器との間における冷媒間の途中に設けられ、前記圧力センサにより検出される冷媒の蒸発圧力に応じて開度が調節される自動調節弁で構成してなる請求項1に記載の自然冷媒冷却システム。   The refrigerant supply amount control means is an automatic control valve that is provided in the middle of the refrigerant between the liquid pump and the cooler, and whose opening is adjusted according to the evaporation pressure of the refrigerant detected by the pressure sensor. The natural refrigerant cooling system according to claim 1, which is configured.
JP2006294102A 2005-10-28 2006-10-30 Natural refrigerant cooling system Pending JP2007147267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006294102A JP2007147267A (en) 2005-10-28 2006-10-30 Natural refrigerant cooling system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005313974 2005-10-28
JP2006294102A JP2007147267A (en) 2005-10-28 2006-10-30 Natural refrigerant cooling system

Publications (1)

Publication Number Publication Date
JP2007147267A true JP2007147267A (en) 2007-06-14

Family

ID=38208857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006294102A Pending JP2007147267A (en) 2005-10-28 2006-10-30 Natural refrigerant cooling system

Country Status (1)

Country Link
JP (1) JP2007147267A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174803A (en) * 2008-01-25 2009-08-06 Okamura Corp Central control system for freezing and refrigerating equipment
JP2009178255A (en) * 2008-01-29 2009-08-13 Okamura Corp Freezing/refrigerating showcase
JP2011163713A (en) * 2010-02-12 2011-08-25 Toyo Eng Works Ltd Refrigeration system
JP2011196607A (en) * 2010-03-19 2011-10-06 Toyo Eng Works Ltd Cooling system
CN103105014A (en) * 2011-11-10 2013-05-15 株式会社前川制作所 Refrigeration system for use in ship
JP2014526667A (en) * 2011-09-09 2014-10-06 ヨーロピアン オーガナイゼーション フォー ニュークリア リサーチ Mini cooling system and method for accurate temperature control
CN107421171A (en) * 2017-06-20 2017-12-01 广东海悟科技有限公司 It is a kind of to determine the anti-cavitation system of frequency refrigerated medium pump entrance and its control method
KR102477314B1 (en) * 2022-06-15 2022-12-14 (주)하이세이브아시아 A method for reducing the temperature of the coolant in the receiver of the refrigeration cycle system and improving the cooling performance of the evaporator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236066A (en) * 1991-01-11 1992-08-25 Sanki Eng Co Ltd Liquid supplying amount control method upon cooling operation in cooling or cooling and heating device
JPH0651756U (en) * 1992-12-16 1994-07-15 株式会社東洋製作所 Cooling system
JPH0828974A (en) * 1994-07-11 1996-02-02 Kyushu Electric Power Co Inc Cold heat carrying equipment
JP2002243310A (en) * 2001-02-19 2002-08-28 Sanden Corp Heat exchanger and freezing apparatus using it
WO2005050104A1 (en) * 2003-11-21 2005-06-02 Mayekawa Mfg.Co.,Ltd. Ammonia/co2 refrigeration system, co2 brine production system for use therein, and ammonia cooing unit incorporating that production system
JP2005172416A (en) * 2003-11-21 2005-06-30 Mayekawa Mfg Co Ltd Ammonia/co2 refrigeration system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236066A (en) * 1991-01-11 1992-08-25 Sanki Eng Co Ltd Liquid supplying amount control method upon cooling operation in cooling or cooling and heating device
JPH0651756U (en) * 1992-12-16 1994-07-15 株式会社東洋製作所 Cooling system
JPH0828974A (en) * 1994-07-11 1996-02-02 Kyushu Electric Power Co Inc Cold heat carrying equipment
JP2002243310A (en) * 2001-02-19 2002-08-28 Sanden Corp Heat exchanger and freezing apparatus using it
WO2005050104A1 (en) * 2003-11-21 2005-06-02 Mayekawa Mfg.Co.,Ltd. Ammonia/co2 refrigeration system, co2 brine production system for use therein, and ammonia cooing unit incorporating that production system
JP2005172416A (en) * 2003-11-21 2005-06-30 Mayekawa Mfg Co Ltd Ammonia/co2 refrigeration system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174803A (en) * 2008-01-25 2009-08-06 Okamura Corp Central control system for freezing and refrigerating equipment
JP2009178255A (en) * 2008-01-29 2009-08-13 Okamura Corp Freezing/refrigerating showcase
JP2011163713A (en) * 2010-02-12 2011-08-25 Toyo Eng Works Ltd Refrigeration system
JP2011196607A (en) * 2010-03-19 2011-10-06 Toyo Eng Works Ltd Cooling system
JP2014526667A (en) * 2011-09-09 2014-10-06 ヨーロピアン オーガナイゼーション フォー ニュークリア リサーチ Mini cooling system and method for accurate temperature control
CN103105014A (en) * 2011-11-10 2013-05-15 株式会社前川制作所 Refrigeration system for use in ship
JP2013104574A (en) * 2011-11-10 2013-05-30 Mayekawa Mfg Co Ltd Refrigeration device for fishing boat
CN103105014B (en) * 2011-11-10 2016-08-17 株式会社前川制作所 Refrigeration system for use in ship
CN107421171A (en) * 2017-06-20 2017-12-01 广东海悟科技有限公司 It is a kind of to determine the anti-cavitation system of frequency refrigerated medium pump entrance and its control method
CN107421171B (en) * 2017-06-20 2023-05-19 广东海悟科技有限公司 Cavitation prevention system for inlet of constant-frequency refrigerant pump and control method thereof
KR102477314B1 (en) * 2022-06-15 2022-12-14 (주)하이세이브아시아 A method for reducing the temperature of the coolant in the receiver of the refrigeration cycle system and improving the cooling performance of the evaporator

Similar Documents

Publication Publication Date Title
JP2007147267A (en) Natural refrigerant cooling system
US9759449B2 (en) Feed water heating system
JP4972421B2 (en) Heat pump steam / hot water generator
EP2726798B1 (en) Pumped liquid cooling system using a phase change fluid with additional sub-ambient cooling
JP4731806B2 (en) Refrigeration cycle apparatus and control method thereof
WO2015001940A1 (en) Gas vaporization device having cold heat recovery function, and cold heat recovery device
JP2007232232A (en) Cooling/heating device
JP2009236403A (en) Geothermal use heat pump device
JP4904128B2 (en) Natural refrigerant cooling system
JP6884387B2 (en) Liquid temperature control device and temperature control method using it
JP4044917B2 (en) Heat pump steam / hot water generator
JP2008309393A (en) Cooling system
JP2007155315A (en) Natural refrigerant cooling system
JP2010101621A (en) Refrigerating cycle device and method of controlling the same
JP4786599B2 (en) Cooling system
JPWO2017081781A1 (en) Waste heat recovery heat pump device
JP2007212024A (en) Refrigerating cycle device and its control method
JP4928357B2 (en) Cooling system
JP2006329568A (en) Heat pump device
WO2022163793A1 (en) Refrigeration device, control method for refrigeration device, and temperature control system
JP2006292302A (en) Control method of heat pump device
JP2004309027A (en) Control method for heat pump device
JP6083509B2 (en) Water heating system
JP6091077B2 (en) Refrigeration equipment
JP6549403B2 (en) Cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110510