JP2011196607A - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP2011196607A
JP2011196607A JP2010063766A JP2010063766A JP2011196607A JP 2011196607 A JP2011196607 A JP 2011196607A JP 2010063766 A JP2010063766 A JP 2010063766A JP 2010063766 A JP2010063766 A JP 2010063766A JP 2011196607 A JP2011196607 A JP 2011196607A
Authority
JP
Japan
Prior art keywords
refrigerant
receiver
saturation pressure
carbon dioxide
cooling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010063766A
Other languages
Japanese (ja)
Inventor
Takeshi Takeda
猛志 竹田
Masaki Yasunari
優樹 安成
Saho Ishibashi
紗萌 石橋
Haruhisa Uchida
晴久 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seisakusho KK
Original Assignee
Toyo Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seisakusho KK filed Critical Toyo Seisakusho KK
Priority to JP2010063766A priority Critical patent/JP2011196607A/en
Publication of JP2011196607A publication Critical patent/JP2011196607A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cooling system capable of properly controlling a refrigeration capacity of load-side cooling equipment while suppressing fluctuation of saturated pressure of a COreceiver regardless of heat quantity of the load-side cooling equipment and a cooling capacity of a CO/NHnatural refrigerant cooling system.SOLUTION: In this cooling system 1, a saturated pressure of COliquid refrigerant in the COreceiver 4 is detected by a COpressure sensor 11, and an NHcompressor 7 of an NHrefrigerant circuit is linearly controlled by an inverter 13 to make the saturated pressure of the COliquid refrigerant constant. Thus, the saturated pressure of the COliquid refrigerant in the COreceiver 4 can be controlled constant to the fluctuation of the heat quantity of the load-side cooling equipment 3, and the COliquid refrigerant can be stably fed from a COliquid pump 6. That is, by controlling the saturated pressure in the COreceiver 4 to be constant to the fluctuation of the heat quantity of the load-side cooling equipment 3, the liquid can be stably fed from the COliquid pump 6.

Description

本発明は、冷凍装置や空調装置等に適用される冷却システムに関するものであり、特に、冷凍装置や空調装置等に用いられる二酸化炭素(CO2)レシーバの飽和圧力を制御する冷却システムに関するものである。 The present invention relates to a cooling system applied to a refrigeration apparatus, an air conditioner, and the like, and more particularly to a cooling system that controls the saturation pressure of a carbon dioxide (CO 2 ) receiver used in the refrigeration apparatus, the air conditioner, and the like. is there.

近年、オゾン層の破壊防止や地球温暖化防止対策等の地球環境保全の観点から、冷凍装置や空調装置の冷媒として、フロンに代えて、自然冷媒であってオゾン破壊係数がゼロであり、且つ、地球温暖化係数も限りなくゼロに近いアンモニア(NH3)が用いられるようになってきた。ところが、NH3は人体に有毒であるので、アンモニア冷媒回路の冷熱を直接負荷側へ供給するのではなく、NH3と同様な冷媒ではあるが、毒性のない二酸化炭素(CO2)を冷媒として使用する二酸化炭素(CO2)冷媒回路である2次冷媒回路を介在させて、負荷側へ冷熱を供給する構造のCO2/NH3自然冷媒冷却システムが実用化されてきている(例えば、特許文献1参照)。 In recent years, from the viewpoint of global environmental conservation such as prevention of ozone layer destruction and prevention of global warming, as a refrigerant for refrigeration equipment and air conditioning equipment, instead of Freon, it is a natural refrigerant with an ozone destruction coefficient of zero, and Ammonia (NH 3 ), whose global warming potential is almost zero, has come to be used. However, since NH 3 is toxic to the human body, it does not supply the cold heat of the ammonia refrigerant circuit directly to the load side, but is a refrigerant similar to NH 3 , but uses non-toxic carbon dioxide (CO 2 ) as the refrigerant. A CO 2 / NH 3 natural refrigerant cooling system having a structure for supplying cold heat to a load side through a secondary refrigerant circuit which is a carbon dioxide (CO 2 ) refrigerant circuit to be used has been put into practical use (for example, patents) Reference 1).

このようなCO2/NH3自然冷媒冷却システムにおいては、CO2を冷媒とするCO2冷媒回路は、NH3を冷媒とするNH3冷媒回路により生じる冷熱を凝縮冷熱として利用し、CO2を液化したCO2液冷媒をCO2レシーバに貯蔵させる。そして、このCO2液冷媒をCO2液ポンプで冷凍装置や空調装置等の負荷側冷却設備へ送出する。さらに、該負荷側冷却設備で熱交換されたCO2液冷媒のうち、気化したCO2液冷媒は、CO2/NH3カスケードコンデンサを介して凝縮されてCO2レシーバに戻り、気化されないCO2液冷媒は直接CO2レシーバへ戻るように構成されている。 In such CO 2 / NH 3 natural refrigerant cooling system, CO 2 refrigerant circuit for a CO 2 refrigerant utilizes cold produced by the NH 3 refrigerant circuit for the NH 3 and the refrigerant as a condenser cold, the CO 2 The liquefied CO 2 liquid refrigerant is stored in the CO 2 receiver. Then, the CO 2 liquid refrigerant is sent to a load side cooling facility such as a refrigeration apparatus or an air conditioner by a CO 2 liquid pump. Furthermore, among the CO 2 liquid refrigerant whose heat has been exchanged with the load-side cooling equipment, vaporized CO 2 liquid refrigerant, is condensed through the CO 2 / NH 3 cascade condenser back to CO 2 receiver, not vaporized CO 2 The liquid refrigerant is configured to return directly to the CO 2 receiver.

このとき、CO2レシーバの飽和圧力の制御は、負荷側冷却設備の熱量及び外気進入熱量によって上昇した圧力分のCO2レシーバの飽和圧力を、NH3冷凍サイクルを運転することにより、設定値以下の圧力まで下げている。尚、NH3冷凍サイクルの冷却能力は、NH3冷凍サイクルの低圧側圧力を検知して、段階的な制御(すなわち、段階制御)によってNH3圧縮機の容量制御を行っている。 At this time, the saturation pressure of the CO 2 receiver is controlled by setting the saturation pressure of the CO 2 receiver for the pressure increased by the heat amount of the load-side cooling facility and the outside air entrance heat amount to the set value or less by operating the NH 3 refrigeration cycle. The pressure is lowered. Note that the cooling capacity of the NH 3 refrigeration cycle is controlled by detecting the low-pressure side pressure of the NH 3 refrigeration cycle and controlling the capacity of the NH 3 compressor by stepwise control (that is, step control).

特開2002−243350号公報JP 2002-243350 A

しかしながら、負荷側冷却設備の必要熱量が少ない場合や、複数の冷却器が個別に制御して負荷側冷却設備の熱量が急激に減少する場合には、NH3圧縮機の段階的な容量制御では追従できなくなる場合がある。このような場合は、負荷側冷却設備の熱量に対して、NH3冷凍サイクル側の冷却能力が大きくなり、その結果、CO2レシーバの飽和圧力が急激に低下する。このようにしてCO2レシーバの飽和圧力が急激に低下すると、該CO2レシーバ内のCO2液冷媒でボイリング(沸騰)が発生する。これによって、負荷側冷却設備へCO2液冷媒を供給するためのCO2液ポンプの吸込側でキャビテーション現象が発生する。そのため、CO2/NH3自然冷媒冷却システム側から負荷側冷却設備へのCO2液冷媒の送液が不安定になるおそれがあり、負荷側冷却設備に冷却不良などを発生させる原因となる。 However, when the required heat quantity of the load-side cooling equipment is small, or when the heat quantity of the load-side cooling equipment decreases sharply by controlling multiple coolers individually, the NH3 compressor step-by-step capacity control follows. It may not be possible. In such a case, the cooling capacity on the NH3 refrigeration cycle side increases with respect to the heat amount of the load side cooling facility, and as a result, the saturation pressure of the CO2 receiver rapidly decreases. When the saturation pressure of the thus CO 2 receiver is rapidly reduced, boiling with CO 2 liquid refrigerant in the CO 2 receiver (boiling) occurs. As a result, a cavitation phenomenon occurs on the suction side of the CO 2 liquid pump for supplying the CO 2 liquid refrigerant to the load side cooling facility. For this reason, there is a possibility that the liquid delivery of the CO 2 liquid refrigerant from the CO 2 / NH 3 natural refrigerant cooling system side to the load side cooling facility may become unstable, causing a cooling failure or the like in the load side cooling facility.

そこで、負荷側冷却設備の熱量やCO2/NH3自然冷媒冷却システムの冷却能力の大き
さに関わらず、CO2レシーバの飽和圧力の変動を抑えて該負荷側冷却設備の冷凍能力を適正に制御できる冷却システムを実現させるために解決すべき技術的課題が生じてくるのであり、本発明はこの課題を解決することを目的とする。
Therefore, regardless of the amount of heat in the load-side cooling equipment and the cooling capacity of the CO 2 / NH 3 natural refrigerant cooling system, the fluctuation of the saturation pressure of the CO 2 receiver is suppressed and the refrigeration capacity of the load-side cooling equipment is appropriately adjusted. The technical problem which should be solved in order to implement | achieve the cooling system which can be controlled arises, and this invention aims at solving this problem.

本発明は上記目的を達成するために提案されたものであり、請求項1記載の発明は、一次冷媒/二次冷媒・冷却システムに適用され、前記一次冷媒によって熱交換された二次冷媒を用いて負荷側の冷却器を冷却する冷却システムであって、前記二次冷媒の液体冷媒を貯蔵する二次冷媒レシーバ内の飽和圧力を検出し、該飽和圧力に応じて、前記一次冷媒を圧縮する一次冷媒圧縮機の冷却能力をリニアに制御することにより、前記二次冷媒レシーバ内の飽和圧力を一定に制御することを特徴とする冷却システムを提供する。   The present invention has been proposed to achieve the above object, and the invention according to claim 1 is applied to a primary refrigerant / secondary refrigerant / cooling system, and a secondary refrigerant heat-exchanged by the primary refrigerant is used. A cooling system that cools a load-side cooler by detecting a saturation pressure in a secondary refrigerant receiver that stores the liquid refrigerant of the secondary refrigerant, and compressing the primary refrigerant according to the saturation pressure The cooling system is characterized in that the saturation pressure in the secondary refrigerant receiver is controlled to be constant by linearly controlling the cooling capacity of the primary refrigerant compressor.

この構成によれば、一次冷媒によって熱交換された二次冷媒を用いて負荷側の冷却器を冷却する冷却システムにおいて、二次冷媒の液体冷媒を貯蔵する二次冷媒レシーバ内の飽和圧力を検出し、検出された飽和圧力に応じて、一次冷媒を圧縮する一次冷媒圧縮機の冷却能力をリニアに制御することにより、二次冷媒レシーバ内の飽和圧力を一定に制御している。これにより、二次冷媒レシーバ内の飽和圧力は一次冷媒圧縮機の冷却能力に応じて適正に制御されるので、冷却器の負荷変動による二次冷媒レシーバ内の飽和圧力の急激な低下を回避することができる。   According to this configuration, the saturation pressure in the secondary refrigerant receiver that stores the liquid refrigerant of the secondary refrigerant is detected in the cooling system that cools the load-side cooler using the secondary refrigerant heat-exchanged by the primary refrigerant. Then, the saturation pressure in the secondary refrigerant receiver is controlled to be constant by linearly controlling the cooling capacity of the primary refrigerant compressor that compresses the primary refrigerant in accordance with the detected saturation pressure. As a result, the saturation pressure in the secondary refrigerant receiver is appropriately controlled in accordance with the cooling capacity of the primary refrigerant compressor, so that a sudden drop in the saturation pressure in the secondary refrigerant receiver due to the load fluctuation of the cooler is avoided. be able to.

請求項2記載の発明は、前記二次冷媒レシーバ内の飽和圧力は、該二次冷媒レシーバ内の飽和圧力を検出して周波数制御を行うインバータが前記一次冷媒圧縮機を駆動制御することにより、一定圧力に制御されることを特徴とする請求項1記載の冷却システムを提供する。   In the invention according to claim 2, the saturation pressure in the secondary refrigerant receiver is controlled by an inverter that detects the saturation pressure in the secondary refrigerant receiver and performs frequency control to drive and control the primary refrigerant compressor. The cooling system according to claim 1, wherein the cooling system is controlled to a constant pressure.

この構成によれば、二次冷媒レシーバ内の飽和圧力は、インバータが、二次冷媒レシーバ内の飽和圧力の検出情報に基づいて周波数制御を行いながら一次冷媒圧縮機を駆動制御することにより一定圧力に制御される。このようにして、二次冷媒レシーバ内の飽和圧力に応じてインバータの周波数を可変させて一次冷媒圧縮機を駆動制御するだけで、二次冷媒レシーバ内の飽和圧力を一定に制御することができるため、極めてシンプルな制御系で二次冷媒レシーバ内の圧力制御を行うことが可能となる。   According to this configuration, the saturation pressure in the secondary refrigerant receiver is maintained at a constant pressure by driving the primary refrigerant compressor while the inverter performs frequency control based on the detection information of the saturation pressure in the secondary refrigerant receiver. Controlled. In this way, the saturation pressure in the secondary refrigerant receiver can be controlled to be constant only by driving and controlling the primary refrigerant compressor by varying the frequency of the inverter in accordance with the saturation pressure in the secondary refrigerant receiver. Therefore, it is possible to control the pressure in the secondary refrigerant receiver with a very simple control system.

請求項3記載の発明は、前記二次冷媒レシーバ内の飽和圧力は、該二次冷媒レシーバ内の飽和圧力を検出して2台以上の前記一次冷媒圧縮機を台数制御することにより、一定圧力に制御されることを特徴とする請求項1記載の冷却システムを提供する。   According to a third aspect of the present invention, the saturation pressure in the secondary refrigerant receiver is a constant pressure by detecting the saturation pressure in the secondary refrigerant receiver and controlling the number of the two or more primary refrigerant compressors. The cooling system according to claim 1 is controlled.

この構成によれば、二次冷媒レシーバ内の飽和圧力は、二次冷媒レシーバ内の飽和圧力の検出情報に基づいて一次冷媒圧縮機を台数制御することにより一定圧力に制御される。このようにして、二次冷媒レシーバ内の飽和圧力に応じて一次冷媒圧縮機を台数制御し、しかも各圧縮機がリニアに制御されるので、より精密な制御系で二次冷媒レシーバ内の圧力制御を行うことが可能となる。   According to this configuration, the saturation pressure in the secondary refrigerant receiver is controlled to a constant pressure by controlling the number of primary refrigerant compressors based on the detection information of the saturation pressure in the secondary refrigerant receiver. In this way, the number of primary refrigerant compressors is controlled according to the saturation pressure in the secondary refrigerant receiver, and each compressor is controlled linearly, so the pressure in the secondary refrigerant receiver can be controlled with a more precise control system. Control can be performed.

請求項4記載の発明は、二酸化炭素/アンモニア自然冷媒冷却システムで使用される前記アンモニアを一次側冷媒とし、前記二酸化炭素を二次側冷媒として採用する冷却システムにおいて、前記二酸化炭素の液体冷媒を貯蔵する二酸化炭素レシーバ内の飽和圧力を検出し、検出された飽和圧力に基づいて、前記アンモニアを圧縮するアンモニア圧縮機の冷却能力をリニアに制御することにより、前記二酸化炭素レシーバ内の飽和圧力を一定に制御することを特徴とする冷却システムを提供する。   The invention according to claim 4 is a cooling system in which the ammonia used in the carbon dioxide / ammonia natural refrigerant cooling system is used as a primary refrigerant and the carbon dioxide is used as a secondary refrigerant. The saturation pressure in the carbon dioxide receiver is detected by detecting the saturation pressure in the stored carbon dioxide receiver and linearly controlling the cooling capacity of the ammonia compressor that compresses the ammonia based on the detected saturation pressure. Provided is a cooling system characterized by constant control.

この構成によれば、アンモニア冷媒によって熱交換された二酸化炭素冷媒を用いて負荷側の冷却器を冷却する冷却システムにおいて、二酸化炭素の液体冷媒を貯蔵する二酸化炭素レシーバ内の飽和圧力を検出し、検出された飽和圧力に応じて、アンモニア冷媒を圧縮するアンモニア圧縮機の冷却能力をリニアに制御することにより、二酸化炭素レシーバ内の飽和圧力を一定に制御している。これにより、二酸化炭素レシーバ内の飽和圧力はアンモニア圧縮機の冷却能力に応じて適正に制御されるので、冷却器の負荷変動による二酸化炭素レシーバ内の飽和圧力の急激な低下を回避することができる。   According to this configuration, in the cooling system that cools the load-side cooler using the carbon dioxide refrigerant heat-exchanged by the ammonia refrigerant, the saturation pressure in the carbon dioxide receiver that stores the liquid refrigerant of carbon dioxide is detected, According to the detected saturation pressure, the saturation pressure in the carbon dioxide receiver is controlled to be constant by linearly controlling the cooling capacity of the ammonia compressor that compresses the ammonia refrigerant. Thereby, since the saturation pressure in the carbon dioxide receiver is appropriately controlled according to the cooling capacity of the ammonia compressor, it is possible to avoid a sudden decrease in the saturation pressure in the carbon dioxide receiver due to the load fluctuation of the cooler. .

請求項5記載の発明は、前記二酸化炭素レシーバ内の飽和圧力は、該二酸化炭素レシーバ内の飽和圧力を検出して周波数制御を行うインバータが前記アンモニア圧縮機を駆動制御することにより、一定圧力に制御されることを特徴とする請求項4記載の冷却システムを提供する。   According to a fifth aspect of the present invention, the saturation pressure in the carbon dioxide receiver is made constant by an inverter that detects the saturation pressure in the carbon dioxide receiver and performs frequency control to drive and control the ammonia compressor. 5. The cooling system according to claim 4, wherein the cooling system is controlled.

この構成によれば、二酸化炭素レシーバ内の飽和圧力は、インバータが、二酸化炭素レシーバ内の飽和圧力の検出情報に基づいて周波数制御を行いながらアンモニア圧縮機を駆動制御することにより一定圧力に制御される。このようにして、二酸化炭素レシーバ内の飽和圧力に応じてインバータの周波数を可変させてアンモニア圧縮機を駆動制御するだけで、二酸化炭素レシーバ内の飽和圧力を一定に制御することができるため、極めてシンプルな制御系で二酸化炭素レシーバ内の圧力制御を行うことが可能となる。   According to this configuration, the saturation pressure in the carbon dioxide receiver is controlled to a constant pressure by driving and controlling the ammonia compressor while the inverter performs frequency control based on the detection information of the saturation pressure in the carbon dioxide receiver. The In this way, the saturation pressure in the carbon dioxide receiver can be controlled to be constant by simply varying the frequency of the inverter in accordance with the saturation pressure in the carbon dioxide receiver and driving and controlling the ammonia compressor. It becomes possible to control the pressure in the carbon dioxide receiver with a simple control system.

請求項6記載の発明は、前記二酸化炭素レシーバ内の飽和圧力は、該二酸化炭素レシーバ内の飽和圧力を検出して2台以上の前記アンモニア圧縮機を台数制御することにより、一定圧力に制御されることを特徴とする請求項4、5記載の冷却システムを提供する。   In the invention according to claim 6, the saturation pressure in the carbon dioxide receiver is controlled to a constant pressure by detecting the saturation pressure in the carbon dioxide receiver and controlling the number of the two or more ammonia compressors. The cooling system according to claims 4 and 5 is provided.

この構成によれば、二酸化炭素レシーバ内の飽和圧力は、二酸化炭素レシーバ内の飽和圧力の検出情報に基づいてアンモニア圧縮機を台数制御することにより一定圧力に制御される。このようにして、二酸化炭素レシーバ内の飽和圧力に応じてアンモニア圧縮機を台数制御し、しかも各圧縮機がリニアに制御されるので、より精密な制御系で二酸化炭素レシーバ内の圧力制御を行うことが可能となる。   According to this configuration, the saturation pressure in the carbon dioxide receiver is controlled to a constant pressure by controlling the number of ammonia compressors based on the detection information of the saturation pressure in the carbon dioxide receiver. In this way, the number of ammonia compressors is controlled according to the saturation pressure in the carbon dioxide receiver, and each compressor is controlled linearly, so the pressure control in the carbon dioxide receiver is performed with a more precise control system. It becomes possible.

請求項7記載の発明は、前記二酸化炭素レシーバ内の飽和圧力を一定に制御することにより、二酸化炭素液冷媒を負荷側の冷却器へ送出するための二酸化炭素液ポンプのキャビテーションを防止することを特徴とする請求項5、6記載の冷却システムを提供する。   The invention according to claim 7 prevents cavitation of the carbon dioxide liquid pump for sending the carbon dioxide liquid refrigerant to the load side cooler by controlling the saturation pressure in the carbon dioxide receiver to be constant. A cooling system according to claims 5 and 6 is provided.

この構成によれば、二酸化炭素レシーバ内の飽和圧力を一定に制御することで、二酸化炭素液ポンプは、キャビテーションを起こすことなく、二酸化炭素液冷媒を負荷側の冷却器へ安定して送出することができる。   According to this configuration, by controlling the saturation pressure in the carbon dioxide receiver to be constant, the carbon dioxide liquid pump can stably send the carbon dioxide liquid refrigerant to the load side cooler without causing cavitation. Can do.

請求項8記載の発明は、前記二酸化炭素レシーバ内の飽和圧力を一定に制御することにより、前記冷却器内の二酸化炭素の蒸発圧力を一定に制御することを特徴とする請求項5、6記載の冷却システムを提供する。   The invention according to claim 8 controls the evaporation pressure of carbon dioxide in the cooler to be constant by controlling the saturation pressure in the carbon dioxide receiver to be constant. Provide a cooling system.

この構成によれば、二酸化炭素レシーバ内の飽和圧力を一定に制御することで、二酸化炭素液冷媒を安定的に冷却器へ送出することができるので、冷却器内の二酸化炭素の蒸発圧力を一定に制御することが可能となる。   According to this configuration, since the carbon dioxide liquid refrigerant can be stably sent to the cooler by controlling the saturation pressure in the carbon dioxide receiver to be constant, the evaporation pressure of carbon dioxide in the cooler is kept constant. It becomes possible to control to.

請求項9記載の発明は、前記冷却器内の冷し込みによる負荷変動に追従して前記二酸化炭素レシーバ内の飽和圧力を可変制御することを特徴とする請求項4、5、6記載の冷却システムを提供する。   According to a ninth aspect of the present invention, the saturation pressure in the carbon dioxide receiver is variably controlled following the load fluctuation caused by cooling in the cooler. Provide a system.

この構成によれば、冷却器内の冷し込みによって負荷変動が発生した場合でも、その負荷変動に応じて二酸化炭素レシーバ内の飽和圧力を可変制御しながら、適正な容量の二酸化炭素冷媒を冷却器へ送出することができる。   According to this configuration, even when a load change occurs due to cooling in the cooler, an appropriate volume of carbon dioxide refrigerant is cooled while variably controlling the saturation pressure in the carbon dioxide receiver according to the load change. Can be sent to the instrument.

請求項1記載の発明によれば、二次冷媒を貯蔵する二次冷媒レシーバ内の飽和圧力を検出し、その飽和圧力に応じて、一次冷媒を圧縮する一次冷媒圧縮機の冷却能力をリニアに制御することにより、二次冷媒レシーバ内の飽和圧力を一定に制御している。これによって、二次冷媒レシーバ内の飽和圧力は一次冷媒圧縮機の冷却能力に応じて適正に制御されるので、冷却器の負荷変動による二次冷媒レシーバ内の飽和圧力の急激な低下を回避することができる。   According to the first aspect of the present invention, the saturation pressure in the secondary refrigerant receiver that stores the secondary refrigerant is detected, and the cooling capacity of the primary refrigerant compressor that compresses the primary refrigerant is linearly determined according to the saturation pressure. By controlling, the saturation pressure in the secondary refrigerant receiver is controlled to be constant. As a result, the saturation pressure in the secondary refrigerant receiver is appropriately controlled in accordance with the cooling capacity of the primary refrigerant compressor, so that a sudden drop in the saturation pressure in the secondary refrigerant receiver due to the load fluctuation of the cooler is avoided. be able to.

請求項2記載の発明によれば、二次冷媒レシーバ内の飽和圧力に応じてインバータの周波数を可変させて一次冷媒圧縮機を駆動制御するだけで、二次冷媒レシーバ内の飽和圧力を一定に制御することができるので、請求項1記載の発明の効果に加えて、極めてシンプルな制御系で二次冷媒レシーバ内の圧力制御を行うことが可能となる。   According to the second aspect of the present invention, the saturation pressure in the secondary refrigerant receiver can be kept constant only by driving and controlling the primary refrigerant compressor by varying the frequency of the inverter in accordance with the saturation pressure in the secondary refrigerant receiver. Since the control can be performed, in addition to the effect of the first aspect of the invention, it is possible to control the pressure in the secondary refrigerant receiver with a very simple control system.

請求項3記載の発明によれば、二次冷媒レシーバ内の飽和圧力に応じて一次冷媒圧縮機を台数制御し、しかも各圧縮機がリニアに制御されるので、より精密な制御系で二次冷媒レシーバ内の圧力制御を行うことが可能となる。   According to the invention described in claim 3, since the number of primary refrigerant compressors is controlled according to the saturation pressure in the secondary refrigerant receiver, and each compressor is controlled linearly, the secondary control can be performed with a more precise control system. It becomes possible to control the pressure in the refrigerant receiver.

請求項4記載の発明によれば、二酸化炭素レシーバ内の飽和圧力はアンモニア圧縮機の冷却能力に応じて適正に制御されるので、冷却器の負荷変動による二酸化炭素レシーバ内の飽和圧力の急激な低下を回避することができる。   According to the invention described in claim 4, since the saturation pressure in the carbon dioxide receiver is appropriately controlled according to the cooling capacity of the ammonia compressor, the saturation pressure in the carbon dioxide receiver due to the load fluctuation of the cooler is abrupt. A decrease can be avoided.

請求項5記載の発明によれば、二酸化炭素レシーバ内の飽和圧力に応じてインバータの周波数を可変させてアンモニア圧縮機を駆動制御するだけで、二酸化炭素レシーバ内の飽和圧力を一定に制御することができるので、請求項3記載の発明の効果に加えて、極めてシンプルな制御系で二酸化炭素レシーバ内の圧力制御を行うことが可能となる。   According to the fifth aspect of the present invention, the saturation pressure in the carbon dioxide receiver is controlled to be constant only by driving and controlling the ammonia compressor by varying the frequency of the inverter in accordance with the saturation pressure in the carbon dioxide receiver. Therefore, in addition to the effect of the invention according to claim 3, it is possible to control the pressure in the carbon dioxide receiver with a very simple control system.

請求項6記載の発明によれば、二酸化炭素レシーバ内の飽和圧力に応じてアンモニア圧縮機を台数制御し、しかも各圧縮機がリニアに制御されるので、より精密な制御系で二酸化炭素レシーバ内の圧力制御を行うことが可能となる。   According to the invention described in claim 6, since the number of ammonia compressors is controlled according to the saturation pressure in the carbon dioxide receiver, and each compressor is controlled linearly, the carbon dioxide receiver has a more precise control system. It becomes possible to perform pressure control.

請求項7記載の発明によれば、二酸化炭素レシーバ内の飽和圧力を一定に制御しているので、請求項4記載の発明の効果に加えて、二酸化炭素液ポンプは、キャビテーションを起こすことなく、二酸化炭素液冷媒を負荷側の冷却器へ安定して送出することができる。   According to the invention of claim 7, since the saturation pressure in the carbon dioxide receiver is controlled to be constant, in addition to the effect of the invention of claim 4, the carbon dioxide liquid pump does not cause cavitation, The carbon dioxide liquid refrigerant can be stably delivered to the cooler on the load side.

請求項8記載の発明によれば、二酸化炭素レシーバ内の飽和圧力を一定に制御し、二酸化炭素液冷媒を安定的に冷却器へ送出しているので、請求項4又は5記載の発明の効果に加えて、冷却器内の二酸化炭素液の蒸発圧力を一定に制御することが可能となる。   According to the invention described in claim 8, since the saturation pressure in the carbon dioxide receiver is controlled to be constant and the carbon dioxide liquid refrigerant is stably delivered to the cooler, the effect of the invention described in claim 4 or 5 is achieved. In addition, the evaporation pressure of the carbon dioxide liquid in the cooler can be controlled to be constant.

請求項9記載の発明によれば、二酸化炭素レシーバ内の飽和圧力を一定に制御しているので、請求項4、5、又は6記載の効果に加えて、冷却器内の冷し込みによって負荷変動が発生した場合でも、その負荷変動に応じて二酸化炭素レシーバ内の飽和圧力を可変制御しながら、適正な容量の二酸化炭素冷媒を冷却器へ送出することができる。   According to the ninth aspect of the invention, since the saturation pressure in the carbon dioxide receiver is controlled to be constant, in addition to the effect of the fourth, fifth, or sixth aspect, the load is reduced by cooling in the cooler. Even when fluctuations occur, an appropriate volume of carbon dioxide refrigerant can be delivered to the cooler while variably controlling the saturation pressure in the carbon dioxide receiver according to the load fluctuation.

CO2/NH3自然冷媒冷却システムと負荷側冷却設備とによって構成される本発明の冷却システムの構成図。Configuration diagram of a cooling system of the present invention constituted by a CO 2 / NH 3 natural refrigerant cooling system and a load-side cooling equipment.

本発明は、負荷側冷却設備の熱量やCO2/NH3自然冷媒冷却システムの冷却能力の大きさに関わらず、CO2レシーバの飽和圧力の変動を抑えて負荷側冷却設備の冷凍能力を適正に制御できる冷却システムを実現させるという目的を達成するために、一次冷媒/二次冷媒・冷却システムに適用され、前記一次冷媒によって熱交換された二次冷媒を用いて負荷側の冷却器を冷却する冷却システムであって、前記二次冷媒の液体冷媒を貯蔵する二次冷媒レシーバ内の飽和圧力を検出し、該飽和圧力に応じて、前記一次冷媒を圧縮する一次冷媒圧縮機の冷却能力をリニアに制御することにより、前記二次冷媒レシーバ内の飽和圧力を一定に制御するように構成したことによって実現した。 Regardless of the amount of heat of the load-side cooling facility or the cooling capacity of the CO 2 / NH 3 natural refrigerant cooling system, the present invention suppresses fluctuations in the saturation pressure of the CO 2 receiver and optimizes the refrigeration capacity of the load-side cooling facility. In order to achieve the objective of realizing a controllable cooling system, the load-side cooler is cooled using a secondary refrigerant applied to the primary refrigerant / secondary refrigerant / cooling system and heat-exchanged by the primary refrigerant. A cooling system that detects a saturation pressure in a secondary refrigerant receiver that stores the liquid refrigerant of the secondary refrigerant and compresses the primary refrigerant according to the saturation pressure. This is realized by controlling the saturation pressure in the secondary refrigerant receiver to be constant by controlling linearly.

以下、図1を参照して、本発明の冷却システムに係る好適な一実施例を説明する。図1は、CO2/NH3自然冷媒冷却システムと負荷側冷却設備とによって構成される本発明の冷却システムの構成図である。 Hereinafter, a preferred embodiment according to the cooling system of the present invention will be described with reference to FIG. FIG. 1 is a configuration diagram of a cooling system according to the present invention including a CO 2 / NH 3 natural refrigerant cooling system and a load-side cooling facility.

図1において、冷却システム1は、CO2/NH3自然冷媒冷却システムを構成するCO2/NH3ユニット2と、冷凍装置や空調装置などの負荷側冷却設備3とによって構成されている。CO2/NH3ユニット2は、CO2液冷媒を貯蔵するCO2レシーバ4、NH3液の蒸発によるCO2ガスを凝縮させると共に、負荷側冷却設備3での熱交換で気化したCO2冷媒を凝縮させるCO2/NH3カスケードコンデンサ5、CO2液冷媒を負荷側冷却設備3へ送出するCO2液ポンプ6、NH3ガスを圧縮するNH3圧縮機7、NH3ガスを凝縮させるNH3凝縮機8、凝縮されたNH3ガスを貯蔵するNH3レシーバ9、NH3ガスを減圧するNH3膨張弁10、CO2レシーバ4内のCO2液冷媒の飽和圧力を検知するCO2圧力センサ11、CO2圧力センサ11からの圧力検知情報に基づいてCO2レシーバ4内のCO2液冷媒の飽和圧力を制御するCO2圧力調節器12、及び周波数を変化させてNH3圧縮機7の冷却能力の容量をリニア(比例的)に制御するインバータ13によって構成されている。また、負荷側冷却設備3は、冷却器14と、該冷却器14へ供給するCO2冷媒液の流量を制御するCO2流量調整弁15とよって構成されている。 In FIG. 1, the cooling system 1 includes a CO 2 / NH 3 unit 2 constituting a CO 2 / NH 3 natural refrigerant cooling system, and a load side cooling facility 3 such as a refrigeration apparatus or an air conditioner. CO 2 / NH 3 unit 2 together to condense the CO 2 gas due to evaporation of the CO 2 receiver 4, NH 3 solution for storing CO 2 liquid refrigerant, CO 2 refrigerant is vaporized in heat exchange with the load-side cooling equipment 3 CO 2 / NH 3 cascade condenser 5, CO 2 liquid NH 3 compressor 7 the refrigerant to compress the CO 2 pump 6, the NH 3 gas to be sent to the load side cooling equipment 3 for condensing, NH condensing the NH 3 gas 3 condenser 8, CO 2 pressure for detecting the saturation pressure of CO 2 liquid refrigerant condensed NH 3 NH 3 receiver 9 for storing gas, NH 3 NH 3 expansion valve 10 for decompressing the gas, CO 2 receiver 4 sensor 11, CO 2 pressure CO 2 pressure regulator 12 for controlling the saturation pressure of CO 2 liquid refrigerant in the CO 2 receiver 4 on the basis of the pressure detection information from the sensor 11, and the frequency is changed by NH 3 compressor 7 Capacity of cooling capacity It is constituted by an inverter 13 for controlling the near (proportionally). The load-side cooling facility 3 includes a cooler 14 and a CO 2 flow rate adjustment valve 15 that controls the flow rate of the CO 2 refrigerant liquid supplied to the cooler 14.

また、冷却システム1におけるCO2/NH3自然冷媒冷却系統のCO2冷媒側は、CO2レシーバ4、CO2/NH3カスケードコンデンサ5、CO2液ポンプ6、冷却器14、及びCO2流量調整弁15の各種機器によって構成され、図1に示すような配管系統でCO2冷媒回路(2次冷媒回路)が接続されている。   The CO 2 refrigerant side of the CO 2 / NH 3 natural refrigerant cooling system in the cooling system 1 is composed of various devices such as a CO 2 receiver 4, a CO 2 / NH 3 cascade capacitor 5, a CO 2 liquid pump 6, a cooler 14, and a CO 2 flow rate adjusting valve 15. A CO2 refrigerant circuit (secondary refrigerant circuit) is connected by a piping system as shown in FIG.

さらに、冷却システム1におけるCO2/NH3自然冷媒冷却系統のNH3冷媒側は、NH3圧縮機7、NH3凝縮器8、NH3レシーバ9、NH3膨張弁10、及びCO2/NH3カスケードコンデンサ5によって構成され、図1に示すような配管系統でNH3冷媒回路(1次冷媒回路)が接続されている。 Further, the NH 3 refrigerant side of the CO 2 / NH 3 natural refrigerant cooling system in the cooling system 1 is an NH 3 compressor 7, an NH 3 condenser 8, an NH 3 receiver 9, an NH 3 expansion valve 10, and a CO 2 / NH 3 cascade. An NH 3 refrigerant circuit (primary refrigerant circuit) is connected by a piping system as shown in FIG.

そして、NH3圧縮機7で圧縮されたNH3ガスは、NH3凝縮器8で凝縮されてNH3レシーバ9に蓄えられた後、NH3膨張弁10で減圧されてCO2/NH3カスケードコンデンサ5へ供給される。 Then, the NH 3 gas compressed by the NH 3 compressor 7 is condensed by the NH 3 condenser 8 and stored in the NH 3 receiver 9, and then depressurized by the NH 3 expansion valve 10 to be CO 2 / NH 3 cascade. It is supplied to the capacitor 5.

一方、CO2ガスは、CO2/NH3カスケードコンデンサ5におけるNH3液の蒸発によって凝縮されてCO2冷媒液となり、該CO2冷媒液はCO2レシーバ4に蓄えられた後にCO2液ポンプ3によって負荷側冷却設備3の冷却器14へ供給される。 On the other hand, CO 2 gas, CO 2 / NH 3 is condensed by evaporation of the NH 3 solution in the cascade condenser 5 becomes CO 2 refrigerant liquid, CO 2 pump after the CO 2 refrigerant liquid stored in the CO 2 receiver 4 3 is supplied to the cooler 14 of the load side cooling facility 3.

ここで、CO2レシーバ4内のCO2液冷媒の飽和圧力の制御は次のようにして行われる。すなわち、CO2レシーバ4内のCO2液冷媒の飽和圧力は、CO2レシーバ4に付設されたCO2圧力センサ11によって常時検知される。さらに、CO2圧力センサ11の圧力検知情報はCO2圧力調節器12へ送信される。 Here, the saturation pressure of the CO 2 liquid refrigerant in the CO 2 receiver 4 is controlled as follows. That is, the saturation pressure of CO 2 liquid refrigerant in the CO 2 receiver 4 is detected at all times by the CO 2 pressure sensor 11 that is attached to the CO 2 receiver 4. Further, the pressure detection information of the CO 2 pressure sensor 11 is transmitted to the CO 2 pressure regulator 12.

これにより、CO2圧力調節器12は、CO2圧力センサ11からの圧力検知情報に基づいて、CO2レシーバ4内のCO2液冷媒の飽和圧力を、CO2圧力調節器12によって予め設定された圧力に保持するように、インバータ13の周波数を変化させることにより、NH3圧縮機7の冷却能力の容量をリニア(比例的)に制御する。言い換えると、CO2圧力調節器12は、CO2圧力センサ11からの圧力検知情報に基づいて、インバータ13の周波数を可変制御させ、NH3圧縮機7の冷却能力の容量に応じてCO2レシーバ4内のCO2液冷媒の飽和圧力を適正に変化させる。 Thus, CO 2 pressure regulator 12 based on the pressure detection information from the CO 2 pressure sensor 11, the saturation pressure of CO 2 liquid refrigerant in the CO 2 receiver 4 are set in advance by the CO 2 pressure regulator 12 The capacity of the cooling capacity of the NH 3 compressor 7 is controlled linearly (proportional) by changing the frequency of the inverter 13 so as to maintain the pressure. In other words, the CO 2 pressure regulator 12 variably controls the frequency of the inverter 13 based on the pressure detection information from the CO 2 pressure sensor 11, and the CO 2 receiver according to the capacity of the cooling capacity of the NH 3 compressor 7. The saturation pressure of the CO 2 liquid refrigerant in 4 is changed appropriately.

このようにして、CO2レシーバ4内のCO2液冷媒の飽和圧力を一定に制御することにより、CO2レシーバ4内のCO2液冷媒の飽和液中でのボイリングが抑えられる。従って、CO2レシーバ4内におけるCO2液冷媒の飽和液のボイリングが抑えられることにより、CO2液ポンプ6の吸込み側でのキャビテーションを防止することができる。その結果、CO2液ポンプ6は負荷側冷却設備3の冷却器14へ安定したCO2液冷媒を供給することができる。 In this way, by controlling the saturation pressure of CO 2 liquid refrigerant in the CO 2 receiver 4 constant boiling of a saturated solution of CO 2 liquid refrigerant in the CO 2 receiver 4 is suppressed. Therefore, by boiling saturated solution of CO 2 liquid refrigerant in CO 2 receiver 4 is suppressed, it is possible to prevent cavitation at the suction side of the CO2 pump 6. As a result, CO2 pump 6 is capable of providing a stable CO 2 liquid refrigerant to the cooler 14 of the load-side cooling equipment 3.

このようにしてCO2レシーバ4内のCO2液冷媒の飽和圧力を一定に保持することにより、負荷側冷却設備3の冷却器14へ供給されるCO2液冷媒の飽和圧力が一定となり、CO2蒸発圧力も一定となる。このような制御は、CO2圧力センサ11とCO2圧力調節器12とインバータ13とによるフィードバック制御によって行われているので、負荷側冷却設備3における冷却器14の熱量の変化に関係なく、CO2/NH3自然冷媒冷却系統のシステム全体の運転条件を一定に維持することが可能となる。 By holding the saturation pressure of CO 2 liquid refrigerant in the manner in CO 2 receiver 4 constant, the saturation pressure of CO 2 liquid refrigerant supplied to the cooler 14 of the load-side cooling equipment 3 is constant, CO 2 Evaporation pressure is also constant. Such control is performed by feedback control by the CO 2 pressure sensor 11, the CO 2 pressure regulator 12, and the inverter 13, and therefore, regardless of the change in the heat quantity of the cooler 14 in the load side cooling facility 3, the CO 2 It becomes possible to maintain the operating conditions of the entire system of the 2 / NH 3 natural refrigerant cooling system constant.

以上説明した内容を要約すると、本発明の冷却システム1は、CO2圧力センサ11によってCO2レシーバ4内のCO2液冷媒の飽和圧力を検知し、CO2液冷媒の飽和圧力が一定になるように、NH3冷媒回路のNH3圧縮機7をインバータ13によってリニアに制御している。これにより、負荷側冷却設備3の熱量の変化に対して、CO2レシーバ4内のCO2液冷媒の飽和圧力を一定に制御することができ、且つ、CO2液ポンプ6からCO2液冷媒を安定して送液することができる。言い換えると、負荷側冷却設備3の熱量の変化に対して、CO2レシーバ4内の飽和圧力を一定に制御することで、CO2液ポンプ6の安定送液を可能とする飽和圧力制御方式を実現することができる。 To summarize the contents described above, the cooling system 1 of the present invention detects the saturation pressure of CO 2 liquid refrigerant in the CO 2 receiver 4 by CO 2 pressure sensor 11, the saturation pressure of CO 2 liquid refrigerant is constant Thus, the NH 3 compressor 7 of the NH 3 refrigerant circuit is controlled linearly by the inverter 13. Thus, with respect to the change amount of heat in the load-side cooling equipment 3, the saturation pressure of CO 2 liquid refrigerant in the CO 2 receiver 4 can the control constant, and, CO 2 liquid refrigerant from the CO 2 pump 6 Can be delivered stably. In other words, a saturation pressure control system that enables stable liquid feeding of the CO 2 liquid pump 6 by controlling the saturation pressure in the CO 2 receiver 4 to be constant with respect to changes in the amount of heat of the load side cooling facility 3. Can be realized.

また、このようにしてCO2レシーバ4内の飽和圧力を一定に制御することで、CO2レシーバ4内の飽和液中でのボイリングを抑えることができるため、CO2液ポンプ6のキャビテーションを防止して負荷側へCO2飽和液を安定して供給することが可能となる。 Moreover, since the boiling in the saturated liquid in the CO 2 receiver 4 can be suppressed by controlling the saturation pressure in the CO 2 receiver 4 in this manner, cavitation of the CO 2 liquid pump 6 is prevented. Thus, the CO 2 saturated liquid can be stably supplied to the load side.

以上説明したような作用により、本発明の冷却システムは、負荷側冷却設備3の熱量に対して、冷却能力に余裕がある場合や負荷変動が大きい場合でも、CO2レシーバ4内の飽和圧力を一定に制御して冷却不良の防止を実現することができる。また、CO2液ポンプが安定した送液を行うことによって冷却不良の防止を実現させることもできる。さらに、本発明の冷却システムに適用されるCO2/NH3自然冷媒冷却システムにおいては、圧力変化の大きいCO2液冷媒を使用しても、CO2レシーバ4内の飽和圧力の変動を抑えることでCO2液冷媒を安定的に負荷側冷却設備3へ供給することができる。 Due to the operation as described above, the cooling system of the present invention can reduce the saturation pressure in the CO 2 receiver 4 even when the cooling capacity is large or the load fluctuation is large with respect to the heat amount of the load side cooling facility 3. It is possible to prevent the cooling failure by controlling to be constant. In addition, it is possible to prevent the cooling failure by allowing the CO 2 liquid pump to send liquid stably. Further, in the CO 2 / NH 3 natural refrigerant cooling system applied to the cooling system of the present invention, even if a CO 2 liquid refrigerant having a large pressure change is used, fluctuations in saturation pressure in the CO 2 receiver 4 are suppressed. Thus, the CO 2 liquid refrigerant can be stably supplied to the load-side cooling facility 3.

すなわち、本発明の冷却システムにおいては、CO2液冷媒の飽和圧力を一定に保持するように、NH3圧縮機7の冷凍能力の容量をリニアに制御することで、負荷側冷却設備3の冷却器14の熱量に変動が生じても、該冷却器14へ安定したCO2液冷媒の飽和液を供給することが可能となる。その結果、CO2/NH3自然冷媒冷却システムを構成するCO2/NH3ユニット2と、冷却器4を含む負荷側冷却設備3とで構成された冷却システム1全体の運転条件を一定にすることができる。 That is, in the cooling system of the present invention, the cooling of the load-side cooling facility 3 is controlled by linearly controlling the capacity of the refrigeration capacity of the NH 3 compressor 7 so as to keep the saturation pressure of the CO 2 liquid refrigerant constant. Even if the heat quantity of the cooler 14 fluctuates, it is possible to supply a stable saturated liquid of CO 2 liquid refrigerant to the cooler 14. As a result, the operating conditions of the entire cooling system 1 constituted by the CO 2 / NH 3 unit 2 constituting the CO 2 / NH 3 natural refrigerant cooling system and the load side cooling equipment 3 including the cooler 4 are made constant. be able to.

言い換えると、冷凍装置や空調装置等の負荷側冷却設備3に適用されるCO2/NH3自然冷媒冷却システムにおいては、NH3冷凍サイクルにて冷却・凝縮させたCO2液冷媒をCO2液ポンプ6によって負荷側冷却設備3へ供給している。このとき、従来の技術では、冷凍装置や空調装置等の負荷が低減したときにCO2レシーバ4内のCO2液冷媒の飽和圧が急激に低下することにより、CO2レシーバ4内のCO2液冷媒にボイリングが発生して、CO2液ポンプ6から送出されるCO2液冷媒の送液力が不安定になる。ところが、本発明の冷却システムでは、CO2/NH3自然冷媒循環方式において、CO2レシーバ4内のCO2液冷媒の飽和圧力が一定となるように冷却能力を制御することにより、負荷側冷却設備3の負荷低減時においても、CO2液ポンプ6から負荷側冷却設備3へ安定して送液を行うことができる。 In other words, in the CO 2 / NH 3 natural refrigerant cooling system applied to the load side cooling facility 3 such as a refrigeration apparatus or an air conditioner, the CO 2 liquid refrigerant cooled and condensed in the NH 3 refrigeration cycle is converted into a CO 2 liquid. It is supplied to the load side cooling facility 3 by the pump 6. In this case, in the prior art, by the saturation pressure of CO 2 liquid refrigerant CO 2 receiver 4 when a reduced load, such as a refrigeration apparatus or air-conditioning device is rapidly reduced, CO 2 in the CO 2 receiver 4 Boiling occurs in the liquid refrigerant, and the liquid feeding force of the CO 2 liquid refrigerant delivered from the CO 2 liquid pump 6 becomes unstable. However, in the cooling system of the present invention, the CO 2 / NH 3 natural coolant circulation system, by the saturation pressure of CO 2 liquid refrigerant in the CO 2 receiver 4 controls the cooling capacity to be constant, the load-side cooling Even when the load on the facility 3 is reduced, the liquid can be stably fed from the CO 2 liquid pump 6 to the load-side cooling facility 3.

以上、本発明に係る冷却システムの具体的な実施例を説明したが、本発明は上記実施例に限定されるものではなく、本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。   As mentioned above, although the specific Example of the cooling system based on this invention was described, this invention is not limited to the said Example, A various change can be made unless it deviates from the mind of this invention, The present invention naturally extends to the modified one.

本発明の冷却システムは、一次冷媒/二次冷媒・冷却システムやCO2/NH3自然冷媒冷却システムによる冷却方式を採用する冷凍装置や空調装置等の分野で有効に利用することができる。 The cooling system of the present invention can be effectively used in fields such as a refrigeration apparatus and an air conditioner that employ a cooling system using a primary refrigerant / secondary refrigerant / cooling system or a CO 2 / NH 3 natural refrigerant cooling system.

1 冷却システム
2 CO2/NH3ユニット
3 負荷側冷却設備
4 CO2レシーバ
5 CO2/NH3カスケードコンデンサ
6 CO2液ポンプ
7 NH3圧縮機
8 NH3凝縮機
9 NH3レシーバ
10 NH3膨張弁
11 CO2圧力センサ
12 CO2圧力調節器
13 インバータ
14 冷却器
15 CO2 流量調整弁



1 Cooling System 2 CO 2 / NH 3 Unit 3 Load-side Cooling Equipment 4 CO 2 Receiver 5 CO 2 / NH 3 Cascade Capacitor 6 CO 2 Liquid Pump 7 NH 3 Compressor 8 NH 3 Condenser 9 NH 3 Receiver 10 NH 3 Expansion Valve 11 CO 2 pressure sensor 12 CO 2 pressure regulator 13 Inverter 14 Cooler 15 CO 2 flow rate regulating valve



Claims (9)

一次冷媒/二次冷媒・冷却システムに適用され、前記一次冷媒によって熱交換された二次冷媒を用いて負荷側の冷却器を冷却する冷却システムであって、
前記二次冷媒の液体冷媒を貯蔵する二次冷媒レシーバ内の飽和圧力を検出し、該飽和圧力に応じて、前記一次冷媒を圧縮する一次冷媒圧縮機の冷却能力をリニアに制御することにより、前記二次冷媒レシーバ内の飽和圧力を一定に制御することを特徴とする冷却システム。
A cooling system that is applied to a primary refrigerant / secondary refrigerant / cooling system and cools a load-side cooler using a secondary refrigerant heat-exchanged by the primary refrigerant,
By detecting the saturation pressure in the secondary refrigerant receiver that stores the liquid refrigerant of the secondary refrigerant, and linearly controlling the cooling capacity of the primary refrigerant compressor that compresses the primary refrigerant according to the saturation pressure, The cooling system characterized by controlling the saturation pressure in the said secondary refrigerant receiver uniformly.
前記二次冷媒レシーバ内の飽和圧力は、該二次冷媒レシーバ内の飽和圧力を検出して周波数制御を行うインバータが前記一次冷媒圧縮機を駆動制御することにより、一定圧力に制御されることを特徴とする請求項1記載の冷却システム。   The saturation pressure in the secondary refrigerant receiver is controlled to a constant pressure by driving and controlling the primary refrigerant compressor by an inverter that detects the saturation pressure in the secondary refrigerant receiver and performs frequency control. The cooling system according to claim 1, wherein: 前記二次冷媒レシーバ内の飽和圧力は、該二次冷媒レシーバ内の飽和圧力を検出して2台以上の一次冷媒圧縮機を台数制御することにより、一定圧力に制御されることを特徴とする請求項1、2記載の冷却システム。   The saturation pressure in the secondary refrigerant receiver is controlled to a constant pressure by detecting the saturation pressure in the secondary refrigerant receiver and controlling the number of two or more primary refrigerant compressors. The cooling system according to claim 1 or 2. 二酸化炭素/アンモニア自然冷媒冷却システムで使用される前記アンモニアを一次側冷媒とし、前記二酸化炭素を二次側冷媒として採用する冷却システムにおいて、
前記二酸化炭素の液体冷媒を貯蔵する二酸化炭素レシーバ内の飽和圧力を検出し、検出された飽和圧力に基づいて、前記アンモニアを圧縮するアンモニア圧縮機の冷却能力をリニアに制御することにより、前記二酸化炭素レシーバ内の飽和圧力を一定に制御することを特徴とする冷却システム。
In the cooling system that employs the ammonia used in the carbon dioxide / ammonia natural refrigerant cooling system as a primary refrigerant and the carbon dioxide as a secondary refrigerant,
By detecting a saturation pressure in a carbon dioxide receiver that stores the liquid refrigerant of carbon dioxide, and linearly controlling a cooling capacity of an ammonia compressor that compresses the ammonia based on the detected saturation pressure, the dioxide dioxide is controlled. A cooling system characterized by controlling a saturation pressure in a carbon receiver to be constant.
前記二酸化炭素レシーバ内の飽和圧力は、該二酸化炭素レシーバ内の飽和圧力を検出して周波数制御を行うインバータが前記アンモニア圧縮機を駆動制御することにより、一定圧力に制御されることを特徴とする請求項4記載の冷却システム。   The saturation pressure in the carbon dioxide receiver is controlled to a constant pressure by driving and controlling the ammonia compressor by an inverter that detects the saturation pressure in the carbon dioxide receiver and performs frequency control. The cooling system according to claim 4. 前記二酸化炭素レシーバ内の飽和圧力は、該二酸化炭素レシーバ内の飽和圧力を検出して2台以上のアンモニア圧縮機を台数制御することにより、一定圧力に制御されることを特徴とする請求項4、5記載の冷却システム。   5. The saturation pressure in the carbon dioxide receiver is controlled to a constant pressure by detecting the saturation pressure in the carbon dioxide receiver and controlling the number of two or more ammonia compressors. 5. The cooling system according to 5. 前記二酸化炭素レシーバ内の飽和圧力を一定に制御することにより、二酸化炭素液冷媒を負荷側の冷却器へ送出するための二酸化炭素液ポンプのキャビテーションを防止することを特徴とする請求項5、6記載の冷却システム。   The cavitation of the carbon dioxide liquid pump for sending the carbon dioxide liquid refrigerant to the load side cooler is prevented by controlling the saturation pressure in the carbon dioxide receiver to be constant. The cooling system described. 前記二酸化炭素レシーバ内の飽和圧力を一定に制御することにより、前記冷却器内の二酸化炭素の蒸発圧力を一定に制御することを特徴とする請求項5又は6の冷却システム。   The cooling system according to claim 5 or 6, wherein the evaporation pressure of carbon dioxide in the cooler is controlled to be constant by controlling the saturation pressure in the carbon dioxide receiver to be constant. 前記冷却器内の冷し込みによる負荷変動に追従して前記二酸化炭素レシーバ内の飽和圧力を可変制御することを特徴とする請求項4、5、6記載の冷却システム。



7. The cooling system according to claim 4, wherein the saturation pressure in the carbon dioxide receiver is variably controlled following a load fluctuation caused by cooling in the cooler.



JP2010063766A 2010-03-19 2010-03-19 Cooling system Pending JP2011196607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010063766A JP2011196607A (en) 2010-03-19 2010-03-19 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010063766A JP2011196607A (en) 2010-03-19 2010-03-19 Cooling system

Publications (1)

Publication Number Publication Date
JP2011196607A true JP2011196607A (en) 2011-10-06

Family

ID=44875062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010063766A Pending JP2011196607A (en) 2010-03-19 2010-03-19 Cooling system

Country Status (1)

Country Link
JP (1) JP2011196607A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155970A (en) * 2012-01-31 2013-08-15 Mayekawa Mfg Co Ltd Monitoring system for refrigerator
CN113847759A (en) * 2020-06-26 2021-12-28 佳能株式会社 Cooling device, semiconductor manufacturing apparatus, and semiconductor manufacturing method
JP7081731B1 (en) * 2021-08-19 2022-06-07 日本電気株式会社 Cooling device and control method of cooling device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174080A (en) * 1999-12-17 2001-06-29 Hitachi Ltd Operation controlling device of refrigerating device
JP2007147267A (en) * 2005-10-28 2007-06-14 Toyo Eng Works Ltd Natural refrigerant cooling system
JP2007155316A (en) * 2005-11-08 2007-06-21 Toyo Eng Works Ltd Natural refrigerant cooling system
JP2009174801A (en) * 2008-01-25 2009-08-06 Okamura Corp Central control system for freezing and refrigerating equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174080A (en) * 1999-12-17 2001-06-29 Hitachi Ltd Operation controlling device of refrigerating device
JP2007147267A (en) * 2005-10-28 2007-06-14 Toyo Eng Works Ltd Natural refrigerant cooling system
JP2007155316A (en) * 2005-11-08 2007-06-21 Toyo Eng Works Ltd Natural refrigerant cooling system
JP2009174801A (en) * 2008-01-25 2009-08-06 Okamura Corp Central control system for freezing and refrigerating equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155970A (en) * 2012-01-31 2013-08-15 Mayekawa Mfg Co Ltd Monitoring system for refrigerator
CN113847759A (en) * 2020-06-26 2021-12-28 佳能株式会社 Cooling device, semiconductor manufacturing apparatus, and semiconductor manufacturing method
EP3933298A1 (en) * 2020-06-26 2022-01-05 Canon Kabushiki Kaisha Cooling device, semiconductor manufacturing apparatus, and semiconductor manufacturing method
JP7081731B1 (en) * 2021-08-19 2022-06-07 日本電気株式会社 Cooling device and control method of cooling device
WO2023021660A1 (en) * 2021-08-19 2023-02-23 日本電気株式会社 Cooling device and method for conrolling cooling device

Similar Documents

Publication Publication Date Title
US20180031282A1 (en) Supercritical refrigeration cycle apparatus and method for controlling supercritical refrigeration cycle apparatus
CN106556188B (en) A kind of control method of air-conditioning system cold medium flux
WO2016204194A1 (en) Air conditioner
JP5323023B2 (en) Refrigeration equipment
KR20080106311A (en) Freezing apparatus
WO2017017088A3 (en) Refrigeration system
JP2018523085A (en) Vapor compression system having at least two evaporator groups
CN105026845A (en) Cooling mechanism for data center
US20100037647A1 (en) Refrigeration device
KR102372489B1 (en) Air conditioning device using vapor injection cycle and method for controlling thereof
JP2011196607A (en) Cooling system
JP2007147267A (en) Natural refrigerant cooling system
JP2007155315A (en) Natural refrigerant cooling system
JP2008096072A (en) Refrigerating cycle device
EP3306238B1 (en) Control device, refrigerant circuit system and control method
WO2014091866A1 (en) Liquid supply system
JP2011163713A (en) Refrigeration system
US20180259232A1 (en) Cooling system and cooling method
JP2003336918A (en) Cooling device
KR102278544B1 (en) Refrigeration system for water purifier
US10240827B2 (en) Liquid chiller system
JP2014066381A (en) Refrigeration cycle apparatus
US20190178540A1 (en) Liquid chiller system with external expansion valve
KR101820683B1 (en) Cryogenic refrigeration system capable of capacity control by intermediate pressure control
WO2018173854A1 (en) Cooling system, cooling method, and program

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121030