JP7374691B2 - Cooling device and cooling device control method - Google Patents

Cooling device and cooling device control method Download PDF

Info

Publication number
JP7374691B2
JP7374691B2 JP2019180172A JP2019180172A JP7374691B2 JP 7374691 B2 JP7374691 B2 JP 7374691B2 JP 2019180172 A JP2019180172 A JP 2019180172A JP 2019180172 A JP2019180172 A JP 2019180172A JP 7374691 B2 JP7374691 B2 JP 7374691B2
Authority
JP
Japan
Prior art keywords
value
evaporator
compressor
temperature
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019180172A
Other languages
Japanese (ja)
Other versions
JP2021055932A (en
Inventor
淳一郎 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2019180172A priority Critical patent/JP7374691B2/en
Publication of JP2021055932A publication Critical patent/JP2021055932A/en
Application granted granted Critical
Publication of JP7374691B2 publication Critical patent/JP7374691B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

特許法第30条第2項適用 発行者名: 日本機械学会・空気調和・衛生工学会・日本冷凍空調学会 刊行物名: 第53回 空気調和・冷凍連合講演会 講演論文集 発行年月日: 2019年4月16日 Article 30, Paragraph 2 of the Patent Act applies Publisher name: Japan Society of Mechanical Engineers, Society of Air-Conditioning and Hygiene Engineers, Japan Society of Refrigerating and Air-Conditioning Engineers Publication name: 53rd Air-Conditioning and Refrigeration Association Conference Lecture Proceedings Publication date: April 16, 2019

特許法第30条第2項適用 発行者名: 公益社団法人 空気調和・衛生工学会 刊行物名: 令和元年度空気調和・衛生工学会大会(DVD) 発行年月日: 令和1年9月4日Article 30, Paragraph 2 of the Patent Act applies Publisher name: Japan Society of Air Conditioning and Sanitation Engineers, Public Interest Incorporated Association Publication name: Society of Air Conditioning and Sanitation Engineers 2019 Conference (DVD) Publication date: September 2020 4th day of the month

本発明は、負荷変動が大きい環境試験室や部品試験室等の試験設備に設置され、冷媒を循環させながら対象空間内の空気と相変化冷媒との熱交換を行う直接膨張冷却方式の冷凍サイクルを行う冷却装置及びその制御方法に関する。 The present invention is a direct expansion cooling type refrigeration cycle that is installed in test equipment such as environmental test rooms and parts test rooms where load fluctuations are large, and that exchanges heat between the air in the target space and the phase change refrigerant while circulating the refrigerant. The present invention relates to a cooling device and a control method thereof.

冷却装置における冷却方式として、圧縮器、凝縮器、膨張弁及び蒸発器等を配管で接続した冷凍サイクル内で循環される一次冷却媒体と、該冷凍サイクルとは異なる循環路で循環される二次冷却媒体との間の熱交換を蒸発器にて行い、蒸発器における熱交換により冷却される二次冷却媒体を用いて、二次冷却媒体と空気の熱交換器を内蔵する冷却装置が設置される対象空間内部である設備内の空気を冷却する間接膨張冷却方式(以下、間膨式と称する)が挙げられる(例えば特許文献1参照)。また、この他に、圧縮器、凝縮器、膨張装置、蒸発器及び圧力調整弁等を配管で接続した冷凍サイクル内で循環される冷却媒体(以下、冷媒と称する場合もある)と、冷却装置が設置される対象空間内部である設備内の空気との間の熱交換を蒸発器により行い、該設備内の空気を冷却する直接膨張冷却方式(以下、直膨式と称する)も挙げられる(例えば、特許文献2参照)。直膨式の冷却装置における冷凍サイクルでは、循環される冷却媒体に対して圧縮行程、凝縮(放熱)行程、膨張行程及び蒸発(吸熱)行程というサイクルを行うもので、冷媒は、これら行程によるサイクルによって、気体及び液体の間の相変化を繰り返す。なお、直膨式の冷却装置では、凝縮器における冷媒の凝縮時に発生する熱を対象空間外部の空気に排熱(放熱)する一方で、蒸発器における冷媒の吸熱により設備内の空気を冷却する。したがって、直膨式の冷却装置は、一次冷媒との間で熱交換を行った二次冷媒を用いて空気を冷却する間膨式の冷却装置に比べて、構成が簡易で且つエネルギー効率が高いとされている。また、二次冷却冷媒として氷点下での低温度の場で循環する場合はブラインにするが、適当な温度で腐食性のないブラインの選定に苦労することがあるところ、直膨式の場合は冷媒が固相にならないのでこの心配がない。 The cooling method used in a cooling system consists of a primary cooling medium that is circulated within a refrigeration cycle in which a compressor, condenser, expansion valve, evaporator, etc. are connected via piping, and a secondary cooling medium that is circulated in a different circulation path from the refrigeration cycle. A cooling system with a built-in heat exchanger between the secondary cooling medium and air is installed, using a secondary cooling medium that exchanges heat with the cooling medium in the evaporator and is cooled by the heat exchange in the evaporator. For example, there is an indirect expansion cooling method (hereinafter referred to as an expansion method) that cools the air inside the equipment, which is the inside of the target space (for example, see Patent Document 1). In addition, the cooling medium (hereinafter sometimes referred to as refrigerant) that is circulated within the refrigeration cycle in which the compressor, condenser, expansion device, evaporator, pressure regulating valve, etc. are connected by piping, and the cooling device There is also a direct expansion cooling method (hereinafter referred to as direct expansion type) in which heat exchange between the air inside the equipment, which is the inside of the target space in which the equipment is installed, is performed using an evaporator, and the air inside the equipment is cooled. For example, see Patent Document 2). In the refrigeration cycle of a direct expansion type cooling device, the circulating refrigerant undergoes a cycle of compression stroke, condensation (heat radiation) stroke, expansion stroke, and evaporation (heat absorption) stroke. repeats the phase change between gas and liquid. In addition, in a direct expansion cooling system, the heat generated when the refrigerant condenses in the condenser is exhausted (radiated) to the air outside the target space, while the air inside the equipment is cooled by the heat absorbed by the refrigerant in the evaporator. . Therefore, direct expansion type cooling equipment has a simpler configuration and higher energy efficiency than inter-expansion type cooling equipment, which cools air using a secondary refrigerant that exchanges heat with the primary refrigerant. It is said that In addition, brine is used as a secondary cooling refrigerant when circulating at low temperatures below freezing, but it can be difficult to select a brine that is not corrosive at an appropriate temperature. There is no need to worry about this because it does not become a solid phase.

ところで、冷却装置を制御する方法としては、例えば特許文献2に開示されているように、蒸発器と圧縮器との間の流路に電子膨張弁を設け、蒸発器に入力される冷媒の温度及び蒸発器から送り出される冷媒の温度から算出される過熱度が目標値になるように電子膨張弁の開度をフィードバック(Feed Back)制御(以下、FB制御と称する)することが一般である。また、この他に、冷媒の蒸発温度と蒸発器出口の冷媒温度との温度差を第1の温度差として求めた後、該第1の温度差と凝縮温度との差を第2の温度差として求め、求めた第2の温度差に対応した電気信号に第1の比例定数の乗算した第1の電気信号、該電気信号を時間について積分した値に第2の比例定数を乗算した第2の電気信号、及び該電気信号を時間について微分した値に第3の比例定数を乗算した第3の電気信号を求め、これらの和に応じて膨張弁をPID(Proportional Integral Differential)制御するフィードバック制御も考案されている(例えば特許文献3参照)。 By the way, as a method of controlling a cooling device, for example, as disclosed in Patent Document 2, an electronic expansion valve is provided in a flow path between an evaporator and a compressor, and the temperature of refrigerant input to the evaporator is adjusted. It is common to perform feedback (Feed Back) control (hereinafter referred to as FB control) of the opening degree of the electronic expansion valve so that the degree of superheat calculated from the temperature of the refrigerant sent out from the evaporator reaches a target value. In addition, after determining the temperature difference between the evaporation temperature of the refrigerant and the refrigerant temperature at the outlet of the evaporator as the first temperature difference, the difference between the first temperature difference and the condensation temperature is determined as the second temperature difference. A first electrical signal obtained by multiplying the electrical signal corresponding to the obtained second temperature difference by a first proportionality constant, and a second electrical signal obtained by multiplying the value obtained by integrating the electrical signal with respect to time by a second proportionality constant. and a third electrical signal obtained by multiplying a value obtained by differentiating the electrical signal with respect to time by a third proportionality constant, and controlling the expansion valve according to the sum of these signals using PID (Proportional Integral Differential) feedback control. has also been devised (for example, see Patent Document 3).

特開平1-179866号公報Japanese Patent Application Publication No. 1-179866 特開2014-119138号公報Japanese Patent Application Publication No. 2014-119138 特公平6-63668号公報Special Publication No. 6-63668

例えば電子膨張弁の制御をFB制御にて実行する場合、負荷の変動が小さい場合はよいが負荷の変動が大きい場合には、電子膨張弁の開度に伴う過熱度は目標値に対してハンチングし、時間経過とともに目標値に収束していく。したがって、電子膨張弁の開度をFB制御する場合に負荷入力が大きく変動すると、過熱度が安定するまでに時間が掛かり、恒温室など、温度精度を要求する設備には適していない。また、電子膨張弁のフィードバック制御をPID制御にて実行する場合、積分時間を短く設定する、又は微分時間を長く設定してしまうと負荷変動に対して敏感でオフセット補正などを過剰に制御してしまうため、負荷変動が小さくても上記FB制御と同様にハンチングが生じるため、過熱度が安定しなくなる。また、特許文献3においては、冷媒の蒸発温度と凝縮温度との温度差によって第1から第3の比例定数の各々を変更するようにしているが、冷却装置の負荷が急変するような場合には蒸発温度と凝縮温度との温度差は当然大きく変動し、大きなオーバーシュートやオフセットが生じることになる。したがって、この比例項(P)や積分項(I)や微分項(D)を各々工夫したPID制御のFB制御であっても、過熱度が安定するまでに時間が掛かることから、恒温室など、温度精度を要求する設備には適していない。 For example, when controlling an electronic expansion valve using FB control, it is fine if the load fluctuation is small, but if the load fluctuation is large, the degree of superheating associated with the opening degree of the electronic expansion valve may be hunting with respect to the target value. However, as time passes, it converges to the target value. Therefore, if the load input fluctuates greatly when performing feedback control on the opening degree of the electronic expansion valve, it takes time for the degree of superheat to stabilize, making it unsuitable for equipment that requires temperature accuracy, such as a constant temperature room. In addition, when performing feedback control of an electronic expansion valve using PID control, if the integral time is set short or the derivative time is set long, it will be sensitive to load fluctuations and offset correction etc. will be overly controlled. Therefore, even if the load fluctuation is small, hunting occurs similarly to the above-mentioned FB control, and the degree of superheat becomes unstable. Further, in Patent Document 3, each of the first to third proportionality constants is changed depending on the temperature difference between the evaporation temperature and the condensation temperature of the refrigerant. Naturally, the temperature difference between the evaporation temperature and the condensation temperature fluctuates greatly, resulting in large overshoots and offsets. Therefore, even with PID control FB control in which the proportional term (P), integral term (I), and differential term (D) are devised, it takes time for the degree of superheat to stabilize, so , it is not suitable for equipment that requires temperature accuracy.

本発明は、冷却負荷が急変するような場合であっても、温度精度を要求する設備において安定して冷却することができる技術を提供することを目的としている。 An object of the present invention is to provide a technology that can stably cool equipment that requires temperature accuracy even when the cooling load changes suddenly.

上述した課題を解決するために、本発明の冷却装置は、圧縮器、凝縮器、膨張弁、蒸発器及び圧力調整弁を配管を用いて順次接続した循環路を有する冷凍サイクルを構成し、前記蒸発器における冷却媒体との間の熱交換により冷却された空気を対象空間へと送風機で送り出す冷却装置において、前記圧縮器に吸い込まれる前記冷却媒体の圧力値に基づいた前記圧縮器の出力割合値を比例帯にとって求め、求めた前記圧縮器の出力割合値を比例項にして前記圧縮器の出力割合値をPID制御する第1の制御手段と、前記蒸発器の入口側における前記冷却媒体の温度と前記蒸発器の出口側における前記冷却媒体の温度により求まる過熱度に基づいた前記膨張弁の開度値を比例帯にとって求め、求めた前記膨張弁の開度値を比例項にして前記膨張弁の開度値をPID制御する第2の制御手段と、前記送風機により搬送される空気の蒸発器の出口側における送風温度値に基づいた前記圧力調整弁の開度値を比例帯にとって求め、求めた前記圧力調整弁の開度値を比例項にして前記圧力調整弁の開度値をPID制御する第3の制御手段と、送風機により搬送される空気の蒸発器入口空気温度と蒸発器出口空気温度と蒸発器出口空気設定温度それぞれの出力値を出力できる空気温度出力手段と、第1時刻における前記空気温度出力手段からの出力値に基づき演算した前記蒸発器による冷却負荷に対して、前記第1時刻から一定時間経過した第2時刻における前記蒸発器による冷却負荷が増加しているか否かを判定する判定部と、前記判定部により前記蒸発器による冷却負荷が増加していると判定された場合に、第2時刻の蒸発器による冷却負荷第1時刻における蒸発器による冷却負荷に対する倍数に基づいて、前記圧縮器の出力割合値、前記膨張弁の開度値及び前記圧力調整弁の開度値をフィードフォワードにて各々補正し、補正した制御値を各々用いて、前記圧縮器、前記膨張弁及び前記圧力調整弁を制御し、再度、出力割合値や各々の開度値出力をPID制御に戻す補正制御を行う補正制御手段と、を有することを特徴とする。 In order to solve the above-mentioned problems, the cooling device of the present invention constitutes a refrigeration cycle having a circulation path in which a compressor, a condenser, an expansion valve, an evaporator, and a pressure regulating valve are sequentially connected using piping. In a cooling device that sends air cooled by heat exchange with a cooling medium in an evaporator to a target space using a blower, an output ratio value of the compressor based on a pressure value of the cooling medium sucked into the compressor. a first control means that performs PID control on the output ratio value of the compressor using the obtained output ratio value of the compressor as a proportional term; and a temperature of the refrigerant at the inlet side of the evaporator. The opening value of the expansion valve based on the degree of superheat determined by the temperature of the cooling medium at the outlet side of the evaporator is determined using a proportional band, and the opening value of the expansion valve thus determined is set as a proportional term to calculate the opening value of the expansion valve. a second control means for performing PID control on the opening value of the pressure regulating valve based on the blowing temperature value on the outlet side of the evaporator of the air conveyed by the blower; a third control means for PID controlling the opening value of the pressure regulating valve using the opening value of the pressure regulating valve as a proportional term; air temperature output means capable of outputting respective output values of temperature and evaporator outlet air set temperature; and cooling load by the evaporator calculated based on output values from the air temperature output means at the first time. a determination unit that determines whether or not a cooling load by the evaporator has increased at a second time when a predetermined time has elapsed from time 1 ; If determined , the output ratio value of the compressor, the opening degree value of the expansion valve, and the pressure adjustment based on the multiple of the cooling load by the evaporator at the second time with respect to the cooling load by the evaporator at the first time. The opening values of the valves are each corrected by feedforward, and each corrected control value is used to control the compressor, the expansion valve, and the pressure regulating valve, and the output ratio value and each opening value are adjusted again. It is characterized by having a correction control means for performing correction control to return the output to PID control.

また、前記判定部は、前記蒸発器の上流側における前記空気の温度変化と、前記蒸発器の下流側における前記空気の温度変化とを乗算することで第1の判定値を求め、求めた第1の判定値が正の値となる場合に、前記蒸発器による冷却負荷が増加していると判定し、前記補正制御手段は、前記判定部により前記蒸発器による冷却負荷が増加していると判定することを特徴とする。 Further, the determination unit calculates a first judgment value by multiplying a temperature change of the air on the upstream side of the evaporator by a temperature change of the air on the downstream side of the evaporator, and If the determination value of 1 is a positive value, it is determined that the cooling load by the evaporator is increasing, and the correction control means determines that the cooling load by the evaporator is increasing by the determination unit. It is characterized by making a judgment.

また、前記判定部は、前記蒸発器の上流側における前記空気の温度変化と、前記対象空間に送り出される空気の温度と設定温度とを乗算することで第2の判定値を求め、求めた第2の判定値が正の値となる場合に、前記蒸発器による冷却負荷が増加していると判定することを特徴とする。 Further, the determination unit determines a second determination value by multiplying the temperature change of the air on the upstream side of the evaporator by the temperature of the air sent to the target space and the set temperature, and The present invention is characterized in that when the determination value of No. 2 is a positive value, it is determined that the cooling load by the evaporator is increasing.

また、前記圧縮器の出力割合値、前記膨張弁の開度値及び前記圧力調整弁の開度値は、偏差の比例成分、偏差の積分成分及び偏差の微分成分の各成分に成分毎の係数を各々乗算し、成分毎の係数を乗算した各成分の値を積算することで求められることを特徴とする。 Further, the output ratio value of the compressor, the opening value of the expansion valve, and the opening value of the pressure regulating valve are determined by a coefficient for each component of a proportional component of the deviation, an integral component of the deviation, and a differential component of the deviation. It is characterized in that it is obtained by multiplying each component by a coefficient for each component, and then integrating the values of each component.

また、前記冷凍サイクルは、前記循環路の他に、前記圧縮器と前記凝縮器との間の配管から分岐し、前記凝縮器と前記圧縮器との間の配管に合流されるバイパス路を有し、前記バイパス路に配置されたバイパス弁と、前記圧縮に吸い込まれる前記冷却媒体の圧力値に基づいた前記バイパス弁の開度値を比例帯にとって求め、求めたバイパス弁の開度値を比例項にして前記バイパス弁の開度値をPID制御する第4の制御手段と、を有し、前記補正制御手段は、前記判定部により前記蒸発器による冷却負荷が増加していると判定された場合に、前記第2時刻の蒸発器による冷却負荷第1時刻における蒸発器による冷却負荷に対する倍数に基づいて、前記バイパス弁の開度値をフィードフォワードにて補正し、補正した開度値を各々用いて、前記バイパス弁を制御し、再度、開度値出力をPID制御に戻す補正制御することを特徴とする。 In addition to the circulation path, the refrigeration cycle has a bypass path that branches from a pipe between the compressor and the condenser and joins the pipe between the condenser and the compressor. Then, the opening value of the bypass valve disposed in the bypass passage and the bypass valve based on the pressure value of the cooling medium sucked into the compressor are determined from a proportional band, and the opening value of the bypass valve thus found is determined. and a fourth control means for PID controlling the opening degree value of the bypass valve using a proportional term, and the correction control means is configured to perform PID control when the determination unit determines that the cooling load by the evaporator is increasing. If determined , the opening degree value of the bypass valve is corrected by feedforward based on the multiple of the cooling load by the evaporator at the second time with respect to the cooling load by the evaporator at the first time, and the corrected opening value is The present invention is characterized in that the bypass valve is controlled using each of the degree values, and correction control is performed to return the opening degree value output to PID control again.

また、前記バイパス弁の開度値は、偏差の比例成分、偏差の積分成分及び偏差の微分成分の各成分に成分毎の係数を各々乗算し、成分毎の係数を乗算した各成分の値を積算することで求められることが好ましい。 In addition, the opening value of the bypass valve is calculated by multiplying each of the proportional component of the deviation, the integral component of the deviation, and the differential component of the deviation by a coefficient for each component, and then calculating the value of each component multiplied by the coefficient for each component. It is preferable to obtain it by integrating.

また、前記第1の制御工程において前記圧縮器に吸い込まれる前記冷却媒体の圧力値に基づいた前記圧縮器の出力割合値の比例帯と、前記第4の制御工程において前記圧縮機に吸い込まれる前記冷却媒体の圧力値に基づいた前記バイパス弁の開度値の比例帯とは、制御特性の傾きが逆で、前記圧縮器に吸い込まれる前記冷却媒体の圧力値において重ならないことが好ましい。 Further, a proportional band of an output ratio value of the compressor based on a pressure value of the refrigerant sucked into the compressor in the first control step, and a proportional band of the output ratio value of the refrigerant sucked into the compressor in the fourth control step. Preferably, the slope of the control characteristic is opposite to the proportional band of the opening value of the bypass valve based on the pressure value of the cooling medium, and does not overlap in the pressure value of the cooling medium sucked into the compressor.

また、補正した前記制御値は、前記第1時刻における前記蒸発器を通過する空気の風量及び空気の温度の乗算値に対する、前記第2時刻における前記蒸発器を通過する空気の風量及び空気の温度の乗算値の比率を用いて算出されることを特徴とする。 In addition, the corrected control value is the amount of air passing through the evaporator and the temperature of the air at the second time relative to the multiplication value of the amount of air passing through the evaporator and the temperature of the air at the first time. It is characterized in that it is calculated using the ratio of the multiplied values of .

また、本発明の冷却装置の制御方法は、圧縮器、凝縮器、膨張弁、蒸発器及び圧力調整弁を配管を用いて順次接続した循環路を有する冷凍サイクルを構成し、前記蒸発器における冷却媒体との間の熱交換により冷却された空気を対象空間へと送り出す冷却装置の制御方法において、前記圧縮器に吸い込まれる前記冷却媒体の圧力値に基づいた前記圧縮器の出力割合値を比例帯にとって求め、求めた前記圧縮器の出力割合値を比例項にして前記圧縮器の出力割合値をPID制御する第1の制御工程と、前記蒸発器の入口側における前記冷却媒体の温度と前記蒸発器の出口側における前記冷却媒体の温度により求まる過熱度に基づいた前記膨張弁の開度値を比例帯にとって求め、求めた前記膨張弁の開度値を比例項にして前記膨張弁の開度値をPID制御する第2の制御工程と、送風機により搬送される空気の蒸発器の出口側における送風温度値に基づいた前記圧力調整弁の開度値を比例帯にとって求め、求めた前記圧力調整弁の開度値を比例項にして前記圧力調整弁の開度値をPID制御する第3の制御工程と、前記送風機により搬送される空気の蒸発器入口空気温度と蒸発器出口空気温度と蒸発器出口空気設定温度それぞれの出力値を出力できる空気温度出力工程と、第1時刻における前記空気温度出力工程の出力値に基づき演算した前記蒸発器による冷却負荷に対して、前記第1時刻から一定時間経過した第2時刻における前記蒸発器による冷却負荷が増加しているか否かを判定する判定工程と、前記判定工程により前記蒸発器による冷却負荷が増加していると判定された場合に、第2時刻の蒸発器による冷却負荷の第1時刻における蒸発器による冷却負荷に対する倍数に基づいて、前記圧縮器の出力割合値、前記膨張弁の開度値及び前記圧力調整弁の開度値をフィードフォワードにて各々補正し、補正した制御値を各々用いて、前記圧縮器、前記膨張弁及び前記圧力調整弁を制御し、再度出力割合値や各々の開度値出力をPID制御に戻す補正制御を行う補正制御工程と、を有することを特徴とする。 In addition, the method for controlling a cooling device of the present invention includes configuring a refrigeration cycle having a circulation path in which a compressor, a condenser, an expansion valve, an evaporator, and a pressure regulating valve are sequentially connected using piping, and cooling in the evaporator. In a method for controlling a cooling device that sends air cooled by heat exchange with a medium to a target space, an output ratio value of the compressor based on a pressure value of the cooling medium sucked into the compressor is set in a proportional band. a first control step in which the output ratio value of the compressor is PID-controlled using the determined output ratio value of the compressor as a proportional term, and the temperature of the refrigerant at the inlet side of the evaporator and the The opening value of the expansion valve based on the degree of superheat determined by the temperature of the cooling medium at the outlet side of the vessel is determined using a proportional band, and the opening value of the expansion valve is converted into a proportional term to determine the opening degree of the expansion valve. a second control step in which the value is PID controlled ; and the opening value of the pressure regulating valve based on the blowing temperature value at the outlet side of the evaporator of the air conveyed by the blower is determined from a proportional band, and the determined pressure is a third control step of PID controlling the opening value of the pressure regulating valve using the opening value of the regulating valve as a proportional term; and evaporator inlet air temperature and evaporator outlet air temperature of the air conveyed by the blower . An air temperature output step capable of outputting an output value for each of the evaporator outlet air set temperatures, and a cooling load by the evaporator calculated based on the output value of the air temperature output step at the first time, from the first time. a determination step of determining whether the cooling load by the evaporator is increasing at a second time after a certain period of time has elapsed; and when it is determined by the determination step that the cooling load by the evaporator is increasing; Based on the multiple of the cooling load by the evaporator at the second time with respect to the cooling load by the evaporator at the first time, the output ratio value of the compressor, the opening degree value of the expansion valve, and the opening degree value of the pressure regulating valve are determined. Each corrected by feedforward, and each corrected control value is used to control the compressor, the expansion valve, and the pressure regulating valve, and the output ratio value and each opening value output are returned to PID control again. A correction control step for performing control.

また、前記判定工程は、前記蒸発器の上流側における前記空気の温度変化と、前記蒸発器の下流側における前記空気の温度変化とを乗算することで第1の判定値を求め、求めた第1の判定値が正の値となる場合に、前記蒸発器による冷却負荷が増加していると判定することを特徴とする。 Further, in the determination step, a first determination value is obtained by multiplying a temperature change of the air on the upstream side of the evaporator by a temperature change of the air on the downstream side of the evaporator, and The present invention is characterized in that when the determination value 1 is a positive value, it is determined that the cooling load by the evaporator is increasing.

また、前記判定工程は、前記蒸発器の上流側における前記空気の温度変化と、前記対象空間に送り出される空気の温度と設定温度とを乗算することで第2の判定値を求め、求めた第2の判定値が正の値となる場合に、前記蒸発器による冷却負荷が増加していると判定することを特徴とする。 Further, in the determination step, a second determination value is obtained by multiplying the temperature change of the air on the upstream side of the evaporator, the temperature of the air sent to the target space, and the set temperature, The present invention is characterized in that when the determination value of No. 2 is a positive value, it is determined that the cooling load by the evaporator is increasing.

また、前記圧縮器の出力割合値、前記膨張弁の開度値及び前記圧力調整弁の開度値は、偏差の比例成分、偏差の積分成分及び偏差の微分成分の各成分に成分毎の係数を各々乗算し、成分毎の係数を乗算した各成分の値を積算することで求められることを特徴とする。 Further, the output ratio value of the compressor, the opening value of the expansion valve, and the opening value of the pressure regulating valve are determined by a coefficient for each component of a proportional component of the deviation, an integral component of the deviation, and a differential component of the deviation. It is characterized in that it is obtained by multiplying each component by a coefficient for each component, and then integrating the values of each component.

また、前記冷凍サイクルは、前記循環路の他に、前記圧縮器と前記凝縮器との間の配管から分岐し、前記凝縮器と前記圧縮器との間の配管に合流されるバイパス路と、前記バイパス路に配置されたバイパス弁とを有して構成され、前記圧縮に吸い込まれる前記冷却媒体の圧力値に基づいた前記バイパス弁の開度値を比例帯にとって求め、求めたバイパス弁の開度値を比例項にして前記バイパス弁の開度値をPID制御する第4の制御工程をさらに有し、前記判定工程により前記蒸発器による冷却負荷が増加していると判定された場合に、前記第2時刻の蒸発器による冷却負荷第1時刻における蒸発器による冷却負荷に対する倍数に基づいて、前記バイパス弁の開度値をフィードフォワードにて補正し、補正した開度値を各々用いて、前記バイパス弁を制御し、再度、開度値出力をPID制御に戻す補正制御することを特徴とする。 In addition to the circulation path, the refrigeration cycle also includes a bypass path that branches from the piping between the compressor and the condenser and joins the piping between the condenser and the compressor; and a bypass valve disposed in the bypass passage, the opening value of the bypass valve is determined based on the pressure value of the cooling medium sucked into the compressor by taking a proportional band, and the calculated bypass valve is The method further includes a fourth control step of PID controlling the opening value of the bypass valve using the opening value as a proportional term, and the determining step determines that the cooling load by the evaporator is increasing. In this case , the opening value of the bypass valve is corrected by feedforward based on the multiple of the cooling load by the evaporator at the second time with respect to the cooling load by the evaporator at the first time, and the corrected opening value is Each of these is used to control the bypass valve and perform correction control to return the opening value output to PID control again.

また、前記バイパス弁の開度値は、偏差の比例成分、偏差の積分成分及び偏差の微分成分の各成分に成分毎の係数を各々乗算し、成分毎の係数を乗算した各成分の値を積算することで求められることを特徴とする。 In addition, the opening value of the bypass valve is calculated by multiplying each of the proportional component of the deviation, the integral component of the deviation, and the differential component of the deviation by a coefficient for each component, and then calculating the value of each component multiplied by the coefficient for each component. It is characterized by being calculated by integrating.

また、前記第1の制御工程において前記圧縮器に吸い込まれる前記冷却媒体の圧力値に基づいた前記圧縮器の出力割合値の比例帯と、前記第4の制御工程において前記圧縮に吸い込まれる前記冷却媒体の圧力値に基づいた前記バイパス弁の開度値の比例帯とは、制御特性の傾きが逆で、前記圧縮器に吸い込まれる前記冷却媒体の圧力値において重ならないことが好ましい。 Further, a proportional band of an output ratio value of the compressor based on a pressure value of the refrigerant sucked into the compressor in the first control step, and a proportional band of the output ratio value of the refrigerant sucked into the compressor in the fourth control step. Preferably, the slope of the control characteristic is opposite to the proportional band of the opening value of the bypass valve based on the pressure value of the cooling medium, and does not overlap in the pressure value of the cooling medium sucked into the compressor.

また、補正した前記制御値は、前記第1時刻における前記蒸発器を通過する空気の風量及び空気の温度の乗算値に対する、前記第2時刻における前記蒸発器を通過する空気の風量及び空気の温度の乗算値の比率を用いて算出されることを特徴とする。 In addition, the corrected control value is the amount of air passing through the evaporator and the temperature of the air at the second time relative to the multiplication value of the amount of air passing through the evaporator and the temperature of the air at the first time. It is characterized in that it is calculated using the ratio of the multiplied values of .

本発明によれば、冷却負荷が急変するような場合であっても、温度精度を要求する設備において安定して冷却することができる。 According to the present invention, even if the cooling load suddenly changes, stable cooling can be achieved in equipment that requires temperature accuracy.

冷却装置の構成の一例を示す図である。It is a figure showing an example of composition of a cooling device. (a)バイパス弁が閉じているときの冷凍サイクルを示すP-H線図、(b)バイパス弁が開いているときの冷凍サイクルを示すP-H線図である。(a) A PH diagram showing the refrigeration cycle when the bypass valve is closed, and (b) a PH diagram showing the refrigeration cycle when the bypass valve is open. 制御装置の構成の一例を示す機能ブロック図である。FIG. 2 is a functional block diagram showing an example of the configuration of a control device. (a)バイパス弁の開度及び圧縮器の回転数と、吸込圧力との関係を示すグラフ、(b)過熱度と膨張弁の開度との関係を示すグラフ、(c)送風温度と、圧力調整弁の開度との関係を示すグラフである。(a) A graph showing the relationship between the opening degree of the bypass valve, the rotation speed of the compressor, and the suction pressure, (b) A graph showing the relationship between the degree of superheating and the opening degree of the expansion valve, (c) Blow temperature, It is a graph showing the relationship with the opening degree of the pressure regulating valve. 補正値を求める際の関数f(k)をまとめた図である。FIG. 7 is a diagram summarizing functions f(k) when calculating a correction value. 冷却装置を用いた冷却時の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure at the time of cooling using a cooling device.

以下、本実施形態について、図面を用いて説明する。 This embodiment will be described below with reference to the drawings.

図1に示すように、本実施形態の冷却装置10は、圧縮器15、凝縮器16、膨張弁17、蒸発器18、送風機19、圧力調整弁20及びバイパス弁21を含む。冷却装置10は、冷却媒体(冷媒)を循環させる循環路と、該循環路から分岐され、必要に応じて冷媒をバイパスさせるバイパス路とを有する。循環路は、圧縮器15、凝縮器16、膨張弁17、蒸発器18、送風機19及び圧力調整弁20と、これらの機器のうち、隣り合う機器を接続する冷媒配管25,26,27,28,29,30,31とを含む。また、バイパス路は、圧縮器15及び凝縮器16を接続する冷媒配管25から分岐され、バイパス弁21の入力側に接続される冷媒配管32と、バイパス弁21の出力側に接続され、圧力調整弁20及び圧縮器15を接続する冷媒配管31に合流される冷媒配管33とを含む。つまり、本実施形態の冷却装置10においては、圧縮器15が有する駆動モータ(図示省略)の回転数が下限値以上に設定される場合には、上述した循環路にて冷媒が循環される。一方、圧縮器15の回転数が下限値に設定される場合には、上述したバイパス弁21が圧縮器15の吸込圧力に基づいて開き、バイパス路に流れる。以下、圧縮器15の回転数を、圧縮器15の回転数と称する。 As shown in FIG. 1, the cooling device 10 of this embodiment includes a compressor 15, a condenser 16, an expansion valve 17, an evaporator 18, a blower 19, a pressure regulating valve 20, and a bypass valve 21. The cooling device 10 has a circulation path that circulates a cooling medium (refrigerant), and a bypass path that is branched from the circulation path and bypasses the refrigerant as necessary. The circulation path includes a compressor 15, a condenser 16, an expansion valve 17, an evaporator 18, a blower 19, a pressure regulating valve 20, and refrigerant pipes 25, 26, 27, 28 that connect adjacent devices among these devices. , 29, 30, and 31. The bypass path is branched from a refrigerant pipe 25 that connects the compressor 15 and the condenser 16, and is connected to a refrigerant pipe 32 that is connected to the input side of the bypass valve 21 and an output side of the bypass valve 21 for pressure adjustment. It includes a refrigerant pipe 33 that joins a refrigerant pipe 31 that connects the valve 20 and the compressor 15. That is, in the cooling device 10 of the present embodiment, when the rotation speed of the drive motor (not shown) included in the compressor 15 is set to a lower limit value or more, the refrigerant is circulated in the above-mentioned circulation path. On the other hand, when the rotation speed of the compressor 15 is set to the lower limit value, the above-mentioned bypass valve 21 opens based on the suction pressure of the compressor 15, and the air flows to the bypass path. Hereinafter, the rotation speed of the compressor 15 will be referred to as the rotation speed of the compressor 15.

したがって、本実施形態の冷却装置10は、圧縮器15、凝縮器16、膨張弁17、蒸発器18、送風機19、圧力調整弁20を含む循環路内、又はバイパス路内に冷媒を循環させることで、冷却装置10が設置される設備内の空気を冷却する冷凍サイクルを形成する。なお、符号34は、蒸発器18に送り込まれる空気の送込ダクト、符号35は、蒸発器18を通過した空気を設備内に送り出す送出ダクトである。 Therefore, the cooling device 10 of this embodiment circulates the refrigerant in a circulation path including the compressor 15, condenser 16, expansion valve 17, evaporator 18, blower 19, and pressure regulating valve 20, or in a bypass path. A refrigeration cycle is formed to cool the air in the equipment in which the cooling device 10 is installed. In addition, the code|symbol 34 is a sending duct of the air sent into the evaporator 18, and the code|symbol 35 is a sending duct which sends out the air which passed through the evaporator 18 into the equipment.

本実施形態では、送風機19を蒸発器18の下流側に設置した場合を例に取り上げるが、送風機19を蒸発器18の上流側に設置することも可能である。 In this embodiment, a case is taken as an example in which the blower 19 is installed on the downstream side of the evaporator 18, but it is also possible to install the blower 19 on the upstream side of the evaporator 18.

圧縮器15は、蒸発器18からの冷媒を吸い込み、吸い込んだ冷媒を圧縮(断熱圧縮)する(圧縮行程)。 The compressor 15 sucks the refrigerant from the evaporator 18 and compresses (adiabatic compression) the sucked refrigerant (compression stroke).

凝縮器16は、圧縮器15からの冷媒が送り込まれる。凝縮器16に送り込まれた冷媒は、外気との間の熱交換により放熱して、冷媒を凝縮(放熱)させる(凝縮行程)。 The refrigerant from the compressor 15 is sent to the condenser 16 . The refrigerant sent to the condenser 16 radiates heat through heat exchange with the outside air, thereby causing the refrigerant to condense (radiate heat) (condensation process).

膨張弁17は、凝縮器16から送り出された冷媒を絞り膨張させる。絞り膨張により、膨張弁17に送り込まれた冷媒は減圧される(膨張行程)。 The expansion valve 17 throttles and expands the refrigerant sent out from the condenser 16. Due to the throttle expansion, the pressure of the refrigerant sent into the expansion valve 17 is reduced (expansion stroke).

蒸発器18は、膨張弁17からの冷媒が送り込まれる。蒸発器18に送り込まれた冷媒は、送込ダクトを流れる空気との熱交換により、該空気の熱を吸熱して蒸発する(蒸発行程)。 Refrigerant from the expansion valve 17 is fed into the evaporator 18 . The refrigerant sent to the evaporator 18 absorbs heat from the air through heat exchange with the air flowing through the feed duct and evaporates (evaporation process).

圧力調整弁20は、蒸発器18からの冷媒が送り込まれる。蒸発器18からの冷媒は、圧力調整弁20により減圧される(減圧行程)。 The pressure regulating valve 20 receives refrigerant from the evaporator 18 . The refrigerant from the evaporator 18 is depressurized by the pressure regulating valve 20 (decompression stroke).

バイパス弁21は、圧縮器15の駆動時において、圧縮器15の回転数が下限値となる場合に開き、冷媒配管25を流れる冷媒の一部を冷媒配管31に流入させる。 The bypass valve 21 opens when the rotational speed of the compressor 15 reaches a lower limit value when the compressor 15 is driven, and allows a part of the refrigerant flowing through the refrigerant pipe 25 to flow into the refrigerant pipe 31 .

上述した冷媒配管のうち、冷媒配管28は、温度センサ41を有する。温度センサ41は、蒸発器18に送り込まれる直前の冷媒の温度を検出する。 Among the refrigerant pipes described above, the refrigerant pipe 28 has a temperature sensor 41 . Temperature sensor 41 detects the temperature of the refrigerant immediately before being sent to evaporator 18 .

冷媒配管29は、温度センサ42、圧力センサ43を有する。温度センサ42は、蒸発器18から送り出された直後の冷媒の温度を検出する。圧力センサ43は、蒸発器18から送り出された直後の冷媒の圧力を検出する。 The refrigerant pipe 29 has a temperature sensor 42 and a pressure sensor 43. Temperature sensor 42 detects the temperature of the refrigerant immediately after being sent out from evaporator 18 . Pressure sensor 43 detects the pressure of the refrigerant immediately after being sent out from evaporator 18 .

冷媒配管30は、温度センサ44を有する。温度センサ44は、圧力調整弁20から送り出された後の冷媒の温度を検出する。 The refrigerant pipe 30 has a temperature sensor 44 . The temperature sensor 44 detects the temperature of the refrigerant after being sent out from the pressure regulating valve 20.

冷媒配管31は、温度センサ45、圧力センサ46を有する。温度センサ45は、圧縮器15に吸い込まれる直前の冷媒の温度を検出する。圧力センサ46は、圧縮器15に吸い込まれる直前の冷媒の圧力を検出する。 The refrigerant pipe 31 has a temperature sensor 45 and a pressure sensor 46. Temperature sensor 45 detects the temperature of the refrigerant immediately before it is sucked into compressor 15. The pressure sensor 46 detects the pressure of the refrigerant immediately before it is sucked into the compressor 15.

冷媒配管33は、温度センサ47を有する。温度センサ47は、バイパス弁20から送り出された後の冷媒の温度を検出する。 The refrigerant pipe 33 has a temperature sensor 47. Temperature sensor 47 detects the temperature of the refrigerant after being sent out from bypass valve 20 .

また、送込ダクト34は、温度センサ48を有する。温度センサ48は、蒸発器18に送り込まれる前の空気の温度を検出する。また、送出ダクト35は、温度センサ49を有する。温度センサ49は、送風機19に送り出される空気の温度を検出する。なお、符号50は、蒸発器16から送り出された直後の空気の温度を検出する温度センサである。 The inlet duct 34 also has a temperature sensor 48 . Temperature sensor 48 detects the temperature of the air before it is sent into evaporator 18. The delivery duct 35 also includes a temperature sensor 49 . Temperature sensor 49 detects the temperature of air sent to blower 19 . Note that the reference numeral 50 is a temperature sensor that detects the temperature of the air immediately after being sent out from the evaporator 16.

上述した温度センサ及び圧力センサからの検出信号は、制御装置51に出力される。 Detection signals from the temperature sensor and pressure sensor described above are output to the control device 51.

制御装置51は、冷却装置10の駆動時に、上述した圧縮器15の駆動制御、膨張弁17、圧力調整弁20及びバイパス弁21の各制御弁の駆動制御の他、送風機19の駆動制御を行う。なお、制御装置51における圧縮器15及び各制御弁の駆動制御については後述する。 When the cooling device 10 is driven, the control device 51 controls the drive of the compressor 15, the expansion valve 17, the pressure adjustment valve 20, and the bypass valve 21, as well as the blower 19. . Note that drive control of the compressor 15 and each control valve in the control device 51 will be described later.

上述したように、本実施形態の冷却装置10において、例えばバイパス弁21が閉じている場合、冷媒は循環路内を循環する冷凍サイクルとなる。図2(a)は、バイパス弁21が閉じている場合の(圧力P-比エンタルピーhの)P-H線図である。なお、P-H線図における各符号は、図1に示す冷媒配管を示す。図2(a)に示すように、圧縮器15による圧縮行程(図2(a)中記号A)において、冷媒は加圧されて過熱蒸気となる。次に、凝縮器16による凝縮行程(図2(a)中記号B)において、冷媒は放熱されて過冷却液となる。そして、膨張弁17による膨張行程(図2(a)中記号C)において、冷媒は減圧されて湿り飽和蒸気(液体と気体が混合した状態)となる。そして、蒸発器18による蒸発行程(図2(a)中記号D)により、冷却媒体は吸熱し過熱蒸気となる。最後に、圧力膨張弁17による減圧行程(図2(a)中記号E)において冷媒は減圧される。 As described above, in the cooling device 10 of this embodiment, for example, when the bypass valve 21 is closed, a refrigerating cycle is formed in which the refrigerant circulates within the circulation path. FIG. 2(a) is a PH diagram (pressure P-specific enthalpy h) when the bypass valve 21 is closed. Note that each symbol in the PH diagram indicates the refrigerant piping shown in FIG. As shown in FIG. 2(a), in the compression stroke (symbol A in FIG. 2(a)) by the compressor 15, the refrigerant is pressurized and becomes superheated steam. Next, in the condensation process (symbol B in FIG. 2A) by the condenser 16, the refrigerant radiates heat and becomes a supercooled liquid. Then, in the expansion stroke (symbol C in FIG. 2A) by the expansion valve 17, the refrigerant is depressurized and becomes wet saturated vapor (a state in which liquid and gas are mixed). Then, through the evaporation process (symbol D in FIG. 2A) by the evaporator 18, the cooling medium absorbs heat and becomes superheated steam. Finally, the pressure of the refrigerant is reduced in a pressure reduction stroke (symbol E in FIG. 2(a)) by the pressure expansion valve 17.

一方、バイパス弁21が開いている場合、圧縮器15から送り出された冷媒は、凝縮器16に向けて流れる冷媒の一部が、バイパス路に送り込まれる。したがって、冷媒は循環路だけでなく、バイパス路を循環する冷凍サイクルとなる。図2(b)は、バイパス弁21が開いている場合のP-H線図である。この冷凍サイクルでは、凝縮行程、膨張行程、蒸発行程及び減圧行程は、バイパス弁21が開いている場合と同一である。バイパス弁21が開いている場合、圧力調整弁20から送り出された冷媒は、バイパス弁21から送り出された冷媒(バイパス路を介して流れる冷媒)と合流する点でバイパス弁21が閉じている場合と相違する。例えば、圧縮器15の回転数が下限値で固定されている場合、バイパス弁21から送り出された冷媒は、高温・低圧の過熱蒸気である(図2(b)中符号33)。一方、圧力膨張弁17により減圧された冷媒は、低温・低圧の過熱蒸気である(図2(b)中符号30)。このとき、バイパス弁21から送り出された冷媒の圧力と、圧力調整弁20により減圧された冷媒の圧力は同一値である。したがって、圧力調整弁20により減圧された冷媒にバイパス弁21から送り出された冷媒が合流されることで、合流後の冷媒の温度は低下する(図2(b)中符号31)。なお、冷媒の温度は、例えばバイパス弁21から送り出された冷媒の質量流量と、圧力調整弁20により減圧された冷媒の質量流量とに基づいて求められる。 On the other hand, when the bypass valve 21 is open, a part of the refrigerant sent out from the compressor 15 and flowing toward the condenser 16 is sent into the bypass path. Therefore, the refrigerant cycle becomes a refrigeration cycle in which the refrigerant circulates not only in the circulation path but also in the bypass path. FIG. 2(b) is a PH diagram when the bypass valve 21 is open. In this refrigeration cycle, the condensation stroke, expansion stroke, evaporation stroke, and pressure reduction stroke are the same as when the bypass valve 21 is open. When the bypass valve 21 is open, the refrigerant sent out from the pressure regulating valve 20 joins the refrigerant sent out from the bypass valve 21 (the refrigerant flowing through the bypass path), and when the bypass valve 21 is closed. It differs from For example, when the rotation speed of the compressor 15 is fixed at the lower limit value, the refrigerant sent out from the bypass valve 21 is high-temperature, low-pressure superheated steam (reference numeral 33 in FIG. 2(b)). On the other hand, the refrigerant whose pressure has been reduced by the pressure expansion valve 17 is superheated steam at low temperature and low pressure (reference numeral 30 in FIG. 2(b)). At this time, the pressure of the refrigerant sent out from the bypass valve 21 and the pressure of the refrigerant reduced in pressure by the pressure regulating valve 20 are the same value. Therefore, since the refrigerant sent out from the bypass valve 21 is combined with the refrigerant whose pressure has been reduced by the pressure regulating valve 20, the temperature of the refrigerant after the combination is reduced (reference numeral 31 in FIG. 2(b)). Note that the temperature of the refrigerant is determined, for example, based on the mass flow rate of the refrigerant sent out from the bypass valve 21 and the mass flow rate of the refrigerant whose pressure has been reduced by the pressure regulating valve 20.

上述した冷却装置10における、蒸発器の空気側熱負荷が急変する、つまり負荷変動の大きな場合のフィードフォワード制御の基本原理について説明する。 The basic principle of feedforward control in the above-mentioned cooling device 10 when the air-side heat load of the evaporator changes suddenly, that is, when the load fluctuation is large, will be explained.

冷凍サイクルは、過熱度又は圧縮器15における吸込圧力を一定となるように制御することが一般的である。冷却装置10を駆動したときの冷却負荷は、冷媒の質量流量に比例する。例えば冷却負荷をW(kW)、循環路における冷媒の質量流量をQ(kg/sec)とした場合、(1)式で表される。 In a refrigeration cycle, the degree of superheat or the suction pressure in the compressor 15 is generally controlled to be constant. The cooling load when the cooling device 10 is driven is proportional to the mass flow rate of the refrigerant. For example, when the cooling load is W (kW) and the mass flow rate of the refrigerant in the circulation path is Q m (kg/sec), it is expressed by equation (1).

W ∝ Q ・・・(1) W ∝ Q m ...(1)

したがって、一定時間Δt(sec)経過した時間t(sec)における冷却負荷Wが一定時間Δt経過する前の冷却負荷のα倍となるとき、過熱度や圧縮器15における吸込圧力を変動させていなければ、蒸発器18における冷媒の質量流量は、以下の式(2)に示すように、α倍となる。 Therefore, when the cooling load W at time t (sec) after a certain time Δt (sec) has passed is α times the cooling load before the certain time Δt has elapsed, the degree of superheat and the suction pressure in the compressor 15 must be varied. For example, the mass flow rate of the refrigerant in the evaporator 18 is multiplied by α, as shown in equation (2) below.

m(t)=α・Qm(t-Δt) ・・・(2) Q m(t) = α・Q m(t-Δt) ...(2)

ここで、αは以下の式(3)にて求めることができる。なお、式(3)における記号Vは蒸発器18を通過する風量(単位:m/sec)、記号Tは温度(単位:℃)である。また、記号ΔTは、蒸発器18の前後の空気の温度差(単位:℃)である。 Here, α can be determined using the following equation (3). Note that the symbol V in Equation (3) is the amount of air passing through the evaporator 18 (unit: m 3 /sec), and the symbol T is the temperature (unit: ° C.). Further, the symbol ΔT is the temperature difference (unit: °C) between the air before and after the evaporator 18.

Figure 0007374691000001
Figure 0007374691000001

なお、蒸発器18を通過する風量が一定であれば、上記式(3)における風量Vは、考慮する必要はない。 Note that if the air volume passing through the evaporator 18 is constant, there is no need to consider the air volume V in the above equation (3).

例えばバイパス弁21が閉じ、圧縮器15の回転数を制御している場合を考慮する。この場合、圧縮器15、膨張弁17、圧力調整弁20を通過する冷媒の質量流量は、蒸発器18を通過する冷媒の質量流量と同一である。したがって、圧縮器15、膨張弁17、圧力調整弁20における冷媒の質量流量は以下の式(4-1)、式(4-2)及び式(4-3)となる。以下、圧縮器15、膨張弁17、圧力調整弁20に対する記号をco、ex、epとする。 For example, consider a case where the bypass valve 21 is closed and the rotation speed of the compressor 15 is controlled. In this case, the mass flow rate of the refrigerant passing through the compressor 15, the expansion valve 17, and the pressure regulating valve 20 is the same as the mass flow rate of the refrigerant passing through the evaporator 18. Therefore, the mass flow rates of the refrigerant in the compressor 15, expansion valve 17, and pressure regulating valve 20 are expressed by the following equations (4-1), (4-2), and (4-3). Hereinafter, the symbols for the compressor 15, expansion valve 17, and pressure regulating valve 20 will be referred to as co, ex, and ep.

co(t)=α・Qco(t-Δt) ・・・(4-1)
ex(t)=α・Qex(t-Δt) ・・・(4-2)
ep(t)=α・Qep(t-Δt) ・・・(4-3)
Q co(t) = α・Q co(t-Δt) ...(4-1)
Q ex(t) = α・Q ex(t-Δt) ...(4-2)
Q ep (t) = α・Q ep (t - Δt) (4-3)

一方、バイパス弁21の開度制御と、圧縮器15の回転数とを制御している場合を考慮する。この場合、膨張弁17、圧力調整弁20を通過する冷媒の質量流量は、蒸発器18を流れる冷媒の質量流量と同一である。また、バイパス弁21を通過する冷媒の質量流量は、圧縮器15を流れる冷媒の質量流量と、蒸発器18を流れる冷媒の質量流量との差となる。したがって、膨張弁17、圧力調整弁20及びバイパス弁21における冷媒の質量流量Qex(t)、Qep(t)、Qb(t)は以下の式(5-1)、式(5-2)及び式(5-3)となる。ここで、バイパス弁21における冷媒の質量流量は、バイパス路における冷媒の質量流量と同一である。したがって、バイパス弁21における冷媒の質量流量をQb(t)としている。 On the other hand, a case will be considered in which the opening degree of the bypass valve 21 and the rotation speed of the compressor 15 are controlled. In this case, the mass flow rate of the refrigerant passing through the expansion valve 17 and the pressure regulating valve 20 is the same as the mass flow rate of the refrigerant flowing through the evaporator 18 . Further, the mass flow rate of the refrigerant passing through the bypass valve 21 is the difference between the mass flow rate of the refrigerant flowing through the compressor 15 and the mass flow rate of the refrigerant flowing through the evaporator 18 . Therefore, the mass flow rates Q ex (t) , Q ep (t) , and Q b (t) of the refrigerant in the expansion valve 17, pressure regulating valve 20, and bypass valve 21 are calculated using the following equations (5-1) and (5- 2) and equation (5-3). Here, the mass flow rate of the refrigerant in the bypass valve 21 is the same as the mass flow rate of the refrigerant in the bypass path. Therefore, the mass flow rate of the refrigerant in the bypass valve 21 is defined as Q b (t) .

ex(t)=α・Qex(t-Δt) ・・・(5-1)
ep(t)=α・Qep(t-Δt) ・・・(5-2)
b(t)={γ・(1-α)+1}・Qb(t-Δt) ・・・(5-3)
Q ex(t) = α・Q ex(t-Δt) ...(5-1)
Q ep (t) = α・Q ep (t - Δt) (5-2)
Q b(t) = {γ・(1-α)+1}・Q b(t-Δt) ...(5-3)

ここで、記号γは、蒸発器18を流れる冷媒の質量流量と、バイパス弁21を流れる冷媒の質量流量との比率である。 Here, the symbol γ is the ratio between the mass flow rate of the refrigerant flowing through the evaporator 18 and the mass flow rate of the refrigerant flowing through the bypass valve 21.

例えば比率γは、以下に求められる。 For example, the ratio γ is determined as follows.

例えば圧縮器15の回転数が下限値で駆動している場合を考慮する。このとき、圧縮器15における冷媒の質量流量が一定であると仮定すると、以下の式(6)、式(7)で表される。なお、冷媒の質量流量Qは、バイパス路を流れる冷媒の質量流量である。 For example, consider a case where the rotation speed of the compressor 15 is driven at the lower limit value. At this time, assuming that the mass flow rate of the refrigerant in the compressor 15 is constant, it is expressed by the following equations (6) and (7). Note that the mass flow rate Q b of the refrigerant is the mass flow rate of the refrigerant flowing through the bypass path.

co=Qm(t―Δt)+Qb(t-Δt) ・・・(6)
co=Qm(t)+Qb(t) ・・・(7)
Q co =Q m(t-Δt) +Q b(t-Δt) ...(6)
Q co =Q m(t) +Q b(t) ...(7)

したがって、式(6)及び式(7)から以下の式(8)が得られる。 Therefore, the following equation (8) is obtained from equations (6) and (7).

b(t)=Qm(t―Δt)-Qm(t)+Qb(t-Δt) ・・・(8)
式(8)において、バイパス弁21を流れる冷媒の質量流量の比率を求める式に変換することで、以下の式(9)が得られる。
Q b(t) =Q m(t-Δt) -Q m(t) +Q b(t-Δt) ...(8)
By converting the equation (8) into an equation that calculates the ratio of the mass flow rate of the refrigerant flowing through the bypass valve 21, the following equation (9) can be obtained.

Figure 0007374691000002
Figure 0007374691000002

ここで、式(9)における係数α及び係数γは、以下の式(10)で表される。 Here, the coefficient α and the coefficient γ in Equation (9) are expressed by Equation (10) below.

Figure 0007374691000003
Figure 0007374691000003

したがって、バイパス弁21における冷媒の質量流量Qb(t)は、式(9)を用いることで、上述した式(5-3)として求められる。 Therefore, the mass flow rate Q b(t) of the refrigerant in the bypass valve 21 can be obtained as the above-mentioned equation (5-3) using equation (9).

ところで、上述した係数γは、蒸発器18における冷媒の質量流量と、バイパス弁21における冷媒の質量流量との比率である。比率γは比エンタルピーh(J/kg)の比率でも表すことができる。さらに、過熱度の変化が大きくない場合、比エンタルピーhと温度Tとは比例関係にある。したがって、係数γは、以下の式(11)に示すように、近似的に温度の比率でも表すことができる。ここで、エンタルピーh30,h31,h33は、冷媒配管30,31,33の内部におけるエンタルピーである。また、温度T30,T31,T33は、冷媒配管30,31,33の内部における温度を示す。 Incidentally, the above-mentioned coefficient γ is the ratio between the mass flow rate of the refrigerant in the evaporator 18 and the mass flow rate of the refrigerant in the bypass valve 21. The ratio γ can also be expressed as a ratio of specific enthalpy h (J/kg). Furthermore, when the change in the degree of superheating is not large, the specific enthalpy h and the temperature T are in a proportional relationship. Therefore, the coefficient γ can also be approximately expressed as a temperature ratio, as shown in equation (11) below. Here, the enthalpies h 30 , h 31 , and h 33 are the enthalpies inside the refrigerant pipes 30, 31, and 33. Further, temperatures T 30 , T 31 , and T 33 indicate temperatures inside the refrigerant pipes 30 , 31 , and 33 .

Figure 0007374691000004
Figure 0007374691000004

ここで、圧縮器15において、吸込圧力が一定であるとき、式(12)に示すように、駆動モータの回転数R(rpm)と冷媒の質量流量は比例する。 Here, in the compressor 15, when the suction pressure is constant, the rotation speed R (rpm) of the drive motor is proportional to the mass flow rate of the refrigerant, as shown in equation (12).

R ∝ Qco ・・・(12) R ∝ Q co ...(12)

また、各制御弁において、前後の圧力が同一であれば、制御弁のCv値は、以下の式(13-1)、式(13-2)及び式(13-3)に示すように、質量流量と比例する。 Furthermore, if the pressures before and after each control valve are the same, the Cv value of the control valve is as shown in the following equations (13-1), (13-2), and (13-3): Proportional to mass flow rate.

Cvex ∝ Qex ・・・(13-1)
Cvep ∝ Qep ・・・(13-2)
Cvbv ∝ Qbv ・・・(13-3)
Cv ex ∝ Q ex ... (13-1)
Cv ep ∝ Q ep ... (13-2)
Cv bv ∝ Q bv ... (13-3)

したがって、蒸発器18における冷媒の質量流量がα倍となる場合、以下の式(14-1)、式(14-2)及び式(14-3)が成立する。なお、以下の式において、圧縮器15の回転数(詳細には、圧縮器が有する駆動モータの回転数)を記号Rとしている。 Therefore, when the mass flow rate of the refrigerant in the evaporator 18 is multiplied by α, the following equations (14-1), (14-2), and (14-3) hold true. In addition, in the following formula, the number of rotations of the compressor 15 (specifically, the number of rotations of the drive motor included in the compressor) is represented by the symbol R.

(t)=α・R(t-Δt) ・・・(14-1)
Cvex(t)=α・Cvex(t-Δt) ・・・(14-2)
Cvep(t)=α・Cvep(t-Δt) ・・・(14-3)
Cvbv(t)={γ・(1-α)+1}・Cvbv(t-Δt)・・・(14-4)
R (t) = α・R (t−Δt) (14-1)
Cv ex(t) = α・Cv ex(t-Δt) ...(14-2)
Cv ep (t) = α・Cv ep (t - Δt) (14-3)
Cv bv(t) = {γ・(1-α)+1}・Cv bv(t-Δt) ...(14-4)

なお、式(14-1)は、バイパス弁21が閉じている場合に成立する。また、式(14-4)は、圧縮器15の回転数が下限値である場合に成立する。 Note that equation (14-1) holds true when the bypass valve 21 is closed. Furthermore, equation (14-4) holds true when the rotational speed of the compressor 15 is at the lower limit.

ここで、冷却装置10に用いられる膨張弁17、圧力調整弁20及びバイパス弁21等の制御弁について考慮する。制御弁としては、リニア特性の制御弁の他、イコールパーセント特性の制御弁が挙げられる。 Here, the control valves used in the cooling device 10, such as the expansion valve 17, the pressure regulating valve 20, and the bypass valve 21, will be considered. Examples of the control valve include a control valve with linear characteristics and a control valve with equal percentage characteristics.

例えば、制御弁がリニア特性の制御弁の場合、制御弁の開度とCv値との関係は、以下の式(15)で表される。 For example, when the control valve is a control valve with linear characteristics, the relationship between the opening degree of the control valve and the Cv value is expressed by the following equation (15).

Figure 0007374691000005
Figure 0007374691000005

上述した式(15)における記号Cvは、制御弁の定格値に対するCVの値を示す。また、記号φは、制御弁の定格値に対する制御弁の開度、記号φは、制御弁の締切値に対する制御弁の開度である。 The symbol Cv H in the above equation (15) indicates the value of CV with respect to the rated value of the control valve. Further, the symbol φ H is the opening degree of the control valve with respect to the rated value of the control valve, and the symbol φ L is the opening degree of the control valve with respect to the cutoff value of the control valve.

また、制御弁がイコールパーセント特性の制御弁の場合、制御弁の開度とCv値との関係は、以下の式(16)で表される。 Further, when the control valve is a control valve with equal percentage characteristics, the relationship between the opening degree of the control valve and the Cv value is expressed by the following equation (16).

Figure 0007374691000006
Figure 0007374691000006

上述した式(16)における記号Raは、制御弁のレンジアビリティである。 The symbol Ra in the above equation (16) is the range ability of the control valve.

膨張弁17、圧力調整弁20及びバイパス弁21がリニア特性の制御弁となる場合、各制御弁の開度は、以下の式(17-1)、式(17-2)及び式(17-3)で表される。 When the expansion valve 17, pressure regulating valve 20, and bypass valve 21 are control valves with linear characteristics, the opening degree of each control valve is determined by the following equations (17-1), (17-2), and (17-2). 3).

Figure 0007374691000007
Figure 0007374691000007

一方、膨張弁17、圧力調整弁20及びバイパス弁21がイコールパーセント特性の制御弁となる場合、各制御弁の開度は、以下の式(18-1)、式(18-2)及び式(18-3)で表される。 On the other hand, when the expansion valve 17, pressure regulating valve 20, and bypass valve 21 are control valves with equal percentage characteristics, the opening degree of each control valve is determined by the following equations (18-1), (18-2), and equations It is expressed as (18-3).

Figure 0007374691000008
Figure 0007374691000008

したがって、各制御弁の開度は、制御弁が有する特性に基づいて、上述した式(17)又は式(18)のいずれか一方により求めることが可能となる。 Therefore, the opening degree of each control valve can be determined by either equation (17) or equation (18) described above based on the characteristics of the control valve.

このように、蒸発器18における冷却負荷Wについて、一定時間Δt(sec)経過した時間t(sec)における冷却負荷Wが一定時間Δt経過する前の冷却負荷のα倍となるとき、短時間で変化すると上記の各仮定が生きてきて、膨張弁17や圧力調整弁20やバイパス弁21という制御弁のCv値の関係式で、もっと進めると制御弁の特性から導ける膨張弁17や圧力調整弁20やバイパス弁21の開度を冷却負荷のα倍の倍数から導けるので、その開度をフィードフォワード制御に利用すると、FB制御より早く近い制御点へ持っていけることがわかる。 In this way, regarding the cooling load W in the evaporator 18, when the cooling load W at time t (sec) after a certain period of time Δt (sec) is α times the cooling load before the certain period of time Δt has elapsed, When the above assumptions change, the Cv values of the control valves such as the expansion valve 17, the pressure regulating valve 20, and the bypass valve 21 are expressed in relational formulas. 20 and the bypass valve 21 can be derived from a multiple of α times the cooling load, it can be seen that if the opening degrees are used for feedforward control, the control point can be brought to a nearby control point faster than FB control.

そして、膨張弁17や圧力調整弁20やバイパス弁21の開度を冷却負荷のα倍の倍数から導くだけでなく、圧縮機15も、蒸発器18における冷却負荷Wについて一定時間Δt(sec)経過した時間t(sec)における冷却負荷Wが一定時間Δt経過する前の冷却負荷のα倍となるときに、質量流量を式(4-1)の関係から導き、その流量をフィードフォワード制御することが好ましい。 Then, not only the opening degrees of the expansion valve 17, pressure regulating valve 20, and bypass valve 21 are derived from multiples of α times the cooling load, but also the compressor 15 is controlled for a certain period of time Δt (sec) with respect to the cooling load W in the evaporator 18. When the cooling load W at the elapsed time t (sec) is α times the cooling load before the elapse of a certain time Δt, the mass flow rate is derived from the relationship of equation (4-1), and the flow rate is feedforward controlled. It is preferable.

図3に示すように、制御装置51は、CPU55、ROM56及びRAM57を含む。CPU55は、ROM56に記憶された制御プログラム58を実行することで、第1制御部61、第2制御部62、第3制御部63、第4制御部64、第5制御部65及び判定部66の機能を有する。 As shown in FIG. 3, the control device 51 includes a CPU 55, a ROM 56, and a RAM 57. By executing the control program 58 stored in the ROM 56, the CPU 55 controls the first control section 61, the second control section 62, the third control section 63, the fourth control section 64, the fifth control section 65, and the determination section 66. It has the following functions.

第1制御部61は、圧縮器15の回転数をPID(Proportional Integral Differential)制御により駆動制御する。なお、PID制御については後述する。第1制御部61は、圧力センサ46の出力信号から得られる圧力値(吸込圧力)Pcoと目標圧力値Pとの偏差を用いた演算を行い、得られる圧力値としての入力値を回転数としての入力値に変換する。つまり、圧縮器15に吸い込まれる冷却媒体の圧力値Pcoに基づいた圧縮器15の出力割合値(%)を比例帯にとって求め、求めた圧縮器の出力割合値(%)を比例項にして圧縮器の出力割合値(%)をPID制御するのである。図4(a)に示すように、例えば、第1制御部61は、圧力センサ46の出力信号から得られる圧力値Pcoが所定の圧力値P1未満であれば、回転数は下限値Rが入力値となる。また、圧縮器15への吸込圧力値が所定の圧力値P1以上であれば、圧力値Pcoと圧縮器15の回転数とは一次関数で表すことができ、圧縮器15への吸込圧力値が大きくなると、圧縮器15の回転数は高くなる。 The first control unit 61 drives and controls the rotation speed of the compressor 15 using PID (Proportional Integral Differential) control. Note that the PID control will be described later. The first control unit 61 performs calculation using the deviation between the pressure value (suction pressure) P co obtained from the output signal of the pressure sensor 46 and the target pressure value P 0 , and rotates the input value as the obtained pressure value. Convert input value as a number. In other words, the output ratio value (%) of the compressor 15 based on the pressure value P co of the refrigerant sucked into the compressor 15 is determined in a proportional band, and the determined output ratio value (%) of the compressor is converted into a proportional term. The output ratio value (%) of the compressor is controlled by PID. As shown in FIG. 4A, for example, if the pressure value P co obtained from the output signal of the pressure sensor 46 is less than the predetermined pressure value P1, the first control unit 61 sets the rotation speed to the lower limit value R L is the input value. Further, if the suction pressure value to the compressor 15 is equal to or higher than the predetermined pressure value P1, the pressure value P co and the rotation speed of the compressor 15 can be expressed as a linear function, and the suction pressure value to the compressor 15 As the number of rotations of the compressor 15 increases, the rotation speed of the compressor 15 increases.

第2制御部62は、膨張弁17の開度をPID制御により駆動制御する。第2制御部62は、温度センサ41の出力信号から得られる温度Tin及び温度センサ42の出力信号から得られる温度Tev、との差分から過熱度SHexを求める。そして、求めた過熱度SHexと目標となる過熱度SHとの偏差を用いた演算を行って、膨張弁17の開度を求める。つまり、蒸発器18の入口側における冷却媒体の温度センサ41の温度値Tinと蒸発器18の出口側における冷却媒体の温度センサ42の温度値Tevとにより求まる過熱度SHexに基づいた膨張弁17の開度値を比例帯にとって求め、求めた膨張弁17の開度値を比例項にして膨張弁17の開度値をPID制御するのである。なお、図4(b)に示すように、膨張弁17の開度と過熱度SHexは比例帯にとれる一次関数で表すことができ、膨張弁17の開度が大きくなると、過熱度SHexも大きくなる。なお、図4(b)に示すように、膨張弁17の開度と過熱度SHexは一次関数で表すことができ、膨張弁の開度が大きくなると、過熱度SHexも大きくなる。 The second control unit 62 drives and controls the opening degree of the expansion valve 17 using PID control. The second control unit 62 determines the degree of superheating SH ex from the difference between the temperature T in obtained from the output signal of the temperature sensor 41 and the temperature T ev obtained from the output signal of the temperature sensor 42 . Then, calculation is performed using the deviation between the obtained degree of superheat SH ex and the target degree of superheat SH 0 to obtain the opening degree of the expansion valve 17 . That is, the expansion is based on the degree of superheat SH ex determined by the temperature value T in of the coolant temperature sensor 41 on the inlet side of the evaporator 18 and the temperature value T ev of the coolant temperature sensor 42 on the outlet side of the evaporator 18. The opening value of the valve 17 is determined using a proportional band, and the opening value of the expansion valve 17 is PID controlled using the determined opening value of the expansion valve 17 as a proportional term. As shown in FIG. 4(b), the opening degree of the expansion valve 17 and the degree of superheat SH ex can be expressed by a linear function that can be taken in a proportional band, and as the degree of opening of the expansion valve 17 increases, the degree of superheat SH ex also becomes larger. Note that, as shown in FIG. 4(b), the opening degree of the expansion valve 17 and the degree of superheat SH ex can be expressed by a linear function, and as the degree of opening of the expansion valve increases, the degree of superheat SH ex also increases.

第3制御部63は、圧力調整弁20の開度をPID制御により駆動制御する。第3制御部63は、温度センサ49の出力信号から得られる温度Tsaと設定温度Tとの偏差を用いた演算を行い、得られた入力値(温度)を圧力値に変換する。そして、第3制御部63は、変換により得られた圧力値と、圧力センサ43の出力信号から得られる圧力Pepとの偏差を用いた演算を行って、圧力調整弁20の開度を求める。つまり、送風機19により搬送される空気の蒸発器18の出口側における送風温度センサ49の送風温度Tsaに基づいた圧力調整弁20の開度値を比例帯にとって求め、求めた圧力調整弁20の開度値を比例項にして圧力調整弁20の開度値をPID制御するのである。なお、図4(c)に示すように、圧力調整弁20の開度と送風温度Tsaは比例帯にとれる比例関係にあり、圧力調整弁20の開度が大きくなると、送風温度Tsaも高くなる。 The third control unit 63 drives and controls the opening degree of the pressure regulating valve 20 by PID control. The third control unit 63 performs calculation using the deviation between the temperature T sa obtained from the output signal of the temperature sensor 49 and the set temperature T 0 and converts the obtained input value (temperature) into a pressure value. Then, the third control unit 63 calculates the opening degree of the pressure regulating valve 20 by performing calculation using the deviation between the pressure value obtained by the conversion and the pressure Pep obtained from the output signal of the pressure sensor 43. . That is, the opening value of the pressure regulating valve 20 is determined based on the blast temperature T sa of the blast temperature sensor 49 on the outlet side of the evaporator 18 of the air conveyed by the blower 19 in a proportional band, and the opening value of the pressure regulating valve 20 determined is The opening value of the pressure regulating valve 20 is controlled by PID using the opening value as a proportional term. As shown in FIG. 4(c), the opening degree of the pressure regulating valve 20 and the blowing temperature Tsa have a proportional relationship that can be taken into a proportional band, and as the opening degree of the pressure regulating valve 20 increases, the blowing temperature Tsa also increases. It gets expensive.

第4制御部64は、バイパス弁21の開度をPID制御により駆動制御する。第4制御部64は、圧力センサ46の出力信号から得られる圧力値(吸込圧力)Pcoと目標圧力値Pとの偏差を用いた演算を行い、得られる圧力値としての入力値をバイパス弁21の開度値としての入力値に変換し求める。そして、第4制御部64は、算出した差分と、目標となる差分との偏差を用いた演算を行って、バイパス弁21の開度を求める。つまり、圧力センサ46の出力信号から得られる圧縮機15に吸い込まれる冷却媒体の圧力値Pcoに基づいたバイパス弁21の開度値を比例帯にとって求め、求めたバイパス弁21の開度値を比例項にしてバイパス弁21の開度値をPID制御するのである。バイパス弁21は、圧縮器15における吸込圧力が所定の圧力値P1以下となる場合に開く。なお、吸込圧力Pcoとバイパス弁の開度とは一次関数で表すことができ、吸込圧力Pcoが大きくなるにしたがい、バイパス弁21の開度が小さくなる。 The fourth control unit 64 drives and controls the opening degree of the bypass valve 21 by PID control. The fourth control unit 64 performs calculation using the deviation between the pressure value (suction pressure) P co obtained from the output signal of the pressure sensor 46 and the target pressure value P 0 and bypasses the input value as the obtained pressure value. The input value is converted into an input value as the opening degree value of the valve 21. Then, the fourth control unit 64 calculates the opening degree of the bypass valve 21 by performing calculation using the deviation between the calculated difference and the target difference. In other words, the opening value of the bypass valve 21 is determined based on the pressure value P co of the refrigerant sucked into the compressor 15 obtained from the output signal of the pressure sensor 46 in a proportional band, and the opening value of the bypass valve 21 is calculated based on the proportional band. The opening value of the bypass valve 21 is controlled by PID using the proportional term. The bypass valve 21 opens when the suction pressure in the compressor 15 becomes less than or equal to a predetermined pressure value P1. Note that the suction pressure P co and the opening degree of the bypass valve can be expressed as a linear function, and as the suction pressure P co increases, the opening degree of the bypass valve 21 decreases.

上述したように、第1制御部61、第2制御部62、第3制御部63及び第4制御部64は、圧縮器15、膨張弁17、圧力調整弁20及びバイパス弁21をPID制御する。PID制御は、制御対象となる装置の出力値(検出値)と目標出力値との偏差の比例成分、該偏差の積分成分及び該偏差の微分成分に、各成分に対応付けられた係数を各々乗算した後、乗算した値を積算した値を入力値として対象となる装置を制御するものである。具体的には、PID制御では、以下の式(19)が用いられる。なお、式(19)におけるe(t)は、制御対象となる装置の出力値(検出値)と目標出力値との偏差である。 As described above, the first control section 61, the second control section 62, the third control section 63, and the fourth control section 64 perform PID control on the compressor 15, the expansion valve 17, the pressure regulation valve 20, and the bypass valve 21. . PID control uses coefficients associated with each component to the proportional component of the deviation between the output value (detected value) of the device to be controlled and the target output value, the integral component of the deviation, and the differential component of the deviation. After multiplication, a value obtained by integrating the multiplied values is used as an input value to control the target device. Specifically, the following equation (19) is used in PID control. Note that e(t) in equation (19) is the deviation between the output value (detected value) of the device to be controlled and the target output value.

Figure 0007374691000009
Figure 0007374691000009

ここで、係数K、係数K及び係数Kであり、これら係数は、冷却装置10における冷却負荷が安定している条件下で制御が安定するように決定される。詳細には、これら係数は、冷却装置10を実際に駆動させたときの制御結果から求められる。 Here, the coefficient K p , the coefficient K i , and the coefficient K d are determined, and these coefficients are determined so that the control is stable under the condition that the cooling load in the cooling device 10 is stable. Specifically, these coefficients are obtained from the control results when the cooling device 10 is actually driven.

第5制御部65は、後述する判定部66の判定結果に基づいて機能する。第5制御部65は、例えば、後述する判定部66において、冷却負荷が大きいと判定された場合に、つまり、蒸発器18における冷却負荷Wについて、一定時間Δt(sec)経過した時間t(sec)における冷却負荷Wが一定時間Δt経過する前の冷却負荷のα倍となるときαの値が大きく、短時間で変化すると膨張弁17や圧力調整弁20やバイパス弁21という制御弁のCv値の関係式で、もっと進めると制御弁の特性から導ける膨張弁17や圧力調整弁20やバイパス弁21の開度を冷却負荷のα倍の倍数から導けるので、その開度をフィードフォワード制御として補正入力値として直接操作器である圧縮器15の回転数、膨張弁17、圧力調整弁20及びバイパス弁21の各制御弁の開度の補正値を装置毎に入力する。 The fifth control section 65 functions based on the determination result of the determination section 66, which will be described later. For example, when the determination unit 66 (described later) determines that the cooling load is large, the fifth control unit 65 controls the cooling load W in the evaporator 18 at a time t (sec) after a certain period of time Δt (sec) has elapsed. ) when the cooling load W becomes α times the cooling load before the elapse of a certain period of time Δt, the value of α is large, and if it changes in a short time, the Cv value of the control valves such as the expansion valve 17, pressure regulating valve 20, and bypass valve 21 increases. If we proceed further with the relational expression, the opening degrees of the expansion valve 17, pressure regulating valve 20, and bypass valve 21, which can be derived from the characteristics of the control valve, can be derived from a multiple of α times the cooling load, so the opening degrees can be corrected as feedforward control. As input values, the rotational speed of the compressor 15, which is a direct operating device, and the correction value of the opening degree of each control valve of the expansion valve 17, the pressure regulating valve 20, and the bypass valve 21 are input for each device.

ここで、補正制御が機能したときの補正入力値uALL(t)は、PID制御で求められる入力値をuPID(t)、補正値をuFF(t)とした場合、以下の式(20)にて求められる。 Here, the corrected input value u ALL (t) when the correction control functions is calculated by the following formula ( 20).

Figure 0007374691000010
Figure 0007374691000010

また、補正値uFF(t)を求める式は、以下の式(21)である。 Further, the formula for determining the correction value u FF(t) is the following formula (21).

Figure 0007374691000011
Figure 0007374691000011

図5に示すように、式(21)におけるf(k)は、補正値を求める制御弁の種類や、使用する制御弁の特性に合わせて選択される。 As shown in FIG. 5, f(k) in equation (21) is selected according to the type of control valve for which the correction value is sought and the characteristics of the control valve used.

判定部66は、冷却装置10における冷却負荷が大きいか否かの判定を行う。この判定は、一定時間(Δt)経過するたびに実行される。なお、Δtは、例えば1~10(sec)に設定される。 The determination unit 66 determines whether the cooling load on the cooling device 10 is large. This determination is performed every time a certain period of time (Δt) has elapsed. Note that Δt is set to, for example, 1 to 10 (sec).

判定部66は、蒸発器18の上流側の温度(温度センサ48の検出信号から得られる温度)Teiの時間変化、蒸発器18の下流側の温度(温度センサ50の検出信号から得られる温度)Teoの時間変化から判定値D1(kΔt)を求める。また、判定部66は、蒸発器18の上流側の温度(温度センサ48の検出信号から得られる温度)Teiの時間変化と、送出ダクト35の内部の温度(温度センサ49の検出信号から得られる温度)Tsaと設定温度Tsaspとの差から判定値D2(kΔt)を求める。なお、判定値D1(kΔt)、D2(kΔt)を求める式は、以下の式(22)及び式(23)となる。 The determination unit 66 determines the temporal change in the temperature on the upstream side of the evaporator 18 (temperature obtained from the detection signal of the temperature sensor 48) Tei , the temperature on the downstream side of the evaporator 18 (the temperature obtained from the detection signal of the temperature sensor 50) ) Determination value D 1 (kΔt) is determined from the time change of T eo . The determination unit 66 also determines the temporal change in the temperature on the upstream side of the evaporator 18 (temperature obtained from the detection signal of the temperature sensor 48) Tei and the temperature inside the delivery duct 35 (the temperature obtained from the detection signal of the temperature sensor 49). The determination value D 2 (kΔt) is determined from the difference between the set temperature T sasp and the set temperature T sasp . Note that the equations for determining the determination values D 1 (kΔt) and D 2 (kΔt) are the following equations (22) and (23).

Figure 0007374691000012
Figure 0007374691000012

なお、本実施形態では、送風機19が蒸発器18の下流側にあるため、温度センサ50にて温度Teoを、温度センサ49にて温度Tsaを検出しているが、送風機19が蒸発器18の上流側に配置される場合には、温度Teo及び温度Tsaは同値となる。したがって、送風機19が蒸発器18の上流側に配置される場合には、1つの温度センサを配置することが可能である。 In this embodiment, since the blower 19 is located downstream of the evaporator 18, the temperature Teo is detected by the temperature sensor 50, and the temperature Tsa is detected by the temperature sensor 49. 18, the temperature T eo and the temperature T sa have the same value. Therefore, if the blower 19 is arranged upstream of the evaporator 18, it is possible to arrange one temperature sensor.

判定部66は、算出した判定値D1(kΔt)、D2(kΔt)に基づいて、冷却装置10における冷却負荷が大きいか否かの判定を行う。なお、判定部66は、判定値D1(kΔt)を用いた判定を行って、必要に応じて、判定値D2(kΔt)を用いた判定を行う。 The determination unit 66 determines whether the cooling load on the cooling device 10 is large based on the calculated determination values D 1 (kΔt) and D 2 (kΔt) . Note that the determination unit 66 performs determination using the determination value D 1 (kΔt) and, if necessary, performs determination using the determination value D 2 (kΔt) .

例えば判定値D1(kΔt)が0以上となる場合、所定時間Δt経過したときの蒸発器18の上流側の温度Teiの時間変化、及び蒸発器18の下流側の温度Teoの時間変化の両方が、正又は負であることを示している。言い換えれば、所定時間Δt経過したときの蒸発器18の上流側の温度Teiの時間変化、及び蒸発器18の下流側の温度Teoの時間変化において、これら温度が上昇、又は下降していることを示している。つまり、例えば冷却負荷が増加した場合には、蒸発器18の上流側の温度Teiが上昇する。また、蒸発器18を通過することにより空気が冷却されるが、蒸発器18の下流側の温度Teoも上昇する。したがって、この場合には、判定部66は、上述した補正制御を行う必要があると判断する。 For example, when the judgment value D 1 (kΔt) is 0 or more, the time change in the temperature T ei on the upstream side of the evaporator 18 and the time change in the temperature T eo on the downstream side of the evaporator 18 when the predetermined time Δt has elapsed. indicates that both are positive or negative. In other words, the temperature T ei on the upstream side of the evaporator 18 and the temperature T eo on the downstream side of the evaporator 18 change over time when the predetermined time Δt has elapsed, and these temperatures are rising or falling. It is shown that. That is, for example, when the cooling load increases, the temperature Tei on the upstream side of the evaporator 18 increases. Moreover, although the air is cooled by passing through the evaporator 18, the temperature T eo on the downstream side of the evaporator 18 also increases. Therefore, in this case, the determination unit 66 determines that it is necessary to perform the above-described correction control.

一方、判定値D1(kΔt)が0未満となる場合、所定時間Δt経過したときの蒸発器18の下流側の温度Teoの時間変化が負であることを示している。言い換えれば、冷却装置10における冷却負荷が減少し、蒸発器18の下流側の温度Teoが下降していることを示している。つまり、冷却負荷が減少している場合には、判定部66は、上述した補正制御を行う必要がないと判断する。なお、この場合には、PID制御のみが実行される。 On the other hand, when the determination value D 1 (kΔt) is less than 0, it indicates that the temporal change in the temperature T eo on the downstream side of the evaporator 18 after the predetermined time Δt has elapsed is negative. In other words, this indicates that the cooling load on the cooling device 10 has decreased and the temperature T eo on the downstream side of the evaporator 18 has decreased. That is, when the cooling load is decreasing, the determination unit 66 determines that there is no need to perform the above-described correction control. Note that in this case, only PID control is executed.

また、判定値D2(kΔt)が0以上となる場合、所定時間Δt経過したときの蒸発器18の上流側の温度Teiの時間変化、及び送出ダクト35の内部の温度Tsaと設定温度Tsaspとの差の両方が正、又は負であることを示している。言い換えれば、所定時間Δt経過したときの蒸発器18の上流側の温度Teiの時間変化、及び送風ダクト35の内部の温度Tsaと設定温度Tsaspとの差において、温度が上昇、又は下降していることを示している。例えば冷却負荷が増加した場合、蒸発器18の上流側の温度Teiは上昇する。また、送風ダクト35の内部の温度は設定温度Tsaspよりも高い。したがって、この場合には、判定部66は、上述した補正制御を行う必要があると判断する。 In addition, when the judgment value D 2 (kΔt) is 0 or more, the time change of the temperature T ei on the upstream side of the evaporator 18 when the predetermined time Δt has passed, the temperature T sa inside the delivery duct 35, and the set temperature This indicates that both the difference from T sasp is positive or negative. In other words, the temperature increases or decreases based on the time change in the temperature T ei on the upstream side of the evaporator 18 when the predetermined time Δt has elapsed, and the difference between the temperature T sa inside the blower duct 35 and the set temperature T sasp . It shows that you are doing it. For example, when the cooling load increases, the temperature T ei on the upstream side of the evaporator 18 increases. Further, the temperature inside the air duct 35 is higher than the set temperature T sasp . Therefore, in this case, the determination unit 66 determines that it is necessary to perform the above-described correction control.

一方、蒸発器18の上流側の温度Teiは上昇するが、送風ダクト35の内部の温度Tsaが設定温度Tsaspよりも低い場合もある。この場合には、判定値D2(kΔt)は0未満となる。したがって、判定部66は、上述した補正制御を行う必要がないと判断する。なお、この場合には、フィードフォワード制御は実行されずPID制御のみが実行される。 On the other hand, although the temperature T ei on the upstream side of the evaporator 18 increases, the temperature T sa inside the blower duct 35 may be lower than the set temperature T sasp . In this case, the determination value D 2 (kΔt) is less than 0. Therefore, the determination unit 66 determines that there is no need to perform the above-described correction control. Note that in this case, feedforward control is not executed and only PID control is executed.

次に、本実施形態の冷却装置10の制御方法について、図6のフローチャートに基づいて説明する。なお、図6に示すフローチャートは、既に冷却装置10における冷却条件が設定されていることを前提としている。なお、冷却条件は、図示を省略した操作パネルにて実行され、操作パネルによる操作に基づいて、圧縮器15、各制御弁の駆動条件が設定される。 Next, a method of controlling the cooling device 10 of this embodiment will be explained based on the flowchart of FIG. 6. Note that the flowchart shown in FIG. 6 is based on the premise that the cooling conditions for the cooling device 10 have already been set. Note that the cooling conditions are set using an operation panel (not shown), and the driving conditions for the compressor 15 and each control valve are set based on the operation using the operation panel.

ステップS101は、圧縮器15及び各制御弁をPID制御にて駆動制御する処理である。制御装置51は、圧縮器15、膨張弁17、圧力調整弁20及びバイパス弁21をPID制御にて駆動制御する。 Step S101 is a process of driving and controlling the compressor 15 and each control valve using PID control. The control device 51 drives and controls the compressor 15, the expansion valve 17, the pressure regulating valve 20, and the bypass valve 21 using PID control.

ステップS102は、所定時間(Δt)経過したか否かを判定する処理である。制御装置51は、図示を省略したタイマ機能を有しており、時間Δt経過したか否かを判定する。例えば、時間Δt経過している場合には、制御装置51は、ステップS102の判定処理の結果をYesとする。この場合、ステップS103に進む。一方、時間Δt経過していない場合には、制御装置51は、ステップS102の判定処理の結果をNoとする。この場合、ステップS109に進む。 Step S102 is a process of determining whether a predetermined time (Δt) has elapsed. The control device 51 has a timer function (not shown), and determines whether the time Δt has elapsed. For example, if the time Δt has elapsed, the control device 51 determines Yes as a result of the determination process in step S102. In this case, the process advances to step S103. On the other hand, if the time Δt has not elapsed, the control device 51 sets the result of the determination process in step S102 to No. In this case, the process advances to step S109.

ステップS103は、判定値D1(kΔt)、D2(kΔt)を求める処理である。制御装置51は、上述した式(22)及び式(23)を用いて、判定値D1(kΔt)及び判定値D2(kΔt)を求める。 Step S103 is a process for calculating determination values D 1 (kΔt) and D 2 (kΔt) . The control device 51 calculates the determination value D 1 (kΔt ) and the determination value D 2 (kΔt) using the above-mentioned equations (22) and (23).

ステップS104は、判定値D1(kΔt)≧0であるか否かを判定する処理である。ステップS103にて求めた判定値D1(kΔt)が、D1(kΔt)≧0となる場合には、ステップS104の判定処理の結果はYesとなる。この場合、ステップS105に進む。 Step S104 is a process of determining whether the determination value D 1 (kΔt) ≧0. If the determination value D 1 (kΔt) obtained in step S103 is D 1 (kΔt) ≧0, the result of the determination process in step S104 is Yes. In this case, the process advances to step S105.

一方、ステップS103にて求めた判定値D1(kΔt)が、D1(kΔt)<0となる場合には、ステップS104の判定処理の結果はNoとなる。この場合、ステップS101に戻る。したがって、D1(kΔt)<0となる場合には、圧縮器15及び各制御弁が引き続きPID制御により駆動制御される。 On the other hand, if the determination value D 1 (kΔt) obtained in step S103 is D 1 (kΔt) <0, the result of the determination process in step S104 is No. In this case, the process returns to step S101. Therefore, when D 1 (kΔt) <0, the compressor 15 and each control valve continue to be driven and controlled by PID control.

ステップS105は、判定値D2(t)≧0であるか否かを判定する処理である。ステップS103にて求めた判定値D2(kΔt)が、D2(kΔt)≧0となる場合には、ステップS105の判定処理の結果はYesとなる。この場合、ステップS106に進む。 Step S105 is a process of determining whether the determination value D 2 (t) ≧0. If the determination value D 2 (kΔt) obtained in step S103 satisfies D 2 (kΔt) ≧0, the result of the determination process in step S105 is Yes. In this case, the process advances to step S106.

一方、ステップS103にて求めた判定値D2(kΔt)が、D2(kΔt)<0となる場合には、ステップS105の判定処理の結果はNoとなる。この場合、ステップS101に戻る。したがって、D2(kΔt)<0となる場合にも、圧縮器15及び各制御弁が引き続きPID制御により駆動制御される。 On the other hand, if the determination value D 2 (kΔt) obtained in step S103 is D 2 (kΔt) <0, the result of the determination process in step S105 is No. In this case, the process returns to step S101. Therefore, even when D 2 (kΔt) <0, the compressor 15 and each control valve continue to be driven and controlled by PID control.

ステップS106は、補正入力値を算出する処理である。まず、制御装置51は、係数α及び係数γを求める。係数α及び係数γを求めた後、制御装置51は、上述した式(20)を用いて、補正入力値を求める。なお、補正入力値は、圧縮器15の回転数及び各制御弁の開度に対して算出される。 Step S106 is a process of calculating a corrected input value. First, the control device 51 calculates the coefficient α and the coefficient γ. After determining the coefficient α and the coefficient γ, the control device 51 determines the corrected input value using the above-mentioned equation (20). Note that the correction input value is calculated for the rotation speed of the compressor 15 and the opening degree of each control valve.

ステップS107は、補正入力値を用いた圧縮器15及び各制御弁の駆動制御を行う処理である。制御装置51は、ステップS106により算出した補正入力値を用いて、圧縮器15、膨張弁17、圧力調整弁20及びバイパス弁21を駆動制御する。 Step S107 is a process of controlling the drive of the compressor 15 and each control valve using the corrected input value. The control device 51 drives and controls the compressor 15, the expansion valve 17, the pressure regulating valve 20, and the bypass valve 21 using the corrected input value calculated in step S106.

ステップS108は、所定時間(Δt)経過したか否かを判定する処理である。制御装置51は、図示を省略したタイマ機能を有しており、時間Δt経過したか否かを判定する。例えば、時間Δt経過している場合には、制御装置51は、ステップS108の判定処理の結果をYesとする。この場合、ステップS103に戻る。一方、時間Δt経過していない場合には、制御装置51は、ステップS108の判定処理の結果をNoとする。この場合、ステップS110に進む。 Step S108 is a process of determining whether a predetermined time (Δt) has elapsed. The control device 51 has a timer function (not shown), and determines whether the time Δt has elapsed. For example, if the time Δt has elapsed, the control device 51 determines Yes as a result of the determination process in step S108. In this case, the process returns to step S103. On the other hand, if the time Δt has not elapsed, the control device 51 sets the result of the determination process in step S108 to No. In this case, the process advances to step S110.

上述したステップS102の判定処理の結果がNoとなる場合、ステップS109に進む。 If the result of the determination process in step S102 described above is No, the process advances to step S109.

ステップS109は、冷却装置10の運転を停止するか否かを判定する処理である。制御装置51が冷却装置10の運転を停止する信号を受けたときには、制御装置51は、ステップS109の判定結果をYesとする。この場合、図に示すフローチャートの処理が終了する。つまり、冷却装置10の駆動が停止する。一方、制御装置51が冷却装置10の運転を停止する信号を受けていないときには、制御装置51は、ステップS109の判定結果をNoとする。この場合、ステップS101に戻る。つまり、この場合には、冷却装置10は、引き続きPID制御により駆動制御される。 Step S109 is a process of determining whether or not to stop the operation of the cooling device 10. When the control device 51 receives a signal to stop the operation of the cooling device 10, the control device 51 makes the determination result in step S109 Yes. In this case, the process of the flowchart shown in the figure ends. In other words, the driving of the cooling device 10 is stopped. On the other hand, when the control device 51 has not received the signal to stop the operation of the cooling device 10, the control device 51 sets the determination result in step S109 to No. In this case, the process returns to step S101. That is, in this case, the cooling device 10 is continuously driven and controlled by PID control.

上述したステップS108の判定処理の結果がNoとなる場合、ステップS110に進む。 If the result of the determination process in step S108 described above is No, the process advances to step S110.

ステップS110は、冷却装置10の運転を停止するか否かを判定する処理である。制御装置51が冷却装置10の運転を停止する信号を受けたときには、制御装置51は、ステップS110の判定結果をYesとする。この場合、図に示すフローチャートの処理が終了する。つまり、冷却装置10の駆動が停止する。一方、制御装置51が冷却装置10の運転を停止する信号を受けていないときには、制御装置51は、ステップS110の判定結果をNoとする。この場合、ステップS107に戻る。つまり、この場合には、冷却装置10は、引き続き入力補正値を用いて圧縮器15及び各制御弁の駆動制御が実行される。 Step S110 is a process of determining whether or not to stop the operation of the cooling device 10. When the control device 51 receives a signal to stop the operation of the cooling device 10, the control device 51 makes the determination result in step S110 Yes. In this case, the process of the flowchart shown in the figure ends. In other words, the driving of the cooling device 10 is stopped. On the other hand, when the control device 51 has not received the signal to stop the operation of the cooling device 10, the control device 51 sets the determination result of step S110 to No. In this case, the process returns to step S107. That is, in this case, the cooling device 10 continues to control the drive of the compressor 15 and each control valve using the input correction value.

このように、冷却装置は、冷却負荷の変動が小さい(係数α≒1)ときには、圧縮器及び各制御弁はPID制御により制御される。一方、冷却負荷の変動が大きくなると、冷却装置は、補正制御を実行する。なお、補正制御は、PID制御により得られる入力値に補正値を加算した補正入力値を用いて実行される。この補正制御は、冷却負荷の変動を抑制するように働くので、恒温室などの温度精度が要求される設備において安定した冷却による安定した温度管理を行うことが可能となる。 In this way, in the cooling device, when the fluctuation in the cooling load is small (coefficient α≈1), the compressor and each control valve are controlled by PID control. On the other hand, when the fluctuation in the cooling load increases, the cooling device executes correction control. Note that the correction control is executed using a correction input value obtained by adding a correction value to the input value obtained by PID control. Since this correction control works to suppress fluctuations in cooling load, it is possible to perform stable temperature management through stable cooling in equipment that requires temperature accuracy, such as a thermostatic room.

また、補正制御の際に求める補正値は、PID制御において使用するパラメータを用いているので、新たなパラメータを用いることはなく、また、新たなパラメータに伴う設定項目の追加もない。 Further, since the correction value obtained during the correction control uses the parameters used in the PID control, no new parameters are used, and no setting items are added in conjunction with the new parameters.

本実施形態では、圧縮器の回転数、各制御弁の開度は、制御装置におけるPID制御により制御されているが、これらの制御は、PID制御に限定される必要はなく、PD制御にて行うことも可能である。 In this embodiment, the rotation speed of the compressor and the opening degree of each control valve are controlled by PID control in the control device, but these controls do not need to be limited to PID control, and can be controlled by PD control. It is also possible to do so.

本実施形態では、圧縮器、凝縮器、膨張弁、蒸発器及び圧力膨張弁を配管で接続した循環路の他に、バイパス路を設けた冷凍サイクルを構成した冷却装置を例に取り上げているが、バイパス路の構成を省略した冷凍サイクルであっても、本発明を実施することも可能である。 In this embodiment, a cooling system is taken as an example, which has a refrigeration cycle in which a bypass path is provided in addition to a circulation path in which a compressor, a condenser, an expansion valve, an evaporator, and a pressure expansion valve are connected by piping. It is also possible to implement the present invention even in a refrigeration cycle in which the configuration of a bypass path is omitted.

10…冷却装置、15…圧縮器、16…凝縮器、17…膨張弁、18…蒸発器、19…送風機、20…圧力膨張弁、21…バイパス弁、41,42,44,45,47,48,49,50…温度センサ、43,46…圧力センサ、51…制御装置 10... Cooling device, 15... Compressor, 16... Condenser, 17... Expansion valve, 18... Evaporator, 19... Air blower, 20... Pressure expansion valve, 21... Bypass valve, 41, 42, 44, 45, 47, 48, 49, 50... Temperature sensor, 43, 46... Pressure sensor, 51... Control device

Claims (16)

圧縮器、凝縮器、膨張弁、蒸発器及び圧力調整弁を配管を用いて順次接続した循環路を有する冷凍サイクルを構成し、前記蒸発器における冷却媒体との間の熱交換により冷却された空気を対象空間へと送風機で送り出す冷却装置において、
前記圧縮器に吸い込まれる前記冷却媒体の圧力値に基づいた前記圧縮器の出力割合値を比例帯にとって求め、求めた前記圧縮器の出力割合値を比例項にして前記圧縮器の出力割合値をPID制御する第1の制御手段と、
前記蒸発器の入口側における前記冷却媒体の温度と前記蒸発器の出口側における前記冷却媒体の温度により求まる過熱度に基づいた前記膨張弁の開度値を比例帯にとって求め、求めた前記膨張弁の開度値を比例項にして前記膨張弁の開度値をPID制御する第2の制御手段と、
前記送風機により搬送される空気の蒸発器の出口側における送風温度値に基づいた前記圧力調整弁の開度値を比例帯にとって求め、求めた前記圧力調整弁の開度値を比例項にして前記圧力調整弁の開度値をPID制御する第3の制御手段と、
送風機により搬送される空気の蒸発器入口空気温度と蒸発器出口空気温度と蒸発器出口空気設定温度それぞれの出力値を出力できる空気温度出力手段と、
第1時刻における前記空気温度出力手段からの出力値に基づき演算した前記蒸発器による冷却負荷に対して、前記第1時刻から一定時間経過した第2時刻における前記蒸発器による冷却負荷が増加しているか否かを判定する判定部と、
前記判定部により前記蒸発器による冷却負荷が増加していると判定された場合に、第2時刻の蒸発器による冷却負荷の第1時刻における蒸発器による冷却負荷に対する倍数に基づいて、前記圧縮器の出力割合値、前記膨張弁の開度値及び前記圧力調整弁の開度値をフィードフォワードにて各々補正し、補正した制御値を各々用いて、前記圧縮器、前記膨張弁及び前記圧力調整弁を制御し、再度、出力割合値や各々の開度値出力をPID制御に戻す補正制御を行う補正制御手段と、
を有することを特徴とする冷却装置。
A refrigeration cycle having a circuit in which a compressor, a condenser, an expansion valve, an evaporator, and a pressure regulating valve are sequentially connected using piping, and the air is cooled by heat exchange with the cooling medium in the evaporator. In a cooling device that uses a blower to send air into the target space,
The output ratio value of the compressor based on the pressure value of the refrigerant sucked into the compressor is determined in a proportional band, and the output ratio value of the compressor is determined using the determined output ratio value of the compressor as a proportional term. a first control means for PID control;
The expansion valve obtained by determining the opening value of the expansion valve based on the degree of superheat determined by the temperature of the cooling medium at the inlet side of the evaporator and the temperature of the cooling medium at the outlet side of the evaporator using a proportional band. a second control means for PID controlling the opening value of the expansion valve using the opening value as a proportional term;
The opening value of the pressure regulating valve based on the blowing temperature value at the outlet side of the evaporator of the air conveyed by the blower is determined using a proportional band, and the opening value of the pressure regulating valve thus determined is converted into a proportional term. third control means for PID controlling the opening value of the pressure regulating valve;
an air temperature output means capable of outputting respective output values of an evaporator inlet air temperature, an evaporator outlet air temperature, and an evaporator outlet air set temperature of the air conveyed by the blower;
The cooling load by the evaporator at a second time when a certain period of time has elapsed from the first time increases with respect to the cooling load by the evaporator calculated based on the output value from the air temperature output means at the first time. a determination unit that determines whether or not the
When the determination unit determines that the cooling load by the evaporator is increasing, the compressor The output ratio value, the opening value of the expansion valve, and the opening value of the pressure regulating valve are each corrected by feedforward, and the corrected control values are used to control the compressor, the expansion valve, and the pressure regulating valve. Correction control means that controls the valve and performs correction control to return the output ratio value and each opening value output to PID control again;
A cooling device characterized by having:
請求項1に記載の冷却装置において、
前記判定部は、前記蒸発器の上流側における前記空気の温度変化と、前記蒸発器の下流側における前記空気の温度変化とを乗算することで第1の判定値を求め、求めた第1の判定値が正の値となる場合に、前記蒸発器による冷却負荷が増加していると判定することを特徴とする冷却装置。
The cooling device according to claim 1,
The determination unit determines a first determination value by multiplying the temperature change of the air on the upstream side of the evaporator by the temperature change of the air on the downstream side of the evaporator, and A cooling device characterized in that when the determination value is a positive value, it is determined that the cooling load by the evaporator is increasing.
請求項2に記載の冷却装置において、
前記判定部は、前記蒸発器の上流側における前記空気の温度変化と、前記対象空間に送り出される空気の温度と設定温度とを乗算することで第2の判定値を求め、求めた第2の判定値が正の値となる場合に、前記蒸発器による冷却負荷が増加していると判定することを特徴とする冷却装置。
The cooling device according to claim 2,
The determination unit determines a second determination value by multiplying the temperature change of the air on the upstream side of the evaporator by the temperature of the air sent to the target space and the set temperature, and A cooling device characterized in that when the determination value is a positive value, it is determined that the cooling load by the evaporator is increasing.
請求項1から請求項3のいずれか1項に記載の冷却装置において、
前記圧縮器の出力割合値、前記膨張弁の開度値及び前記圧力調整弁の開度値は、偏差の比例成分、偏差の積分成分及び偏差の微分成分の各成分に成分毎の係数を各々乗算し、成分毎の係数を乗算した各成分の値を積算することで求められることを特徴とする冷却装置。
The cooling device according to any one of claims 1 to 3,
The output ratio value of the compressor, the opening value of the expansion valve, and the opening value of the pressure regulating valve are determined by applying a coefficient for each component to each of the proportional component of the deviation, the integral component of the deviation, and the differential component of the deviation. A cooling device characterized in that the cooling device is obtained by multiplying and integrating the values of each component multiplied by a coefficient for each component.
請求項1から請求項4のいずれか1項に記載の冷却装置において、
前記冷凍サイクルは、前記循環路の他に、前記圧縮器と前記凝縮器との間の配管から分岐し、前記凝縮器と前記圧縮器との間の配管に合流されるバイパス路を有し、
前記バイパス路に配置されたバイパス弁と、
前記圧縮器に吸い込まれる前記冷却媒体の圧力値に基づいた前記バイパス弁の開度値を比例帯にとって求め、求めたバイパス弁の開度値を比例項にして前記バイパス弁の開度値をPID制御する第4の制御手段と、
を有し、
前記補正制御手段は、前記判定部により前記蒸発器による冷却負荷が増加していると判定された場合に、前記第2時刻の蒸発器による冷却負荷の第1時刻における蒸発器による冷却負荷に対する倍数に基づいて、前記バイパス弁の開度値をフィードフォワードにて補正し、補正した開度値を各々用いて、前記バイパス弁を制御し、再度、開度値出力をPID制御に戻す補正制御することを特徴とする冷却装置。
The cooling device according to any one of claims 1 to 4,
In addition to the circulation path, the refrigeration cycle has a bypass path that branches from the piping between the compressor and the condenser and joins the piping between the condenser and the compressor,
a bypass valve disposed in the bypass passage;
The opening value of the bypass valve based on the pressure value of the cooling medium sucked into the compressor is determined using a proportional band, and the opening value of the bypass valve is set as a proportional term using the PID. a fourth control means for controlling;
has
The correction control means is configured to calculate a multiple of the cooling load by the evaporator at the second time with respect to the cooling load by the evaporator at the first time, when the determination unit determines that the cooling load by the evaporator is increasing. Based on this, the opening value of the bypass valve is corrected by feedforward, the corrected opening value is used to control the bypass valve, and the opening value output is again controlled to be corrected by returning to PID control. A cooling device characterized by:
請求項5に記載の冷却装置において、
前記バイパス弁の開度値は、偏差の比例成分、偏差の積分成分及び偏差の微分成分の各成分に成分毎の係数を各々乗算し、成分毎の係数を乗算した各成分の値を積算することで求められることを特徴とする冷却装置。
The cooling device according to claim 5,
The opening value of the bypass valve is determined by multiplying each of the proportional component of the deviation, the integral component of the deviation, and the differential component of the deviation by a coefficient for each component, and then integrating the values of each component multiplied by the coefficient for each component. A cooling device characterized by the following requirements.
請求項5又は請求項6に記載の冷却装置において、
前記第1の制御手段において前記圧縮器に吸い込まれる前記冷却媒体の圧力値に基づいた前記圧縮器の出力割合値の比例帯と、前記第4の制御手段において前記圧縮器に吸い込まれる前記冷却媒体の圧力値に基づいた前記バイパス弁の開度値の比例帯とは、制御特性の傾きが逆で、前記圧縮器に吸い込まれる前記冷却媒体の圧力値において重ならないことを特徴とする冷却装置。
The cooling device according to claim 5 or 6,
a proportional band of the output ratio value of the compressor based on the pressure value of the cooling medium sucked into the compressor in the first control means; and a proportional band of the output ratio value of the compressor based on the pressure value of the cooling medium sucked into the compressor in the fourth control means. A cooling device characterized in that the slope of the control characteristic is opposite to the proportional band of the opening value of the bypass valve based on the pressure value of , and does not overlap in the pressure value of the cooling medium sucked into the compressor.
請求項1から請求項7のいずれか1項に記載の冷却装置において、
補正した前記制御値は、前記第1時刻における前記蒸発器を通過する空気の風量及び空気の温度の乗算値に対する、前記第2時刻における前記蒸発器を通過する空気の風量及び空気の温度の乗算値の比率を用いて算出されることを特徴とする冷却装置。
The cooling device according to any one of claims 1 to 7,
The corrected control value is the product of the volume of air passing through the evaporator and the temperature of the air at the second time to the product of the volume and temperature of the air passing through the evaporator at the first time. A cooling device characterized in that the calculation is performed using a ratio of values.
圧縮器、凝縮器、膨張弁、蒸発器及び圧力調整弁を配管を用いて順次接続した循環路を有する冷凍サイクルを構成し、前記蒸発器における冷却媒体との間の熱交換により冷却された空気を対象空間へと送り出す冷却装置の制御方法において、
前記圧縮器に吸い込まれる前記冷却媒体の圧力値に基づいた前記圧縮器の出力割合値を比例帯にとって求め、求めた前記圧縮器の出力割合値を比例項にして前記圧縮器の出力割合値をPID制御する第1の制御工程と、
前記蒸発器の入口側における前記冷却媒体の温度と前記蒸発器の出口側における前記冷却媒体の温度により求まる過熱度に基づいた前記膨張弁の開度値を比例帯にとって求め、求めた前記膨張弁の開度値を比例項にして前記膨張弁の開度値をPID制御する第2の制御工程と
風機により搬送される空気の蒸発器の出口側における送風温度値に基づいた前記圧力調整弁の開度値を比例帯にとって求め、求めた前記圧力調整弁の開度値を比例項にして前記圧力調整弁の開度値をPID制御する第3の制御工程と、
前記送風機により搬送される空気の蒸発器入口空気温度と蒸発器出口空気温度と蒸発器出口空気設定温度それぞれの出力値を出力できる空気温度出力工程と、
第1時刻における前記空気温度出力工程の出力値に基づき演算した前記蒸発器による冷却負荷に対して、前記第1時刻から一定時間経過した第2時刻における前記蒸発器による冷却負荷が増加しているか否かを判定する判定工程と、
前記判定工程により前記蒸発器による冷却負荷が増加していると判定された場合に、第2時刻の蒸発器による冷却負荷の第1時刻における蒸発器による冷却負荷に対する倍数に基づいて、前記圧縮器の出力割合値、前記膨張弁の開度値及び前記圧力調整弁の開度値をフィードフォワードにて各々補正し、補正した制御値を各々用いて、前記圧縮器、前記膨張弁及び前記圧力調整弁を制御し、再度出力割合値や各々の開度値出力をPID制御に戻す補正制御を行う補正制御工程と、
を有することを特徴とする冷却装置の制御方法。
A refrigeration cycle having a circuit in which a compressor, a condenser, an expansion valve, an evaporator, and a pressure regulating valve are sequentially connected using piping, and the air is cooled by heat exchange with the cooling medium in the evaporator. In a method of controlling a cooling device that sends
The output ratio value of the compressor based on the pressure value of the refrigerant sucked into the compressor is determined in a proportional band, and the output ratio value of the compressor is determined using the determined output ratio value of the compressor as a proportional term. A first control step of PID control;
The expansion valve obtained by determining the opening value of the expansion valve based on the degree of superheat determined by the temperature of the cooling medium at the inlet side of the evaporator and the temperature of the cooling medium at the outlet side of the evaporator using a proportional band. a second control step of PID controlling the opening value of the expansion valve using the opening value as a proportional term ;
The opening value of the pressure regulating valve based on the blowing temperature value at the outlet side of the evaporator of the air conveyed by the blower is determined using a proportional band, and the opening value of the pressure regulating valve thus determined is converted into a proportional term. a third control step of PID controlling the opening value of the pressure regulating valve;
an air temperature output step capable of outputting respective output values of an evaporator inlet air temperature, an evaporator outlet air temperature, and an evaporator outlet air set temperature of the air conveyed by the blower ;
Is the cooling load by the evaporator at a second time when a certain period of time has elapsed from the first time increased with respect to the cooling load by the evaporator calculated based on the output value of the air temperature output step at the first time? a determination step of determining whether or not the
If it is determined in the determination step that the cooling load by the evaporator is increasing, the compressor is The output ratio value, the opening value of the expansion valve, and the opening value of the pressure regulating valve are each corrected by feedforward, and the corrected control values are used to control the compressor, the expansion valve, and the pressure regulating valve. A correction control step of controlling the valve and performing correction control to return the output ratio value and each opening value output to PID control again;
A method for controlling a cooling device, comprising:
請求項9に記載の冷却装置の制御方法において、
前記判定工程は、前記蒸発器の上流側における前記空気の温度変化と、前記蒸発器の下流側における前記空気の温度変化とを乗算することで第1の判定値を求め、求めた第1の判定値が正の値となる場合に、前記蒸発器による冷却負荷が増加していると判定することを特徴とする冷却装置の制御方法。
The method for controlling a cooling device according to claim 9,
In the determination step, a first determination value is obtained by multiplying the temperature change of the air on the upstream side of the evaporator by the temperature change of the air on the downstream side of the evaporator. A method for controlling a cooling device, characterized in that when the determination value is a positive value, it is determined that the cooling load by the evaporator is increasing.
請求項10に記載の冷却装置の制御方法において、
前記判定工程は、前記蒸発器の上流側における前記空気の温度変化と、前記対象空間に送り出される空気の温度と設定温度とを乗算することで第2の判定値を求め、求めた第2の判定値が正の値となる場合に、前記蒸発器による冷却負荷が増加していると判定することを特徴とする冷却装置の制御方法。
The method for controlling a cooling device according to claim 10,
In the determination step, a second determination value is obtained by multiplying the temperature change of the air on the upstream side of the evaporator, the temperature of the air sent to the target space, and the set temperature, and A method for controlling a cooling device, characterized in that when the determination value is a positive value, it is determined that the cooling load by the evaporator is increasing.
請求項9から請求項11のいずれか1項に記載の冷却装置の制御方法において、
前記圧縮器の出力割合値、前記膨張弁の開度値及び前記圧力調整弁の開度値は、偏差の比例成分、偏差の積分成分及び偏差の微分成分の各成分に成分毎の係数を各々乗算し、成分毎の係数を乗算した各成分の値を積算することで求められることを特徴とする冷却装置の制御方法。
The method for controlling a cooling device according to any one of claims 9 to 11,
The output ratio value of the compressor, the opening value of the expansion valve, and the opening value of the pressure regulating valve are determined by applying a coefficient for each component to each of the proportional component of the deviation, the integral component of the deviation, and the differential component of the deviation. A method for controlling a cooling device, characterized in that the value is obtained by multiplying and integrating the values of each component multiplied by a coefficient for each component.
請求項9から請求項12のいずれか1項に記載の冷却装置の制御方法において、
前記冷凍サイクルは、前記循環路の他に、前記圧縮器と前記凝縮器との間の配管から分岐し、前記凝縮器と前記圧縮器との間の配管に合流されるバイパス路と、前記バイパス路に配置されたバイパス弁とを有して構成され、
前記圧縮器に吸い込まれる前記冷却媒体の圧力値に基づいた前記バイパス弁の開度値を比例帯にとって求め、求めたバイパス弁の開度値を比例項にして前記バイパス弁の開度値をPID制御する第4の制御工程をさらに有し、
前記判定工程により前記蒸発器による冷却負荷が増加していると判定された場合に、前記第2時刻の蒸発器による冷却負荷の第1時刻における蒸発器による冷却負荷に対する倍数に基づいて、前記バイパス弁の開度値をフィードフォワードにて補正し、補正した開度値を各々用いて、前記バイパス弁を制御し、再度、開度値出力をPID制御に戻す補正制御することを特徴とする冷却装置の制御方法。
The method for controlling a cooling device according to any one of claims 9 to 12,
In addition to the circulation path, the refrigeration cycle includes a bypass path that branches off from the piping between the compressor and the condenser and joins the piping between the condenser and the compressor, and the bypass path. a bypass valve disposed in the passage;
The opening value of the bypass valve based on the pressure value of the cooling medium sucked into the compressor is determined using a proportional band, and the opening value of the bypass valve is set as a proportional term using the PID. further comprising a fourth control step for controlling,
If it is determined in the determination step that the cooling load by the evaporator is increasing, the bypass is performed based on the multiple of the cooling load by the evaporator at the second time with respect to the cooling load by the evaporator at the first time. Cooling characterized by correcting the opening value of the valve by feedforward, controlling the bypass valve using each corrected opening value, and performing correction control to return the opening value output to PID control again. How to control the device.
請求項13に記載の冷却装置の制御方法において、
前記バイパス弁の開度値は、偏差の比例成分、偏差の積分成分及び偏差の微分成分の各成分に成分毎の係数を各々乗算し、成分毎の係数を乗算した各成分の値を積算することで求められることを特徴とする冷却装置の制御方法。
The method for controlling a cooling device according to claim 13,
The opening value of the bypass valve is determined by multiplying each of the proportional component of the deviation, the integral component of the deviation, and the differential component of the deviation by a coefficient for each component, and then integrating the values of each component multiplied by the coefficient for each component. A method for controlling a cooling device characterized by:
請求項13又は請求項14に記載の冷却装置の制御方法において、
前記第1の制御工程において前記圧縮器に吸い込まれる前記冷却媒体の圧力値に基づいた前記圧縮器の出力割合値の比例帯と、前記第4の制御工程において前記圧縮器に吸い込まれる前記冷却媒体の圧力値に基づいた前記バイパス弁の開度値の比例帯とは、制御特性の傾きが逆で、前記圧縮器に吸い込まれる前記冷却媒体の圧力値において重ならないことを特徴とする冷却装置の制御方法
The method for controlling a cooling device according to claim 13 or 14,
a proportional band of the output ratio value of the compressor based on the pressure value of the cooling medium sucked into the compressor in the first control step; and a proportional band of the output ratio value of the compressor based on the pressure value of the cooling medium sucked into the compressor in the fourth control step. The proportional band of the opening value of the bypass valve based on the pressure value of the cooling device is characterized in that the slope of the control characteristic is opposite and does not overlap in the pressure value of the cooling medium sucked into the compressor . Control method .
請求項9から請求項15のいずれか1項に記載の冷却装置の制御方法において、
補正した前記制御値は、前記第1時刻における前記蒸発器を通過する空気の風量及び空気の温度の乗算値に対する、前記第2時刻における前記蒸発器を通過する空気の風量及び
空気の温度の乗算値の比率を用いて算出されることを特徴とする冷却装置の制御方法。
The method for controlling a cooling device according to any one of claims 9 to 15,
The corrected control value is the product of the volume of air passing through the evaporator and the temperature of the air at the second time to the product of the volume and temperature of the air passing through the evaporator at the first time. A method for controlling a cooling device, characterized in that calculation is performed using a ratio of values.
JP2019180172A 2019-09-30 2019-09-30 Cooling device and cooling device control method Active JP7374691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019180172A JP7374691B2 (en) 2019-09-30 2019-09-30 Cooling device and cooling device control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019180172A JP7374691B2 (en) 2019-09-30 2019-09-30 Cooling device and cooling device control method

Publications (2)

Publication Number Publication Date
JP2021055932A JP2021055932A (en) 2021-04-08
JP7374691B2 true JP7374691B2 (en) 2023-11-07

Family

ID=75270569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019180172A Active JP7374691B2 (en) 2019-09-30 2019-09-30 Cooling device and cooling device control method

Country Status (1)

Country Link
JP (1) JP7374691B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113503624B (en) * 2021-07-09 2022-11-18 武汉汉立制冷科技股份有限公司 Multi-target linkage response control method for refrigerating system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038329A (en) 2005-08-02 2007-02-15 Kanto Seiki Kk Temperature control method and device of machine tool
JP2012229838A (en) 2011-04-25 2012-11-22 Taikisha Ltd Fluid cooling means and fluid cooling device
JP2017194244A (en) 2016-04-22 2017-10-26 株式会社大気社 Cooler
JP2018021696A (en) 2016-08-02 2018-02-08 富士電機株式会社 Chiller and control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038329A (en) 2005-08-02 2007-02-15 Kanto Seiki Kk Temperature control method and device of machine tool
JP2012229838A (en) 2011-04-25 2012-11-22 Taikisha Ltd Fluid cooling means and fluid cooling device
JP2017194244A (en) 2016-04-22 2017-10-26 株式会社大気社 Cooler
JP2018021696A (en) 2016-08-02 2018-02-08 富士電機株式会社 Chiller and control device

Also Published As

Publication number Publication date
JP2021055932A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
JP5984703B2 (en) Control device and control method for heat source system and cooling water supply device
JP3851512B2 (en) Method and apparatus for controlling electronic expansion valve
CN107407506B (en) Control device for refrigeration cycle device, and control method for refrigeration cycle device
EP2693136A1 (en) Expansion valve control device, heat source machine, and expansion valve control method
US8701424B2 (en) Turbo chiller, heat source system, and method for controlling the same
JP5554277B2 (en) Heat medium flow rate estimation device, heat source machine, and heat medium flow rate estimation method
JP5514787B2 (en) Environmental test equipment
CN109237671B (en) Air conditioner using steam injection cycle and control method thereof
JP2016529463A (en) Temperature control system with programmable ORIT valve
Casson et al. Optimisation of the throttling system in a CO2 refrigerating machine
JP2007225140A (en) Turbo refrigerating machine, and control device and method of turbo refrigerating machine
JP7374691B2 (en) Cooling device and cooling device control method
JP2010243002A (en) Air conditioning system
JP2018013046A (en) Rankine cycle system and control method for rankine cycle system
US20200158370A1 (en) Control systems and methods for heat pump systems
JP4583290B2 (en) Air conditioning system
Rasmussen et al. Nonlinear superheat and capacity control of a refrigeration plant
JP4349851B2 (en) Refrigeration cycle equipment
JP5144959B2 (en) Heat source machine and control method thereof
JP2010112651A (en) Refrigerating device
JP6660873B2 (en) Heat pump type temperature controller
US20230168015A1 (en) Method of operating an electronic expansion valve in an air conditioner unit
CN115143657B (en) Control method and control device for variable frequency compressor system
WO2023098589A1 (en) Method of operating an electronic expansion valve in an air conditioner unit
KR0127317B1 (en) Refrigerator flow control method and apparatus of inverter room aircondition

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20191029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231025

R150 Certificate of patent or registration of utility model

Ref document number: 7374691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150