JP2021134940A - Refrigerating device - Google Patents

Refrigerating device Download PDF

Info

Publication number
JP2021134940A
JP2021134940A JP2020028697A JP2020028697A JP2021134940A JP 2021134940 A JP2021134940 A JP 2021134940A JP 2020028697 A JP2020028697 A JP 2020028697A JP 2020028697 A JP2020028697 A JP 2020028697A JP 2021134940 A JP2021134940 A JP 2021134940A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
compressor
outlet
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020028697A
Other languages
Japanese (ja)
Inventor
徹 森
Toru Mori
徹 森
裕輔 倉田
Yusuke Kurata
裕輔 倉田
一彦 三原
Kazuhiko Mihara
一彦 三原
賢治 金城
Kenji Kaneshiro
賢治 金城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2020028697A priority Critical patent/JP2021134940A/en
Priority to CN202110159458.1A priority patent/CN113294924A/en
Priority to EP21156006.5A priority patent/EP3869120A1/en
Publication of JP2021134940A publication Critical patent/JP2021134940A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/005Compression machines, plants or systems with non-reversible cycle of the single unit type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/17Size reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/21Reduction of parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/28Means for preventing liquid refrigerant entering into the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Abstract

To provide a refrigerating device that can adjust the amount of a refrigerant while being made compact and lightweight.SOLUTION: A refrigerating device 1 comprises: a refrigerator 10 comprising a compressor 30, and a heat exchanger for exchanging heat of a refrigerant discharged from the compressor 30; and a cooling device comprising an evaporator 40, and an inlet expansion valve 42 at an inlet of the evaporator 40. A refrigerant adjustment valve for adjusting the flow rate of the refrigerant is provided at an outlet of the evaporator 40.SELECTED DRAWING: Figure 1

Description

本発明は、冷凍装置に関する。 The present invention relates to a refrigeration system.

従来、スーパーマーケットや、コンビニエンスストアなどの店舗において、冷蔵、冷凍ショーケースなどを冷却するための冷凍装置が知られている。このような冷凍装置は、圧縮機と、凝縮器と、膨張弁と、蒸発器とを備え、これらを冷媒配管で繋げることで冷凍サイクルを形成している。
このような冷凍装置には、冷凍負荷の変動によって、余剰冷媒が生じたときに、当該冷媒を貯留することで、冷凍サイクルを流れる冷媒量を調整する冷媒量調整タンクが設けられたものが知られている(例えば、特許文献1参照)。
Conventionally, refrigerating devices for cooling refrigerating and freezing showcases have been known in stores such as supermarkets and convenience stores. Such a refrigerating device includes a compressor, a condenser, an expansion valve, and an evaporator, and forms a refrigerating cycle by connecting these with a refrigerant pipe.
It is known that such a refrigerating apparatus is provided with a refrigerant amount adjusting tank that adjusts the amount of refrigerant flowing through the refrigeration cycle by storing the excess refrigerant when surplus refrigerant is generated due to fluctuations in the refrigerating load. (See, for example, Patent Document 1).

特開2017−122524号公報JP-A-2017-122524

しかしながら、従来の冷凍装置では、冷媒量調整タンクを設けることによって、大きさや、重量が増加することがあった。
本発明は、小型化や軽量化を図りつつ、冷媒量を調整できる冷凍装置を提供することを目的とする。
However, in the conventional refrigerating apparatus, the size and weight may be increased by providing the refrigerant amount adjusting tank.
An object of the present invention is to provide a freezing device capable of adjusting the amount of refrigerant while reducing the size and weight.

本発明は、圧縮機と前記圧縮機から吐出された冷媒の熱交換を行う熱交換器とを備える冷凍機と、蒸発器と前記蒸発器の入口に入口膨張弁とを備える冷却機器とからなる冷凍装置において、前記蒸発器の出口に冷媒の流量を調整する冷媒調整弁が設けられていることを特徴とする冷凍装置である。 The present invention comprises a refrigerator including a compressor and a heat exchanger for exchanging heat of the refrigerant discharged from the compressor, and a cooling device including an evaporator and an inlet expansion valve at the inlet of the evaporator. The refrigerating apparatus is characterized in that a refrigerant adjusting valve for adjusting the flow rate of the refrigerant is provided at the outlet of the evaporator.

これによれば、冷媒調整弁で冷媒の流量を調整することで、余剰となった冷媒が蒸発器の内部に貯留される。
このため、冷媒量調整タンクといった、冷媒を貯留ことで冷媒の流量を調整する冷媒量調節部を設けることなく冷媒量の調整を行うことができ、冷凍機の小型化、軽量化を図ることができる。
According to this, by adjusting the flow rate of the refrigerant with the refrigerant adjusting valve, the surplus refrigerant is stored inside the evaporator.
Therefore, it is possible to adjust the amount of refrigerant without providing a refrigerant amount adjusting unit such as a refrigerant amount adjusting tank that adjusts the flow rate of the refrigerant by storing the refrigerant, and it is possible to reduce the size and weight of the refrigerator. can.

本発明によれば、小型化や軽量化を図りつつ、冷媒量を調整できる。 According to the present invention, the amount of refrigerant can be adjusted while reducing the size and weight.

本発明の実施形態に係る冷凍装置の冷媒回路の概略構成を示す図The figure which shows the schematic structure of the refrigerant circuit of the refrigerating apparatus which concerns on embodiment of this invention. 冷凍装置の概略構成を示す図The figure which shows the schematic structure of the refrigerating apparatus 冷凍装置の動作を示すフローチャートFlow chart showing the operation of the refrigeration system 本発明の変形例に冷凍装置の冷媒回路の概略構成を示す図The figure which shows the schematic structure of the refrigerant circuit of the refrigerating apparatus in the modification of this invention.

第1の発明は、圧縮機と前記圧縮機から吐出された冷媒の熱交換を行う熱交換器とを備える冷凍機と、蒸発器と前記蒸発器の入口に入口膨張弁とを備える冷却機器とからなる冷凍装置において、前記蒸発器の出口に冷媒の流量を調整する冷媒調整弁が設けられていることを特徴とする。 The first invention is a refrigerator provided with a compressor and a heat exchanger for exchanging heat of the refrigerant discharged from the compressor, and a cooling device provided with an evaporator and an inlet expansion valve at the inlet of the evaporator. The refrigerator is characterized in that a refrigerant adjusting valve for adjusting the flow rate of the refrigerant is provided at the outlet of the evaporator.

これによれば、冷媒調整弁で冷媒の流量を調整することで、余剰となった冷媒が蒸発器の内部に貯留される。
このため、冷凍装置は、冷媒量調整タンクといった、冷媒を貯留ことで冷媒の流量を調整する冷媒量調節部を設けることなく冷媒量の調整を行うことができる。すなわち、冷凍装置1では、冷媒調整タンクを省略することができ、当該冷凍装置1の小型化、軽量化を図ることができる。
According to this, by adjusting the flow rate of the refrigerant with the refrigerant adjusting valve, the surplus refrigerant is stored inside the evaporator.
Therefore, the refrigerating apparatus can adjust the amount of refrigerant without providing a refrigerant amount adjusting unit such as a refrigerant amount adjusting tank that adjusts the flow rate of the refrigerant by storing the refrigerant. That is, in the refrigerating device 1, the refrigerant adjusting tank can be omitted, and the refrigerating device 1 can be made smaller and lighter.

第2の発明は、前記圧縮機から吐出された冷媒と、前記冷媒調整弁から噴射された冷媒とを熱交換させる内部熱交換器が設けられていることを特徴とする。 The second invention is characterized in that an internal heat exchanger is provided for heat exchange between the refrigerant discharged from the compressor and the refrigerant injected from the refrigerant adjusting valve.

これによれば、この内部熱交換器によって、冷媒調整弁から噴射された冷媒から確実に加熱度が取られ、当該冷媒は、圧縮機に送られる。このため、圧縮機における冷媒の液戻り、液圧縮が防止される。 According to this, the degree of heating is surely taken from the refrigerant injected from the refrigerant adjusting valve by this internal heat exchanger, and the refrigerant is sent to the compressor. Therefore, the liquid return of the refrigerant in the compressor and the liquid compression are prevented.

第3の発明は、前記入口膨張弁、及び前記冷媒調整弁の開度を調整する制御部を備え、前記制御部は、前記冷媒調整弁の開度を減少させることで、前記蒸発器に冷媒を貯留させることを特徴とする。 A third invention includes a control unit for adjusting the opening degree of the inlet expansion valve and the refrigerant adjusting valve, and the control unit reduces the opening degree of the refrigerant adjusting valve to provide a refrigerant in the evaporator. It is characterized by storing.

これによれば、冷凍装置は、蒸発器の冷媒温度に応じて、入口膨張弁と、冷媒調整弁との開度を調整する。
このため、蒸発器40の冷媒温度が所定値より低下した場合に、入口膨張弁と、冷媒調整弁との開度を調整することで、蒸発器の冷媒温度を所望の温度に復帰させることができる。
According to this, the refrigerating apparatus adjusts the opening degree between the inlet expansion valve and the refrigerant adjusting valve according to the refrigerant temperature of the evaporator.
Therefore, when the refrigerant temperature of the evaporator 40 drops below a predetermined value, the refrigerant temperature of the evaporator can be returned to a desired temperature by adjusting the opening degree between the inlet expansion valve and the refrigerant adjusting valve. can.

第4の発明は、前記蒸発器の入口と出口の冷媒温度を検出する温度センサを備え、前記制御部は、前記温度センサの検出値を取得し、前記検出値に基づいて、前記蒸発器の冷媒の過熱度を取得し、前記過熱度が所定値以上であるときに、前記冷媒調整弁の開度を減少させることを特徴とする。 The fourth invention includes a temperature sensor that detects the refrigerant temperature at the inlet and outlet of the evaporator, and the control unit acquires the detection value of the temperature sensor, and based on the detection value, of the evaporator. It is characterized in that the degree of superheat of the refrigerant is acquired and the opening degree of the refrigerant adjusting valve is reduced when the degree of superheat is equal to or higher than a predetermined value.

これによれば、制御装置は、蒸発器の過熱度に応じて冷媒調整弁を開閉させる。
このため、蒸発器の冷媒温度が過度に低下することが抑制され、蒸発器に着霜することが抑制される。
According to this, the control device opens and closes the refrigerant adjusting valve according to the degree of superheat of the evaporator.
Therefore, it is suppressed that the refrigerant temperature of the evaporator is excessively lowered, and frost formation on the evaporator is suppressed.

第5の発明は、前記制御部は、前記冷却機器の内部の温度と、前記温度センサの検出値とを取得し、前記冷却機器の内部の温度と、前記検出値とに基づいて、前記圧縮機の駆動を制御し、前記圧縮機の駆動周波数が最小値となっているときに、前記冷媒調整弁の開度を減少させることを特徴とする。 In a fifth aspect of the invention, the control unit acquires the temperature inside the cooling device and the detected value of the temperature sensor, and based on the temperature inside the cooling device and the detected value, the compression is performed. It is characterized in that the drive of the machine is controlled and the opening degree of the refrigerant adjusting valve is reduced when the drive frequency of the compressor is at the minimum value.

これによれば、圧縮機の駆動が十分に抑制された状態で、冷媒調整弁の開度が調整される。
このため、圧縮機による庫内温度調節に加えて、冷媒調整弁によっても庫内温度を調節することができる。
According to this, the opening degree of the refrigerant adjusting valve is adjusted in a state where the driving of the compressor is sufficiently suppressed.
Therefore, in addition to adjusting the temperature inside the refrigerator by the compressor, the temperature inside the refrigerator can also be adjusted by the refrigerant adjusting valve.

第6の発明は、前記制御部は、前記圧縮機の冷媒温度と、前記冷媒調整弁の冷媒温度とを取得し、前記圧縮機の冷媒温度と、前記冷媒調整弁の冷媒温度との差が所定値以下の場合に、前記圧縮機の駆動を停止させることを特徴とする。 In the sixth invention, the control unit acquires the refrigerant temperature of the compressor and the refrigerant temperature of the refrigerant adjusting valve, and the difference between the refrigerant temperature of the compressor and the refrigerant temperature of the refrigerant adjusting valve is It is characterized in that the drive of the compressor is stopped when the value is equal to or less than a predetermined value.

これによれば、湿り蒸気を含んだ冷媒が圧縮機に取り込まれることが抑制される。
このため、冷凍装置は、所謂液戻りや液圧縮が生じることが抑制される。
According to this, the refrigerant containing the moist steam is suppressed from being taken into the compressor.
Therefore, in the freezing device, so-called liquid return and liquid compression are suppressed.

以下、図面を参照して本発明の実施形態について説明する。
図1は、本発明の実施形態に係る冷凍装置1の冷媒回路の概略構成を示す図である。
図1に示すように、冷凍装置1は、冷媒の圧縮と熱交換とを行う冷凍機10と、冷凍機10から送られる冷媒により冷却されるショーケース20とを備え、これらが冷凍サイクルを形成している。ショーケース20は、例えば、コンビニエンスストアやスーパーマーケット等の施設に設置され、内部に陳列された冷蔵、冷凍商品を冷却する冷却機器である。本実施形態の冷凍装置1は、冷凍機10と、ショーケース20とが一体に設けられている。
本実施形態の冷凍装置1は、高圧側の冷媒圧力(高圧圧力)がその臨界圧力以上(超臨界)となる二酸化炭素を冷媒として用いている。なお、本実施形態においては、冷媒として二酸化炭素冷媒を用いているが、これに限定されるものではなく、種々の冷媒を用いてもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a schematic configuration of a refrigerant circuit of the refrigerating apparatus 1 according to the embodiment of the present invention.
As shown in FIG. 1, the refrigerating apparatus 1 includes a refrigerator 10 that compresses and exchanges heat with a refrigerant, and a showcase 20 that is cooled by a refrigerant sent from the refrigerator 10, and these form a refrigerating cycle. doing. The showcase 20 is, for example, a cooling device installed in a facility such as a convenience store or a supermarket to cool refrigerated or frozen products displayed inside. In the refrigerating apparatus 1 of the present embodiment, the refrigerating machine 10 and the showcase 20 are integrally provided.
The refrigerating apparatus 1 of the present embodiment uses carbon dioxide as a refrigerant whose high pressure side refrigerant pressure (high pressure) is equal to or higher than the critical pressure (supercritical). In this embodiment, a carbon dioxide refrigerant is used as the refrigerant, but the present invention is not limited to this, and various refrigerants may be used.

冷凍機10は、冷媒を必要な圧力に圧縮して吐出する圧縮機30を備えている。圧縮機30の吐出口には、冷媒配管80が接続され、圧縮機30には、この冷媒配管80を介して、ガスクーラ32が接続されている。
ガスクーラ32は、圧縮機30から送られた冷媒を、冷凍機10に設けられた送風ファン34を動作させることにより外気と熱交換させて冷却する熱交換器として機能する。なお、冷凍装置1において、冷媒に凝縮性冷媒を用いた場合には、ガスクーラ32は、凝縮器として機能する。
The refrigerator 10 includes a compressor 30 that compresses and discharges the refrigerant to a required pressure. A refrigerant pipe 80 is connected to the discharge port of the compressor 30, and a gas cooler 32 is connected to the compressor 30 via the refrigerant pipe 80.
The gas cooler 32 functions as a heat exchanger that cools the refrigerant sent from the compressor 30 by exchanging heat with the outside air by operating a blower fan 34 provided in the refrigerator 10. When a condensable refrigerant is used as the refrigerant in the refrigerating apparatus 1, the gas cooler 32 functions as a condenser.

冷凍機10は、内部熱交換器36を備えている。内部熱交換器36には、ガスクーラ32の出口側から延びる冷媒配管80と、圧縮機30の吸入口に接続された冷媒配管80とが収められている。内部熱交換器36は、これら2つの冷媒配管80同士で熱交換を行うことで圧縮機30に吸入される冷媒の温度を上昇させ、冷凍装置1の運転効率の向上、及び液戻りや液圧縮の発生を防止する。以下、圧縮機30に吸入される冷媒の温度を吸入温度とする。
ガスクーラ32の出口側の冷媒配管80には、内部熱交換器36に収められた箇所よりも下流側に位置する箇所に、ショーケース20に冷媒を送るための出口サービスバルブ38が接続されている。
一方、圧縮機30の吸入口に接続された冷媒配管80には、内部熱交換器36に収められた箇所よりも上流側に位置する箇所に、ショーケース20からの冷媒が戻るための入口サービスバルブ39が接続されている。入口サービスバルブ39は、冷媒配管80を介して、圧縮機30の吸入口に接続されている。
The refrigerator 10 includes an internal heat exchanger 36. The internal heat exchanger 36 contains a refrigerant pipe 80 extending from the outlet side of the gas cooler 32 and a refrigerant pipe 80 connected to the suction port of the compressor 30. The internal heat exchanger 36 raises the temperature of the refrigerant sucked into the compressor 30 by exchanging heat between these two refrigerant pipes 80, improving the operating efficiency of the refrigerating device 1, and returning or compressing the liquid. To prevent the occurrence of. Hereinafter, the temperature of the refrigerant sucked into the compressor 30 will be referred to as the suction temperature.
An outlet service valve 38 for sending the refrigerant to the showcase 20 is connected to the refrigerant pipe 80 on the outlet side of the gas cooler 32 at a location located on the downstream side of the location housed in the internal heat exchanger 36. ..
On the other hand, the refrigerant pipe 80 connected to the suction port of the compressor 30 has an inlet service for returning the refrigerant from the showcase 20 to a location located upstream of the location housed in the internal heat exchanger 36. The valve 39 is connected. The inlet service valve 39 is connected to the suction port of the compressor 30 via the refrigerant pipe 80.

ショーケース20は、蒸発器40と、入口膨張弁42と、出口調整弁44と、送風ファン46とを備えている。蒸発器40の入口は、冷媒配管80によって、出口サービスバルブ38に接続されている。蒸発器40と、出口サービスバルブ38とを接続する冷媒配管80には、入口膨張弁42が設けられている。本実施形態の入口膨張弁42は、モータ駆動によってバルブを開閉し、冷媒流量の制御、及び冷媒の蒸発温度の制御を行う電子膨張弁、所謂電動弁である。この入口膨張弁42は、開度を無段階に調整可能であり、当該入口膨張弁42の開度が調整されることによって、入口膨張弁42における冷媒の蒸発温度、すなわち、蒸発器40の入口における冷媒の温度を調整可能となっている。 The showcase 20 includes an evaporator 40, an inlet expansion valve 42, an outlet adjusting valve 44, and a blower fan 46. The inlet of the evaporator 40 is connected to the outlet service valve 38 by the refrigerant pipe 80. An inlet expansion valve 42 is provided in the refrigerant pipe 80 that connects the evaporator 40 and the outlet service valve 38. The inlet expansion valve 42 of the present embodiment is an electronic expansion valve, a so-called electric valve, that opens and closes the valve by driving a motor to control the flow rate of the refrigerant and the evaporation temperature of the refrigerant. The opening degree of the inlet expansion valve 42 can be adjusted steplessly, and by adjusting the opening degree of the inlet expansion valve 42, the evaporation temperature of the refrigerant in the inlet expansion valve 42, that is, the inlet of the evaporator 40 The temperature of the refrigerant in the above can be adjusted.

蒸発器40では、冷媒配管80から送られる冷媒と、ショーケース20の内部の空気とが熱交換され、これによって、ショーケース20の内部が冷却される。
蒸発器40で冷却された空気(冷気)は、送風ファン46によって循環される。
In the evaporator 40, the refrigerant sent from the refrigerant pipe 80 and the air inside the showcase 20 exchange heat, thereby cooling the inside of the showcase 20.
The air (cold air) cooled by the evaporator 40 is circulated by the blower fan 46.

蒸発器40の出口は、冷媒配管80によって、入口サービスバルブ39に接続されている。この蒸発器40と、入口サービスバルブ39とを接続する冷媒配管80には、出口調整弁44が設けられている。
出口調整弁44は、入口膨張弁42と略同一の電動弁であり、当該出口調整弁44は、冷媒の流量を調整する冷媒調整弁として機能する。出口調整弁44は、モータ駆動によりバルブを開閉し、冷媒流量を制御する。この出口調整弁44は、開度を無段階に調整可能であり、当該出口調整弁44の開度が調整されることによって、蒸発器40における冷媒の過熱度、すなわち、蒸発器40の入口と出口とにおける冷媒の温度差を調整可能となっている。
The outlet of the evaporator 40 is connected to the inlet service valve 39 by the refrigerant pipe 80. An outlet adjusting valve 44 is provided in the refrigerant pipe 80 that connects the evaporator 40 and the inlet service valve 39.
The outlet adjusting valve 44 is an electric valve substantially the same as the inlet expansion valve 42, and the outlet adjusting valve 44 functions as a refrigerant adjusting valve for adjusting the flow rate of the refrigerant. The outlet adjusting valve 44 opens and closes the valve by driving the motor to control the flow rate of the refrigerant. The opening degree of the outlet adjusting valve 44 can be adjusted steplessly, and by adjusting the opening degree of the outlet adjusting valve 44, the degree of superheat of the refrigerant in the evaporator 40, that is, the inlet of the evaporator 40 The temperature difference between the refrigerant and the outlet can be adjusted.

圧縮機30の吸入側に位置する冷媒配管80には、圧縮機30に吸入される冷媒の温度を検出する吸入温度センサ50が設けられている。
蒸発器40の入口と、出口とに接続された冷媒配管80のそれぞれには、入口温度センサ52と、出口温度センサ54とがそれぞれ設けられている。詳述すると、入口温度センサ52は、入口膨張弁42と、蒸発器40の入口との間に設けられ、出口温度センサ54は、蒸発器40の出口と出口調整弁44との間に設けられている。
入口温度センサ52と、出口温度センサ54とは、それぞれが蒸発器40の入口と、出口とにおける冷媒の温度を検出する。
The refrigerant pipe 80 located on the suction side of the compressor 30 is provided with a suction temperature sensor 50 that detects the temperature of the refrigerant sucked into the compressor 30.
An inlet temperature sensor 52 and an outlet temperature sensor 54 are provided in each of the refrigerant pipes 80 connected to the inlet and the outlet of the evaporator 40, respectively. More specifically, the inlet temperature sensor 52 is provided between the inlet expansion valve 42 and the inlet of the evaporator 40, and the outlet temperature sensor 54 is provided between the outlet of the evaporator 40 and the outlet regulating valve 44. ing.
The inlet temperature sensor 52 and the outlet temperature sensor 54 detect the temperature of the refrigerant at the inlet and the outlet of the evaporator 40, respectively.

出口調整弁44の出口に接続された冷媒配管80には、調整弁出口温度センサ56が設けられている。詳述すると、調整弁出口温度センサ56は、出口調整弁44の出口と入口サービスバルブ39の入口との間に設けられている。
調整弁出口温度センサ56は、出口調整弁44の出口における冷媒の温度を検出する。
さらに、ショーケース20には、当該ショーケース20の内部の温度を検出する庫内温度センサ58が設けられている。以下、ショーケース20の内部の温度を庫内温度とする。
A regulating valve outlet temperature sensor 56 is provided in the refrigerant pipe 80 connected to the outlet of the outlet regulating valve 44. More specifically, the regulating valve outlet temperature sensor 56 is provided between the outlet of the outlet regulating valve 44 and the inlet of the inlet service valve 39.
The regulating valve outlet temperature sensor 56 detects the temperature of the refrigerant at the outlet of the outlet regulating valve 44.
Further, the showcase 20 is provided with an internal temperature sensor 58 that detects the temperature inside the showcase 20. Hereinafter, the temperature inside the showcase 20 will be referred to as the temperature inside the refrigerator.

また、出口調整弁44の入口と、出口とに接続された冷媒配管80のそれぞれには、調整弁入口圧力センサ60と、調整弁出口圧力センサ62とがそれぞれ設けられている。詳述すると、調整弁入口圧力センサ60は、出口温度センサ54と同様に、蒸発器40の入口と、出口調整弁44との間に設けられ、調整弁出口圧力センサ62は、調整弁出口温度センサ56と同様に、出口調整弁44の出口と、入口サービスバルブ39の入口との間に設けられている。
調整弁入口圧力センサ60と、調整弁出口圧力センサ62とは、それぞれが蒸発器40の入口と、出口とにおける冷媒の圧力を検出する。
Further, a regulating valve inlet pressure sensor 60 and a regulating valve outlet pressure sensor 62 are provided at the inlet of the outlet regulating valve 44 and the refrigerant pipe 80 connected to the outlet, respectively. More specifically, the regulating valve inlet pressure sensor 60 is provided between the inlet of the evaporator 40 and the outlet regulating valve 44, like the outlet temperature sensor 54, and the regulating valve outlet pressure sensor 62 is the regulating valve outlet temperature. Similar to the sensor 56, it is provided between the outlet of the outlet adjusting valve 44 and the inlet of the inlet service valve 39.
The regulating valve inlet pressure sensor 60 and the regulating valve outlet pressure sensor 62 detect the pressure of the refrigerant at the inlet and outlet of the evaporator 40, respectively.

次に、本実施形態の制御構成について説明する。
図2は、本実施形態における冷凍装置1の概略構成を示す図である。
図2に示すように、本実施形態においては、冷凍装置1は、各部を統括して制御する制御装置70を備えている。制御装置70は、CPUやMPUなどのプロセッサと、ROMやRAMなどのメモリデバイスとを有したコンピュータを備え、冷凍装置1の各部の制御を行う制御部として機能する。
制御装置70は、冷凍装置1の運転制御方法に係る各種の設定条件や、冷媒の圧力と飽和温度との関係といった、冷凍装置1の運転に係る各種のデータを記憶する記憶部72を備えている。
Next, the control configuration of this embodiment will be described.
FIG. 2 is a diagram showing a schematic configuration of the refrigerating apparatus 1 according to the present embodiment.
As shown in FIG. 2, in the present embodiment, the refrigerating device 1 includes a control device 70 that controls each unit in an integrated manner. The control device 70 includes a computer having a processor such as a CPU or MPU and a memory device such as a ROM or RAM, and functions as a control unit that controls each part of the refrigerating device 1.
The control device 70 includes a storage unit 72 that stores various data related to the operation of the refrigerating device 1 such as various setting conditions related to the operation control method of the refrigerating device 1 and the relationship between the pressure of the refrigerant and the saturation temperature. There is.

制御装置70は、吸入温度センサ50、入口温度センサ52、出口温度センサ54、調整弁出口温度センサ56、庫内温度センサ58、調整弁入口圧力センサ60、及び調整弁出口圧力センサ62のそれぞれが検出した検出値を取得可能に構成されている。制御装置70は、これらのセンサから取得した検出値、及び記憶部72に記憶された設定条件に基づき、圧縮機30の駆動周波数や、送風ファン34、46の回転数、入口膨張弁42と、出口調整弁44との開度をそれぞれ制御する。 The control device 70 includes a suction temperature sensor 50, an inlet temperature sensor 52, an outlet temperature sensor 54, a regulating valve outlet temperature sensor 56, an internal temperature sensor 58, a regulating valve inlet pressure sensor 60, and a regulating valve outlet pressure sensor 62. It is configured so that the detected detection value can be acquired. Based on the detected values acquired from these sensors and the setting conditions stored in the storage unit 72, the control device 70 includes the drive frequency of the compressor 30, the rotation speeds of the blower fans 34 and 46, the inlet expansion valve 42, and the like. The opening degree with the outlet adjusting valve 44 is controlled respectively.

本実施形態の制御装置70は、入口温度センサ52と、出口温度センサ54との検出値を取得し、これらの検出値から、蒸発器40における冷媒の過熱度を得る。
制御装置70は、当該過熱度が記憶部72に記憶された所定値となるように、圧縮機30の駆動周波数、及び入口膨張弁42の開度を制御する。
The control device 70 of the present embodiment acquires the detected values of the inlet temperature sensor 52 and the outlet temperature sensor 54, and obtains the degree of superheat of the refrigerant in the evaporator 40 from these detected values.
The control device 70 controls the drive frequency of the compressor 30 and the opening degree of the inlet expansion valve 42 so that the degree of superheat becomes a predetermined value stored in the storage unit 72.

また、制御装置70は、庫内温度センサ58の検出値を入力してショーケース20の内部の実際の温度を取得し、冷凍装置1の冷却能力が冷凍負荷を超えているか否かを判定する。そして、圧縮機30の駆動周波数が最小値の状態で、冷凍装置1の冷却能力が当該冷凍装置1の冷凍負荷を超えていると判定した場合、制御装置70は、冷媒量調整動作を実施する。 Further, the control device 70 inputs the detected value of the internal temperature sensor 58 to acquire the actual temperature inside the showcase 20, and determines whether or not the cooling capacity of the refrigerating device 1 exceeds the refrigerating load. .. Then, when it is determined that the cooling capacity of the refrigerating device 1 exceeds the refrigerating load of the refrigerating device 1 in the state where the drive frequency of the compressor 30 is the minimum value, the control device 70 executes the refrigerant amount adjusting operation. ..

冷媒量調整動作は、冷凍装置1の冷却能力が冷凍負荷を超えている場合に、余剰となった冷媒を蒸発器40の内部に貯留させる動作である。具体的には、出口調整弁44の開度を減少させ、蒸発器40からの冷媒の流出量を抑制すると共に、入口膨張弁42の開度を増加させ、蒸発器40に流入する冷媒の流入量を増加させる。これによって、余剰分の冷媒が蒸発器40の内部に貯留される。 The refrigerant amount adjusting operation is an operation of storing the surplus refrigerant inside the evaporator 40 when the cooling capacity of the refrigerating device 1 exceeds the refrigerating load. Specifically, the opening degree of the outlet adjusting valve 44 is reduced to suppress the outflow of the refrigerant from the evaporator 40, and the opening degree of the inlet expansion valve 42 is increased to allow the inflow of the refrigerant flowing into the evaporator 40. Increase the amount. As a result, the excess refrigerant is stored inside the evaporator 40.

また、この冷媒量調整動作において、制御装置70は、入口膨張弁42における冷媒の蒸発温度が所定値となるように、入口膨張弁42の開度を制御する。
さらに、制御装置70は、蒸発器40における冷媒の過熱度が所定値となるように出口調整弁44の開度を制御させる。
これによって、制御装置70は、蒸発器40における冷媒の過熱度が記憶部72に記憶された所定値となるように冷媒温度を調整させる。
なお、本実施形態では、制御装置70は、冷媒量調整動作を行うとき以外、すなわち冷凍装置1が通常の冷却運転を行うときには、出口調整弁44の開度を全開とさせる。
Further, in this refrigerant amount adjusting operation, the control device 70 controls the opening degree of the inlet expansion valve 42 so that the evaporation temperature of the refrigerant in the inlet expansion valve 42 becomes a predetermined value.
Further, the control device 70 controls the opening degree of the outlet adjusting valve 44 so that the degree of superheat of the refrigerant in the evaporator 40 becomes a predetermined value.
As a result, the control device 70 adjusts the refrigerant temperature so that the degree of superheat of the refrigerant in the evaporator 40 becomes a predetermined value stored in the storage unit 72.
In the present embodiment, the control device 70 makes the opening degree of the outlet adjusting valve 44 fully open except when the refrigerant amount adjusting operation is performed, that is, when the refrigerating device 1 performs a normal cooling operation.

さらに、制御装置70は、吸入温度センサ50と、調整弁出口温度センサ56との検出値を取得し、これらの差が所定値以下となった場合に、圧縮機30の運転を停止させる。
これによって、圧縮機30における所謂液戻りの発生が防止される。
Further, the control device 70 acquires the detected values of the suction temperature sensor 50 and the regulating valve outlet temperature sensor 56, and stops the operation of the compressor 30 when the difference between them becomes a predetermined value or less.
This prevents the occurrence of so-called liquid return in the compressor 30.

次に、本実施形態の動作について説明する。
図3は、冷凍装置1の動作を示すフローチャートである。
冷凍装置1の通常の冷却運転では、制御装置70は、冷凍サイクルを構成する圧縮機30を駆動させ、当該圧縮機30から冷媒が吐出される。吐出された冷媒は、ガスクーラ32で冷却された後に、冷媒配管80を介してショーケース20に送り出される。この冷媒は、入口膨張弁42で減圧され、蒸発器40に供給される。蒸発器40で蒸発した冷媒は、ショーケース20の内部を冷却し、圧縮機30に還流する。
Next, the operation of this embodiment will be described.
FIG. 3 is a flowchart showing the operation of the refrigerating apparatus 1.
In the normal cooling operation of the refrigerating device 1, the control device 70 drives the compressor 30 constituting the refrigerating cycle, and the refrigerant is discharged from the compressor 30. The discharged refrigerant is cooled by the gas cooler 32 and then sent out to the showcase 20 via the refrigerant pipe 80. This refrigerant is depressurized by the inlet expansion valve 42 and supplied to the evaporator 40. The refrigerant vaporized in the evaporator 40 cools the inside of the showcase 20 and returns to the compressor 30.

冷凍装置1の通常の冷却運転において、制御装置70は、入口温度センサ52と、出口温度センサ54との検出値を取得し、これらの検出値から、蒸発器40における冷媒の過熱度を得る。
制御装置70は、当該過熱度が記憶部72に記憶された所定値となるように、圧縮機30の駆動周波数、及び入口膨張弁42の開度を制御することで、得られる過熱度を調整する。これによって、制御装置70は、ショーケース20の庫内温度を設定された所定値に調整する。
なお、上述の通り、冷凍装置1の通常の冷却運転において、出口調整弁44は、全開となっている。
In the normal cooling operation of the refrigerating device 1, the control device 70 acquires the detected values of the inlet temperature sensor 52 and the outlet temperature sensor 54, and obtains the degree of superheat of the refrigerant in the evaporator 40 from these detected values.
The control device 70 adjusts the obtained superheat degree by controlling the drive frequency of the compressor 30 and the opening degree of the inlet expansion valve 42 so that the superheat degree becomes a predetermined value stored in the storage unit 72. do. As a result, the control device 70 adjusts the temperature inside the showcase 20 to a set predetermined value.
As described above, in the normal cooling operation of the refrigerating apparatus 1, the outlet adjusting valve 44 is fully opened.

冷凍装置1の通常の冷却運転において、制御装置70は、庫内温度が所定値以下となっているか否かを判定する(ステップST1)。庫内温度が所定値以下、すなわち、冷凍装置1の冷却能力が当該冷凍装置の冷凍負荷を上回っていると判定された場合(ステップST1:YES)、制御装置70は、圧縮機30の駆動周波数を減少させる(ステップST2)。
制御装置70は、圧縮機30の駆動周波数を減少させた後に、再度庫内温度が所定値以下となっているか否かを判定する(ステップST3)。庫内温度が所定値以下ではない、と判定された場合(ステップST3:NO)、制御装置70は、圧縮機30の駆動周波数の減少を停止し(ステップST11)、冷凍装置1を通常の冷却運転に復帰させる。
In the normal cooling operation of the refrigerating device 1, the control device 70 determines whether or not the temperature inside the refrigerator is equal to or lower than a predetermined value (step ST1). When it is determined that the temperature inside the refrigerator is equal to or lower than a predetermined value, that is, the cooling capacity of the refrigerating device 1 exceeds the refrigerating load of the refrigerating device (step ST1: YES), the control device 70 controls the drive frequency of the compressor 30. (Step ST2).
After reducing the drive frequency of the compressor 30, the control device 70 again determines whether or not the temperature inside the refrigerator is equal to or lower than a predetermined value (step ST3). When it is determined that the temperature inside the refrigerator is not below a predetermined value (step ST3: NO), the control device 70 stops the decrease in the drive frequency of the compressor 30 (step ST11), and cools the refrigerating device 1 normally. Return to operation.

庫内温度が所定値以下である、と判定された場合(ステップST3:YES)、制御装置70は、圧縮機30の駆動周波数が最小値であるか否かを判定する(ステップST4)。
圧縮機30の駆動周波数が最小値でないと判定された場合(ステップST4:NO)、制御装置70は、再度圧縮機30の駆動周波数を減少させ(ステップST2)、再度庫内温度が所定値以下となっているか否かを判定する(ステップST3)。
When it is determined that the temperature inside the refrigerator is equal to or lower than a predetermined value (step ST3: YES), the control device 70 determines whether or not the drive frequency of the compressor 30 is the minimum value (step ST4).
When it is determined that the drive frequency of the compressor 30 is not the minimum value (step ST4: NO), the control device 70 reduces the drive frequency of the compressor 30 again (step ST2), and the internal temperature is again below the predetermined value. It is determined whether or not the frequency is (step ST3).

圧縮機30の駆動周波数が最小値である最小駆動周波数であると判定された場合(ステップST4:YES)、制御装置70は、圧縮機30が最小駆動周波数に到達後、所定時間が経過したか否かを判定する(ステップST5)。所定時間が経過していないと判定された場合(ステップST5:NO)、制御装置70は、所定の間隔を空けて再度ステップST5の判定を行う。
所定時間が経過したと判定された場合(ステップST5:YES)、制御装置70は、再度庫内温度が所定値以下となっているか否かを判定する(ステップST6)。
When it is determined that the drive frequency of the compressor 30 is the minimum drive frequency which is the minimum value (step ST4: YES), does the control device 70 elapse a predetermined time after the compressor 30 reaches the minimum drive frequency? It is determined whether or not (step ST5). When it is determined that the predetermined time has not elapsed (step ST5: NO), the control device 70 determines step ST5 again at a predetermined interval.
When it is determined that the predetermined time has elapsed (step ST5: YES), the control device 70 again determines whether or not the temperature inside the refrigerator is equal to or lower than the predetermined value (step ST6).

庫内温度が所定値以下ではない、と判定された場合(ステップST6:NO)、制御装置70は、圧縮機30の駆動周波数の減少を停止し(ステップST11)、冷凍装置1を通常の冷却運転に復帰させる。
庫内温度が所定値以下である、と判定された場合(ステップST6:YES)、制御装置70は、冷媒量調整動作を実施する。
When it is determined that the temperature inside the refrigerator is not below a predetermined value (step ST6: NO), the control device 70 stops the decrease in the drive frequency of the compressor 30 (step ST11), and cools the refrigerating device 1 normally. Return to operation.
When it is determined that the temperature inside the refrigerator is equal to or lower than a predetermined value (step ST6: YES), the control device 70 performs a refrigerant amount adjusting operation.

具体的には、出口調整弁44の開度を減少させ、蒸発器40からの冷媒の流出量を抑制すると共に、入口膨張弁42の開度を増加させ、蒸発器40に流入する冷媒の流入量を増加させる(ステップST7)。これによって、余剰分の冷媒が蒸発器40の内部に貯留される。 Specifically, the opening degree of the outlet adjusting valve 44 is reduced to suppress the outflow of the refrigerant from the evaporator 40, and the opening degree of the inlet expansion valve 42 is increased to allow the inflow of the refrigerant flowing into the evaporator 40. Increase the amount (step ST7). As a result, the excess refrigerant is stored inside the evaporator 40.

上述の通り、余剰分の冷媒を蒸発器40の内部に貯留させることに加えて、制御装置70は、入口膨張弁42における冷媒の蒸発温度が所定値となるように、入口膨張弁42の開度を制御する。さらに、制御装置70は、蒸発器40における冷媒の過熱度が所定値となるように出口調整弁44の開度を制御させる。
これによって、制御装置70は、蒸発器40における冷媒の過熱度が記憶部72に記憶された所定値となるように冷媒温度を調整させる。
As described above, in addition to storing the excess refrigerant inside the evaporator 40, the control device 70 opens the inlet expansion valve 42 so that the evaporation temperature of the refrigerant in the inlet expansion valve 42 becomes a predetermined value. Control the degree. Further, the control device 70 controls the opening degree of the outlet adjusting valve 44 so that the degree of superheat of the refrigerant in the evaporator 40 becomes a predetermined value.
As a result, the control device 70 adjusts the refrigerant temperature so that the degree of superheat of the refrigerant in the evaporator 40 becomes a predetermined value stored in the storage unit 72.

このように、出口調整弁44と入口膨張弁42の開度を調整しつつ、制御装置70は、吸入温度センサ50と、調整弁出口温度センサ56との検出値を取得する。すなわち、制御装置70は、吸入温度と、出口調整弁44の出口における冷媒温度とを取得する。そして、制御装置70は、これらの温度の差が所定値以下となったか否かを判定する(ステップST8)。吸入温度と、出口調整弁44の出口における冷媒温度との差が所定値以下であると判定された場合(ステップST8:YES)、制御装置70は、圧縮機30の運転を停止させる(ステップST9)。これによって、圧縮機30における液戻りの発生が防止される。 In this way, while adjusting the opening degrees of the outlet adjusting valve 44 and the inlet expansion valve 42, the control device 70 acquires the detection values of the suction temperature sensor 50 and the adjusting valve outlet temperature sensor 56. That is, the control device 70 acquires the suction temperature and the refrigerant temperature at the outlet of the outlet adjusting valve 44. Then, the control device 70 determines whether or not the difference between these temperatures is equal to or less than a predetermined value (step ST8). When it is determined that the difference between the suction temperature and the refrigerant temperature at the outlet of the outlet adjusting valve 44 is equal to or less than a predetermined value (step ST8: YES), the control device 70 stops the operation of the compressor 30 (step ST9). ). This prevents the occurrence of liquid return in the compressor 30.

吸入温度と、出口調整弁44の出口における冷媒温度との差が所定値以下となっていないと判定された場合(ステップST8:NO)、制御装置70は、再度調整弁入口圧力センサ60の検出値から飽和温度を取得し、入口温度センサ52と、出口温度センサ54との検出値から蒸発器40における冷媒の温度を取得する。そして、制御装置70は、蒸発器40における冷媒の過熱度が所定値となったか否かを判定する(ステップST10)。 When it is determined that the difference between the suction temperature and the refrigerant temperature at the outlet of the outlet regulating valve 44 is not equal to or less than a predetermined value (step ST8: NO), the control device 70 detects the regulating valve inlet pressure sensor 60 again. The saturation temperature is acquired from the value, and the temperature of the refrigerant in the evaporator 40 is acquired from the detected values of the inlet temperature sensor 52 and the outlet temperature sensor 54. Then, the control device 70 determines whether or not the degree of superheat of the refrigerant in the evaporator 40 has reached a predetermined value (step ST10).

過熱度が所定値となっていないと判定された場合、(ステップST10:NO)、制御装置70は、再度出口調整弁44と入口膨張弁42の開度を調整し、過熱度が所定値となるようにする(ステップST7)。
過熱度が所定値となっていると判定された場合(ステップST10:YES)、制御装置70は、冷凍装置1を通常の冷却運転に復帰させる。
When it is determined that the degree of superheat is not a predetermined value (step ST10: NO), the control device 70 adjusts the opening degrees of the outlet adjusting valve 44 and the inlet expansion valve 42 again, and the degree of superheating becomes a predetermined value. (Step ST7).
When it is determined that the degree of superheat is a predetermined value (step ST10: YES), the control device 70 returns the refrigerating device 1 to the normal cooling operation.

このように、冷媒量調整動作を行うことで、冷凍装置1は、余剰となった冷媒を蒸発器40の内部に貯留させることができる。このため、冷凍装置1は、冷媒量調整タンク(レシーバタンク)を設けることなく冷媒量の調整を行うことができる。すなわち、冷凍装置1では、冷媒調整タンクを省略することができ、冷凍機10の小型化、軽量化を図ることができる。 By performing the refrigerant amount adjusting operation in this way, the refrigerating apparatus 1 can store the surplus refrigerant inside the evaporator 40. Therefore, the refrigerating device 1 can adjust the amount of refrigerant without providing a refrigerant amount adjusting tank (receiver tank). That is, in the refrigerator 1, the refrigerant adjusting tank can be omitted, and the refrigerator 10 can be made smaller and lighter.

また、出口調整弁44から噴射された冷媒は、内部熱交換器36で圧縮機30から吐出された冷媒と熱交換される。この内部熱交換器36によって、出口調整弁44から噴射された冷媒から確実に加熱度が取られ、当該冷媒は、圧縮機30に送られる。このため、圧縮機30における冷媒の液戻り、液圧縮が防止される。 Further, the refrigerant injected from the outlet adjusting valve 44 is heat-exchanged with the refrigerant discharged from the compressor 30 by the internal heat exchanger 36. The internal heat exchanger 36 ensures that the degree of heating is taken from the refrigerant injected from the outlet regulating valve 44, and the refrigerant is sent to the compressor 30. Therefore, the liquid return and the liquid compression of the refrigerant in the compressor 30 are prevented.

また、この冷媒量調整動作において、入口膨張弁42と、出口調整弁44の開度が制御されることで、蒸発器40における冷媒の過熱度が記憶部72に記憶された所定値となるように冷媒温度を調整される。
これによって、蒸発器40における冷媒の温度が過度に低下することが抑制される。このため、蒸発器40に着霜することが抑制され、所謂霜取り運転(デフロスト運転)を行うことが抑制される。すなわち、霜取り運転を行うことで、ショーケース20の庫内温度が上昇することを抑制できる。
Further, in this refrigerant amount adjusting operation, the opening degrees of the inlet expansion valve 42 and the outlet adjusting valve 44 are controlled so that the degree of superheat of the refrigerant in the evaporator 40 becomes a predetermined value stored in the storage unit 72. The refrigerant temperature is adjusted to.
This prevents the temperature of the refrigerant in the evaporator 40 from dropping excessively. Therefore, frost formation on the evaporator 40 is suppressed, and so-called defrosting operation (defrosting operation) is suppressed. That is, by performing the defrosting operation, it is possible to suppress an increase in the temperature inside the showcase 20.

以上説明したように、本実施形態によれば、冷凍装置1は、圧縮機30とガスクーラ32とを備える冷凍機10と、蒸発器40と蒸発器40の入口に入口膨張弁42とを備えるショーケース20とからなる冷凍装置において、蒸発器40の出口に出口調整弁44が設けられている構成とした。
これによって、出口調整弁44を開閉して冷媒流量を調整することで、余剰となった冷媒を蒸発器40の内部に貯留させることができる。
このため、冷凍装置1は、冷媒量調整タンク(レシーバタンク)等の冷媒量調節部を設けることなく冷媒量の調整を行うことができる。すなわち、冷凍装置1では、冷媒調整タンクを省略することができ、冷凍機10の小型化、軽量化を図ることができる。
As described above, according to the present embodiment, the refrigerating apparatus 1 includes a refrigerator 10 including a compressor 30 and a gas cooler 32, and an inlet expansion valve 42 at the inlet of the evaporator 40 and the evaporator 40. In the refrigerating apparatus including the case 20, an outlet adjusting valve 44 is provided at the outlet of the evaporator 40.
As a result, the excess refrigerant can be stored inside the evaporator 40 by opening and closing the outlet adjusting valve 44 to adjust the flow rate of the refrigerant.
Therefore, the refrigerating device 1 can adjust the amount of refrigerant without providing a refrigerant amount adjusting unit such as a refrigerant amount adjusting tank (receiver tank). That is, in the refrigerator 1, the refrigerant adjusting tank can be omitted, and the refrigerator 10 can be made smaller and lighter.

また、本実施形態によれば、出口調整弁44から噴射された冷媒は、内部熱交換器36で圧縮機30から吐出された冷媒と熱交換される。この内部熱交換器36によって、出口調整弁44から噴射された冷媒から確実に加熱度が取られ、当該冷媒は、圧縮機30に送られる。このため、圧縮機30における冷媒の液戻り、液圧縮が防止される。 Further, according to the present embodiment, the refrigerant injected from the outlet adjusting valve 44 is heat-exchanged with the refrigerant discharged from the compressor 30 by the internal heat exchanger 36. The internal heat exchanger 36 ensures that the degree of heating is taken from the refrigerant injected from the outlet regulating valve 44, and the refrigerant is sent to the compressor 30. Therefore, the liquid return and the liquid compression of the refrigerant in the compressor 30 are prevented.

また、本実施形態によれば、冷凍装置1は、蒸発器40での冷媒温度を検出する入口温度センサ52と出口温度センサ54と、冷媒圧力を検出する調整弁入口圧力センサ60とを備えている。そして、制御装置70は、入口温度センサ52と出口温度センサ54との検出値を取得し、当該検出値に基づいて、入口膨張弁42と、出口調整弁44との開度を調整する構成とした。
これによって、冷凍装置1は、蒸発器40の冷媒温度に応じて、入口膨張弁42と、出口調整弁44との開度を調整する。
このため、蒸発器40の冷媒温度が所定値より低下した場合に、入口膨張弁42と、出口調整弁44との開度を調整することで、蒸発器40の冷媒温度を所望の温度に復帰させることができる。
Further, according to the present embodiment, the refrigerating apparatus 1 includes an inlet temperature sensor 52 and an outlet temperature sensor 54 for detecting the refrigerant temperature in the evaporator 40, and a regulating valve inlet pressure sensor 60 for detecting the refrigerant pressure. There is. Then, the control device 70 acquires the detected values of the inlet temperature sensor 52 and the outlet temperature sensor 54, and adjusts the opening degree between the inlet expansion valve 42 and the outlet adjusting valve 44 based on the detected values. bottom.
As a result, the refrigerating device 1 adjusts the opening degree between the inlet expansion valve 42 and the outlet adjusting valve 44 according to the refrigerant temperature of the evaporator 40.
Therefore, when the refrigerant temperature of the evaporator 40 drops below a predetermined value, the refrigerant temperature of the evaporator 40 is returned to a desired temperature by adjusting the opening degree between the inlet expansion valve 42 and the outlet adjusting valve 44. Can be made to.

また、本実施形態によれば、制御装置70は、前入口温度センサ52と出口温度センサ54と、の検出値を取得し、当該検出値に基づいて、蒸発器40の冷媒の過熱度を取得する。そして、制御装置70は、当該加熱度が所定値以上であるときに、出口調整弁44の開度を調整する構成とした。
これによって、制御装置70は、蒸発器40の過熱度に応じて出口調整弁44を開閉させる。
このため、蒸発器40の冷媒温度が過度に低下することが抑制され、蒸発器40に着霜することが抑制される。
Further, according to the present embodiment, the control device 70 acquires the detected values of the front inlet temperature sensor 52 and the outlet temperature sensor 54, and acquires the degree of superheat of the refrigerant of the evaporator 40 based on the detected values. do. The control device 70 is configured to adjust the opening degree of the outlet adjusting valve 44 when the degree of heating is equal to or higher than a predetermined value.
As a result, the control device 70 opens and closes the outlet adjusting valve 44 according to the degree of superheat of the evaporator 40.
Therefore, it is suppressed that the refrigerant temperature of the evaporator 40 is excessively lowered, and frost formation on the evaporator 40 is suppressed.

また、本実施形態によれば、制御装置70は、ショーケース20の庫内温度と、入口温度センサ52と出口温度センサ54と、調整弁入口圧力センサ60との検出値を取得し、庫内温度と、当該検出値とに基いて、圧縮機30の駆動を制御する。そして、制御装置70は、圧縮機30の駆動周波数が最小値となっているときに、出口調整弁44の開度を調整する構成とした。
これによって、圧縮機30の駆動が十分に抑制された状態で、出口調整弁44の開度が調整される。
このため、圧縮機30による庫内温度調節に加えて、出口調整弁44によっても庫内温度を調節することができる。
Further, according to the present embodiment, the control device 70 acquires the detection values of the temperature inside the showcase 20, the inlet temperature sensor 52, the outlet temperature sensor 54, and the adjusting valve inlet pressure sensor 60, and the inside of the refrigerator. The drive of the compressor 30 is controlled based on the temperature and the detected value. Then, the control device 70 is configured to adjust the opening degree of the outlet adjusting valve 44 when the driving frequency of the compressor 30 is the minimum value.
As a result, the opening degree of the outlet adjusting valve 44 is adjusted while the drive of the compressor 30 is sufficiently suppressed.
Therefore, in addition to adjusting the temperature inside the refrigerator by the compressor 30, the temperature inside the refrigerator can also be adjusted by the outlet adjusting valve 44.

また、本実施形態によれば、制御装置70は、圧縮機30の冷媒温度と、出口調整弁44の冷媒温度とを取得し、圧縮機30の冷媒温度と、出口調整弁44の冷媒温度との差が所定値以下の場合に、圧縮機30の駆動を停止させる。
これによって、湿り蒸気を含んだ冷媒が圧縮機30に取り込まれることが抑制される。
このため、冷凍装置1は、所謂液戻りや液圧縮が生じることが抑制される。
Further, according to the present embodiment, the control device 70 acquires the refrigerant temperature of the compressor 30 and the refrigerant temperature of the outlet adjusting valve 44, and obtains the refrigerant temperature of the compressor 30 and the refrigerant temperature of the outlet adjusting valve 44. When the difference between the two is equal to or less than a predetermined value, the drive of the compressor 30 is stopped.
As a result, it is possible to prevent the refrigerant containing the moist steam from being taken into the compressor 30.
Therefore, the freezing device 1 is prevented from causing so-called liquid return and liquid compression.

上述した実施形態は、本発明の一態様を例示したものであって、本発明の趣旨を逸脱しない範囲で任意に変形、及び応用が可能である。 The above-described embodiment illustrates one aspect of the present invention, and can be arbitrarily modified and applied without departing from the spirit of the present invention.

上述した実施形態では、冷凍装置1は、一つの冷凍機10に一つのショーケース20が接続されている構成としたが、これに限らず、例えば図4に示すように、2つ以上のショーケースが設けられていてもよい。なお、図4では、各センサを省略して示している。 In the above-described embodiment, the refrigerator 1 has a configuration in which one showcase 20 is connected to one refrigerator 10, but the present invention is not limited to this, and for example, as shown in FIG. 4, two or more shows A case may be provided. In FIG. 4, each sensor is omitted.

また例えば、上述した実施形態では、内部熱交換器36を備えるとしたが、これに限らず、アキュームレータでもよい。 Further, for example, in the above-described embodiment, the internal heat exchanger 36 is provided, but the present invention is not limited to this, and an accumulator may be used.

また例えば、本実施形態の冷凍装置1は、冷凍機10と、ショーケース20とが一体に設けられている構成としたが、これに限らず、冷凍機10と、ショーケース20とが別々に設置されるものであってもよい。 Further, for example, the refrigerating apparatus 1 of the present embodiment has a configuration in which the refrigerating machine 10 and the showcase 20 are integrally provided, but the present invention is not limited to this, and the refrigerating machine 10 and the showcase 20 are separately provided. It may be installed.

以上のように、本発明に係る冷凍装置は、全体の小型、軽量化を図ることを目的とした冷凍装置に好適に利用可能である。 As described above, the refrigerating apparatus according to the present invention can be suitably used for a refrigerating apparatus for the purpose of reducing the overall size and weight.

1 冷凍装置
10 冷凍機
20 ショーケース(冷却機器)
30 圧縮機
32 ガスクーラ(熱交換器)
36 内部熱交換器
40 蒸発器
42 入口膨張弁
44 出口調整弁(冷媒調整弁)
46 送風ファン
50 吸入温度センサ(温度センサ)
52 入口温度センサ(温度センサ)
54 出口温度センサ(温度センサ)
56 調整弁出口温度センサ(温度センサ)
58 庫内温度センサ(温度センサ)
60 調整弁入口圧力センサ(圧力センサ)
62 調整弁出口圧力センサ(圧力センサ)
70 制御装置(制御部)
80 冷媒配管
1 Refrigerator 10 Refrigerator 20 Showcase (cooling equipment)
30 Compressor 32 Gas cooler (heat exchanger)
36 Internal heat exchanger 40 Evaporator 42 Inlet expansion valve 44 Outlet regulating valve (refrigerant regulating valve)
46 Blower fan 50 Intake temperature sensor (temperature sensor)
52 Inlet temperature sensor (temperature sensor)
54 Outlet temperature sensor (temperature sensor)
56 Control valve outlet temperature sensor (temperature sensor)
58 Internal temperature sensor (temperature sensor)
60 Control valve inlet pressure sensor (pressure sensor)
62 Control valve outlet pressure sensor (pressure sensor)
70 Control device (control unit)
80 Refrigerant piping

Claims (6)

圧縮機と前記圧縮機から吐出された冷媒の熱交換を行う熱交換器とを備える冷凍機と、蒸発器と前記蒸発器の入口に入口膨張弁とを備える冷却機器とからなる冷凍装置において、
前記蒸発器の出口に冷媒の流量を調整する冷媒調整弁が設けられている
ことを特徴とする冷凍装置。
In a refrigerating apparatus including a compressor and a heat exchanger for exchanging heat of the refrigerant discharged from the compressor, and a cooling device including an evaporator and an inlet expansion valve at the inlet of the evaporator.
A refrigerating apparatus characterized in that a refrigerant adjusting valve for adjusting the flow rate of the refrigerant is provided at the outlet of the evaporator.
前記圧縮機から吐出された冷媒と、前記冷媒調整弁から噴射された冷媒とを熱交換させる内部熱交換器が設けられている
ことを特徴とする請求項1に記載の冷凍装置。
The refrigerating apparatus according to claim 1, further comprising an internal heat exchanger for heat exchange between the refrigerant discharged from the compressor and the refrigerant injected from the refrigerant adjusting valve.
前記入口膨張弁、及び前記冷媒調整弁の開度を調整する制御部を備え、
前記制御部は、前記冷媒調整弁の開度を減少させることで、前記蒸発器に冷媒を貯留させる
ことを特徴とする請求項1に記載の冷凍装置。
A control unit for adjusting the opening degree of the inlet expansion valve and the refrigerant adjusting valve is provided.
The refrigerating apparatus according to claim 1, wherein the control unit stores the refrigerant in the evaporator by reducing the opening degree of the refrigerant adjusting valve.
前記蒸発器の入口と出口の冷媒温度を検出する温度センサを備え、
前記制御部は、前記温度センサの検出値を取得し、前記検出値に基づいて、前記蒸発器の冷媒の過熱度を取得し、
前記過熱度が所定値以上であるときに、前記冷媒調整弁の開度を減少させる
ことを特徴とする請求項3に記載の冷凍装置。
A temperature sensor for detecting the refrigerant temperature at the inlet and outlet of the evaporator is provided.
The control unit acquires the detected value of the temperature sensor, and based on the detected value, acquires the degree of superheat of the refrigerant of the evaporator.
The refrigerating apparatus according to claim 3, wherein the opening degree of the refrigerant adjusting valve is reduced when the degree of superheat is equal to or higher than a predetermined value.
前記制御部は、前記冷却機器の内部の温度と、前記温度センサの検出値とを取得し、前記冷却機器の内部の温度と、前記検出値とに基づいて、前記圧縮機の駆動を制御し、
前記圧縮機の駆動周波数が最小値となっているときに、前記冷媒調整弁の開度を減少させる
ことを特徴とする請求項4に記載の冷凍装置。
The control unit acquires the temperature inside the cooling device and the detected value of the temperature sensor, and controls the drive of the compressor based on the temperature inside the cooling device and the detected value. ,
The refrigerating apparatus according to claim 4, wherein the opening degree of the refrigerant adjusting valve is reduced when the driving frequency of the compressor is at the minimum value.
前記制御部は、前記圧縮機の冷媒温度と、前記冷媒調整弁の冷媒温度とを取得し、前記圧縮機の冷媒温度と、前記冷媒調整弁の冷媒温度との差が所定値以下の場合に、前記圧縮機の駆動を停止させる
ことを特徴とする請求項3から請求項5のいずれかに記載の冷凍装置。
The control unit acquires the refrigerant temperature of the compressor and the refrigerant temperature of the refrigerant adjusting valve, and when the difference between the refrigerant temperature of the compressor and the refrigerant temperature of the refrigerant adjusting valve is equal to or less than a predetermined value. The refrigerating apparatus according to any one of claims 3 to 5, wherein the drive of the compressor is stopped.
JP2020028697A 2020-02-21 2020-02-21 Refrigerating device Pending JP2021134940A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020028697A JP2021134940A (en) 2020-02-21 2020-02-21 Refrigerating device
CN202110159458.1A CN113294924A (en) 2020-02-21 2021-02-05 Refrigerating device
EP21156006.5A EP3869120A1 (en) 2020-02-21 2021-02-09 Refrigeration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020028697A JP2021134940A (en) 2020-02-21 2020-02-21 Refrigerating device

Publications (1)

Publication Number Publication Date
JP2021134940A true JP2021134940A (en) 2021-09-13

Family

ID=74572710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020028697A Pending JP2021134940A (en) 2020-02-21 2020-02-21 Refrigerating device

Country Status (3)

Country Link
EP (1) EP3869120A1 (en)
JP (1) JP2021134940A (en)
CN (1) CN113294924A (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3000584B2 (en) * 1989-02-20 2000-01-17 ダイキン工業株式会社 Refrigeration equipment
JPH11193967A (en) * 1997-12-26 1999-07-21 Zexel:Kk Refrigerating cycle
JP2004156844A (en) * 2002-11-07 2004-06-03 Matsushita Electric Ind Co Ltd Air conditioner and its control method
DE10344588A1 (en) * 2003-09-25 2005-05-12 Bosch Gmbh Robert Air conditioning and method of operating an air conditioner
ES2633641T3 (en) * 2005-11-30 2017-09-22 Carrier Corporation Pulse width modulation control of suction valve based on evaporator or condenser pressure
US10072884B2 (en) * 2010-03-08 2018-09-11 Carrier Corporation Defrost operations and apparatus for a transport refrigeration system
JP6405675B2 (en) * 2014-04-15 2018-10-17 富士電機株式会社 Cooling system
CN105783354A (en) * 2014-12-22 2016-07-20 珠海格力节能环保制冷技术研究中心有限公司 Compressor dispenser, compressor and air conditioning system
JP2017122524A (en) 2016-01-06 2017-07-13 パナソニックIpマネジメント株式会社 Freezing system

Also Published As

Publication number Publication date
CN113294924A (en) 2021-08-24
EP3869120A1 (en) 2021-08-25

Similar Documents

Publication Publication Date Title
US10451325B2 (en) Transcritical refrigerant vapor compression system high side pressure control
US10088202B2 (en) Refrigerant vapor compression system operation
DK2737265T3 (en) COOLING TEMPERATURE CONTROL LOGIC
EP2245387B1 (en) Capacity modulation of refrigerant vapor compression system
EP2417406B1 (en) Refrigerant vapor compression system with hot gas bypass
JP4289427B2 (en) Refrigeration equipment
JP2010525292A (en) Refrigerant vapor compression system and method in transcritical operation
US20120318006A1 (en) Defrost operations and apparatus for a transport refrigeration system
CN104813119A (en) Frozen evaporator coil detection and defrost initiation
JP2010526985A (en) Refrigerant vapor compression system with flash tank economizer
JP2011521194A (en) Filling management in refrigerant vapor compression systems.
JP2012504221A (en) Increase in capacity when pulling down
TW200426335A (en) Refrigerating apparatus
JP2011169475A (en) Refrigerator and refrigerating device connected with the same
JP6945141B2 (en) Freezing system
JP2000205672A (en) Refrigerating system
JP6076173B2 (en) Refrigeration equipment
JP2021134940A (en) Refrigerating device
JP2006125843A (en) Cooling cycle and refrigerator
JP5256622B2 (en) Refrigeration equipment
JP3836092B2 (en) Refrigeration equipment
JP6902729B2 (en) Cascade refrigeration system
CN113932466A (en) Air conditioning unit and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240109