JP4925885B2 - Flow rate measurement method for piping system equipment - Google Patents

Flow rate measurement method for piping system equipment Download PDF

Info

Publication number
JP4925885B2
JP4925885B2 JP2007079225A JP2007079225A JP4925885B2 JP 4925885 B2 JP4925885 B2 JP 4925885B2 JP 2007079225 A JP2007079225 A JP 2007079225A JP 2007079225 A JP2007079225 A JP 2007079225A JP 4925885 B2 JP4925885 B2 JP 4925885B2
Authority
JP
Japan
Prior art keywords
pump
header
flow rate
heat medium
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007079225A
Other languages
Japanese (ja)
Other versions
JP2008241326A (en
JP2008241326A5 (en
Inventor
敏彦 石沢
徳臣 岡崎
茂之 永坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Air Technologies Co Ltd
Original Assignee
Shin Nippon Air Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Air Technologies Co Ltd filed Critical Shin Nippon Air Technologies Co Ltd
Priority to JP2007079225A priority Critical patent/JP4925885B2/en
Publication of JP2008241326A publication Critical patent/JP2008241326A/en
Publication of JP2008241326A5 publication Critical patent/JP2008241326A5/ja
Application granted granted Critical
Publication of JP4925885B2 publication Critical patent/JP4925885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、地域冷暖房施設等の熱源供給システムや、工場、一般ビルなどの熱源供給システムとして用いられる配管系設備における流量測定方法に関する。   The present invention relates to a flow rate measurement method in a heat source supply system such as a district cooling and heating facility, and piping system equipment used as a heat source supply system such as a factory or a general building.

従来より、地域冷暖房施設等の熱源供給システムや、工場、一般ビルなどの熱源供給システムとして、図7に示される1ポンプ方式熱源設備50が知られている。   Conventionally, a one-pump heat source facility 50 shown in FIG. 7 is known as a heat source supply system such as a district cooling and heating facility or a heat source supply system such as a factory or a general building.

前記1ポンプ熱源設備50は、同図7に示されるように、熱媒を加熱又は冷却する第1〜第3の熱源機器51A〜51C、及び各熱源機器51A〜51Cで加熱又は冷却された熱媒を圧送する各熱媒ポンプ52A〜52C、各熱媒ポンプ52A〜52Cに対応して設けられるとともに、ポンプ回転周波数を可変制御する周波数制御器53A〜53Cと、各熱媒ポンプ52A〜52Cで圧送された熱媒を集約する送りヘッダ54と、各部位(部屋)に配置された熱交換器(空調機)58,58…に送給された後、熱交換器(空調機)58,58…から還ってきた熱媒を各熱源機器51A〜51Cに分配する戻りヘッダ55と、前記送りヘッダ54と戻りヘッダ55とを繋ぐバイパス62と、その中間に設けられたバイパス弁63と、前記送りヘッダ54と戻りヘッダ55との間の差圧を計測する差圧計64と、熱源機器51A〜51Cの制御及びバイパス弁63の開度制御を行う制御装置60とを備える構成となっている。   As shown in FIG. 7, the one-pump heat source facility 50 is heated or cooled by the first to third heat source devices 51 </ b> A to 51 </ b> C that heat or cool the heat medium and the heat source devices 51 </ b> A to 51 </ b> C. The heat medium pumps 52A to 52C for pumping the medium, the frequency controllers 53A to 53C for variably controlling the pump rotation frequency, and the heat medium pumps 52A to 52C are provided corresponding to the heat medium pumps 52A to 52C. After being fed to a feed header 54 that collects the pressure-fed heat medium and heat exchangers (air conditioners) 58, 58... Arranged in each part (room), the heat exchangers (air conditioners) 58, 58. A return header 55 that distributes the heat medium returned from the heat source devices 51A to 51C, a bypass 62 that connects the feed header 54 and the return header 55, a bypass valve 63 provided in the middle, and the feed F A differential pressure gauge 64 for measuring the pressure difference between the dust 54 and the return header 55, has a configuration in which a control device 60 for controlling and opening control of the bypass valve 63 of the heat source device 51A to 51C.

かかる1ポンプ熱源設備50においては、熱媒ポンプ52A〜52Cにより圧送された熱媒は、送りヘッダ54において混合され、主管59(往水管路)を介して熱交換器58(空調機)へ供給される。そして、熱交換器58(空調機)において熱交換された後、還水管路を介して戻りヘッダ55に戻され、再び熱媒ポンプ52A〜52Cによって圧送され循環する(下記特許文献1〜3等参照)。
特開2000−18683号公報 特開2004−184052号公報 特開2004−245560号公報
In such a one-pump heat source facility 50, the heat medium pumped by the heat medium pumps 52A to 52C is mixed in the feed header 54 and supplied to the heat exchanger 58 (air conditioner) via the main pipe 59 (outbound pipe line). Is done. And after heat exchange in the heat exchanger 58 (air conditioner), it returns to the return header 55 via a return water pipe, and is pumped and circulated again by the heat medium pumps 52A-52C (the following patent documents 1-3 etc.). reference).
JP 2000-18683 A JP 2004-184052 A JP 2004-245560 A

しかしながら、従来の1ポンプ方式熱源設備50においては、同図7に示されるように、送りヘッダ54から主管59を通じて熱交換器側へ供給される熱媒の流量を測定するには、前記主管59に電磁式、超音波式、ピトー管式などの流量計65を設置して直接測定する必要があった。このとき、既設の熱源設備に流量計65を設置する場合、前記超音波流量計の場合を除いて、主管59の切断加工や穴空け加工などが必要となる。また、この加工作業に伴い、主管59への熱媒供給の停止や、主管内の熱媒をすべて抜き取る必要があり、これには多くの費用と日数を要していた。このため、既存の設備において主管59に供給される流量を測定することは、超音波流量計以外の流量計では容易ではなかった。   However, in the conventional one-pump heat source equipment 50, as shown in FIG. 7, in order to measure the flow rate of the heat medium supplied from the feed header 54 to the heat exchanger side through the main pipe 59, the main pipe 59 is used. It was necessary to directly measure by installing a flow meter 65 such as an electromagnetic type, an ultrasonic type, or a Pitot tube type. At this time, when the flow meter 65 is installed in the existing heat source equipment, cutting or drilling of the main pipe 59 is required except for the ultrasonic flow meter. Further, with this processing operation, it is necessary to stop the supply of the heat medium to the main pipe 59 and to remove all the heat medium in the main pipe, which requires a lot of costs and days. For this reason, it is not easy to measure the flow rate supplied to the main pipe 59 in existing equipment with a flow meter other than the ultrasonic flow meter.

また、一般に流量計は、設置する配管の口径が大きくなるほど設備コストがかかるため、比較的大口径の主管に流量計を設置するには設備コストが嵩むという欠点があった。さらに、大口径かつ大流量の主管の流路中に流量計を設置すると、流量計の種類によっては流量計での抵抗が大きくなり、ポンプ動力を浪費するため、設置する流量計の種類にも制約があった。   In general, the flow meter has a higher equipment cost as the diameter of the pipe to be installed becomes larger. Therefore, there is a drawback that the equipment cost is increased to install the flow meter in a main pipe having a relatively large diameter. In addition, if a flow meter is installed in the main pipe with a large diameter and a large flow rate, depending on the type of flow meter, the resistance of the flow meter increases, and pump power is wasted. There were restrictions.

そこで本発明の主たる課題は、配管系設備において、主管に流量計を設置しなくても、流量を簡単に測定する方法を提供することにある。   Therefore, a main problem of the present invention is to provide a method for easily measuring a flow rate in a piping system facility without installing a flow meter in the main pipe.

前記課題を解決するために請求項1に係る本発明として、熱媒を冷却又は加熱する1又は複数の熱源機器と、各熱源機器に対応して設けられるとともに、冷却又は加熱された熱媒を圧送する熱媒ポンプと、各熱媒ポンプに対応して設けられるとともに、ポンプ回転周波数を可変制御する周波数制御器と、前記熱源機器からの熱媒を集約する送りヘッダと、この送りヘッダから熱媒が供給される外部負荷機器と、外部負荷機器で熱交換された熱媒が戻されるとともに、各熱源機器に分配する戻りヘッダと、前記送りヘッダ部又はその近傍と前記戻りヘッダ部又はその近傍とを繋ぐバイパスと、このバイパスを流れる熱媒の流量を調整するバイパス弁と、前記熱媒ポンプの運転制御及び前記バイパス弁の開度制御を行う制御装置とを備える1ポンプ方式の配管系設備において、
前記バイパスを流れる熱媒流量を測定するバイパス流量計と、前記送りヘッダと戻りヘッダとの間の差圧を測定する差圧計とを配設し、
予め、前記熱媒ポンプ、熱源機器、送りヘッダ、バイパス、戻りヘッダを巡る循環系において、各熱媒ポンプ毎に、ヘッダ間差圧Pとポンプ流量Qとの関係式を得るとともに、この関係式に基づいて、任意のポンプ運転周波数f時における、ヘッダ間差圧Pをパラメータとするポンプ流量Qの算出式を得ておき、
前記算出式に、前記差圧計が測定したヘッダ間の差圧Pと、前記周波数制御器に対する設定値である前記熱媒ポンプの運転周波数fとを与えることにより、各熱媒ポンプの流量Qをそれぞれ算出するとともに、これら各熱媒ポンプの流量Qを合算した全流量Qから前記バイパス流量計が測定した流量Qを差し引くことにより、熱媒の搬送流量を算出することを特徴とする配管系設備における流量測定方法が提供される。
In order to solve the above-mentioned problem, as the present invention according to claim 1, one or a plurality of heat source devices that cool or heat the heat medium, and a heat medium that is provided corresponding to each heat source device and that is cooled or heated are provided. A heat medium pump for pressure feeding, a frequency controller for variably controlling the pump rotation frequency, a feed header for collecting the heat medium from the heat source device, and a heat header from the feed header. The external load device to which the medium is supplied, the heat medium heat exchanged by the external load device is returned, and the return header distributed to each heat source device, the feed header portion or the vicinity thereof, and the return header portion or the vicinity thereof A bypass valve that adjusts the flow rate of the heat medium flowing through the bypass, and a control device that controls the operation of the heat medium pump and the opening degree of the bypass valve. In the piping system equipment of the system,
A bypass flow meter for measuring the flow rate of the heat medium flowing through the bypass, and a differential pressure meter for measuring a differential pressure between the feed header and the return header,
In the circulation system around the heat medium pump, the heat source device, the feed header, the bypass, and the return header, a relational expression between the header differential pressure P and the pump flow rate Q is obtained for each heat medium pump. Based on the above, an equation for calculating the pump flow rate Q using the pressure difference P between headers as a parameter at any pump operating frequency f is obtained,
By giving the calculation formula the differential pressure P between the headers measured by the differential pressure gauge and the operating frequency f of the heat medium pump, which is a set value for the frequency controller, the flow rate Q i of each heat medium pump. together with respectively calculated by subtracting the flow rate Q b of the from the total flow rate Q P to the flow rate Q i by summing the bypass flowmeter has measured the respective heating medium pump, a calculating means calculates the conveying flow of the heating medium A flow rate measuring method in a piping system facility is provided.

上記請求項1記載の本発明では、バイパスを流れる熱媒流量を測定するバイパス流量計と、送りヘッダと戻りヘッダとの間の差圧を測定する差圧計とを配設し、予め、前記熱媒ポンプ、熱源機器、送りヘッダ、バイパス、戻りヘッダを巡る循環系において、各熱媒ポンプ毎に、ヘッダ間差圧Pとポンプ流量Qとの関係式を得るとともに、この関係式に基づいて、任意のポンプ運転周波数f時における、ヘッダ間差圧Pをパラメータとするポンプ流量Qの算出式を得た後、実運転時に、前記算出式に、前記差圧計が測定したヘッダ間の差圧Pと、前記周波数制御器に対する設定値である前記熱媒ポンプの運転周波数fとを与えることにより、各熱媒ポンプの流量Qをそれぞれ算出するとともに、この各熱媒ポンプの流量Qを合算した全流量Qから前記バイパス流量計が測定した流量Qを差し引くことにより熱媒搬送流量を算出する。 In the first aspect of the present invention, a bypass flow meter that measures the flow rate of the heat medium flowing through the bypass and a differential pressure meter that measures the differential pressure between the feed header and the return header are disposed, and the heat In the circulation system around the medium pump, heat source equipment, feed header, bypass, return header, for each heat medium pump, a relational expression between the header differential pressure P and the pump flow rate Q is obtained, and based on this relational expression, After obtaining a calculation formula of the pump flow rate Q using the pressure difference P between headers as a parameter at an arbitrary pump operating frequency f, the differential pressure P between headers measured by the differential pressure gauge is added to the calculation formula during actual operation. And the operating frequency f of the heat medium pump, which is a set value for the frequency controller, respectively, calculate the flow rate Q i of each heat medium pump, and add the flow rate Q i of each heat medium pump together. Whole stream Calculating a heat medium conveying flow by from Q P subtracting the flow rate Q b of the bypass flow meter was measured.

従って、主管に流量計を設置しなくても、送りヘッダから熱交換器側へ供給される熱媒の流量を測定できるようになるため、主管の加工作業やこれに伴う熱源設備の運転停止及び熱媒の抜取り作業などが不要となる。また、バイパスに設ける流量計は、比較的小口径かつ小流量で足りるため、安価な流量計で済み設備コストが低減できるとともに、流量計による抵抗も抑制できるためポンプの省エネルギー化にも貢献できるようになる。   Therefore, it is possible to measure the flow rate of the heat medium supplied from the feed header to the heat exchanger without installing a flow meter in the main pipe. Removal of the heating medium is not necessary. In addition, since the flow meter installed in the bypass only needs a relatively small diameter and a small flow rate, an inexpensive flow meter can be used, the equipment cost can be reduced, and resistance by the flow meter can be suppressed, so that it can contribute to energy saving of the pump. become.

また、本発明の場合は、バイパスに流量計を設置するだけで良いため、後施工の場合でも、主管を閉鎖することなく工事が可能である。   Further, in the case of the present invention, it is only necessary to install a flow meter in the bypass. Therefore, even in the case of post-construction, construction can be performed without closing the main pipe.

請求項2に係る本発明として、熱媒を冷却又は加熱する複数の熱源機器と、各熱源機器に対応して設けられるとともに、冷却又は加熱された熱媒を圧送する1次ポンプと、前記熱源機器からの熱媒を集約する第1送りヘッダと、第1送りヘッダから熱媒を送る複数の2次ポンプと、各2次ポンプに対応して設けられるとともに、ポンプ回転周波数を可変制御する周波数制御器と、前記2次ポンプからの熱媒を集約する第2送りヘッダと、この第2送りヘッダから熱媒が供給される外部負荷機器と、外部負荷機器で熱交換された熱媒が戻されるとともに、各熱源機器に分配する戻りヘッダと、前記第1送りヘッダと第2送りヘッダとを繋ぐ第1バイパス及び第1バイパス弁と、前記第1送りヘッダ部又はその近傍と前記戻りヘッダ部又はその近傍とを繋ぐ第2バイパスと、前記熱源機器の運転台数制御及び前記2次ポンプの運転制御及び第1バイパス弁の開度制御を行う制御装置とを備える2ポンプ方式の配管系設備において、
前記第1バイパスを流れる熱媒流量を測定するバイパス流量計と、前記第1送りヘッダと第2送りヘッダとの間の差圧を測定する差圧計とを配設し、
予め、前記2次ポンプ、第2送りヘッダ、第1バイパス、第1送りヘッダを巡る循環系において、各2次ポンプ毎に、ヘッダ間差圧Pとポンプ流量Qとの関係式を得るとともに、この関係式に基づいて、任意のポンプ運転周波数f時における、ヘッダ間差圧Pをパラメータとするポンプ流量Qの算出式を得ておき、
前記算出式に、前記差圧計が測定したヘッダ間の差圧Pと、前記周波数制御器に対する設定値である前記2次ポンプの運転周波数fとを与えることにより、各2次ポンプの流量Qをそれぞれ算出するとともに、これら各2次ポンプの流量Qを合算した全流量Qから前記バイパス流量計が測定した流量Qを差し引くことにより、熱媒の搬送流量を算出することを特徴とする配管系設備における流量測定方法が提供される。
The present invention according to claim 2 includes a plurality of heat source devices that cool or heat the heat medium, a primary pump that is provided corresponding to each heat source device and that pumps the cooled or heated heat medium, and the heat source. A first feed header that collects the heat medium from the device, a plurality of secondary pumps that feed the heat medium from the first feed header, and a frequency that is provided corresponding to each secondary pump and that variably controls the pump rotation frequency A controller, a second feed header that collects the heat medium from the secondary pump, an external load device to which the heat medium is supplied from the second feed header, and a heat medium that has been heat-exchanged by the external load device are returned. A return header distributed to each heat source device, a first bypass and a first bypass valve connecting the first feed header and the second feed header, the first feed header section or its vicinity, and the return header section. Or nearby A second bypass connecting the bets, the piping system equipment 2 pump type and a control device for controlling the opening degree of the heat source device operating units control and operation control, and the first bypass valve of the secondary pump,
A bypass flow meter for measuring the flow rate of the heat medium flowing through the first bypass, and a differential pressure meter for measuring a differential pressure between the first feed header and the second feed header,
In advance, in the circulation system around the secondary pump, the second feed header, the first bypass, and the first feed header, a relational expression between the header differential pressure P and the pump flow rate Q is obtained for each secondary pump, Based on this relational expression, a formula for calculating the pump flow rate Q using the header differential pressure P as a parameter at any pump operating frequency f is obtained,
By giving the calculation formula the differential pressure P between the headers measured by the differential pressure gauge and the operating frequency f of the secondary pump which is a set value for the frequency controller, the flow rate Q i of each secondary pump. together with respectively calculated by subtracting the flow rate Q b of the flow rate Q i from the total flow rate Q P obtained by summing the bypass flowmeter has measured the respective secondary pump, and characterized by calculating the transport rate of the heating medium A flow rate measuring method in a piping system facility is provided.

上記請求項2記載の発明は、所謂2次ポンプ方式の熱源設備に対して、本発明を適用したものである。   The invention according to claim 2 applies the present invention to a so-called secondary pump type heat source facility.

請求項3に係る本発明として、第1ヘッダと第2ヘッダとの間に、少なくとも液体を圧送する複数のポンプが配設されるとともに、各ポンプに対応してポンプ回転周波数を可変制御する周波数制御器が設けられ、前記第1ヘッダと第2ヘッダとを繋ぐバイパスが設けられるとともに、このバイパスを流れる液体流量を調整するバイパス弁が設けられ、更に前記ポンプの運転制御及び前記バイパス弁の開度制御を行う制御装置が設けられた配管系設備の液体搬送部において、
前記バイパスを流れる液体流量を測定するバイパス流量計と、前記第1ヘッダと第2ヘッダとの間の差圧を測定する差圧計とを配設し、
予め、前記第1ヘッダ、熱媒ポンプ、第2ヘッダ及びバイパスを巡る循環系において、各熱媒ポンプ毎に、ヘッダ間差圧Pとポンプ流量Qとの関係式を得るとともに、この関係式に基づいて、任意のポンプ運転周波数f時における、ヘッダ間差圧Pをパラメータとするポンプ流量Qの算出式を得ておき、
前記算出式に、前記差圧計が測定したヘッダ間の差圧Pと、前記周波数制御器に対する設定値である前記熱媒ポンプの運転周波数fとを与えることにより、各熱媒ポンプの流量Qをそれぞれ算出するとともに、これら各熱媒ポンプの流量Qを合算した全流量Qから前記バイパス流量計が測定した流量Qを差し引くことにより、熱媒の搬送流量を算出することを特徴とする配管系設備における流量測定方法が提供される。
As a third aspect of the present invention, a plurality of pumps for pumping at least liquid are disposed between the first header and the second header, and a frequency for variably controlling the pump rotation frequency corresponding to each pump. A controller is provided, a bypass connecting the first header and the second header is provided, a bypass valve for adjusting a flow rate of the liquid flowing through the bypass is provided, and operation control of the pump and opening of the bypass valve are further provided. In the liquid transfer part of the piping system equipment provided with a control device that performs degree control,
A bypass flow meter for measuring a flow rate of liquid flowing through the bypass, and a differential pressure meter for measuring a differential pressure between the first header and the second header,
In the circulation system surrounding the first header, the heat medium pump, the second header and the bypass, a relational expression between the header differential pressure P and the pump flow rate Q is obtained for each heat medium pump in advance. Based on the above, a formula for calculating the pump flow rate Q using the inter-header differential pressure P as a parameter at any pump operating frequency f is obtained,
By giving the calculation formula the differential pressure P between the headers measured by the differential pressure gauge and the operating frequency f of the heat medium pump, which is a set value for the frequency controller, the flow rate Q i of each heat medium pump. together with respectively calculated by subtracting the flow rate Q b of the from the total flow rate Q P to the flow rate Q i by summing the bypass flowmeter has measured the respective heating medium pump, a calculating means calculates the conveying flow of the heating medium A flow rate measuring method in a piping system facility is provided.

上記請求項3記載の発明は、配管系設備全般に本発明を適用したものである。   The invention according to claim 3 applies the present invention to piping system equipment in general.

以上詳説のとおり本発明によれば、配管系設備において、主管に流量計を設置しなくても、流量を簡単に測定可能となる。   As described above in detail, according to the present invention, in the piping system facility, the flow rate can be easily measured without installing a flow meter in the main pipe.

以下、本発明の実施の形態について図面を参照しながら詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

〔1ポンプ方式熱源設備〕
図1に示される1ポンプ方式熱源設備1Aは、熱媒を冷却又は加熱する1又は複数の熱源機器2A〜2Cと、各熱源機器2A〜2Cに対応して設けられるとともに、冷却又は加熱された熱媒を圧送する熱媒ポンプ3A〜3Cと、各熱媒ポンプに対応して設けられるとともに、ポンプ回転周波数を可変制御する周波数制御器14A〜14Cと、前記熱源機器2A〜2Cからの熱媒を集約する送りヘッダ4と、この送りヘッダ4から熱媒を供給される外部負荷機器9,9…と、前記各外部負荷機器に対応して設けられるとともに、該外部負荷機器を流れる熱媒の流量を調整する流量調整弁11と、外部負荷機器9,9…で熱交換された熱媒が戻されるとともに、各熱源機器2A〜2Cに分配する戻りヘッダ10と、前記送りヘッダ部4又はその近傍と前記戻りヘッダ部10又はその近傍とを繋ぐバイパス13と、このバイパス13を流れる熱媒の流量を調整するバイパス弁12と、前記熱媒ポンプ3A〜3Cの運転制御及び前記バイパス弁12の開度制御を行う制御装置8とを備えるものである。
[One-pump heat source equipment]
A 1-pump heat source facility 1A shown in FIG. 1 is provided corresponding to one or a plurality of heat source devices 2A to 2C for cooling or heating the heat medium and each heat source device 2A to 2C, and is cooled or heated. Heat medium pumps 3A to 3C for pressure-feeding the heat medium, frequency controllers 14A to 14C for variably controlling the pump rotation frequency, and heat medium from the heat source devices 2A to 2C. .., The external load devices 9, 9... To which the heat medium is supplied from the feed header 4, and the heat medium flowing through the external load device. The flow rate adjusting valve 11 for adjusting the flow rate and the heat medium exchanged by the external load devices 9, 9... Are returned, the return header 10 distributed to each of the heat source devices 2A to 2C, and the feed header portion 4 or its Near And the return header 10 or the vicinity thereof, the bypass valve 12 for adjusting the flow rate of the heat medium flowing through the bypass 13, the operation control of the heat medium pumps 3A to 3C, and the opening of the bypass valve 12 And a control device 8 that performs degree control.

また、計測機器類として、前記バイパス13を流れる熱媒の流量を測定するためのバイパス流量計17と、前記送りヘッダ4と戻りヘッダ10の間の差圧を測定する差圧計16を配設し、かつヘッダ間差圧P、運転周波数f、バイパス流量Qに基づいて、熱媒搬送流量を算出する流量演算装置20を配設している。 Further, as measuring instruments, a bypass flow meter 17 for measuring the flow rate of the heat medium flowing through the bypass 13 and a differential pressure meter 16 for measuring the differential pressure between the feed header 4 and the return header 10 are provided. and are arranged header pressure difference P, based operation frequency f, the bypass flow rate Q b, the flow rate calculation unit 20 for calculating a heat medium conveying flow.

〔熱媒流量の測定方法〕
熱媒流量の測定にあたっては、図2に示されるように、予め、前記熱媒ポンプ3A〜3C、熱源機器2A〜2C、送りヘッダ4、バイパス13、戻りヘッダ10を巡る循環系において、各熱媒ポンプ3A〜3C毎に、ヘッダ間差圧Pとポンプ流量Qとの関係式を得るとともに、この関係式に基づいて、任意のポンプ運転周波数f時における、ヘッダ間差圧Pをパラメータとするポンプ流量Qiの算出式を得ておき、これを前記流量演算装置20に記憶しておく。
[Measurement method of heat medium flow rate]
In measuring the heat medium flow rate, as shown in FIG. 2, in the circulation system around the heat medium pumps 3 </ b> A to 3 </ b> C, the heat source devices 2 </ b> A to 2 </ b> C, the feed header 4, the bypass 13, and the return header 10, For each of the medium pumps 3A to 3C, a relational expression between the header differential pressure P and the pump flow rate Q is obtained, and based on this relational expression, the header differential pressure P at any pump operating frequency f is used as a parameter. A calculation formula for the pump flow rate Qi is obtained and stored in the flow rate calculation device 20.

そして、前記流量演算装置20において、前記算出式に、前記差圧計16が測定したヘッダ間の差圧Pと、前記周波数制御器に対する設定値である前記熱媒ポンプ3A〜3Cの運転周波数fとを与えることにより、各熱媒ポンプ3A〜3Cの流量Qをそれぞれ算出するとともに、これら各熱媒ポンプの流量Qを合算した全流量Qから前記バイパス流量計17が測定した流量Qを差し引くことにより主管15を流れる流量Qが算出される。 In the flow rate calculation device 20, the calculation formula includes the differential pressure P between the headers measured by the differential pressure gauge 16, and the operating frequency f of the heat medium pumps 3A to 3C, which is a set value for the frequency controller. by giving, to calculate the flow rate Q i of each heat medium pump 3A~3C respectively, the flow rate Q b of the from the total flow rate Q P to the flow Q i and the sum of respective heat transfer medium pump bypass flowmeter 17 is measured Is subtracted, the flow rate Q M flowing through the main pipe 15 is calculated.

前記熱源機器2A〜2Cは、流量範囲や機種などの仕様がそれぞれ同一のものである必要はなく、それぞれ仕様が異なる複数の前記熱源機器とされ、各熱源機器の前記仕様に対応した能力の異なる熱媒ポンプが設けられていてもよい。   The heat source devices 2A to 2C do not have to have the same specifications such as a flow rate range and a model, but are a plurality of the heat source devices having different specifications, and have different capacities corresponding to the specifications of the heat source devices. A heat medium pump may be provided.

以下、更に具体的に詳述する。
(熱媒ポンプの実機特性試験)
先ず初めに、前記熱媒ポンプ3A〜3C、熱源機器2A〜2C、送りヘッダ4、バイパス13、戻りヘッダ10を巡る循環系において、各熱媒ポンプ3A〜3C毎に、ヘッダ間差圧Pとポンプ流量Qとの関係式を得るようにする。
This will be described in more detail below.
(Characteristic test of heat medium pump)
First, in the circulation system around the heat medium pumps 3A to 3C, the heat source devices 2A to 2C, the feed header 4, the bypass 13, and the return header 10, for each heat medium pump 3A to 3C, the inter-header differential pressure P and A relational expression with the pump flow rate Q is obtained.

具体的には、実機において、手動弁18により外部負荷機器9,9…側への熱媒の供給路を遮断し、前記バイパス13を循環する流路を形成し、前記各熱媒ポンプ3A〜3Cを定格周波数F(50Hz又は60Hz)で運転した状態で、前記バイパス弁12の開度を変え(例えば、開度10%ステップで100%→0%)、前記差圧計16による両ヘッダ間の差圧Pと、前記バイパス流量計17によりバイパス13を流れる熱媒の流量Qとを測定し、両者の関係式を実験的に求める。図3に、熱媒ポンプ単体の場合のP−Q曲線とともに、上記実験により得られたP−Q曲線を示す。なお、実験により得られたP−Q曲線は、熱源設備2A〜2C、ストレーナー、チャッキバルブ、配管抵抗等を含んだものである。   Specifically, in the actual machine, the supply path of the heat medium to the external load devices 9, 9... Is cut off by the manual valve 18 to form a flow path that circulates the bypass 13. While the 3C is operated at the rated frequency F (50 Hz or 60 Hz), the opening degree of the bypass valve 12 is changed (for example, 100% → 0% in an opening degree 10% step), and between the two headers by the differential pressure gauge 16 The differential pressure P and the flow rate Q of the heat medium flowing through the bypass 13 are measured by the bypass flow meter 17, and a relational expression between them is obtained experimentally. In FIG. 3, the PQ curve obtained by the said experiment is shown with the PQ curve in the case of a heat medium pump single-piece | unit. The PQ curve obtained by the experiment includes the heat source facilities 2A to 2C, the strainer, the check valve, the piping resistance, and the like.

前記両ヘッダ間の差圧Pと熱媒の流量Qとの関係式は、下式(1)のように近似することができる。

Figure 0004925885
The relational expression between the differential pressure P between the headers and the flow rate Q of the heat medium can be approximated as the following expression (1).
Figure 0004925885

上記関係式は、定格周波数F(50Hz又は60Hz)で運転した条件のものであるから、ポンプの運転周波数が任意の周波数fの時の関係式は、下式(2)のように近似することができる。

Figure 0004925885
Since the above relational expression is based on the condition of operating at the rated frequency F (50 Hz or 60 Hz), the relational expression when the pump operating frequency is an arbitrary frequency f should be approximated as the following expression (2). Can do.
Figure 0004925885

ところで、上記手法は、実験的に求める方法であるが、ポンプのP−Q特性図、熱源機器のP−Q特性図、配管系のP−Q特性図が予め判明している場合は、(ポンプのP−Q特性図による圧力)−(熱源機器及び配管系のP−Q特性図による圧力低下)によるP−Q特性図を上式(1)で近似させることにより、上式(2)を導くことができる。   By the way, the above method is an experimental method. If the PQ characteristic diagram of the pump, the PQ characteristic diagram of the heat source device, and the PQ characteristic diagram of the piping system are known in advance, ( By approximating the PQ characteristic diagram by (Equation (1)) by the PQ characteristic diagram of the pump (PQ characteristic diagram of the pump)-(Pressure drop by PQ characteristic diagram of heat source equipment and piping system) Can guide you.

(各熱媒ポンプの流量Qの算出)
前記熱媒ポンプ3A〜3Cについて、各熱媒ポンプの流量Qを算出するため、上式(2)を熱媒の流量Qについて解いて、次式(3)のように変形する。

Figure 0004925885
(Calculation of flow rate Q i of each heat medium pump)
In order to calculate the flow rate Q i of each heat medium pump for the heat medium pumps 3A to 3C, the above equation (2) is solved for the flow rate Q of the heat medium, and is transformed into the following equation (3).
Figure 0004925885

P−Q特性の異なるポンプが同一系統に存在する場合には全てのポンプについて、上式(3)から、各熱媒ポンプの運転周波数f、定格周波数F及びヘッダ間の差圧Pを代入して、各熱媒ポンプの流量Qが算出できる。
(熱媒ポンプの合計流量Qの算出)
次に、上式(3)で算出した各熱媒ポンプの流量Qから、次式(4)により熱媒ポンプの合計流量Q、すなわち送りヘッダ4に流入する熱媒の流量を算出する。

Figure 0004925885
When pumps having different PQ characteristics exist in the same system, the operating frequency f i , rated frequency F i of each heat medium pump and the differential pressure P between the headers are calculated from the above equation (3) for all pumps. By substituting, the flow rate Q i of each heat medium pump can be calculated.
(Calculation of the total flow rate Q P of the refrigerant pump)
Next, from the flow rate Q i of each heat medium pump calculated by the above equation (3), the total flow rate Q P of the heat medium pump, that is, the flow rate of the heat medium flowing into the feed header 4 is calculated by the following equation (4). .
Figure 0004925885

(主管15を流れる流量Qの算出)
最後に、前記合計流量Qからバイパス13の流量Qを補正して、主管15に送給される流量Qを求める。すなわち、次式(5)に示されるように、熱媒ポンプ3A〜3Cから圧送される全流量Qから、バイパス13を通って戻りヘッダ10に戻される流量Qを差し引くことにより、主管15を通って外部負荷機器9,9…側に送られる流量Qが算出できる。

Figure 0004925885
(Calculation of flow rate Q M flowing through main pipe 15)
Finally, by correcting the flow rate Q b of the bypass 13 from the total flow rate Q P, determining the flow rate Q M that is fed to the main pipe 15. That is, as shown in the following equation (5), the total flow rate Q P that is pumped from the refrigerant pump 3A-3C, by subtracting the flow rate Q b to be returned to the header 10 back through the bypass 13, the main pipe 15 The flow rate Q M sent to the external load device 9, 9.
Figure 0004925885

上述の通り、本発明では、主管15に流量計を設置しなくても、周波数制御器への運転周波数fの設定値と、差圧計16によるヘッダ間の差圧Pの測定値とから各熱媒ポンプ3A〜3Cによる各流量Qが算出でき、それらの合計流量Qから、バイパス流量計17の測定値Qを差し引くことにより、簡便に主管15の流量Qを算出することができる。
(実証試験)
所定の運転条件において、本発明に係る流量測定方法により求めた主管15の流量の算出値と、主管15に流量計を設置して測定した流量の実測値とを比較したものを図4に示す。この結果、本発明に係る流量測定方法による算出値は、実測値に対して精度よく対応し、本測定方法の有効性が実証された。
As described above, in the present invention, each heat is obtained from the set value of the operating frequency f to the frequency controller and the measured value of the differential pressure P between the headers by the differential pressure gauge 16 without installing a flow meter in the main pipe 15. each flow Q i by medium pump 3A~3C can be calculated from their total flow rate Q P, by subtracting the measured value Q b of the bypass flow meter 17, it is possible to calculate the flow rate Q M of easily main 15 .
(Verification test)
FIG. 4 shows a comparison between the calculated value of the flow rate of the main pipe 15 obtained by the flow rate measuring method according to the present invention and the actual value of the flow rate measured by installing a flow meter in the main pipe 15 under predetermined operating conditions. . As a result, the calculated value obtained by the flow measurement method according to the present invention accurately corresponds to the actual measurement value, and the effectiveness of the measurement method was proved.

〔2ポンプ方式熱源設備〕
図5に示される2ポンプ方式熱源設備1Bは、熱媒を冷却又は加熱する複数の熱源機器2A〜2Cと、各熱源機器2A〜2Cに対応して設けられるとともに、熱媒を圧送する1次ポンプ3A〜3Cと、前記熱源機器2A〜2Cからの熱媒を集約する第1送りヘッダ4Aと、第1送りヘッダ4Aから熱媒を送給する2次ポンプ6A〜6Cと、これら2次ポンプ6A〜6Cをそれぞれ回転数制御するインバータ7A〜7Cと、前記2次ポンプ6A〜6Cから熱媒が送給される第2送りヘッダ4Bと、第2送りヘッダ4Bから熱媒が供給される空調機等の外部負荷機器9,9…と、外部負荷機器9,9…で熱交換された熱媒が戻されるとともに、各熱源機器2A〜2Cに分配する戻りヘッダ10と、前記第1送りヘッダ4Aと第2送りヘッダ4Bとを繋ぐ第1バイパス11及び第1バイパス弁12と、前記第1送りヘッダ部4A又はその近傍と前記戻りヘッダ部10又はその近傍とを繋ぐ第2バイパス19と、前記熱源機器2A〜2Cの運転台数制御及び前記2次ポンプ6A〜6C(インバータ7A〜7C)の運転制御及び前記第1バイパス弁12の開度制御を行う制御装置8とを備えるものである。
[Two-pump heat source equipment]
A two-pump heat source facility 1B shown in FIG. 5 is provided corresponding to a plurality of heat source devices 2A to 2C for cooling or heating the heat medium and each of the heat source devices 2A to 2C, and the primary for pressure-feeding the heat medium. Pumps 3A to 3C, a first feed header 4A that collects the heat medium from the heat source devices 2A to 2C, secondary pumps 6A to 6C that feed the heat medium from the first feed header 4A, and these secondary pumps Inverters 7A to 7C for controlling the rotational speeds of 6A to 6C, the second feed header 4B to which the heat medium is fed from the secondary pumps 6A to 6C, and the air conditioner to which the heat medium is supplied from the second feed header 4B As well as the return header 10 that is returned to the heat source devices 2A to 2C, and the first feed header. 4A and the second feed header 4B The first bypass 11 and the first bypass valve 12 to be connected, the second bypass 19 that connects the first feed header portion 4A or the vicinity thereof and the return header portion 10 or the vicinity thereof, and the number of operating heat source devices 2A to 2C. And a control device 8 for performing control and operation control of the secondary pumps 6A to 6C (inverters 7A to 7C) and opening control of the first bypass valve 12.

前記第1バイパス11を流れる熱媒の流量を測定するバイパス流量計17と、前記第1送りヘッダ4Aと第2送りヘッダ4Bとの間の差圧を測定する差圧計16とを配設し、かつヘッダ間差圧P、運転周波数f、バイパス流量Qに基づいて、熱媒搬送流量を算出する流量演算装置20を配設している。 A bypass flow meter 17 for measuring the flow rate of the heat medium flowing through the first bypass 11 and a differential pressure meter 16 for measuring the differential pressure between the first feed header 4A and the second feed header 4B are disposed; and header pressure difference P, based operation frequency f, the bypass flow rate Q b, are disposed flow rate calculation unit 20 for calculating a heat medium conveying flow.

〔熱媒流量の測定方法〕
熱媒流量の測定にあたっては、予め、手動弁18により外部負荷機器9,9…側への流路を遮断した状態で、前記2次ポンプ6A〜6C、第2送りヘッダ4B、バイパス11、第1送りヘッダ4Aを巡る循環系において、各2次ポンプ6A〜6C毎に、ヘッダ間差圧Pとポンプ流量Qとの関係式を得る。図6に、熱媒ポンプ単体の場合のP−Q曲線とともに、得られたP−Q曲線を示す。なお、実験により得られたP−Q曲線は、ストレーナー、チャッキバルブ及び配管抵抗等を含んだものである。
[Measurement method of heat medium flow rate]
When measuring the flow rate of the heat medium, the secondary pumps 6A to 6C, the second feed header 4B, the bypass 11, the first flow, with the flow path to the external load devices 9, 9. In the circulation system around the 1-feed header 4A, a relational expression between the header differential pressure P and the pump flow rate Q is obtained for each of the secondary pumps 6A to 6C. FIG. 6 shows the obtained PQ curve together with the PQ curve in the case of the heat medium pump alone. In addition, the PQ curve obtained by experiment contains a strainer, a check valve, piping resistance, and the like.

そして、前記関係式に基づいて、任意のポンプ運転周波数f時における、ヘッダ間差圧Pをパラメータとするポンプ流量Qiの算出式を得ておく。   Based on the relational expression, a calculation formula of the pump flow rate Qi using the inter-header differential pressure P as a parameter at an arbitrary pump operating frequency f is obtained.

そして、前記流量演算装置20において、前記算出式に、前記差圧計16が測定したヘッダ間の差圧Pと、前記周波数制御器に対する設定値である前記2次ポンプ6A〜6Cの運転周波数fとを与えることにより、各2次ポンプ6A〜6Cの流量Qをそれぞれ算出するとともに、これら各2次ポンプ6A〜6Cの流量Qを合算した全流量Qから前記バイパス流量計17が測定した流量Qを差し引くことにより主管15を流れる流量Qが算出される。 In the flow rate calculation device 20, the calculation formula includes the differential pressure P between the headers measured by the differential pressure gauge 16, and the operating frequency f of the secondary pumps 6A to 6C, which is a set value for the frequency controller. by giving, to calculate each flow rate Q i of each secondary pump 6A-6C, the bypass flow meter 17 has measured the total flow Q P to the flow Q i and the sum of respective secondary pump 6A-6C flow rate Q M passing through the main pipe 15 is calculated by subtracting the flow rate Q b.

具体的な算出要領は、上記〔1ポンプ方式熱源設備〕の欄で説明済みであるため省略する。   The specific calculation procedure is omitted because it has already been described in the above [1 pump type heat source equipment] column.

〔他の形態例〕
(1)上記形態例では、1ポンプ方式熱源設備と2ポンプ方式熱源設備に対する適用例を述べたが、本発明は、第1ヘッダと第2ヘッダとの間に、少なくとも液体を圧送する複数のポンプが配設されるとともに、各ポンプに対応してポンプ回転周波数を可変制御する周波数制御器が設けられ、前記第1ヘッダと第2ヘッダとを繋ぐバイパスが設けられるとともに、このバイパスを流れる液体流量を調整するバイパス弁が設けられ、更に前記ポンプの運転制御及び前記バイパス弁の開度制御を行う制御装置が設けられた配管系設備全般に対して適用が可能である。
[Other examples]
(1) Although the example of application to the 1-pump system heat source facility and the 2-pump system heat source facility has been described in the above embodiment, the present invention provides a plurality of pumps that pump at least liquid between the first header and the second header. A pump is provided, a frequency controller for variably controlling the pump rotation frequency is provided corresponding to each pump, a bypass connecting the first header and the second header is provided, and a liquid flowing through the bypass The present invention can be applied to general piping system equipment provided with a bypass valve for adjusting the flow rate and further provided with a control device for controlling the operation of the pump and controlling the opening degree of the bypass valve.

1ポンプ方式熱源設備1Aを示す配管図である。It is a piping diagram showing 1A heat source equipment 1A. 本発明の流量測定方法のフロー図である。It is a flowchart of the flow measurement method of the present invention. 1ポンプ方式熱源設備1の実機における熱媒の流量Qとヘッダ間の差圧Pとの関係(P−Q曲線)を示すグラフである。It is a graph which shows the relationship (PQ curve) between the flow volume Q of the heat carrier in the real machine of 1 pump system heat source equipment 1, and the differential pressure P between headers. 流量測定方法による算出値と実測値との関係を示すグラフである。It is a graph which shows the relationship between the calculated value by a flow measurement method, and an actual value. 2ポンプ方式熱源設備1Bを示す配管図である。It is a piping diagram showing 2 pump system heat source equipment 1B. 2ポンプ方式熱源設備1Bの実機における熱媒の流量Qとヘッダ間の差圧Pとの関係(P−Q曲線)を示すグラフである。It is a graph which shows the relationship (PQ curve) with the flow volume Q of the heat carrier in the real machine of 2 pump system heat source equipment 1B, and the differential pressure P between headers. 従来の1ポンプ方式熱源設備50を示す配管図である。It is a piping diagram which shows the conventional 1 pump system heat source equipment 50.

符号の説明Explanation of symbols

1A…1ポンプ方式熱源設備、1B…2ポンプ方式熱源設備、2A〜2C…熱源機器、3A〜3C…熱媒ポンプ(一次ポンプ)、4…送りヘッダ、4A…第1送りヘッダ、4B…第2送りヘッダ、6A〜6C…2次ポンプ、7A〜7C…インバータ、8…制御装置、10…戻りヘッダ、11…第1バイパス、12…バイパス弁、13…バイパス、14A〜14C…周波数制御器、16…差圧計、17…バイパス流量計、19…第2バイパス、20…流量演算装置   1A ... 1 pump system heat source equipment, 1B ... 2 pump system heat source equipment, 2A-2C ... heat source equipment, 3A-3C ... heat medium pump (primary pump), 4 ... feed header, 4A ... first feed header, 4B ... first 2-feed header, 6A-6C ... secondary pump, 7A-7C ... inverter, 8 ... control device, 10 ... return header, 11 ... first bypass, 12 ... bypass valve, 13 ... bypass, 14A-14C ... frequency controller , 16 ... differential pressure gauge, 17 ... bypass flow meter, 19 ... second bypass, 20 ... flow rate calculation device

Claims (3)

熱媒を冷却又は加熱する1又は複数の熱源機器と、各熱源機器に対応して設けられるとともに、冷却又は加熱された熱媒を圧送する熱媒ポンプと、各熱媒ポンプに対応して設けられるとともに、ポンプ回転周波数を可変制御する周波数制御器と、前記熱源機器からの熱媒を集約する送りヘッダと、この送りヘッダから熱媒が供給される外部負荷機器と、外部負荷機器で熱交換された熱媒が戻されるとともに、各熱源機器に分配する戻りヘッダと、前記送りヘッダ部又はその近傍と前記戻りヘッダ部又はその近傍とを繋ぐバイパスと、このバイパスを流れる熱媒の流量を調整するバイパス弁と、前記熱媒ポンプの運転制御及び前記バイパス弁の開度制御を行う制御装置とを備える1ポンプ方式の配管系設備において、
前記バイパスを流れる熱媒流量を測定するバイパス流量計と、前記送りヘッダと戻りヘッダとの間の差圧を測定する差圧計とを配設し、
予め、前記熱媒ポンプ、熱源機器、送りヘッダ、バイパス、戻りヘッダを巡る循環系において、各熱媒ポンプ毎に、ヘッダ間差圧Pとポンプ流量Qとの関係式を得るとともに、この関係式に基づいて、任意のポンプ運転周波数f時における、ヘッダ間差圧Pをパラメータとするポンプ流量Qの算出式を得ておき、
前記算出式に、前記差圧計が測定したヘッダ間の差圧Pと、前記周波数制御器に対する設定値である前記熱媒ポンプの運転周波数fとを与えることにより、各熱媒ポンプの流量Qをそれぞれ算出するとともに、これら各熱媒ポンプの流量Qを合算した全流量Qから前記バイパス流量計が測定した流量Qを差し引くことにより、熱媒の搬送流量を算出することを特徴とする配管系設備における流量測定方法。
One or a plurality of heat source devices for cooling or heating the heat medium, provided corresponding to each heat source device, a heat medium pump for pumping the cooled or heated heat medium, and provided for each heat medium pump And a frequency controller that variably controls the pump rotation frequency, a feed header that collects the heat medium from the heat source device, an external load device that is supplied with the heat medium from the feed header, and heat exchange between the external load devices The returned heat medium is returned, the return header distributed to each heat source device, the bypass connecting the feed header section or its vicinity and the return header section or the vicinity thereof, and the flow rate of the heat medium flowing through the bypass are adjusted. 1-pump system piping system comprising a bypass valve for controlling the operation of the heat medium pump and an opening control of the bypass valve,
A bypass flow meter for measuring the flow rate of the heat medium flowing through the bypass, and a differential pressure meter for measuring a differential pressure between the feed header and the return header,
In the circulation system around the heat medium pump, the heat source device, the feed header, the bypass, and the return header, a relational expression between the header differential pressure P and the pump flow rate Q is obtained for each heat medium pump. Based on the above, an equation for calculating the pump flow rate Q using the pressure difference P between headers as a parameter at any pump operating frequency f is obtained,
By giving the calculation formula the differential pressure P between the headers measured by the differential pressure gauge and the operating frequency f of the heat medium pump, which is a set value for the frequency controller, the flow rate Q i of each heat medium pump. together with respectively calculated by subtracting the flow rate Q b of the from the total flow rate Q P to the flow rate Q i by summing the bypass flowmeter has measured the respective heating medium pump, a calculating means calculates the conveying flow of the heating medium Flow measurement method for piping system equipment.
熱媒を冷却又は加熱する複数の熱源機器と、各熱源機器に対応して設けられるとともに、冷却又は加熱された熱媒を圧送する1次ポンプと、前記熱源機器からの熱媒を集約する第1送りヘッダと、第1送りヘッダから熱媒を送る複数の2次ポンプと、各2次ポンプに対応して設けられるとともに、ポンプ回転周波数を可変制御する周波数制御器と、前記2次ポンプからの熱媒を集約する第2送りヘッダと、この第2送りヘッダから熱媒が供給される外部負荷機器と、外部負荷機器で熱交換された熱媒が戻されるとともに、各熱源機器に分配する戻りヘッダと、前記第1送りヘッダと第2送りヘッダとを繋ぐ第1バイパス及び第1バイパス弁と、前記第1送りヘッダ部又はその近傍と前記戻りヘッダ部又はその近傍とを繋ぐ第2バイパスと、前記熱源機器の運転台数制御及び前記2次ポンプの運転制御及び第1バイパス弁の開度制御を行う制御装置とを備える2ポンプ方式の配管系設備において、
前記第1バイパスを流れる熱媒流量を測定するバイパス流量計と、前記第1送りヘッダと第2送りヘッダとの間の差圧を測定する差圧計とを配設し、
予め、前記2次ポンプ、第2送りヘッダ、第1バイパス、第1送りヘッダを巡る循環系において、各2次ポンプ毎に、ヘッダ間差圧Pとポンプ流量Qとの関係式を得るとともに、この関係式に基づいて、任意のポンプ運転周波数f時における、ヘッダ間差圧Pをパラメータとするポンプ流量Qの算出式を得ておき、
前記算出式に、前記差圧計が測定したヘッダ間の差圧Pと、前記周波数制御器に対する設定値である前記2次ポンプの運転周波数fとを与えることにより、各2次ポンプの流量Qをそれぞれ算出するとともに、これら各2次ポンプの流量Qを合算した全流量Qから前記バイパス流量計が測定した流量Qを差し引くことにより、熱媒の搬送流量を算出することを特徴とする配管系設備における流量測定方法。
A plurality of heat source devices that cool or heat the heat medium, a primary pump that is provided corresponding to each heat source device and that pumps the cooled or heated heat medium, and a heat pump that collects the heat medium from the heat source device. A one-feed header, a plurality of secondary pumps that feed the heat medium from the first feed header, a frequency controller that is provided corresponding to each secondary pump, and that variably controls the pump rotation frequency, and the secondary pump The second feed header that collects the heat medium, the external load device to which the heat medium is supplied from the second feed header, and the heat medium heat-exchanged by the external load device are returned and distributed to each heat source device A return header, a first bypass and a first bypass valve that connect the first feed header and the second feed header, and a second bypass that connects the first feed header portion or its vicinity and the return header portion or its vicinity. And before In piping system equipment 2 pump type and a control device for controlling the opening degree of the heat source device operating units control and operation control, and the first bypass valve of the secondary pump,
A bypass flow meter for measuring the flow rate of the heat medium flowing through the first bypass, and a differential pressure meter for measuring a differential pressure between the first feed header and the second feed header,
In advance, in the circulation system around the secondary pump, the second feed header, the first bypass, and the first feed header, a relational expression between the header differential pressure P and the pump flow rate Q is obtained for each secondary pump, Based on this relational expression, a formula for calculating the pump flow rate Q using the header differential pressure P as a parameter at any pump operating frequency f is obtained,
By giving the calculation formula the differential pressure P between the headers measured by the differential pressure gauge and the operating frequency f of the secondary pump which is a set value for the frequency controller, the flow rate Q i of each secondary pump. together with respectively calculated by subtracting the flow rate Q b of the flow rate Q i from the total flow rate Q P obtained by summing the bypass flowmeter has measured the respective secondary pump, and characterized by calculating the transport rate of the heating medium Flow measurement method for piping system equipment.
第1ヘッダと第2ヘッダとの間に、少なくとも液体を圧送する複数のポンプが配設されるとともに、各ポンプに対応してポンプ回転周波数を可変制御する周波数制御器が設けられ、前記第1ヘッダと第2ヘッダとを繋ぐバイパスが設けられるとともに、このバイパスを流れる液体流量を調整するバイパス弁が設けられ、更に前記ポンプの運転制御及び前記バイパス弁の開度制御を行う制御装置が設けられた配管系設備の液体搬送部において、
前記バイパスを流れる液体流量を測定するバイパス流量計と、前記第1ヘッダと第2ヘッダとの間の差圧を測定する差圧計とを配設し、
予め、前記第1ヘッダ、熱媒ポンプ、第2ヘッダ及びバイパスを巡る循環系において、各熱媒ポンプ毎に、ヘッダ間差圧Pとポンプ流量Qとの関係式を得るとともに、この関係式に基づいて、任意のポンプ運転周波数f時における、ヘッダ間差圧Pをパラメータとするポンプ流量Qの算出式を得ておき、
前記算出式に、前記差圧計が測定したヘッダ間の差圧Pと、前記周波数制御器に対する設定値である前記熱媒ポンプの運転周波数fとを与えることにより、各熱媒ポンプの流量Qをそれぞれ算出するとともに、これら各熱媒ポンプの流量Qを合算した全流量Qから前記バイパス流量計が測定した流量Qを差し引くことにより、熱媒の搬送流量を算出することを特徴とする配管系設備における流量測定方法。
A plurality of pumps for pumping at least liquid are disposed between the first header and the second header, and a frequency controller for variably controlling the pump rotation frequency corresponding to each pump is provided. A bypass connecting the header and the second header is provided, a bypass valve for adjusting the flow rate of the liquid flowing through the bypass is provided, and a control device for controlling the operation of the pump and the opening degree of the bypass valve is provided. In the liquid transfer section of the piping system equipment
A bypass flow meter for measuring a flow rate of liquid flowing through the bypass, and a differential pressure meter for measuring a differential pressure between the first header and the second header,
In the circulation system surrounding the first header, the heat medium pump, the second header and the bypass, a relational expression between the header differential pressure P and the pump flow rate Q is obtained for each heat medium pump in advance. Based on the above, a formula for calculating the pump flow rate Q using the inter-header differential pressure P as a parameter at any pump operating frequency f is obtained,
By giving the calculation formula the differential pressure P between the headers measured by the differential pressure gauge and the operating frequency f of the heat medium pump, which is a set value for the frequency controller, the flow rate Q i of each heat medium pump. together with respectively calculated by subtracting the flow rate Q b of the from the total flow rate Q P to the flow rate Q i by summing the bypass flowmeter has measured the respective heating medium pump, a calculating means calculates the conveying flow of the heating medium Flow measurement method for piping system equipment.
JP2007079225A 2007-03-26 2007-03-26 Flow rate measurement method for piping system equipment Active JP4925885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007079225A JP4925885B2 (en) 2007-03-26 2007-03-26 Flow rate measurement method for piping system equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007079225A JP4925885B2 (en) 2007-03-26 2007-03-26 Flow rate measurement method for piping system equipment

Publications (3)

Publication Number Publication Date
JP2008241326A JP2008241326A (en) 2008-10-09
JP2008241326A5 JP2008241326A5 (en) 2009-02-26
JP4925885B2 true JP4925885B2 (en) 2012-05-09

Family

ID=39912878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007079225A Active JP4925885B2 (en) 2007-03-26 2007-03-26 Flow rate measurement method for piping system equipment

Country Status (1)

Country Link
JP (1) JP4925885B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8939196B2 (en) 2009-02-13 2015-01-27 Toshiba Carrier Corporation Secondary pump type heat source and secondary pump type heat source control method
JP5761960B2 (en) * 2010-10-29 2015-08-12 三菱重工業株式会社 Heat source equipment
CN104406258A (en) * 2014-12-18 2015-03-11 黄晨东 Air conditioning and floor heating pipeline system and temperature adjusting method thereof
EP4148343A4 (en) * 2018-07-09 2024-03-06 Toshiba Carrier Corporation Heat source system, heat source machine, and control device
JP7274884B2 (en) * 2019-02-20 2023-05-17 東芝キヤリア株式会社 Method for estimating flow rate of liquid pump device, liquid pump device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0816478B2 (en) * 1988-05-07 1996-02-21 大平洋機工株式会社 How to calibrate pump head characteristics
JPH02169898A (en) * 1988-12-20 1990-06-29 Nippon Johnson Controls Kk Delivery quantity measuring system for delivering machine
JPH0690057B2 (en) * 1990-06-20 1994-11-14 株式会社技術開発総合研究所 Flow rate measuring device
JP3793885B2 (en) * 1997-01-27 2006-07-05 株式会社安川電機 Estimated constant pressure controller for pump
JP3365997B2 (en) * 2000-09-18 2003-01-14 ダイダン株式会社 Primary / secondary pump type heat source variable flow system
JP2006220363A (en) * 2005-02-10 2006-08-24 Shin Nippon Air Technol Co Ltd One pump type heat source equipment
JP3957309B2 (en) * 2005-03-23 2007-08-15 新日本空調株式会社 Operation control method for two-pump heat source equipment

Also Published As

Publication number Publication date
JP2008241326A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP4829818B2 (en) Operation control method for 1 pump heat source equipment
RU2608280C2 (en) Method and device for consumers group balancing in fluid medium transfer system
RU2648211C2 (en) Method and devices for balancing a group of consumers in a fluid transport system
JP4925885B2 (en) Flow rate measurement method for piping system equipment
EP2261574A1 (en) Heat-pump hot water apparatus
EP2634509A1 (en) Heat source apparatus
JP2009030821A (en) Water supply control system and water supply control method
JP2009030823A (en) Air conditioning control system and air conditioning control method
EP2343490A3 (en) Heat pump and method for calculating heating-medium flow rate of heat pump
KR101496599B1 (en) Heat source apparatus
JP6198398B2 (en) Control method for determining the number of operating pumps in a two-pump heat source facility
JP5869394B2 (en) Heat medium piping system
JP2010216765A (en) Local cooling system
JP4523461B2 (en) Operation control method for 1-pump heat source equipment
EP3818305B1 (en) Geothermal heating system and a controller for the same
JP2008298405A (en) Method and device for estimating cooling water temperature
JP4440147B2 (en) Operation control method for two-pump heat source equipment
WO2020012750A1 (en) Heat source system, heat source machine, and control device
JP2009019842A (en) Water delivery control system and water delivery control method
JP6685602B2 (en) Air conditioning system
JP2011002180A (en) Local pump system in heating medium supplying facility
JP3957309B2 (en) Operation control method for two-pump heat source equipment
US10684025B2 (en) Method of controlling a fluid circulation system
JP2015169367A (en) Air conditioning system and air conditioning system control method
EP3974737B1 (en) Air conditioner device and heat medium flow rate calculation method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4925885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250