JPH0828974A - Cold heat carrying equipment - Google Patents

Cold heat carrying equipment

Info

Publication number
JPH0828974A
JPH0828974A JP15855194A JP15855194A JPH0828974A JP H0828974 A JPH0828974 A JP H0828974A JP 15855194 A JP15855194 A JP 15855194A JP 15855194 A JP15855194 A JP 15855194A JP H0828974 A JPH0828974 A JP H0828974A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
liquid
heat
liquid refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15855194A
Other languages
Japanese (ja)
Other versions
JP3411676B2 (en
Inventor
Kiyotsugu Matsushita
清嗣 松下
Michio Shiramatsu
巳千雄 白松
Toshihiko Yamanaka
敏彦 山中
Takeshi Ito
武司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kyushu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kyushu Electric Power Co Inc
Priority to JP15855194A priority Critical patent/JP3411676B2/en
Publication of JPH0828974A publication Critical patent/JPH0828974A/en
Application granted granted Critical
Publication of JP3411676B2 publication Critical patent/JP3411676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To use no water as a heating medium and to attain simplification of piping work and others by taking a means of constructing a closed cycle by connecting a heat exchanger which can exchange heat with an evaporator and a heat exchanger on the use side sequentially, a means of providing a gas-liquid separator on the outlet side of the heat exchanger on the use side, etc. CONSTITUTION:Cold heat carrying equipment carries cold heat of a refrigerating cycle on the heat source side comprising a compressor 1, a condenser 2, a throttle 3 and an evaporator 4, to a heat exchanger 12 on the use side. In this case, a heat exchanger 19 which can exchange heat with the evaporator 4, a liquid refrigerant tank 16, a liquid refrigerant pump 11 and the heat exchanger 12 on the use side are connected in this sequence so that a closed cycle be constructed. Besides, a gas-liquid separator 14 is provided on the outlet side of the heat exchanger 12 on the use side, while a circuit 18 for returning a liquid refrigerant separated by the separator to the liquid refrigerant tank 16 is provided. Moreover, the outlet of the liquid refrigerant pump 11 and that of the heat exchanger 19 are connected through the intermediary of a flow control valve 121. According to this constitution, no water is used as a heating medium and simplification of piping work, reduction of initial cost, elimination of damage due to leakage of water, etc., are attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷凍装置で生成された冷
熱源を冷媒を熱媒体として搬送する冷熱搬送装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold heat transfer device for transferring a cold heat source generated in a refrigerating device as a refrigerant.

【0002】[0002]

【従来の技術】図6は従来の冷熱搬送装置の系統図であ
る。図において、1は圧縮機、2は凝縮器、3は絞り、
4は蒸発器、5は冷却水配管、21は水ポンプ、26は
蒸発器4と熱交換可能な熱交換器、22は利用側熱交換
器、24は水の供給管路、25は戻り管路、23はファ
ン組立を示す。この系統においては、符号21,22,
23,24,25,および26を付した部分によって冷
熱搬送装置が構成されている。
2. Description of the Related Art FIG. 6 is a system diagram of a conventional cold heat transfer device. In the figure, 1 is a compressor, 2 is a condenser, 3 is a throttle,
4 is an evaporator, 5 is a cooling water pipe, 21 is a water pump, 26 is a heat exchanger capable of exchanging heat with the evaporator 4, 22 is a use side heat exchanger, 24 is a water supply pipe line, and 25 is a return pipe. Numeral 23 indicates a fan assembly. In this system, reference numerals 21, 22,
The parts denoted by 23, 24, 25, and 26 constitute a cold heat transfer device.

【0003】圧縮機1で圧縮された高圧、高温のガスは
凝縮器2で冷却水配管5の冷却水に放熱し、高圧の液と
なり、絞り3を経て蒸発器4に入り、蒸発器4内に於て
水戻り管路25に連なる熱交換器26内の比較的温度の
高い冷水と熱交換し、蒸発した後圧縮機1に戻る。一
方、蒸発器4と熱交換可能な熱交換器26内で、熱交換
された供給管路24の冷水は利用側熱交換器22におい
て室内空気と熱交換され、高温になり、水ポンプ21の
働きにより、蒸発器4と熱交換可能な熱交換器26内に
循環され、冷却される。
The high-pressure, high-temperature gas compressed by the compressor 1 radiates heat to the cooling water in the cooling-water pipe 5 in the condenser 2, becomes a high-pressure liquid, enters the evaporator 4 through the throttle 3, and enters the evaporator 4. At this time, heat is exchanged with cold water having a relatively high temperature in the heat exchanger 26 connected to the water return pipe line 25, and after evaporating, it returns to the compressor 1. On the other hand, in the heat exchanger 26 capable of exchanging heat with the evaporator 4, the cold water in the supply pipeline 24, which has undergone heat exchange, is heat-exchanged with room air in the use-side heat exchanger 22, becomes high temperature, and becomes hot in the water pump 21. By the function, it is circulated and cooled in the heat exchanger 26 capable of exchanging heat with the evaporator 4.

【0004】[0004]

【発明が解決しようとする課題】従来の冷熱搬送装置に
おいては、利用側熱交換器22に冷熱源を供給する熱媒
体として水を使うため、媒体として冷媒(R−22等)
を使用する直膨式のパッケージエアコン等に比べ、冬季
の凍結防止策を含めた配管工事、水の圧力損失低減のた
め配管径の増大等のイニシャルコストの増大、メンテナ
ンス、水漏れ等に欠点があった。
In the conventional cold heat transfer device, since water is used as the heat medium for supplying the cold heat source to the use side heat exchanger 22, the refrigerant (R-22 or the like) is used as the medium.
Compared to a direct expansion package air conditioner that uses, there are drawbacks in piping work including freeze prevention measures in winter, increase in initial cost such as increase in pipe diameter to reduce water pressure loss, maintenance, water leakage, etc. there were.

【0005】本発明は従来技術の上記欠点を解消し、熱
媒体として水を用いない冷熱搬送装置を提供し、配管工
事の容易化、イニシャルコストの低減、メンテナンスの
容易化、水漏れ被害の解消を図ろうとするものである。
The present invention solves the above-mentioned drawbacks of the prior art, provides a cold heat transfer device that does not use water as a heat medium, facilitates piping work, reduces initial cost, facilitates maintenance, and eliminates water leakage damage. It is intended to try.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
したものであって、圧縮機と凝縮器と絞りと蒸発器とを
備えた熱源側冷凍サイクルの冷熱を利用側熱交換器へ搬
送する冷熱搬送装置において、前記蒸発器と熱交換可能
な熱交換器、液冷媒タンク、液冷媒ポンプ、および利用
側熱交換器をこの順に接続して閉サイクルを形成し、利
用側熱交換器の出口側に気液分離器を設けると共に、同
気液分離器で分離した液冷媒を前記液冷媒タンクに戻す
回路を設け、更に、液冷媒ポンプ出口と利用側熱交換器
出口とを冷媒流量調節弁を介して接続したことを特徴と
するものである。
DISCLOSURE OF THE INVENTION The present invention is to solve the above-mentioned problems, and conveys cold heat of a heat source side refrigeration cycle including a compressor, a condenser, a throttle and an evaporator to a utilization side heat exchanger. In the cold heat transfer device, a heat exchanger capable of exchanging heat with the evaporator, a liquid refrigerant tank, a liquid refrigerant pump, and a use side heat exchanger are connected in this order to form a closed cycle. A gas-liquid separator is provided on the outlet side, and a circuit for returning the liquid refrigerant separated by the gas-liquid separator to the liquid refrigerant tank is provided.Furthermore, the refrigerant flow rate is adjusted between the liquid refrigerant pump outlet and the use side heat exchanger outlet. It is characterized by being connected via a valve.

【0007】[0007]

【作用】本発明においては上記手段を備えているため、
冷熱搬送装置の冷媒戻り管に於ては冷媒はガス状態とな
っており、この冷媒は、冷凍装置内の蒸発器と熱交換可
能な熱交換器内で、蒸発器の低温の冷媒と熱交換され、
液冷媒となり、液冷媒タンク内に収容される。その後冷
媒液ポンプにより、冷媒供給管を通り、利用側熱交換器
内に流入し、負荷側の室内空気と熱交換され、室内の空
気は冷され、室内へ冷風が送られる。一方熱交換した冷
媒は通常はガス状態になり、気液分離器から冷媒戻り管
を経て、蒸発器と熱交換可能な熱交換器に再循環され
る。又、冷媒液ポンプの起動時には液冷媒タンク内に液
がなく、ガス冷媒が溜り込んでいる場合があるため、冷
媒液ポンプの起動後数分間は、冷媒流量調節弁を全開と
して、ガス冷媒を気液分離器に戻すことにより、冷媒液
ポンプでのガスのかみ込みを防止する。
In the present invention, since the above means is provided,
The refrigerant is in a gas state in the refrigerant return pipe of the cold heat transfer device, and this refrigerant exchanges heat with the low temperature refrigerant of the evaporator in the heat exchanger capable of exchanging heat with the evaporator of the refrigeration device. Is
It becomes liquid refrigerant and is stored in the liquid refrigerant tank. After that, by the refrigerant liquid pump, the refrigerant flows through the refrigerant supply pipe into the utilization side heat exchanger to exchange heat with the load side indoor air, the room air is cooled, and the cold air is sent to the room. On the other hand, the heat-exchanged refrigerant is normally in a gas state, and is recirculated from the gas-liquid separator through the refrigerant return pipe to the heat exchanger capable of exchanging heat with the evaporator. Also, when the refrigerant liquid pump is started, there may be no liquid in the liquid refrigerant tank and gas refrigerant may have accumulated, so for a few minutes after the refrigerant liquid pump is started, the refrigerant flow rate control valve is fully opened to turn off the gas refrigerant. By returning to the gas-liquid separator, it is possible to prevent gas from being caught in the refrigerant liquid pump.

【0008】[0008]

【実施例】図1は本発明の一実施例に係る冷熱搬送装置
の系統図である。図において、1は圧縮機、2は凝縮
器、3は絞り、4は蒸発器、5は冷却水配管、11は冷
媒液ポンプ、12は利用側熱交換器、13はファン組
立、14は気液分離器、15は液戻し管、16は液冷媒
タンク、17は冷媒供給管、18は冷媒戻り管、20は
冷媒バイパス管、121は冷媒流量調節弁、122は室
温センサ、123は冷媒流量制御器である。本系統にお
いては、符号11,12,13,14,15,16,1
7,18,19,20,121,122,および123
を付した部分によって冷熱搬送装置が構成されている。
1 is a system diagram of a cold heat transfer apparatus according to an embodiment of the present invention. In the figure, 1 is a compressor, 2 is a condenser, 3 is a throttle, 4 is an evaporator, 5 is a cooling water pipe, 11 is a refrigerant liquid pump, 12 is a heat exchanger on the use side, 13 is a fan assembly, and 14 is a gas. Liquid separator, 15 liquid return pipe, 16 liquid refrigerant tank, 17 refrigerant supply pipe, 18 refrigerant return pipe, 20 refrigerant bypass pipe, 121 refrigerant flow control valve, 122 room temperature sensor, 123 refrigerant flow rate It is a controller. In this system, reference numerals 11, 12, 13, 14, 15, 16, 1
7, 18, 19, 20, 121, 122, and 123
A cold heat transfer device is configured by the portions marked with.

【0009】圧縮機1で圧縮された冷媒は高圧、高温の
ガスとなり、凝縮器2で冷却水配管5を流れる冷却水に
より冷却され、高圧の液冷媒となり、絞り3で低圧の二
相冷媒となり、蒸発器4で吸熱し、ガス冷媒となる。一
方冷熱搬送装置の冷媒戻り管18から蒸発器4と熱交換
可能な熱交換器19に流入したガス冷媒は蒸発器4内の
低温の冷媒に放熱し、液化して液冷媒タンク16内に収
容される。冷媒液ポンプ11で吐出された液冷媒は冷媒
供給管17を経て利用側熱交換器12で空気から吸熱
し、気液分離器14に入り、液は液戻し管15を経て液
冷媒タンク16に入る。ガス冷媒は冷媒戻り管18を経
て熱交換器19に入る。
The refrigerant compressed by the compressor 1 becomes a high-pressure, high-temperature gas, is cooled by the cooling water flowing through the cooling water pipe 5 in the condenser 2, becomes a high-pressure liquid refrigerant, and becomes a low-pressure two-phase refrigerant by the throttle 3. , Endothermic in the evaporator 4, and becomes a gas refrigerant. On the other hand, the gas refrigerant flowing from the refrigerant return pipe 18 of the cold heat transfer device into the heat exchanger 19 capable of exchanging heat with the evaporator 4 radiates heat to the low temperature refrigerant in the evaporator 4 and is liquefied and stored in the liquid refrigerant tank 16. To be done. The liquid refrigerant discharged by the refrigerant liquid pump 11 absorbs heat from the air in the utilization side heat exchanger 12 via the refrigerant supply pipe 17, enters the gas-liquid separator 14, and the liquid passes through the liquid return pipe 15 to the liquid refrigerant tank 16. enter. The gas refrigerant enters the heat exchanger 19 via the refrigerant return pipe 18.

【0010】冷媒液ポンプ11の起動時には液タンク1
6内に液がなく、ガス冷媒が溜り込んでいる場合がある
ため、冷媒液ポンプ11の起動後数分間は冷媒流量調節
弁121を全開として、ガス冷媒を冷媒バイパス管20
を経て気液分離器14に戻し、冷媒液ポンプ11でのガ
スのかみ込みを防止する。又、室温設定値と室温センサ
122の検出値との差に応じて冷媒流量調節弁121の
開度を調整し、冷媒液ポンプ11からの液冷媒を冷媒流
量調節弁121を経て気液分離器14にバイパスするこ
とにより、利用側熱交換器12へ流れる液冷媒の量を適
正にする。
When the refrigerant liquid pump 11 is started, the liquid tank 1
There is a case where there is no liquid in 6 and gas refrigerant is accumulated, so the refrigerant flow rate control valve 121 is fully opened for several minutes after the refrigerant liquid pump 11 is started, and the gas refrigerant is passed through the refrigerant bypass pipe 20.
After that, the gas is returned to the gas-liquid separator 14 to prevent gas entrapment in the refrigerant liquid pump 11. Further, the opening degree of the refrigerant flow rate control valve 121 is adjusted according to the difference between the room temperature set value and the detection value of the room temperature sensor 122, and the liquid refrigerant from the refrigerant liquid pump 11 is passed through the refrigerant flow rate control valve 121 and separated into a gas-liquid separator. By bypassing to 14, the amount of the liquid refrigerant flowing to the use side heat exchanger 12 is made appropriate.

【0011】図2は上記実施例の冷媒流量調節弁121
の開度をきめる冷媒流量制御器123のブロック図であ
る。122は室温センサ、30はブリッジ、31は増幅
器である。図において、室温センサ122の検出値と室
温設定値Tsとの差ΔTによって、ブリッジ30から図
3のような偏差電圧Eが出力され、増幅器31により増
幅され、直流電圧が出力される。これによって冷媒流量
調節弁121の開度が調節される。偏差電圧Eが大きい
と大きい直流電圧が出力され、これによって弁121は
閉じる方へ動く。図4は上記温度差ΔTに対する冷媒流
量調節弁121の弁開度および同弁を経由するバイパス
量ΔQの関係図であり、温度差が大きい時は弁が閉じ、
バイパス量は小さくなる。ただし液ポンプ11の起動時
数分間は、上記各図によらないで、最小偏差電圧Eが出
力され、この時冷媒流量調節弁は全開となる。
FIG. 2 shows the refrigerant flow control valve 121 of the above embodiment.
FIG. 3 is a block diagram of a refrigerant flow rate controller 123 that determines the opening degree of. 122 is a room temperature sensor, 30 is a bridge, and 31 is an amplifier. In the figure, the difference voltage E between the detected value of the room temperature sensor 122 and the room temperature set value Ts causes the bridge 30 to output the deviation voltage E as shown in FIG. 3, which is amplified by the amplifier 31 to output the DC voltage. Thereby, the opening degree of the refrigerant flow rate control valve 121 is adjusted. When the deviation voltage E is large, a large DC voltage is output, which causes the valve 121 to move toward closing. FIG. 4 is a relationship diagram of the valve opening of the refrigerant flow control valve 121 and the bypass amount ΔQ passing through the valve with respect to the temperature difference ΔT. When the temperature difference is large, the valve is closed.
Bypass amount becomes smaller. However, during a few minutes when the liquid pump 11 is started, the minimum deviation voltage E is output without depending on the above figures, and the refrigerant flow rate control valve is fully opened at this time.

【0012】図5は上記実施例の電気配線図である。S
は運転スイッチ、1aは圧縮機1の電磁接触器、1a−
1はその接点、11aは冷媒液ポンプ11の電磁接触
器、11a−1はその接点、13aはファン組立13の
モータの電磁接触器、Tはタイマでtはその接点を示
す。運転スイッチSを入れると圧縮機1の電磁接触器1
aが励磁されその接点1a−1が閉になる、数秒後にタ
イマTが励磁され、その接点tが閉になり、冷媒液ポン
プ11の電磁接触器11a及びファン組立13のモータ
の電磁接触器13aが各々励磁され、その接点11a−
1が閉となり、冷熱搬送装置が運転される。
FIG. 5 is an electrical wiring diagram of the above embodiment. S
Is an operation switch, 1a is an electromagnetic contactor of the compressor 1, 1a-
1 is the contact, 11a is the electromagnetic contactor of the refrigerant liquid pump 11, 11a-1 is its contact, 13a is the electromagnetic contactor of the motor of the fan assembly 13, T is a timer and t is its contact. When the operation switch S is turned on, the electromagnetic contactor 1 of the compressor 1
a is excited and its contact 1a-1 is closed, and a few seconds later, the timer T is excited and its contact t is closed, and the electromagnetic contactor 11a of the refrigerant liquid pump 11 and the electromagnetic contactor 13a of the motor of the fan assembly 13 are closed. Are excited and their contact points 11a-
1 is closed and the cold heat transfer device is operated.

【0013】本実施例においては、従来水を媒体として
空調していたチラ、ターボ冷凍機、吸収式冷凍機等で作
った冷熱を室内に運ぶために熱搬送媒体として冷媒(R
−22等)を使用するので、水配管工事がなく、OA機
器等を使用する室での水漏れ等の被害の心配もなくな
る。また、液タンクを配置することにより、液ポンプの
前が常に液封され、又、冷媒液ポンプ起動時冷媒流量調
節弁を数分間全開するのでガス抜きが実施でき、液ポン
プのトラブルが生じない。さらに、冷媒液ポンプの一定
吐出量に対し、冷媒流量調節弁で一定量液冷媒をバイパ
スし、利用側熱交換器に適正量の冷媒を送るので高い性
能を達成することができる。
In the present embodiment, a refrigerant (R) is used as a heat carrier medium for carrying the cold heat produced by a chiller, a turbo refrigerator, an absorption refrigerator, etc., which has conventionally been air-conditioned with water as a medium, into the room.
-22) is used, there is no need for water piping work, and there is no fear of damage such as water leakage in a room where OA equipment is used. In addition, by arranging the liquid tank, the front of the liquid pump is always sealed with liquid, and the refrigerant flow rate control valve is fully opened for several minutes when the refrigerant liquid pump is started, so degassing can be performed and no trouble of the liquid pump occurs. . Further, for a constant discharge amount of the refrigerant liquid pump, a constant amount of the liquid refrigerant is bypassed by the refrigerant flow control valve, and a proper amount of the refrigerant is sent to the utilization side heat exchanger, so that high performance can be achieved.

【0014】[0014]

【発明の効果】本発明の冷熱搬送装置においては、蒸発
器と熱交換可能な熱交換器、液冷媒タンク、液冷媒ポン
プ、および利用側熱交換器をこの順に接続して閉サイク
ルを形成し、利用側熱交換器の出口側に気液分離器を設
けると共に、同気液分離器で分離した液冷媒を前記液冷
媒タンクに戻す回路を設け、更に、液冷媒ポンプ出口と
利用側熱交換器出口とを冷媒流量調節弁を介して接続し
てあり、熱媒体として水を用いないので、配管工事の容
易化、イニシャルコストの低減、メンテナンスの容易
化、水漏れ被害の解消を図ることができる。
In the cold heat transfer apparatus of the present invention, the evaporator and the heat exchanger capable of exchanging heat, the liquid refrigerant tank, the liquid refrigerant pump, and the utilization side heat exchanger are connected in this order to form a closed cycle. , A gas-liquid separator is provided on the outlet side of the use-side heat exchanger, and a circuit for returning the liquid refrigerant separated by the gas-liquid separator to the liquid-refrigerant tank is provided. Since it is connected to the outlet of the unit via a refrigerant flow rate control valve and water is not used as a heat medium, it is possible to facilitate piping work, reduce initial costs, facilitate maintenance, and eliminate water leakage damage. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る冷熱搬送装置の系統
図。
FIG. 1 is a system diagram of a cold heat transfer apparatus according to an embodiment of the present invention.

【図2】上記実施例の冷媒流量制御器のブロック図。FIG. 2 is a block diagram of a refrigerant flow rate controller of the above embodiment.

【図3】上記実施例の室温検出値と室温設定値との差に
対する偏差電圧の関係図。
FIG. 3 is a relationship diagram of the deviation voltage with respect to the difference between the room temperature detected value and the room temperature set value in the above embodiment.

【図4】上記実施例の室温検出値と室温設定値との差に
対する冷媒流量調節弁の弁開度およびバイパス量の関係
図。
FIG. 4 is a relationship diagram of a valve opening degree and a bypass amount of a refrigerant flow rate control valve with respect to a difference between a room temperature detected value and a room temperature set value in the above embodiment.

【図5】上記実施例の電気配線図。FIG. 5 is an electrical wiring diagram of the above embodiment.

【図6】従来の冷熱搬送装置の系統図。FIG. 6 is a system diagram of a conventional cold heat transfer device.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 絞り 4 蒸発器 5 冷却水配管 11 冷媒液ポンプ 12 利用側熱交換器 13 ファン組立 14 気液分離器 15 液戻し管 16 液タンク 17 冷媒供給管 18 冷媒戻り管 19 蒸発器4と熱交換可能な熱交換器 20 冷媒バイパス管 121 冷媒流量調節弁 122 室温センサ 123 冷媒流量制御器 DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Throttle 4 Evaporator 5 Cooling water piping 11 Refrigerant liquid pump 12 User side heat exchanger 13 Fan assembly 14 Gas-liquid separator 15 Liquid return pipe 16 Liquid tank 17 Refrigerant supply pipe 18 Refrigerant return pipe 19 Evaporation Exchanger 4 capable of exchanging heat with the reactor 20 Refrigerant bypass pipe 121 Refrigerant flow rate control valve 122 Room temperature sensor 123 Refrigerant flow rate controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白松 巳千雄 愛知県西春日井郡西枇杷島町字旭町3丁目 1番地 三菱重工業株式会社エアコン製作 所内 (72)発明者 山中 敏彦 名古屋市中村区岩塚町字高道1番地 三菱 重工業株式会社名古屋研究所内 (72)発明者 伊藤 武司 名古屋市中村区岩塚町字高道1番地 三菱 重工業株式会社名古屋研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Chio Shiramatsu 3-chome, Asahi-cho, Nishibiwajima-cho, Nishikasugai-gun, Aichi Prefecture Mitsubishi Heavy Industries, Ltd. Air-conditioner factory (72) Inventor Toshihiko Yamanaka Iwatsuka-cho, Nakamura-ku, Nagoya The first highway in the letter Mitsubishi Heavy Industries, Ltd. Nagoya Research Institute (72) The inventor Takeshi Ito Iwatsuka-cho, Nakamura-ku, Nagoya The first highway in the Nagoya Institute Mitsubishi Heavy Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と凝縮器と絞りと蒸発器とを備え
た熱源側冷凍サイクルの冷熱を利用側熱交換器へ搬送す
る冷熱搬送装置において、前記蒸発器と熱交換可能な熱
交換器、液冷媒タンク、液冷媒ポンプ、および利用側熱
交換器をこの順に接続して閉サイクルを形成し、利用側
熱交換器の出口側に気液分離器を設けると共に、同気液
分離器で分離した液冷媒を前記液冷媒タンクに戻す回路
を設け、更に、液冷媒ポンプ出口と利用側熱交換器出口
とを冷媒流量調節弁を介して接続したことを特徴とする
冷熱搬送装置。
1. A cold heat transfer device for transferring cold heat of a heat source side refrigeration cycle, which comprises a compressor, a condenser, a throttle, and an evaporator, to a heat exchanger on the use side, and a heat exchanger capable of exchanging heat with the evaporator. , A liquid refrigerant tank, a liquid refrigerant pump, and a use side heat exchanger are connected in this order to form a closed cycle, and a gas liquid separator is provided at the outlet side of the use side heat exchanger and A cold heat transfer device, characterized in that a circuit for returning the separated liquid refrigerant to the liquid refrigerant tank is provided, and the liquid refrigerant pump outlet and the utilization side heat exchanger outlet are connected via a refrigerant flow rate control valve.
JP15855194A 1994-07-11 1994-07-11 Cold heat transfer equipment Expired - Fee Related JP3411676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15855194A JP3411676B2 (en) 1994-07-11 1994-07-11 Cold heat transfer equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15855194A JP3411676B2 (en) 1994-07-11 1994-07-11 Cold heat transfer equipment

Publications (2)

Publication Number Publication Date
JPH0828974A true JPH0828974A (en) 1996-02-02
JP3411676B2 JP3411676B2 (en) 2003-06-03

Family

ID=15674183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15855194A Expired - Fee Related JP3411676B2 (en) 1994-07-11 1994-07-11 Cold heat transfer equipment

Country Status (1)

Country Link
JP (1) JP3411676B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014319A (en) * 2001-06-29 2003-01-15 Takasago Thermal Eng Co Ltd Refrigeration system
JP2007147267A (en) * 2005-10-28 2007-06-14 Toyo Eng Works Ltd Natural refrigerant cooling system
JP2009525453A (en) * 2006-02-03 2009-07-09 エアバス ドイチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング Cooling system
DE102012007251A1 (en) * 2012-04-11 2013-10-17 Airbus Operations Gmbh Aircraft climate control system and method for operating an aircraft climate control system
WO2019017297A1 (en) * 2017-07-18 2019-01-24 日本電気株式会社 Phase change refrigerating device and phase change refrigerating method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014319A (en) * 2001-06-29 2003-01-15 Takasago Thermal Eng Co Ltd Refrigeration system
JP2007147267A (en) * 2005-10-28 2007-06-14 Toyo Eng Works Ltd Natural refrigerant cooling system
JP2009525453A (en) * 2006-02-03 2009-07-09 エアバス ドイチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング Cooling system
US10214292B2 (en) 2006-02-03 2019-02-26 Airbus Operations Gmbh Cooling system using chiller and thermally coupled cooling circuit
DE102012007251A1 (en) * 2012-04-11 2013-10-17 Airbus Operations Gmbh Aircraft climate control system and method for operating an aircraft climate control system
WO2019017297A1 (en) * 2017-07-18 2019-01-24 日本電気株式会社 Phase change refrigerating device and phase change refrigerating method

Also Published As

Publication number Publication date
JP3411676B2 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
US11761686B2 (en) Methods and systems for controlling integrated air conditioning systems
US5467604A (en) Multiroom air conditioner and driving method therefor
KR940020058A (en) Regenerative air conditioning system and defrosting method
WO2008032558A1 (en) Refrigeration device
WO1996021830A1 (en) Two-dimensional refrigerating plant
JPH01285725A (en) Air-cooled cooling device
CN108155439B (en) Air conditioner battery cooling single cooling system and control method
WO2022068606A1 (en) Thermal management system
CN1165719C (en) Refrigerating circulating apparatus
JP3411676B2 (en) Cold heat transfer equipment
JPH0420764A (en) Air conditioner
JP3583792B2 (en) Hot water supply / air conditioning system
KR100390219B1 (en) Controller and method for defrosting operation of air-conditioner used both cooler and heater using electronic valve
JPH1047794A (en) Freezer
JP3060444B2 (en) Air conditioner
JP2001280729A (en) Refrigerating device
JP2000088361A (en) Air conditioner
JP3871206B2 (en) Refrigeration system combining absorption and compression
KR100329269B1 (en) Device and method for defrosting for inverter cooling and heating system
JP3467294B2 (en) Engine driven heat pump device
JP2001330347A (en) Air-conditioner
JP2827656B2 (en) Heat transfer device
KR20040103596A (en) Heat pump system for electric-car
JP2983869B2 (en) Air conditioner, cooling operation method thereof, and method of separating outdoor unit and indoor unit
JPS6160346B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030218

LAPS Cancellation because of no payment of annual fees