JP2011163713A - Refrigeration system - Google Patents

Refrigeration system Download PDF

Info

Publication number
JP2011163713A
JP2011163713A JP2010029489A JP2010029489A JP2011163713A JP 2011163713 A JP2011163713 A JP 2011163713A JP 2010029489 A JP2010029489 A JP 2010029489A JP 2010029489 A JP2010029489 A JP 2010029489A JP 2011163713 A JP2011163713 A JP 2011163713A
Authority
JP
Japan
Prior art keywords
cooler
carbon dioxide
temperature
medium
refrigeration system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010029489A
Other languages
Japanese (ja)
Inventor
Haruhisa Uchida
晴久 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seisakusho KK
Original Assignee
Toyo Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seisakusho KK filed Critical Toyo Seisakusho KK
Priority to JP2010029489A priority Critical patent/JP2011163713A/en
Publication of JP2011163713A publication Critical patent/JP2011163713A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigeration system capable of achieving stable operation without causing overload and poor cooling in the refrigeration system by controlling a supply amount of carbon dioxide to a cooler to be constant so that evaporation pressure of the cooler becomes constant, even if set temperatures of a plurality of coolers are set to be different from each other depending on each cooler. <P>SOLUTION: In the refrigeration system, an ammonia cycle 11 using ammonia as a medium is combined with a carbon dioxide cycle 12 using carbon dioxide as a medium, the medium of the carbon dioxide cycle 12 is condensed/liquefied by cold generated in the ammonia cycle 11 to be stored in a receiver 15, and the liquefied medium is fed to a plurality of load-side coolers 22 from the receiver 15. A flow rate adjustment valve 21 for adjusting an amount of the liquefied medium supplied to the coolers 22 from the receiver 15 is provided between the receiver 15 and the coolers 22. The flow rate is controlled so that other coolers also have the lowest evaporation pressure of the coolers 22. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は冷凍システムに関するものであり、特に、アンモニア(NH3)を媒体としたアンモニアサイクルと二酸化炭素(CO2、別名「炭酸ガス」という)を媒体とした炭酸ガスサイクルを組み合わせてなる冷凍システムに関するものである。   The present invention relates to a refrigeration system, and more particularly to a refrigeration system that combines an ammonia cycle using ammonia (NH3) as a medium and a carbon dioxide gas cycle using carbon dioxide (CO2, also called "carbon dioxide") as a medium. It is.

今日、オゾン層破壊防止や温暖化防止等の地球環境保全の観点から、室内の空調や物品の冷却・冷凍に用いる冷凍装置の冷媒を、従来のフロンに代えて、自然冷媒であってオゾン破壊係数ゼロ、また地球温暖化係数がゼロもしくは限りなくゼロに近いアンモニア(NH3)が見直され、このアンモニアを冷媒として用いる冷凍装置の採用が増加している。   Today, from the viewpoint of global environmental conservation such as prevention of ozone layer destruction and prevention of global warming, the refrigerant in the refrigeration system used for indoor air conditioning and article cooling / freezing is a natural refrigerant instead of conventional chlorofluorocarbon, and ozone destruction Ammonia (NH3) with a coefficient of zero and a global warming coefficient of zero or close to zero has been reviewed, and the use of refrigeration systems that use this ammonia as a refrigerant is increasing.

しかしながら、アンモニアは人体に有毒である。そこで、アンモニアサイクルの冷熱を冷却器側に直接供給するのではなく、該冷却器とアンモニアサイクルとの間に、自然冷媒で毒性の無い二酸化炭素を冷媒とする炭酸ガスサイクルを介在せしめてアンモニアサイクルで発生させた冷熱を炭酸ガスサイクルを介して冷却器に供給するようにした自然冷媒冷却システムが実用に供されている(例えば、特許文献1参照)。   However, ammonia is toxic to the human body. Therefore, instead of directly supplying the cold heat of the ammonia cycle to the cooler side, an ammonia cycle is interposed between the cooler and the ammonia cycle by interposing a carbon dioxide gas cycle that uses natural non-toxic carbon dioxide as a refrigerant. A natural refrigerant cooling system in which the cold heat generated in step 1 is supplied to a cooler through a carbon dioxide gas cycle has been practically used (see, for example, Patent Document 1).

上述した自然冷媒冷却システムにおける炭酸ガスサイクルは、アンモニアサイクルにより生じる冷熱を凝縮冷熱として利用し、この凝縮冷熱でCO2媒体を液化してCO2レシーバーに貯留する。また、このCO2液媒体を液ポンプで冷却器に送り、該冷却器で熱交換を終え、気化したCO2媒体はCO2/NH3カスケードコンデンサーで凝縮してCO2レシーバーに戻すようになっている。   The carbon dioxide gas cycle in the natural refrigerant cooling system described above uses the cold generated by the ammonia cycle as condensed cold heat, liquefies the CO2 medium with this condensed cold heat, and stores it in the CO2 receiver. The CO2 liquid medium is sent to a cooler by a liquid pump, heat exchange is completed by the cooler, and the vaporized CO2 medium is condensed by a CO2 / NH3 cascade condenser and returned to the CO2 receiver.

特開平2002−243350号公報。Japanese Patent Application Laid-Open No. 2002-243350.

上述した従来の冷凍システムでは、複数台の冷却器がある場合があり、各冷却器の設定温度が異なる場合に、冷凍機は最も低温側の条件によって運転することとなる。ところが、高い温度を設定したようなとき、冷却器内のCO2蒸発圧力が成り行きとなり、場合によってはCO2供給圧力(CO2ポンプの吐出圧力や高低差によるCO2供給圧力等)よりも蒸発圧力が高くなり、冷却不良等を引き起こす問題点があった。   In the conventional refrigeration system described above, there may be a plurality of coolers, and when the set temperatures of the coolers are different, the refrigerator is operated according to the conditions on the lowest temperature side. However, when a high temperature is set, the CO2 evaporating pressure in the cooler becomes a problem, and in some cases, the evaporating pressure becomes higher than the CO2 supply pressure (CO2 pump discharge pressure, CO2 supply pressure due to height difference, etc.). There were problems that caused poor cooling and the like.

そこで、複数冷却器の設定温度が各冷却器で異なるように設定された場合にも、冷却器の蒸発圧力が一定となるように該冷却器への二酸化炭素の供給量を一定に制御し、冷凍システムにおける過負荷や冷却不良を起こさずに安定した運転を実現することができる冷凍システムを提供するために解決すべき技術的課題が生じてくるのであり、本発明はこの課題を解決することを目的とする。   Therefore, even when the set temperature of the plurality of coolers is set to be different for each cooler, the supply amount of carbon dioxide to the cooler is controlled to be constant so that the evaporation pressure of the cooler is constant, A technical problem to be solved in order to provide a refrigeration system capable of realizing stable operation without causing an overload or a cooling failure in the refrigeration system arises, and the present invention solves this problem. With the goal.

本発明は上記目的を達成するために提案されたものであり、請求項1記載の発明は、アンモニアを媒体としたアンモニアサイクルと、二酸化炭素を媒体とした炭酸ガスサイクルとを組み合わせ、前記アンモニアサイクルで生じる冷熱により、前記炭酸ガスサイクルの媒体を凝縮・液化してレシーバー内に貯留し、該レシーバーから液化媒体を複数台の負荷側冷却器に送る冷凍システムにおいて、前記レシーバーと前記冷却器との間に、前記レシ
ーバーから前記冷却器に供給される前記液化媒体の量を調整する流量調整弁を設け、冷却器の中で最も低い蒸発圧力に他の冷却器もなるように流量制御する冷凍システムを提供する。
The present invention has been proposed to achieve the above object, and the invention according to claim 1 is a combination of an ammonia cycle using ammonia as a medium and a carbon dioxide gas cycle using carbon dioxide as a medium. In the refrigeration system that condenses and liquefies the carbon dioxide gas medium and stores it in a receiver by the cold heat generated in the receiver, and sends the liquefied medium from the receiver to a plurality of load side coolers, the receiver and the cooler A refrigeration system is provided with a flow rate adjusting valve for adjusting the amount of the liquefied medium supplied from the receiver to the cooler, and controls the flow rate so that the other evaporator has the lowest evaporation pressure among the coolers. I will provide a.

この構成によれば、レシーバーと冷却器との間に設けた流量調整弁により、レシーバーから冷却器に供給される液化媒体の量を調整して該冷却器内の蒸発圧力を一定に制御することができる。これにより、冷却器の被冷却物の設定温度が変化しても二酸化炭素供給量過大による蒸発圧力の上昇を防止し、二酸化炭素は一定の圧力で例えばカスケードコンデンサーに吸入される。すなわち、冷却器の設定温度が高くまたは低く設定された場合にも、冷却器の蒸発圧力を一定に制御することができる。   According to this configuration, the amount of the liquefied medium supplied from the receiver to the cooler is adjusted by the flow rate adjusting valve provided between the receiver and the cooler, and the evaporation pressure in the cooler is controlled to be constant. Can do. As a result, even if the set temperature of the object to be cooled in the cooler changes, an increase in the evaporation pressure due to an excessive supply amount of carbon dioxide is prevented, and carbon dioxide is sucked into the cascade condenser, for example, at a constant pressure. That is, even when the set temperature of the cooler is set high or low, the evaporation pressure of the cooler can be controlled to be constant.

請求項2記載の発明は、請求項1記載の構成において、上記炭酸ガスサイクルは、上記各冷却器で冷却する被冷却物の温度を検出する温度センサを備えるとともに、該温度センサで検知された被冷却物の温度と設定温度に応じて前記流量調整弁により流量を制御するようにしてなる冷凍システムを提供する。   According to a second aspect of the present invention, in the configuration of the first aspect, the carbon dioxide gas cycle includes a temperature sensor that detects a temperature of an object to be cooled that is cooled by each of the coolers, and is detected by the temperature sensor. Provided is a refrigeration system in which the flow rate is controlled by the flow rate adjusting valve in accordance with the temperature of the object to be cooled and the set temperature.

この構成によれば、被冷却物の温度と設定温度を基準にして流量制御弁による冷却器への液化媒体供給量を調整して設定温度となるように制御できる。   According to this configuration, the liquefied medium supply amount to the cooler by the flow rate control valve can be adjusted based on the temperature of the object to be cooled and the set temperature to control the set temperature.

請求項3記載の発明は、請求項1または2記載の構成において、上記炭酸ガスサイクルは、上記冷却器出口における冷媒ガスの温度及び圧力を検出する温度・圧力センサを備えるとともに、該温度・圧力センサで検知された温度及び圧力に応じて前記流量調整弁により流量を制御するようにしてなる冷凍システムを提供する。   According to a third aspect of the present invention, in the configuration of the first or second aspect, the carbon dioxide gas cycle includes a temperature / pressure sensor for detecting a temperature and a pressure of the refrigerant gas at the outlet of the cooler, and the temperature / pressure is detected. Provided is a refrigeration system in which the flow rate is controlled by the flow rate adjusting valve in accordance with the temperature and pressure detected by a sensor.

この構成によれば、冷却器出口における冷媒ガスの温度及び圧力を基準にして流量制御弁による冷却器への液化媒体供給量を調整して冷却器の過熱度が一定となるように制御し、常にシステムの安定した運転を維持することできる。   According to this configuration, the liquefied medium supply amount to the cooler by the flow rate control valve is adjusted based on the temperature and pressure of the refrigerant gas at the cooler outlet to control the superheat degree of the cooler to be constant, The stable operation of the system can always be maintained.

請求項4記載の発明は、請求項1,2または3記載の構成において、上記アンモニアサイクルは、上記レシーバーの圧力を検知し、設定圧力範囲となるように圧縮機の容量制御を行う冷凍システムを提供する。   According to a fourth aspect of the present invention, in the configuration according to the first, second, or third aspect, the ammonia cycle is a refrigeration system that detects the pressure of the receiver and controls the capacity of the compressor so as to be within a set pressure range. provide.

この構成によれば、1つの冷凍システムで複数の冷却器を異温度帯で運転することができる。また、カスケードコンデンサーでの二酸化炭素凝縮圧力が一定となるので、アンモニアサイクル側においても吸入圧力が一定となり、システム全体として安定した運転となる。   According to this configuration, a plurality of coolers can be operated in different temperature zones with one refrigeration system. In addition, since the carbon dioxide condensation pressure in the cascade condenser is constant, the suction pressure is constant on the ammonia cycle side, and the system as a whole can be operated stably.

請求項1記載の発明は、各冷却器の設定温度が高くまたは低く設定された場合にも、冷却器の蒸発圧力を一定に制御することができるので、常に安定した運転を維持することができる。     In the first aspect of the invention, even when the set temperature of each cooler is set high or low, the evaporating pressure of the cooler can be controlled to be constant, so that stable operation can always be maintained. .

請求項2記載の発明は、被冷却物の温度と設定温度を基準にして流量制御弁による冷却器への液化媒体供給量を調整して設定温度となるように制御するので、請求項1記載の発明の効果に加えて、さらに安定した運転を維持することができる。   According to the second aspect of the present invention, since the liquefied medium supply amount to the cooler by the flow rate control valve is adjusted based on the temperature of the object to be cooled and the set temperature, control is performed so that the set temperature is reached. In addition to the effects of the present invention, a more stable operation can be maintained.

請求項3記載の発明は、冷却器出口における冷媒ガスの温度及び圧力を基準にして流量制御弁による冷却器への液化媒体供給量を調整して冷却器の過熱度が一定となるように制御するので、請求項1または2記載の発明の効果に加えて、さらに安定した運転を維持することができる。   The invention according to claim 3 is controlled so that the degree of superheat of the cooler becomes constant by adjusting the supply amount of the liquefied medium to the cooler by the flow rate control valve based on the temperature and pressure of the refrigerant gas at the cooler outlet. Therefore, in addition to the effect of the first or second aspect of the invention, a more stable operation can be maintained.

請求項4記載の発明は、請求項1,2または3記載の発明の効果に加えて、1の冷凍システムで複数の冷却器を使用する場合に、冷凍システムにおける過負荷や冷却不良を起こさないようにすることができ、常に安定した運転を維持することができる。   In addition to the effect of the first, second, or third aspect, the invention described in claim 4 does not cause overload or poor cooling in the refrigeration system when a plurality of coolers are used in one refrigeration system. And stable operation can always be maintained.

本発明の一実施の形態として示す冷凍システムで、冷却器を2台接続した状態の構成図。The block diagram of the state which connected the two coolers in the refrigerating system shown as one embodiment of this invention.

本発明は、複数冷却器の設定温度が各冷却器で異なるように設定された場合にも、冷却器の蒸発圧力が一定となるように該冷却器への二酸化炭素の供給量を一定に制御し、冷凍システムにおける過負荷や冷却不良を起こさずに安定した運転を実現することができる冷凍システムを提供するという目的を達成するために、アンモニアを媒体としたアンモニアサイクルと、二酸化炭素を媒体とした炭酸ガスサイクルとを組み合わせ、前記アンモニアサイクルで生じる冷熱により、前記炭酸ガスサイクルの媒体を凝縮・液化してレシーバー内に貯留し、該レシーバーから液化媒体を負荷側の冷却器に送る冷凍システムにおいて、前記レシーバーと前記冷却器との間に、前記レシーバーから前記冷却器に供給される前記液化媒体の量を調整する流量調整弁を設けたことにより実現した。   The present invention controls the supply amount of carbon dioxide to the cooler so that the evaporating pressure of the cooler is constant even when the set temperature of the multiple coolers is set to be different for each cooler. In order to achieve the object of providing a refrigeration system capable of realizing stable operation without causing overload and poor cooling in the refrigeration system, an ammonia cycle using ammonia as a medium, and carbon dioxide as a medium In the refrigeration system that combines the carbon dioxide gas cycle, condenses and liquefies the carbon dioxide gas medium by the cold heat generated in the ammonia cycle, stores it in the receiver, and sends the liquefied medium from the receiver to the load side cooler. And a flow rate adjustment for adjusting an amount of the liquefied medium supplied from the receiver to the cooler between the receiver and the cooler. It was achieved by providing the valve.

以下、図面を参照して本発明の冷凍システムについて詳細に説明する。図1は本発明の一実施の形態として示す冷凍システムの構成図である。同図において、この冷凍システム10は、専ら冷凍のみを行うものであって、高元側のアンモニアサイクル11と低元側の炭酸ガスサイクル12を組み合わせて成る。また、以下の説明では、2台の冷却器を1つの炭酸ガスサイクルで運転する場合について説明するが、必ずしも2台に限定されるものではなく、3台以上であってもよいものである。   Hereinafter, the refrigeration system of the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram of a refrigeration system shown as an embodiment of the present invention. In this figure, this refrigeration system 10 performs only freezing, and is composed of a combination of a high-source side ammonia cycle 11 and a low-source side carbon dioxide gas cycle 12. Moreover, although the following description demonstrates the case where two coolers are drive | operated by one carbon dioxide gas cycle, it is not necessarily limited to 2 units | sets, 3 units | sets or more may be sufficient.

前記アンモニアサイクル11は、NH3圧縮機13とNH3凝縮器14とNH3レシーバー15とNH3膨張弁16とCO2/NH3カスケードコンデンサー17を備えてなるものであり、実質的に該CO2/NH3カスケードコンデンサー17によって、炭酸ガスサイクル12内のCO2媒体を冷却する。また、該アンモニアサイクル11は、媒体が毒性のあるアンモニアであることから、CO2/NH3ユニット101内に収容されて屋外や屋上等に設置される。   The ammonia cycle 11 includes an NH 3 compressor 13, an NH 3 condenser 14, an NH 3 receiver 15, an NH 3 expansion valve 16, and a CO 2 / NH 3 cascade condenser 17. Then, the CO2 medium in the carbon dioxide gas cycle 12 is cooled. Further, the ammonia cycle 11 is housed in the CO2 / NH3 unit 101 and installed outdoors or on the roof because the medium is toxic ammonia.

一方、炭酸ガスサイクル12は、上述したCO2/NH3カスケードコンデンサー17の他、CO2レシーバー18と、CO2液ポンプ19と、給液電磁弁20と、流量調整弁21と、複数の冷却器(蒸発器)22,22等を備えてなるものである。そして、この炭酸ガスサイクル12の中、CO2レシーバー18とCO2液ポンプ19は、前記CO2/NH3ユニット101内に設置される。一方、冷却器(蒸発器)22と給液電磁弁20及び流量調整弁21等は冷凍倉庫等の被冷却室102a,102b内に各々設置されて該被冷却室102内の冷却を行う。   On the other hand, the carbon dioxide gas cycle 12 includes a CO 2 receiver 18, a CO 2 liquid pump 19, a liquid supply electromagnetic valve 20, a flow rate adjusting valve 21, and a plurality of coolers (evaporators) in addition to the CO 2 / NH 3 cascade condenser 17 described above. ) 22, 22, etc. In the carbon dioxide gas cycle 12, the CO 2 receiver 18 and the CO 2 liquid pump 19 are installed in the CO 2 / NH 3 unit 101. On the other hand, the cooler (evaporator) 22, the liquid supply solenoid valve 20, the flow rate adjusting valve 21, and the like are respectively installed in the cooled chambers 102 a and 102 b of a refrigeration warehouse or the like to cool the cooled chamber 102.

また、炭酸ガスサイクル12には、被冷却室102内に、温度センサ23と、温度調節計24と、CO2圧力センサ25,26と、CO2温度センサ27と、過熱度調節計28と、圧力調節計29が設置されている。   In the carbon dioxide gas cycle 12, the temperature sensor 23, the temperature controller 24, the CO 2 pressure sensors 25 and 26, the CO 2 temperature sensor 27, the superheat degree controller 28, and the pressure control are provided in the cooled chamber 102. A total of 29 are installed.

次に、このように構成された二元冷凍システム10の動作について説明する。なお、このシステムでは、冷凍運転の操作はシステム全体を制御する制御部30を介して行われる。該制御部30は、一例としてマイクロコンピュータ(通称「マイコン」)であり、該制御
部30には該二元冷凍システム10の全体を予め決められた手順に従って制御するプログラム等が格納されている。
Next, the operation of the binary refrigeration system 10 configured as described above will be described. In this system, the operation of the refrigeration operation is performed via the control unit 30 that controls the entire system. The control unit 30 is a microcomputer (commonly called “microcomputer”) as an example, and the control unit 30 stores a program for controlling the entire binary refrigeration system 10 according to a predetermined procedure.

まず、アンモニアサイクル11のNH3媒体の流れについて説明する。NH3レシーバー15に蓄えられているNH3冷媒は、該NH3レシーバー15から液冷媒としてNH3膨張弁16に送られ、該NH3膨張弁16で必要な低温度に相当する飽和圧力まで膨張した後、CO2/NH3カスケードコンデンサー17に送られ、該CO2/NH3ガスケードコンデンサー17で蒸発して気体となる。このとき、NH3媒体は後述する炭酸ガスサイクル12内のCO2冷媒から熱を奪い、該CO2冷媒を冷却して液化する。   First, the flow of the NH3 medium in the ammonia cycle 11 will be described. The NH3 refrigerant stored in the NH3 receiver 15 is sent from the NH3 receiver 15 to the NH3 expansion valve 16 as a liquid refrigerant, and expanded to a saturation pressure corresponding to a low temperature required by the NH3 expansion valve 16. It is sent to the NH3 cascade condenser 17 and evaporated by the CO2 / NH3 gascade condenser 17 to become a gas. At this time, the NH3 medium takes heat from a CO2 refrigerant in the carbon dioxide cycle 12 described later, and cools and liquefies the CO2 refrigerant.

また、前記CO2/NH3カスケードコンデンサー17においてCO2冷媒を冷却液化したNH3冷媒は、NH3圧縮機13により圧縮されて高温の高圧ガスとなり、さらにNH3凝縮器14を通るとき、冷却水によって冷やされて液化されたNH3媒体となる。この液化されたNH3媒体はNH3レシーバー15に貯えられ、再び冷却に使用される。以下、このサイクルを繰り返す。   Further, the NH3 refrigerant obtained by cooling and liquefying the CO2 refrigerant in the CO2 / NH3 cascade condenser 17 is compressed by the NH3 compressor 13 to become a high-temperature high-pressure gas. NH3 medium is obtained. The liquefied NH3 medium is stored in the NH3 receiver 15 and used again for cooling. Thereafter, this cycle is repeated.

一方、炭酸ガスサイクル12では、前記CO2/NH3カスケードコンデンサー17内でNH3媒体によって冷やされて液化したCO2冷媒は、CO2レシーバー15に貯えられる。該CO2レシーバー15に貯えられたCO2冷媒は、CO2液ポンプ19により、給液電磁弁20と流量調整弁21を通って冷却器22に送られ、該冷却器22で温められて蒸発し、ガスとなって再びCO2/NH3カスケードコンデンサー17側に向かう。ガス化されたCO2媒体はCO2/NH3カスケードコンデンサー17内でNH3媒体によって冷やされて液化し、その後CO2レシーバー15に戻っていく。以下、このサイクルを繰り返す。   On the other hand, in the carbon dioxide gas cycle 12, the CO 2 refrigerant cooled and liquefied by the NH 3 medium in the CO 2 / NH 3 cascade condenser 17 is stored in the CO 2 receiver 15. The CO2 refrigerant stored in the CO2 receiver 15 is sent by the CO2 liquid pump 19 to the cooler 22 through the liquid supply electromagnetic valve 20 and the flow rate adjusting valve 21, and is heated and evaporated by the cooler 22. Then, it goes again to the CO2 / NH3 cascade capacitor 17 side. The gasified CO 2 medium is cooled and liquefied by the NH 3 medium in the CO 2 / NH 3 cascade condenser 17, and then returns to the CO 2 receiver 15. Thereafter, this cycle is repeated.

なお、この炭酸ガスサイクル12において、CO2液媒体の前記冷却器22への供給は、通常、被冷却室102内の温度(以下、被冷却物の温度という)を温度センサ23で検知し、該被冷却物の温度が予め温度調節計24で設定された温度となるように、該温度調節計24で流量調整弁21によるCO2液媒体の流量を制御したり、給液電磁弁20を開閉制御しながら行う。   In this carbon dioxide gas cycle 12, the supply of the CO2 liquid medium to the cooler 22 is usually performed by detecting the temperature in the cooled chamber 102 (hereinafter referred to as the temperature of the object to be cooled) with the temperature sensor 23, The temperature controller 24 controls the flow rate of the CO2 liquid medium by the flow rate adjusting valve 21 and controls the opening and closing of the liquid supply solenoid valve 20 so that the temperature of the object to be cooled becomes the temperature set in advance by the temperature controller 24. While doing.

また、前記冷却器22を運転するときには、冷却器22の出口側において、該冷却器22内でガス化されたCO2媒体の蒸発圧力及び温度状態をCO2圧力センサ25及びCO2温度センサ27で検知し、この値を過熱度調節計28に送る。該過熱度調節計28では、この検知された圧力及び温度を基に該冷却器22における過熱度を求め、該過熱度調節計28で設定された過熱度一定となるように前記流量調整弁21を開閉制御し、前記冷却器22へのCO2媒体の供給量を制御する。これにより、冷却器22の過熱度が一定となるように制御されてシステム全体の運転条件をほぼ一定に保つ。   When operating the cooler 22, the CO2 pressure sensor 25 and the CO2 temperature sensor 27 detect the evaporation pressure and temperature state of the CO2 medium gasified in the cooler 22 on the outlet side of the cooler 22. This value is sent to the superheat degree controller 28. The superheat degree controller 28 obtains the superheat degree in the cooler 22 based on the detected pressure and temperature, and the flow rate adjusting valve 21 so that the superheat degree set by the superheat degree controller 28 is constant. And the supply amount of the CO2 medium to the cooler 22 is controlled. Thereby, the superheat degree of the cooler 22 is controlled to be constant, and the operation condition of the entire system is kept substantially constant.

一方、前記冷却器22を他の冷却器の設定条件よりも高い温度で運転するときには、冷却器22の出口側において、該冷却器22内でガス化されたCO2媒体の蒸発圧力をCO2圧力センサ25で検知し、この値を圧力調節計29に送る。該圧力調節計29では、この検知された圧力を基に、各冷却器22の設定温度に対応した蒸発圧力の中、最も低い蒸発圧力と同じ圧力となるように前記流量調整弁21を制御し、前記冷却器22へのCO2媒体の供給量を制御する。これにより、炭酸ガスサイクル12内におけるCO2圧力が一定となるように制御されてシステム全体の運転条件をほぼ一定に保つ。   On the other hand, when the cooler 22 is operated at a temperature higher than the setting conditions of other coolers, the evaporation pressure of the CO2 medium gasified in the cooler 22 is measured on the outlet side of the cooler 22 by a CO2 pressure sensor. 25, and this value is sent to the pressure controller 29. Based on the detected pressure, the pressure regulator 29 controls the flow rate adjustment valve 21 so that the pressure becomes the same as the lowest evaporation pressure among the evaporation pressures corresponding to the set temperatures of the respective coolers 22. The supply amount of the CO2 medium to the cooler 22 is controlled. As a result, the CO2 pressure in the carbon dioxide gas cycle 12 is controlled to be constant, and the operating conditions of the entire system are kept substantially constant.

したがって、この実施例における冷凍サイクルでは、冷却器22側の設定温度が高い温度に設定された場合でも、冷却器22へのCO2媒体の供給量を制御してシステム全体の運転条件をほぼ一定に維持することができる。これにより、過負荷や冷却不良を起こさないようにすることができ、常にシステム全体の運転条件をほぼ一定に維持して安定した運
転を行うことができる。
Therefore, in the refrigeration cycle in this embodiment, even when the set temperature on the cooler 22 side is set to a high temperature, the operating condition of the entire system is made almost constant by controlling the supply amount of the CO2 medium to the cooler 22. Can be maintained. As a result, overload and cooling failure can be prevented, and stable operation can be performed while maintaining the operation conditions of the entire system almost constant.

また、アンモニアサイクル11は、レシーバーの圧力を検知し、設定圧力範囲となるようにNH3圧縮機13の容量制御を行うので、1つの冷凍システムで複数の冷却器22を異温度帯で運転することができる。また、CO2/NH3カスケードコンデンサー17での二酸化炭素凝縮圧力が一定となるので、アンモニアサイクル側においても吸入圧力が一定となり、システム全体として安定した運転となる。   Moreover, since the ammonia cycle 11 detects the pressure of the receiver and controls the capacity of the NH3 compressor 13 so as to be within the set pressure range, a plurality of coolers 22 are operated in different temperature zones with one refrigeration system. Can do. Further, since the carbon dioxide condensation pressure in the CO2 / NH3 cascade condenser 17 becomes constant, the suction pressure becomes constant even on the ammonia cycle side, and the system as a whole can be operated stably.

これにより、1つの冷凍システムで複数台の冷却器22を異なる温度で運転する場合であっても、システム全体の運転条件をほぼ一定に維持することが可能となり、過負荷や冷却不良を起こさないで常に安定した運転を行うことができる。   As a result, even when a plurality of coolers 22 are operated at different temperatures in a single refrigeration system, it is possible to maintain the operating conditions of the entire system substantially constant without causing overload or cooling failure. With this, stable operation can always be performed.

なお、本発明は、本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。   It should be noted that the present invention can be variously modified without departing from the spirit of the present invention, and the present invention naturally extends to the modified ones.

以上説明したように、本発明は冷凍倉庫等の被冷却室内の冷凍に限らず、例えば冷凍ショーケースや空調システム等にも応用できる。   As described above, the present invention is not limited to refrigeration in a room to be cooled such as a refrigerated warehouse, but can be applied to, for example, a refrigeration showcase or an air conditioning system.

10 冷凍システム
11 アンモニアサイクル
12 炭酸ガスサイクル
13 NH3圧縮機
14 NH3凝縮器
15 NH3レシーバー
16 NH3膨張弁
17 CO2/NH3カスケードコンデンサー
18 CO2レシーバー
19 CO2液ポンプ
20 給液電磁弁
21 流量調整弁
22 冷却器(蒸発器)
23 温度センサ
24 温度調節計
25 CO2圧力センサ
26 CO2圧力センサ
27 CO2温度センサ
28 過熱度調節計
29 圧力調節計
101 CO2/NH3ユニット
102a,102b 被冷却室
10 Refrigeration System 11 Ammonia Cycle 12 Carbon Dioxide Cycle 13 NH3 Compressor 14 NH3 Condenser 15 NH3 Receiver 16 NH3 Expansion Valve 17 CO2 / NH3 Cascade Condenser 18 CO2 Receiver 19 CO2 Liquid Pump 20 Liquid Supply Solenoid Valve 21 Flow Control Valve 22 Cooler (Evaporator)
23 Temperature sensor 24 Temperature controller 25 CO2 pressure sensor 26 CO2 pressure sensor 27 CO2 temperature sensor 28 Superheat controller 29 Pressure controller 101 CO2 / NH3 units 102a, 102b Cooled room

Claims (4)

アンモニアを媒体としたアンモニアサイクルと、二酸化炭素を媒体とした炭酸ガスサイクルとを組み合わせ、前記アンモニアサイクルで生じる冷熱により、前記炭酸ガスサイクルの媒体を凝縮・液化してレシーバー内に貯留し、該レシーバーから液化媒体を複数台の負荷側冷却器に送る冷凍システムにおいて、
前記レシーバーと前記冷却器との間に、前記レシーバーから前記冷却器に供給される前記液化媒体の量を調整する流量調整弁を設け、冷却器の中で最も低い蒸発圧力に他の冷却器もなるように流量制御することを特徴とする冷凍システム。
A combination of an ammonia cycle using ammonia as a medium and a carbon dioxide gas cycle using carbon dioxide as a medium, the medium of the carbon dioxide cycle is condensed and liquefied by cold heat generated in the ammonia cycle, and stored in a receiver. In a refrigeration system that sends liquefied media from multiple to the load side coolers,
Between the receiver and the cooler, there is provided a flow rate adjusting valve for adjusting the amount of the liquefied medium supplied from the receiver to the cooler, and other coolers are also set at the lowest evaporating pressure in the cooler. The refrigeration system characterized by controlling the flow rate so that
上記炭酸ガスサイクルは、上記各冷却器で冷却する被冷却物の温度を検出する温度センサを備えるとともに、該温度センサで検知された被冷却物の温度と設定温度に応じて前記流量調整弁により流量を制御するようにしてなることを特徴とする請求項1記載の冷凍システム。   The carbon dioxide gas cycle includes a temperature sensor that detects the temperature of the object to be cooled by each of the coolers, and is controlled by the flow rate adjustment valve according to the temperature of the object to be cooled and the set temperature detected by the temperature sensor. 2. The refrigeration system according to claim 1, wherein the flow rate is controlled. 上記炭酸ガスサイクルは、上記冷却器出口における冷媒ガスの温度及び圧力を検出する温度・圧力センサを備えるとともに、該温度・圧力センサで検知された温度及び圧力に応じて前記流量調整弁により流量を制御するようにしてなることを特徴とする請求項1または2記載の冷凍システム。   The carbon dioxide gas cycle includes a temperature / pressure sensor for detecting the temperature and pressure of the refrigerant gas at the outlet of the cooler, and the flow rate is adjusted by the flow rate adjusting valve according to the temperature and pressure detected by the temperature / pressure sensor. 3. The refrigeration system according to claim 1, wherein the refrigeration system is controlled. 上記アンモニアサイクルは、上記レシーバーの圧力を検知し、設定圧力範囲となるように圧縮機の容量制御を行うことを特徴とする請求項1,2または3記載の冷凍システム。   4. The refrigeration system according to claim 1, wherein the ammonia cycle detects the pressure of the receiver and controls the capacity of the compressor so as to be within a set pressure range.
JP2010029489A 2010-02-12 2010-02-12 Refrigeration system Pending JP2011163713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010029489A JP2011163713A (en) 2010-02-12 2010-02-12 Refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010029489A JP2011163713A (en) 2010-02-12 2010-02-12 Refrigeration system

Publications (1)

Publication Number Publication Date
JP2011163713A true JP2011163713A (en) 2011-08-25

Family

ID=44594611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010029489A Pending JP2011163713A (en) 2010-02-12 2010-02-12 Refrigeration system

Country Status (1)

Country Link
JP (1) JP2011163713A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103105014A (en) * 2011-11-10 2013-05-15 株式会社前川制作所 Refrigeration system for use in ship
JP2013155970A (en) * 2012-01-31 2013-08-15 Mayekawa Mfg Co Ltd Monitoring system for refrigerator
JP2016118385A (en) * 2016-02-02 2016-06-30 株式会社前川製作所 Refrigeration shipping boat

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257875A (en) * 1988-08-19 1990-02-27 Daikin Ind Ltd Operation controller for air conditioner
JPH04288453A (en) * 1991-03-15 1992-10-13 Toshiba Corp Freezing cycle device
US5400615A (en) * 1991-07-31 1995-03-28 Thornliebank Industrial Estate Cooling system incorporating a secondary heat transfer circuit
JPH0989390A (en) * 1995-09-29 1997-04-04 Matsushita Refrig Co Ltd Air conditioner
JP2002310464A (en) * 2001-04-05 2002-10-23 Mitsubishi Electric Corp Heat carrier and air conditioner using it
JP2006105437A (en) * 2004-10-01 2006-04-20 Saginomiya Seisakusho Inc Device and system for controlling cooling system
JP2007147267A (en) * 2005-10-28 2007-06-14 Toyo Eng Works Ltd Natural refrigerant cooling system
JP2008304149A (en) * 2007-06-08 2008-12-18 Toyo Eng Works Ltd Cooling system
JP2009174801A (en) * 2008-01-25 2009-08-06 Okamura Corp Central control system for freezing and refrigerating equipment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257875A (en) * 1988-08-19 1990-02-27 Daikin Ind Ltd Operation controller for air conditioner
JPH04288453A (en) * 1991-03-15 1992-10-13 Toshiba Corp Freezing cycle device
US5400615A (en) * 1991-07-31 1995-03-28 Thornliebank Industrial Estate Cooling system incorporating a secondary heat transfer circuit
JPH0989390A (en) * 1995-09-29 1997-04-04 Matsushita Refrig Co Ltd Air conditioner
JP2002310464A (en) * 2001-04-05 2002-10-23 Mitsubishi Electric Corp Heat carrier and air conditioner using it
JP2006105437A (en) * 2004-10-01 2006-04-20 Saginomiya Seisakusho Inc Device and system for controlling cooling system
JP2007147267A (en) * 2005-10-28 2007-06-14 Toyo Eng Works Ltd Natural refrigerant cooling system
JP2008304149A (en) * 2007-06-08 2008-12-18 Toyo Eng Works Ltd Cooling system
JP2009174801A (en) * 2008-01-25 2009-08-06 Okamura Corp Central control system for freezing and refrigerating equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103105014A (en) * 2011-11-10 2013-05-15 株式会社前川制作所 Refrigeration system for use in ship
JP2013104574A (en) * 2011-11-10 2013-05-30 Mayekawa Mfg Co Ltd Refrigeration device for fishing boat
CN103105014B (en) * 2011-11-10 2016-08-17 株式会社前川制作所 Refrigeration system for use in ship
KR101786481B1 (en) * 2011-11-10 2017-10-18 마에카와 매뉴팩쳐링 캄파니 리미티드 Refrigeration system for use in ship
JP2013155970A (en) * 2012-01-31 2013-08-15 Mayekawa Mfg Co Ltd Monitoring system for refrigerator
JP2016118385A (en) * 2016-02-02 2016-06-30 株式会社前川製作所 Refrigeration shipping boat

Similar Documents

Publication Publication Date Title
US8745996B2 (en) High-side pressure control for transcritical refrigeration system
JP5595245B2 (en) Refrigeration equipment
US20100100243A1 (en) Refrigerator and control method for the same
JP2010525292A (en) Refrigerant vapor compression system and method in transcritical operation
US10180269B2 (en) Refrigeration device
KR100739195B1 (en) Refrigeration cycle of refrigerator having 2 evaporator capable of precisely controlling temperature
JP5627416B2 (en) Dual refrigeration equipment
US11402134B2 (en) Outdoor unit and control method thereof
WO2010047420A1 (en) Gas injection refrigeration system
KR101890473B1 (en) A system for combining refrigerator and air conditioner, and control method thereof
JP4497915B2 (en) Cooling system
JP2011163713A (en) Refrigeration system
JP2011220559A (en) Refrigerating/air conditioning device
JP5195302B2 (en) Refrigeration air conditioner
JP2009128000A (en) Dual refrigerator
JP2008096072A (en) Refrigerating cycle device
JP2020046157A (en) Refrigeration device
JP2012202590A (en) Refrigerating device
JP5901775B2 (en) Refrigeration equipment
JP2003336918A (en) Cooling device
JP2006125843A (en) Cooling cycle and refrigerator
WO2009061120A3 (en) Control method of refrigerator
JP2004028354A (en) Refrigerator
KR101672625B1 (en) A Reverse cyclic defrosting apparatus and showcase refrigerator
JP4798884B2 (en) Refrigeration system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130312