JP6198398B2 - Control method for determining the number of operating pumps in a two-pump heat source facility - Google Patents
Control method for determining the number of operating pumps in a two-pump heat source facility Download PDFInfo
- Publication number
- JP6198398B2 JP6198398B2 JP2013012865A JP2013012865A JP6198398B2 JP 6198398 B2 JP6198398 B2 JP 6198398B2 JP 2013012865 A JP2013012865 A JP 2013012865A JP 2013012865 A JP2013012865 A JP 2013012865A JP 6198398 B2 JP6198398 B2 JP 6198398B2
- Authority
- JP
- Japan
- Prior art keywords
- pump
- operating
- pumps
- heat source
- feed header
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 40
- 230000003247 decreasing effect Effects 0.000 claims description 4
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 21
- 238000004364 calculation method Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 4
- 238000012887 quadratic function Methods 0.000 description 3
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Landscapes
- Other Air-Conditioning Systems (AREA)
- Air Conditioning Control Device (AREA)
Description
本発明は、地域冷暖房施設等の熱源供給システムや、工場やビルなどの熱源供給システムとして用いられる2ポンプ方式熱源設備における2次ポンプの運転台数決定制御方法に関する。 The present invention relates to a method for determining the number of secondary pumps to be operated in a heat source supply system such as a district heating and cooling facility or a two-pump heat source facility used as a heat source supply system in a factory or a building.
従来より地域冷暖房施設等の熱源供給システムや、工場やビルなどの熱源供給システムとして用いられる熱源設備として、2ポンプ方式熱源設備が知られている。 2. Description of the Related Art Conventionally, a two-pump heat source facility is known as a heat source supply system used as a heat source supply system such as a district cooling and heating facility or a heat source supply system such as a factory or a building.
前記2ポンプ方式熱源設備は、例えば図12に示されるように、戻りヘッダー50からの熱媒が一次送水ポンプ52A〜52Cにより送られ、冷凍機、ボイラ等からなる熱交換器等の熱源機器51A〜51Cを通過し加熱又は冷却された後、第1送りヘッダー54から第2送りヘッダー63に至り、その後二次送水ポンプ55,55…により第3送りヘッダー57に送られる。そして、この第3送りヘッダー57を介して各部位(部屋)に配置された熱交換器(空調機)58,58…に送給された後、戻りヘッダー50に循環するようになっている。前記第2送りヘッダー63と第3送りヘッダー57との間に配置された二次送水ポンプ55,55…は夫々インバーター56を備え、前記第2送りヘッダー63と第3送りヘッダー57との間に第1バイパス64及び第1バイパス弁65が配設されているとともに、前記第1送りヘッダー54と戻りヘッダー50とを繋ぐ第2バイパス62が配設されている(下記特許文献1、2等参照)。
In the two-pump heat source equipment, for example, as shown in FIG. 12, the heat medium from the
制御装置60のうち可変圧力制御装置60Aによる前記二次送水ポンプ55の吐出圧制御は、第3送りヘッダー57と第2送りヘッダー63との差圧DSを検出し、予め設定された必要差圧となるように、二次送水ポンプ55,55…のインバーター56、56…に対し回転数制御をかけることにより、一定の送水圧力条件の下で変流量制御が行われている。
The discharge pressure control of the secondary
また、前記2次ポンプ55、55…の増減段制御は、図13に示されるように、ポンプ運転台数がN台時に、空調機側への負荷流量Qlが熱源機器増段流量設定値Qup_Nを一定時間T10継続して上回った場合には、ポンプ運転台数をN+1台に増段するよう前記制御装置60のうちポンプ運転台数決定制御装置60Bから運転指令を発する制御が行われている。同じくポンプ運転台数がN台時に、空調機側への負荷流量Qlが熱源機器減段流量設定値Qdown_Nを一定時間T10継続して下回った場合には、ポンプ運転台数をN−1台に減段するよう前記ポンプ運転台数決定制御装置60Bから停止指令を発する。
In addition, as shown in FIG. 13, the increase / decrease stage control of the
また、ポンプ運転周波数の決定方法として、配管抵抗(ヘッダ間差圧hP)が空調機側への負荷流量Qlの二次関数となる特性を利用したヘッダ間差圧線図(図3参照)によりヘッダ間差圧設定値Psを次式(3)から予め算出しておき、実際のヘッダ間差圧測定値hPmが比例制御や下記特許文献3記載の手法により、前記ヘッダ間差圧設定値Psとなるようにポンプ運転周波数fsを操作し、ポンプ動力の削減を図る、前記可変圧力制御装置60Aによる可変圧力制御が採用されている。
In addition, as a method for determining the pump operating frequency, the differential pressure diagram between headers (see FIG. 3) using the characteristic that the pipe resistance (inter-header differential pressure hP) is a quadratic function of the load flow rate Ql to the air conditioner side. The header differential pressure setting value Ps is calculated in advance from the following equation (3), and the actual header differential pressure measurement value hPm is calculated by proportional control or the method described in
Ql:外部負荷機器側の循環流量
Ahp,Bhp,Chp:実験的に求まる配管抵抗曲線の係数
Ql: Circulation flow on the external load equipment side
Ahp, Bhp, Chp: Coefficient of pipe resistance curve obtained experimentally
しかしながら、上記ポンプ運転台数の決定おいては以下のような問題が生じていた。 However, the following problems have occurred in determining the number of pumps to be operated.
第1の問題として、前記可変圧力制御においてヘッダ間差圧設定値Ps(上式(3)に示されるヘッダ間差圧線図の係数Ahp、Bhp、Chp)が運用上の理由から変更されると、前記熱源機器増段流量設定値Qup_Nと熱源機器減段流量設定値Qdown_Nの最適値が変化するため、運転台数の決定が適確に行えない不具合が生じていた。 As a first problem, in the variable pressure control, the inter-header differential pressure setting value Ps (the coefficients Ahp, Bhp, Chp in the inter-header differential pressure diagram shown in the above equation (3)) is changed for operational reasons. In addition, since the optimum values of the heat source device step-up flow set value Qup_N and the heat source device step-down flow set value Qdown_N change, there is a problem that the number of operating units cannot be determined accurately.
この第1の問題に係る具体例としては、以下の2つが挙げられる。
先ずはじめに、図14に示されるように、ポンプ運転台数の増段・減段設定値を決定したときに想定したヘッダ間差圧曲線よりも、運用上のヘッダ間差圧曲線が、高いヘッダ間差圧を示す場合、設定した増段ポイントよりも運用上の増段ポイントが小流量側に移行するため、運転台数が増加せず、結果的に空調機側への負荷流量を満たすことができなかった。
Specific examples of the first problem include the following two.
First, as shown in FIG. 14, the header differential pressure curve in operation is higher than the header differential pressure curve assumed when the increase / decrease setting value of the number of pumps operated is determined. When differential pressure is indicated, the operation increase point shifts to the lower flow rate side than the set increase point, so the number of operating units does not increase, and as a result, the load flow rate to the air conditioner side can be satisfied. There wasn't.
また、これとは逆に、図15に示されるように、ポンプ運転台数の増段・減段設定値を決定したときに想定したヘッダ間差圧曲線よりも運用上のヘッダ間差圧曲線が、低いヘッダ間差圧を示す場合、設定した減段ポイントよりも運用上の減段ポイントが大流量側に移行するため、運転台数を減少できる運転領域でも運転台数が多くなり、ポンプ1台当たりの流量が低下し、機器効率が低い状態での運転となるため、ポンプ動力が削減できない又はポンプの稼働時間が長くなる問題があった。 On the contrary, as shown in FIG. 15, the differential pressure curve between the headers in operation is greater than the differential pressure curve between headers assumed when the increase / decrease setting value of the number of pumps operated is determined. When the pressure difference between the headers is low, the operation step reduction point shifts to the larger flow rate side than the set step reduction point. Therefore, the number of operating units increases even in the operating range where the number of operating units can be reduced. Therefore, there is a problem that the pump power cannot be reduced or the operation time of the pump becomes long.
なお、前記可変圧力制御のヘッダ間差圧設定値Psは、冷房及び暖房時の季節毎、特定の空調機が稼働中であるなどの条件によって、ヘッダ間差圧線図の係数Ahp、Bhp、Chpを変更する必要が出てくることがある。前記可変圧力制御には、前記ヘッダ間差圧線図を利用したものの他に、圧力的に最も遠い空調機の出入り配管に差圧発信器を設置し、その差圧発信器の計測値が常に一定になるように決定する方法などもある。 Note that the header differential pressure setting value Ps for the variable pressure control is a coefficient Ahp, Bhp, a header differential pressure diagram depending on conditions such as a specific air conditioner being operated for each season during cooling and heating. You may need to change Chp. For the variable pressure control, in addition to the one using the differential pressure diagram between the headers, a differential pressure transmitter is installed in the inlet / outlet pipe of the air conditioner farthest in pressure, and the measured value of the differential pressure transmitter is always There is also a method of determining to be constant.
次に、第2の問題として、従来の運転台数制御方法は、ポンプ流量Q及び運転周波数fが変化しても、ポンプ効率eに変化がないと仮定している(図6参照)。そのため、熱源機器運転台数の増段又は減段の決定に際して、ポンプ効率eの変化は考慮されていない。しかし、実際のポンプは、ポンプ流量Qと運転周波数fによってポンプ効率eも変化するため、従来の制御方法では非効率な運転となるポイントがあり、ポンプ消費電力Wpが無駄に消費されていた。 Next, as a second problem, the conventional operation number control method assumes that the pump efficiency e does not change even if the pump flow rate Q and the operation frequency f change (see FIG. 6). Therefore, changes in pump efficiency e are not taken into account when determining whether to increase or decrease the number of operating heat source devices. However, in the actual pump, the pump efficiency e also changes depending on the pump flow rate Q and the operation frequency f. Therefore, the conventional control method has an inefficient operation, and the pump power consumption Wp is wasted.
そこで本発明の主たる課題は、ポンプ運転台数の増段・減段の決定に際し、増段ポイントと減段ポイントを適正に求め、運転台数の決定が適確に行えるようにするとともに、ポンプの実際の運転状態を考慮して増段ポイント・減段ポイントが決定できるようにした2ポンプ方式熱源設備におけるポンプ運転台数決定制御方法を提供することにある。 Therefore, the main problem of the present invention is that when determining the increase / decrease of the number of pumps to be operated, the increase / decrease point is appropriately obtained so that the number of operation can be determined accurately and the actual number of pumps It is an object of the present invention to provide a control method for determining the number of pumps to be operated in a two-pump heat source facility that can determine the step-up point and the step-down point in consideration of the operation state.
上記課題を解決するために請求項1に係る本発明として、熱媒を冷却又は加熱する複数の熱源機器と、各熱源機器に対応して設けられるとともに、冷却又は加熱された熱媒を圧送する1次ポンプと、前記熱源機器からの熱媒を集約する第1送りヘッダと、前記第1送りヘッダからの熱媒が流入する第2送りヘッダと、前記第2送りヘッダから熱媒を送る複数の2次ポンプと、該2次ポンプからの熱媒を集約する第3送りヘッダと、この第3送りヘッダから熱媒が供給される外部負荷機器と、外部負荷機器で熱交換された熱媒が戻されるとともに、各熱源機器に分配する戻りヘッダと、前記第2送りヘッダと第3送りヘッダとを繋ぐ第1バイパス及び第1バイパス弁と、前記第1送りヘッダ部又はその近傍と前記戻りヘッダ部又はその近傍とを繋ぐ第2バイパスと、前記熱源機器の運転台数制御及び前記2次ポンプの運転制御を行う制御装置とを備える2ポンプ方式熱源設備において、
前記外部負荷機器側の循環流量Qを測定するための流量計と、前記第2送りヘッダと第3送りヘッダとの間の差圧を測定する差圧計と、前記2次ポンプの運転台数検出手段とを配設し、
前記制御装置は、下式(11)により前記2次ポンプの消費電力Wpを求め、このポンプ消費電力Wpが最小となることを条件に含む運転台数時を最適運転台数Nopとして決定し、現状の運転台数Nと前記最適運転台数Nopとが所定時間以上継続して異なる場合に、前記2次ポンプの運転台数を前記最適運転台数Nopに変更する指令を実行することを特徴とする2ポンプ方式熱源設備におけるポンプ運転台数決定制御方法が提供される。
Qs:2次ポンプの流量設定値
e:ポンプ効率
N:2次ポンプの運転台数
In order to solve the above-mentioned problems, as the present invention according to
A flow meter for measuring the circulation flow rate Q on the external load device side, a differential pressure meter for measuring a differential pressure between the second feed header and the third feed header, and a means for detecting the number of operating secondary pumps And
The control device obtains the power consumption Wp of the secondary pump by the following equation (11), determines the number of operating units including the condition that the pump power consumption Wp is minimum as the optimum operating unit number Nop , A two-pump heat source that executes a command to change the number of operating secondary pumps to the optimum operating number Nop when the operating number N and the optimum operating number Nop are continuously different for a predetermined time or more. A method for determining the number of operating pumps in a facility is provided.
Qs: Secondary pump flow rate setting value e: Pump efficiency N: Number of secondary pumps
上記請求項1記載の発明では、前記2次ポンプの最適運転台数Nopの決定に際し、2次ポンプの消費電力Wpを求め、このポンプ消費電力Wpが最小となる条件を含む運転台数時を最適運転台数Nopとして決定し、現状の運転台数Nと前記最適運転台数Nopとが所定時間以上継続して異なる場合に、前記2次ポンプの運転台数を前記最適運転台数Nopに変更する指令を実行している。すなわち、従来の運転台数決定制御方法のように、ヘッダ間差圧曲線とポンプのP-Q特性線図とから増段や減段の設定値を決定する方法ではないため、設定した増段・減段のポイントと運用上の増段・減段のポイントとのずれによる流量の不足又は余剰が生じなくなり、ポンプ消費電力Wpが最小となる条件から増段ポイント・減段ポイントが適正に求められる結果、運転台数の決定が適確に行えるようになる。 According to the first aspect of the present invention, when determining the optimum operating number Nop of the secondary pump, the power consumption Wp of the secondary pump is obtained, and the optimum number of operating times including the condition that the pump power consumption Wp is minimized is determined. When the current operation number N and the optimum operation number Nop are continuously different from each other for a predetermined time or longer, a command to change the operation number of the secondary pump to the optimum operation number Nop is executed. Yes. In other words, unlike the conventional method for determining the number of operating units, it is not a method for determining the setting value for step increase or decrease from the header differential pressure curve and the PQ characteristic diagram of the pump. As a result, the increase and decrease points are appropriately calculated from the condition that the pump power consumption Wp is minimized because the shortage or surplus of flow rate does not occur due to the difference between the point of operation and the points of increase or decrease of operation. The number of operating units can be determined accurately.
また、前記ポンプ消費電力Wpの算出において、上式(11)に示されるように、実際のポンプ運転状態に応じたポンプ効率eを考慮している。すなわち、図6に示されるように、所定のポンプ効率曲線の近似式から、現状の運転状態(ポンプの運転周波数fと流量Q)に応じたポンプ効率eを算出し、そのときのポンプ消費電力Wpを求めることによって、このポンプ消費電力Wpが最小となる運転台数時を最適運転台数Nopとして決定している。このため、ポンプの実際の運転状態を考慮して増段ポイント・減段ポイントが決定できるようになる。 Further, in the calculation of the pump power consumption Wp, the pump efficiency e corresponding to the actual pump operation state is taken into consideration as shown in the above equation (11). That is, as shown in FIG. 6, a pump efficiency e corresponding to the current operating state (pump operating frequency f and flow rate Q) is calculated from an approximate expression of a predetermined pump efficiency curve, and pump power consumption at that time is calculated. By obtaining Wp, the number of operating units at which the pump power consumption Wp is minimum is determined as the optimum operating number Nop. For this reason, it is possible to determine the step increase point and the step decrease point in consideration of the actual operation state of the pump.
更に、システムの安定化を図るため、現状の運転台数Nと最適運転台数Nopとが所定時間以上継続して異なる場合に、2次ポンプの運転台数を最適運転台数Nopに変更する制御を行うようにしている。 Furthermore , in order to stabilize the system, when the current operation number N and the optimum operation number Nop are continuously different for a predetermined time or longer, control is performed to change the operation number of the secondary pump to the optimum operation number Nop. I have to.
請求項2に係る本発明として、熱媒を冷却又は加熱する複数の熱源機器と、各熱源機器に対応して設けられるとともに、冷却又は加熱された熱媒を圧送する1次ポンプと、前記熱源機器からの熱媒を集約する第1送りヘッダと、前記第1送りヘッダからの熱媒が流入する第2送りヘッダと、前記第2送りヘッダから熱媒を送る複数の2次ポンプと、該2次ポンプからの熱媒を集約する第3送りヘッダと、この第3送りヘッダから熱媒が供給される外部負荷機器と、外部負荷機器で熱交換された熱媒が戻されるとともに、各熱源機器に分配する戻りヘッダと、前記第2送りヘッダと第3送りヘッダとを繋ぐ第1バイパス及び第1バイパス弁と、前記第1送りヘッダ部又はその近傍と前記戻りヘッダ部又はその近傍とを繋ぐ第2バイパスと、前記熱源機器の運転台数制御及び前記2次ポンプの運転制御を行う制御装置とを備える2ポンプ方式熱源設備において、
前記外部負荷機器側の循環流量Qを測定するための流量計と、前記第2送りヘッダと第3送りヘッダとの間の差圧を測定する差圧計と、前記2次ポンプの運転台数検出手段とを配設し、
前記制御装置は、下式(11)により前記2次ポンプの消費電力Wpを求め、このポンプ消費電力Wpが最小となることを条件に含む運転台数時を最適運転台数Nopとして決定することを特徴とする2ポンプ方式熱源設備におけるポンプ運転台数決定制御方法が提供される。
Qs:2次ポンプの流量設定値
e:ポンプ効率(下式(10)により算出したもの)
N:2次ポンプの運転台数
fs:2次ポンプの運転周波数
F:ポンプの定格周波数
Ae,Be,Ce:係数
The present invention according to
A flow meter for measuring the circulation flow rate Q on the external load device side, a differential pressure meter for measuring a differential pressure between the second feed header and the third feed header, and a means for detecting the number of operating secondary pumps And
The control device obtains the power consumption Wp of the secondary pump by the following equation (11), and determines the number of operating units including the condition that the pump power consumption Wp is minimized as the optimum operating number Nop. A method for determining the number of pumps to be operated in a two-pump heat source facility is provided.
Qs: Secondary pump flow rate setting
e: Pump efficiency (calculated by the following formula (10))
N: Number of operating secondary pumps
fs: secondary pump operating frequency F: rated pump frequency
Ae, Be, Ce: Coefficient
上記請求項2記載の発明では、図6に示されるようなポンプ効率eの性能曲線の近似式から、ポンプ流量設定値Qsとこのときのポンプ運転周波数fsに基づいたポンプ効率eを求める具体的手段を示している。
In the invention described in
請求項3に係る本発明として、前記制御装置は、前記2次ポンプの現状の運転台数時と、前記現状の運転台数から1台増加させた1台増加時と、前記現状の運転台数から1台減少させた1台減少時とについてそれぞれ、前記ポンプ消費電力Wpを求めるとともに、下式(7)によりポンプ運転周波数fsを求め、以下の条件1及び条件2を満たす運転台数時を前記最適運転台数Nopとして決定する請求項1、2いずれかに記載の2ポンプ方式熱源設備におけるポンプ運転台数決定制御方法が提供される。
B"=Bp×Qs/F
C"=Ap×Qs2−Ps
Qs:2次ポンプの流量設定値
Ps:両ヘッダ間の差圧の設定値
F:ポンプの定格周波数
Ap,Bp,Cp:係数
条件1:ポンプ運転周波数fsがポンプ最大周波数fmax以下。
条件2:ポンプ消費電力Wpが最小。
As a third aspect of the present invention, the control device is configured such that when the number of the secondary pumps currently operating is increased, when one unit is increased from the current number of operating units, and when the number of the current operating units is one. The pump power consumption Wp is obtained for each time when one unit is reduced, and the pump operation frequency fs is obtained by the following equation (7), and the optimum operation is performed when the number of operation satisfies the following
B "= Bp × Qs / F
C "= Ap × Qs 2 −Ps
Qs: Secondary pump flow rate setting
Ps: Set value of differential pressure between both headers F: Rated frequency of pump
Ap, Bp, Cp: Coefficient condition 1: Pump operating frequency fs is less than pump maximum frequency fmax.
Condition 2: Pump power consumption Wp is minimum.
上記請求項3記載の発明は、前記制御装置のポンプ運転台数決定制御方法を更に具体的に規定したものであり、2次ポンプの現状の運転台数時と1台増加時と1台減少時とについてそれぞれ、前記ポンプ消費電力Wp及びポンプ運転周波数fsを求め、前記条件1及び条件2を満たす運転台数時を最適運転台数Nopとして決定するものである。このため、2次ポンプが適正な周波数範囲で運転でき、システムの安定化が図れるようになる。
The invention according to the third aspect further defines the control method for determining the number of pumps operated by the control device, wherein the number of secondary pumps currently operating, when one is increased, and when one is decreased. Respectively, the pump power consumption Wp and the pump operating frequency fs are obtained, and the number of operating units satisfying the
以上詳説のとおり本発明によれば、ポンプ運転台数の増段・減段の決定に際し、増段ポイントと減段ポイントが適正に求められ、運転台数の決定が適確に行えるようになるとともに、ポンプの実際の運転状態を考慮して増段ポイント・減段ポイントが決定できるようになる。 As described above in detail, according to the present invention, when determining the increase / decrease of the number of pumps to be operated, the increase point and the decrease point are appropriately obtained, and the determination of the number of operations can be performed accurately. The increase / decrease point can be determined in consideration of the actual operating state of the pump.
以下、本発明の実施の形態について図面を参照しながら詳述する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
〔2ポンプ方式熱源設備の構成〕
図1に示される2ポンプ方式熱源設備1は、熱媒を冷却又は加熱する複数の熱源機器2A〜2Cと、各熱源機器2A〜2Cに対応して設けられるとともに、熱媒を圧送する1次ポンプ3A〜3Cと、前記熱源機器2A〜2Cからの熱媒を集約する第1送りヘッダ4と、前記第1送りヘッダ4からの熱媒が流入する第2送りヘッダ18と、前記第2送りヘッダ18から熱媒を送給する2次ポンプ6A〜6Cと、これら2次ポンプ6A〜6Cをそれぞれ回転数制御するインバータ7A〜7Cと、前記2次ポンプ6A〜6Cから熱媒が送給される第3送りヘッダ5と、前記第3送りヘッダ5から熱媒が供給される空調機等の外部負荷機器9,9…と、各外部負荷機器9に対応して設けられるとともに、該外部負荷機器9を流れる熱媒の流量を調整する流量調整弁16と、前記外部負荷機器9,9…で熱交換された熱媒が戻されるとともに、各熱源機器2A〜2Cに分配する戻りヘッダ10と、前記第2送りヘッダ18と第3送りヘッダ5とを繋ぐ第1バイパス11及び第1バイパス弁12と、前記第1送りヘッダ部4又はその近傍と前記戻りヘッダ部10又はその近傍とを繋ぐ第2バイパス13と、前記2次ポンプ6A〜6Cの可変圧力制御を行う可変圧力制御装置8Aと前記2次ポンプ6A〜6Cの運転台数制御を行うポンプ運転台数決定制御装置8Bとからなる制御装置8とを備えるものである。
[Configuration of two-pump heat source equipment]
A two-pump
また、計測機器類として、前記外部負荷機器9側の循環流量を測定するための流量計14と、前記第2送りヘッダ18と第3送りヘッダ5の間の差圧を測定する差圧計17と、前記第1バイパス11の熱媒の流量を測定する流量計15と、前記2次ポンプの運転台数を検出する運転台数検出手段(図示せず)とを配設している。
Further, as measuring instruments, a
前記2次ポンプ6A〜6Cは、流量範囲や機種などの仕様がそれぞれ同一のものである必要はなく、それぞれ仕様が異なる複数のポンプが備えられるようにしてもよい。その場合、制御装置8は、予め、実機での運転試験によって測定した各2次ポンプの吐出圧と流量との関係式を保有するようにする。これにより、流量範囲や機種などの仕様が異なる2次ポンプ6A〜6Cを設置しても、それぞれ最適な運転状態となるように個別的に2次ポンプ6A〜6Cを制御することが可能となる。
The
以下、具体的に詳述する。
〔2次ポンプの実機特性試験〕
先ず初めに、図4に示されるように、2次ポンプ6A〜6C、第3送りヘッダ5、第1バイパス11、第2送りヘッダ18を巡る循環系において、各2次ポンプ6A〜6C毎に、ヘッダ間差圧hPとポンプ流量Qとの関係式を得るようにする。
The details will be described below.
[Characteristic test of secondary pump]
First, as shown in FIG. 4, in the circulation system around the
具体的には、実機において、外部負荷機器9,9…側への熱媒の供給を遮断して前記第1バイパス11を循環する流路を形成し、前記各2次ポンプ6A〜6Cを定格周波数F(50Hz又は60Hz)で運転した状態で、前記バイパス弁12の開度を変え(例えば、開度10%ステップで100%→0%)、前記差圧計17による両ヘッダ間の差圧hPと前記第1バイパス11を流れる熱媒の流量Qとを測定し、両者の関係式を実験的に求める。これにより、配管などの抵抗部分も含めたポンプ群としてのP-Q特性線図を求めることができる(図5参照)。このP-Q特性の測定は、該当する全ての2次ポンプ6A〜6Cについて行う。
Specifically, in the actual machine, the supply of the heat medium to the
ここで、前記外部負荷機器側への熱媒の供給を遮断するには、前記送りヘッダ5と外部負荷機器9、9…との間に、図1に示されるように例えば手動のバルブ19を設けておき、該バルブ19を全閉とする。また、前記流量計15は、本ポンプの実機特性試験において計測できるものであればよく、定常運転時には除却できるように配設してもよい。
Here, in order to cut off the supply of the heat medium to the external load device side, for example, a
前記両ヘッダ間差圧hPとポンプ流量Qとの関係式は、下式(1)のように近似することができる。 The relational expression between the differential pressure hP between the headers and the pump flow rate Q can be approximated by the following expression (1).
上記関係式は、定格周波数F(50Hz又は60Hz)で運転した条件のものであるから、ポンプの運転周波数が任意の周波数fの時の関係式は、下式(2)のように近似することができる。 Since the above relational expression is based on the condition of operating at the rated frequency F (50 Hz or 60 Hz), the relational expression when the pump operating frequency is an arbitrary frequency f should be approximated as the following expression (2). Can do.
Q:ポンプ流量
f:ポンプの運転周波数
F:ポンプの定格周波数
Ap,Bp,Cp:係数
Ap, Bp, Cp: Coefficient
ところで、上記手法は、実験的に求める方法であるが、ポンプのP−Q特性図、配管系のP−Q特性図が予め判明している場合は、(ポンプのP−Q特性図による圧力)−(配管系のP−Q特性図による圧力低下)によるP−Q特性図を上式(1)で近似させることにより、上式(2)を導くことができる。 By the way, the above method is an experimentally obtained method. However, when the PQ characteristic diagram of the pump and the PQ characteristic diagram of the piping system are known in advance, (the pressure according to the PQ characteristic diagram of the pump). By approximating the PQ characteristic diagram by-) (pressure drop by the PQ characteristic diagram of the piping system) with the above formula (1), the above formula (2) can be derived.
〔ポンプ運転台数の決定制御方法〕
次に、2次ポンプ6A〜6Cの運転台数を決定するための制御方法について説明する。本発明に係るポンプ運転台数決定制御方法では、ポンプ運転台数決定制御装置8Bにおいて、後段で詳述する式(11)により2次ポンプ6A〜6Cのポンプ消費電力Wpを求め、このポンプ消費電力Wpが最小となることを条件に含む運転台数時を最適運転台数Nopとして決定している。
[Determination control method for number of pumps]
Next, a control method for determining the number of operating
より具体的には、前記制御装置8Bは、2次ポンプ6A〜6Cの現状の運転台数時と、この現状の運転台数から1台増加させた1台増加時と、現状の運転台数から1台減少させた1台減少時とについてそれぞれ、前記ポンプ消費電力Wpを求めるとともに、後段で詳述する式(7)によりポンプ運転周波数fsを求め、次の条件1及び条件2を満たす運転台数時を最適運転台数Nopとして決定している。
条件1:ポンプ運転周波数fsがポンプ最大周波数fmax以下。
条件2:ポンプ消費電力Wpが最小。
More specifically, the
Condition 1: The pump operating frequency fs is below the pump maximum frequency fmax.
Condition 2: Pump power consumption Wp is minimum.
このように、本発明では2次ポンプ6A〜6Cの最適運転台数Nopの決定に際し、2次ポンプのポンプ消費電力Wpを求め、このポンプ消費電力Wpが最小となる条件を含む運転台数時を最適運転台数Nopとして決定している点において、従来のヘッダ間差圧曲線とポンプのP-Q特性線図とから増段や減段の設定値を決定する運転台数決定制御方法とは異なり、設定した増段・減段のポイントと運用上の増段・減段のポイントとのずれによる流量の不足や余剰が生じなくなり、ポンプ消費電力Wpが最小となる条件から増段ポイント・減段ポイントが適正に求められる結果、運転台数の決定が適確に行えるようになる。
As described above, in the present invention, when determining the optimum operation number Nop of the
また、ポンプ消費電力Wpの算出において、後段の式(11)に示されるように、実際のポンプ運転状態に応じたポンプ効率eを考慮している。すなわち、図6に示されるように、所定のポンプ効率曲線の近似式(後段の式(10)参照)から、現状の運転状態(ポンプの運転周波数fと流量Q)に応じたポンプ効率eを算出し、そのときのポンプ消費電力Wpを求めることによって、このポンプ消費電力Wpが最小となる運転台数時を最適運転台数Nopとして決定している。このため、ポンプの実際の運転状態を考慮して増段ポイント・減段ポイントが決定できるようになる。 Further, in the calculation of the pump power consumption Wp, the pump efficiency e corresponding to the actual pump operation state is taken into consideration as shown in the following equation (11). That is, as shown in FIG. 6, the pump efficiency e corresponding to the current operating state (pump operating frequency f and flow rate Q) is calculated from an approximate expression of a predetermined pump efficiency curve (see formula (10) in the subsequent stage). By calculating and obtaining the pump power consumption Wp at that time, the number of operating units at which the pump power consumption Wp is minimum is determined as the optimum operating number Nop. For this reason, it is possible to determine the step increase point and the step decrease point in consideration of the actual operation state of the pump.
前記ポンプ消費電力Wpを求めるには、ヘッダ間差圧設定値Ps、ポンプ流量設定値Qs、ポンプ運転周波数fs及びポンプ効率eを算出する必要がある。それぞれの算出方法について、以下具体的に詳述する。 In order to obtain the pump power consumption Wp, it is necessary to calculate the header differential pressure setting value Ps, the pump flow rate setting value Qs, the pump operating frequency fs, and the pump efficiency e. Each calculation method will be described in detail below.
(ヘッダ間差圧設定値Ps)
ヘッダ間差圧設定値Psの算出方法は、外部負荷側の循環流量Qlを元に行う末端圧予測制御や、外部負荷機器側の流量調整弁の開度による算出方法などがあり、これらの算出方法は、本熱源設備1の設置状況や目的等によって使い分けられる。ここでは、前記末端圧予測制御によるヘッダ間差圧設定値Psの算出方法について説明する。本算出方法では、予め、流量計14により測定した外部負荷機器側の流量と、前記差圧計17により測定した各流量における両ヘッダ間の差圧との関係式(配管抵抗曲線)を求めておく。この配管抵抗曲線は、一般に図3に示されるように、次式(3)のような二次関数で表される。この次式(3)に、流量計14により測定した前記外部負荷機器側の循環流量Qlを代入して、現状の運転状態に応じた両ヘッダ間の差圧の設定値Psを求めることができるようになる。
(Header differential pressure setting value Ps)
The calculation method of the differential pressure setting value Ps between headers includes end pressure prediction control based on the circulation flow rate Ql on the external load side, and calculation method based on the opening of the flow adjustment valve on the external load device side. The method is selectively used depending on the installation status and purpose of the
Ql:外部負荷機器側の循環流量
Ahp,Bhp,Chp:実験的に求まる配管抵抗曲線の係数
Ql: Circulation flow on the external load equipment side
Ahp, Bhp, Chp: Coefficient of pipe resistance curve obtained experimentally
(ポンプ流量設定値Qs)
次に、2次ポンプ6A〜6Cの運転流量の設定値Qsを算出する。前記流量設定値Qsは、外部負荷機器側を循環する熱媒流量を運転中の各2次ポンプで分配する考えの下で決定する。
(Pump flow setting value Qs)
Next, the set value Qs of the operation flow rate of the
具体的には、各2次ポンプの容量範囲が同一の場合は、外部負荷機器側の循環流量Qlを流量計14により測定し、この循環流量Qlを運転中の2次ポンプの運転台数Nで除し、更に循環流量が不足しないように余裕流量qを加算して、2次ポンプ1台当たりの運転流量設定値Qsを次式(4)から算出する。
Specifically, when the capacity ranges of the secondary pumps are the same, the circulation flow rate Ql on the external load device side is measured by the
Ql:外部負荷機器側の循環流量
N:2次ポンプの運転台数
q:余裕流量
Ql: Circulation flow rate on the external load equipment side N: Number of secondary pumps operated q: Excess flow rate
そして、この2次ポンプ6A〜6Cの流量設定値Qsから、2次ポンプ6A〜6Cの運転可能な流量範囲(Qrmin〜Qrmax)に応じた2次ポンプの運転流量の設定値Qsを、次式(5)の関係式から算出する
Then, the flow rate set value Qs of the
Qrmax:2次ポンプの運転可能流量の最大値
Qrmin:2次ポンプの運転可能流量の最小値
ここで、上式(4)は、各2次ポンプ6A〜6Cの容量範囲が同一の場合について示したものであり、流量範囲が異なる2次ポンプが用いられている場合には、各2次ポンプの容量に対応して比例配分することにより、各2次ポンプの運転流量の設定値Qsを算出するようにする。
Here, the above equation (4) shows the case where the capacity ranges of the
(2次ポンプの運転周波数の設定値fs)
次に、上式(5)から算出した2次ポンプの運転流量Qsに対応する運転周波数の設定値fsを、上式(2)に基づいて算出する。具体的には、任意の運転周波数f時のP−Q関係式である上式(2)を、2次ポンプの任意の運転周波数fについて解いて、次式(6)のように変形する。
(Secondary pump operating frequency setting fs)
Next, the set value fs of the operating frequency corresponding to the operating flow rate Qs of the secondary pump calculated from the above equation (5) is calculated based on the above equation (2). Specifically, the above equation (2), which is a PQ relational expression at an arbitrary operating frequency f, is solved for an arbitrary operating frequency f of the secondary pump, and transformed into the following equation (6).
B'=Bp×Q/F
C'=Ap×Q2−hp
B '= Bp × Q / F
C ′ = Ap × Q 2 −hp
これにより、2次ポンプの運転周波数fsは、上式(6)のhP、Qにそれぞれ上式(3)で算出した両ヘッダ間の差圧の設定値Ps及び上式(5)で算出した2次ポンプの運転流量の設定値Qsを与えて、次式(7)から算出することができる。 As a result, the operating frequency fs of the secondary pump was calculated by the set value Ps of the differential pressure between the headers calculated by the above equation (3) to hP and Q of the above equation (6) and the above equation (5). Given the set value Qs of the operation flow rate of the secondary pump, it can be calculated from the following equation (7).
B"=Bp×Qs/F
C"=Ap×Qs2−Ps
B "= Bp × Qs / F
C "= Ap × Qs 2 −Ps
ここで、具体例を挙げて説明する。P-Q特性線図(上式(1)の係数Ap=-0.0027、Bp=-0.0319、Cp=127.1とする)及び定格周波数F=60Hzの2次ポンプが1台(N=1)運転していると仮定すると、ヘッダ間差圧設定値Ps=100kPa、ポンプ流量設定値Qs=100m3/hの場合、2次ポンプの運転周波数の設定値fs=59.0Hzとなる。また、同じ特性の2次ポンプが2台(N=2)運転していると仮定すると、ヘッダ間差圧設定値Ps=100kPa、ポンプ流量設定値Qs=50m3/hの場合、2次ポンプの運転周波数の設定値fs=54.3Hzとなる。 Here, a specific example will be described. PQ characteristic diagram (coefficient Ap = -0.0027, Bp = -0.0319, Cp = 127.1 in the above equation (1)) and one secondary pump with rated frequency F = 60Hz (N = 1) is operating. Assuming that the header differential pressure setting value Ps = 100 kPa and the pump flow rate setting value Qs = 100 m 3 / h, the setting value fs of the secondary pump is fs = 59.0 Hz. Assuming that two secondary pumps with the same characteristics (N = 2) are operating, if the differential pressure setting between headers Ps = 100 kPa and the pump flow rate setting Qs = 50 m 3 / h, the secondary pump The operating frequency setting value fs = 54.3Hz.
上式(7)により算出したポンプ運転周波数の設定値fsがポンプ最小周波数fmin以下の場合は、fs=fminとして、このときのポンプ流量設定値Qsを再度算出する。具体的には、上式(2)をポンプ流量設定値Qsについて解き、ポンプ運転周波数fs(=fmin)、ヘッダ間差圧設定値Psを代入した次式(8)から求める。 When the set value fs of the pump operating frequency calculated by the above equation (7) is less than or equal to the minimum pump frequency fmin, fs = fmin is set and the pump flow rate set value Qs at this time is calculated again. Specifically, the above equation (2) is solved for the pump flow rate setting value Qs, and is obtained from the following equation (8) in which the pump operating frequency fs (= fmin) and the inter-header differential pressure setting value Ps are substituted.
Bf=Bp×fs/F
Cf=Cp×(fs/F)2−Ps
Bf = Bp × fs / F
Cf = Cp × (fs / F) 2 −Ps
(ポンプ効率e)
本発明に係る制御方法では、2次ポンプ6A〜6Cの増段又は減段の設定にあたって、実際のポンプの運転流量や運転周波数に応じたポンプ効率eを考慮している。このため、流量に対してポンプ効率を一定とした従来の制御方法では、非効率な運転となるポイントがあり、ポンプ消費電力が無駄に浪費されていたのに対し、本制御方法では、ポンプ効率eを考慮することによってポンプ消費電力が最小にでき、効率的な運転が可能になる。
(Pump efficiency e)
In the control method according to the present invention, the pump efficiency e according to the actual operation flow rate and operation frequency of the pump is taken into account when setting the increase or decrease of the
具体的な算出方法について説明すると、任意のポンプ運転周波数f及びポンプ流量Qのときのポンプ効率eは、次式(9)のように近似できることが実験より明らかとなっている。 Explaining a specific calculation method, it is clear from experiments that the pump efficiency e at an arbitrary pump operating frequency f and pump flow rate Q can be approximated by the following equation (9).
F:ポンプの定格周波数(例えば、60Hz)
Ae,Be,Ce:係数
Ae, Be, Ce: Coefficient
なお、上式(9)の係数Ae,Be,Ceは、図5に示されるように、メーカー提示のポンプの流量Qとポンプ効率eの性能曲線を2次関数e=Ae×Q2+Be×Q+Ceで近似したときの係数である。図5の場合、Ae=-0.007、Be=1.5115、Ce=0.0717である。 As shown in FIG. 5, the coefficients Ae, Be, and Ce of the above equation (9) are obtained by using a quadratic function e = Ae × Q 2 + Be × It is a coefficient when approximated by Q + Ce. In the case of FIG. 5, Ae = −0.007, Be = 1.5115, and Ce = 0.0717.
上式(9)に、前段で求めたポンプ流量設定値Qs、ポンプ運転周波数設定値fsを代入することにより、次式(10)からポンプ効率eを算出できる。 By substituting the pump flow rate setting value Qs and the pump operation frequency setting value fs obtained in the previous stage into the above equation (9), the pump efficiency e can be calculated from the following equation (10).
ここで、具体例を挙げて説明する。図5に示されるポンプの流量Qとポンプ効率eの特性線図(上式(9)の係数Ae=-0.007、Be=1.5115、Ce=0.0717とする)の2次ポンプが1台(N=1)運転していると仮定すると、ヘッダ間差圧設定値Ps=100kPa、ポンプ流量設定値Qs=100m3/h、2次ポンプの運転周波数の設定値fs=59.0Hzの場合、ポンプ効率e=78.7%となる。また、同じ特性の2次ポンプが2台(N=2)運転していると仮定すると、ヘッダ間差圧設定値Ps=100kPa、ポンプ流量設定値Qs=50m3/h、2次ポンプの運転周波数の設定値fs=54.3Hzの場合、ポンプ効率e=51.3%となる。 Here, a specific example will be described. A characteristic diagram of the flow rate Q and pump efficiency e shown in FIG. 5 (with the coefficients Ae = −0.007, Be = 1.5115, Ce = 0.0717 in the above equation (9)), one secondary pump (N = 1) Assuming that the pump is operating, when the differential pressure setting between headers Ps = 100kPa, the pump flow rate setting Qs = 100m 3 / h, and the secondary pump operating frequency setting fs = 59.0Hz, the pump efficiency e = 78.7%. Assuming that two secondary pumps with the same characteristics are operating (N = 2), the differential pressure setting between headers Ps = 100 kPa, the pump flow rate setting Qs = 50 m 3 / h, the operation of the secondary pump When the frequency setting value fs = 54.3 Hz, the pump efficiency e = 51.3%.
(ポンプ消費電力Wp)
ヘッダ間差圧設定値Ps、ポンプ流量設定値Qs、ポンプ運転台数N、ポンプ効率eのときの2次ポンプ全体のポンプ消費電力Wpは、次式(11)から算出することができる。
(Pump power consumption Wp)
The pump power consumption Wp of the entire secondary pump when the inter-header differential pressure setting value Ps, the pump flow rate setting value Qs, the number of pumps operated N, and the pump efficiency e can be calculated from the following equation (11).
ここで、具体例を挙げて説明すると、1台の2次ポンプ(N=1)が運転していると仮定すると、ヘッダ間差圧設定値Ps=100kPa、ポンプ流量設定値Qs=100m3/h、2次ポンプの運転周波数の設定値fs=59.0Hz、ポンプ効率e=78.7%の場合、ポンプ消費電力Wp=3.5kWとなる。また、同じ特性の2次ポンプが2台(N=2)運転していると仮定すると、ヘッダ間差圧設定値Ps=100kPa、ポンプ流量設定値Qs=50m3/h、2次ポンプの運転周波数の設定値fs=54.3Hz、ポンプ効率e=51.3%の場合、ポンプ消費電力Wp=5.4kWとなる。 Here, a specific example will be described. Assuming that one secondary pump (N = 1) is operating, the differential pressure setting between headers Ps = 100 kPa, the pump flow rate setting Qs = 100 m 3 / h When the set value fs = 59.0 Hz for the operating frequency of the secondary pump and the pump efficiency e = 78.7%, the pump power consumption Wp = 3.5 kW. Assuming that two secondary pumps with the same characteristics are operating (N = 2), the differential pressure setting between headers Ps = 100 kPa, the pump flow rate setting Qs = 50 m 3 / h, the operation of the secondary pump When the frequency setting value fs = 54.3 Hz and pump efficiency e = 51.3%, the pump power consumption Wp = 5.4 kW.
(運転制御)
前記制御装置8Bは、前記2次ポンプの現状の運転台数時(N=N)と、現状の運転台数から1台増加させた1台増加時(N=N+1)と、現状の運転台数から1台減少させた1台減少時(N=N-1)とについてそれぞれ、次の条件1、2を満たすポンプ運転台数時を最適運転台数Nopとして決定する。
条件1:ポンプ運転周波数fsがポンプ最大周波数fmax以下。
条件2:ポンプ消費電力Wpが最小。
(Operation control)
The
Condition 1: The pump operating frequency fs is below the pump maximum frequency fmax.
Condition 2: Pump power consumption Wp is minimum.
具体例を挙げて説明すると、現状の2次ポンプの運転台数が1台(N=1)のとき、ポンプ運転周波数fs=59.0Hz<ポンプ最大周波数fmax=F=60Hzとすると、ポンプ消費電力Wp=3.5kWとなる。また、現状の運転台数より2次ポンプの運転台数を1台増加させた2台運転時のとき、ポンプ運転周波数fs=54.3Hz<ポンプ最大周波数fmax=F=60Hzとすると、ポンプ消費電力Wp=5.4kWとなる。ポンプ運転台数がN=1台のとき(現状の運転台数時)、N=2台のとき(1台増加時)ともに上記条件1を満たすが、N=1台のときの方がポンプ消費電力Wpが最小であるため、最適運転台数Nop=1台となる。
As a specific example, when the number of operating secondary pumps is one (N = 1) and the pump operating frequency fs = 59.0 Hz <the maximum pump frequency fmax = F = 60 Hz, the pump power consumption Wp = 3.5kW. In addition, when operating two pumps, the number of secondary pumps increased by one from the current number of operating pumps, if pump operating frequency fs = 54.3 Hz <pump maximum frequency fmax = F = 60 Hz, pump power consumption Wp = 5.4kW. The
ポンプの増段又は減段指令の実行は、システムの安定化のため、現状の運転台数Nと最適運転台数Nopとが所定時間以上継続して異なる場合に、最適運転台数Nopに変更するようにする。N≠Nopが継続する時間としては、例えば5分〜30分程度とすることができる。 In order to stabilize the system, the pump increase or decrease command is changed to the optimal operation number Nop when the current operation number N and the optimal operation number Nop continue to differ for a predetermined time or longer. To do. The time for which N ≠ Nop continues can be, for example, about 5 minutes to 30 minutes.
図7は、従来技術としてポンプ効率eを最大効率65%で一定とした場合と、本発明としてポンプ効率eを式(10)により算出した場合とについて、ポンプ消費電力Wpの計算値と実測値とを比較したグラフである。これより、ポンプ効率が最大効率で一定とした従来技術の場合には、実測値よりも計算値の方が低くなる傾向にあるが、本制御方法では実測値と計算値とが良く一致している。従って、本制御方法は、ポンプ消費電力の計算精度が高く、より実機に即したものであることが判る。 FIG. 7 shows calculated values and actual measured values of the pump power consumption Wp when the pump efficiency e is constant at a maximum efficiency of 65% as the prior art and when the pump efficiency e is calculated by the equation (10) as the present invention. It is the graph which compared with. As a result, in the case of the conventional technology in which the pump efficiency is constant at the maximum efficiency, the calculated value tends to be lower than the actually measured value. However, in this control method, the actually measured value and the calculated value agree well. Yes. Therefore, it can be seen that this control method has a high calculation accuracy of the pump power consumption and is more suitable for an actual machine.
また、最大外部負荷機器側流量320m3/h、最大ポンプ吐出圧110kPaで、外部負荷機器側流量出現時間が図8となる条件において、従来の負荷流量に基づいた台数制御と、本発明に係る制御方法を用いた最適台数制御との比較を行った。ポンプ設備としては、設置台数4台、ポンプ1台あたりの最大流量は80m3/h、最大ポンプ吐出圧は110kPaとした。また、ヘッダ間差圧線図の係数(配管抵抗特性)は、Ahp=0.0009766、Bhp=0、Chp=10とした。この配管抵抗特性は、従来の制御方法も同じとした。 Further, in the condition that the maximum external load equipment side flow rate is 320 m 3 / h, the maximum pump discharge pressure is 110 kPa, and the external load equipment side flow rate appearance time is as shown in FIG. Comparison with the optimal number control using the control method was performed. As the pump equipment, the number of installed units was 4, the maximum flow rate per pump was 80 m 3 / h, and the maximum pump discharge pressure was 110 kPa. The coefficients (pipe resistance characteristics) in the header differential pressure diagram were Ahp = 0.0009766, Bhp = 0, and Chp = 10. This pipe resistance characteristic is the same as in the conventional control method.
ポンプ特性としては、P-Q特性線図の係数をAp=-0.0027、Bp=-0.0319、Cp=127.1とし、ポンプ流量Qとポンプ効率eとの特性線図の係数をAe=-0.007、Be=1.5115、Ce=0.0717とした。また、定格周波数F=60Hzとした。 As the pump characteristics, the coefficients of the PQ characteristic diagram are Ap = -0.0027, Bp = -0.0319, Cp = 127.1, and the coefficients of the characteristic diagram of the pump flow rate Q and the pump efficiency e are Ae = -0.007, Be = 1.5115 Ce = 0.0717. The rated frequency F was set to 60 Hz.
従来の制御方法では、図13のフローに従い、運転台数N=4台時は、負荷流量QlがQdown_4=240m3/h未満で、運転台数3台に減段する。運転台数N=3台時は、負荷流量QlがQdown_3=160m3/h未満で、運転台数2台に減段し、Qup_3=240m3/h超過で運転台数4台に増段する。運転台数N=2台時は、負荷流量QlがQdown_2=80m3/h未満で、運転台数1台に減段し、Qup_2=160m3/h超過で、運転台数3台に増段する。また、運転台数N=1台時は、負荷流量QlがQup_1=80m3/h超過で、運転台数2台に増段する。 In the conventional control method, according to the flow of FIG. 13, when the number of operating units N is 4, the load flow rate Ql is less than Qdown_4 = 240 m 3 / h, and the number of operating units is reduced to 3 units. When the number of operating units is N = 3, the load flow rate Ql is less than Qdown_3 = 160 m 3 / h, the number of operating units is reduced to 2 units, and when Qup_3 = 240 m 3 / h is exceeded, the number of operating units is increased to 4 units. When the number of operating units is N = 2, the load flow rate Ql is less than Qdown_2 = 80m 3 / h, and the number of operating units is reduced to one unit. When Qup_2 = 160m 3 / h is exceeded, the number of operating units is increased to three units. In addition, when the number of operating units is N = 1, the load flow rate Ql exceeds Qup_1 = 80 m 3 / h, and the number of operating units increases to two.
本制御方法では、与えられたポンプ特性を用いて、上式(3)〜式(11)に基づいてポンプ消費電力Wp、ポンプ運転周波数fsを算出し、上記条件1及び条件2により最適運転台数Nopを決定する。ただし、余裕流量q=0m3/h、運転可能流量最大値Qrmax=140m3/h、運転可能流量最小値Qrmin=10m3/h、ポンプ最小周波数fmin=10Hz、ポンプ最大周波数fmax=60Hzとした。 In this control method, the pump power consumption Wp and pump operating frequency fs are calculated based on the above formulas (3) to (11) using the given pump characteristics. Determine Nop. However, the marginal flow q = 0m 3 / h, the maximum operable flow rate Qrmax = 140m 3 / h, the minimum operable flow rate Qrmin = 10m 3 / h, the minimum pump frequency fmin = 10Hz, the maximum pump frequency fmax = 60Hz .
以上の条件で本制御方法と従来の制御方法についてシミュレーションを行った。その結果として、ポンプ運転台数と流量との関係を図9に、消費電力と流量との関係を図10に、年間消費電力量の比較を図11に示す。その結果、従来の制御方法では年間の消費電力量が9251kWh必要であったシステムでも、本制御方法によると8054kWhで済み、1467kWh、率にして約15%の電力量が削減できるようになる。 The simulation was performed for the present control method and the conventional control method under the above conditions. As a result, FIG. 9 shows the relationship between the number of pumps operated and the flow rate, FIG. 10 shows the relationship between the power consumption and the flow rate, and FIG. 11 shows a comparison of the annual power consumption. As a result, even with a system that requires 9251 kWh of annual power consumption with the conventional control method, 8054 kWh is required according to this control method, and 1467 kWh, or approximately 15% of the amount of power can be reduced.
1…2ポンプ方式熱源設備、2A〜2C…熱源機器、3A〜3C…1次ポンプ、4…第1送りヘッダ、5…第3送りヘッダ、6A〜6C…2次ポンプ、7A〜7C…インバータ、8…制御装置、9…外部負荷機器、10…戻りヘッダ、11…第1バイパス、12…第1バイパス弁、13…第2バイパス、14・15…流量計、16…流量調整弁、17…差圧計、18…第2送りヘッダ、19…バルブ
DESCRIPTION OF
Claims (3)
前記外部負荷機器側の循環流量Qを測定するための流量計と、前記第2送りヘッダと第3送りヘッダとの間の差圧を測定する差圧計と、前記2次ポンプの運転台数検出手段とを配設し、
前記制御装置は、下式(11)により前記2次ポンプの消費電力Wpを求め、このポンプ消費電力Wpが最小となることを条件に含む運転台数時を最適運転台数Nopとして決定し、現状の運転台数Nと前記最適運転台数Nopとが所定時間以上継続して異なる場合に、前記2次ポンプの運転台数を前記最適運転台数Nopに変更する指令を実行することを特徴とする2ポンプ方式熱源設備におけるポンプ運転台数決定制御方法。
Qs:2次ポンプの流量設定値
e:ポンプ効率
N:2次ポンプの運転台数 A plurality of heat source devices that cool or heat the heat medium, a primary pump that is provided corresponding to each heat source device and that pumps the cooled or heated heat medium, and a heat pump that collects the heat medium from the heat source device. One feed header, a second feed header into which the heat medium from the first feed header flows, a plurality of secondary pumps that feed the heat medium from the second feed header, and a heat medium from the secondary pump are collected A third feed header, an external load device to which a heat medium is supplied from the third feed header, a heat medium that is heat-exchanged by the external load device is returned, and a return header that is distributed to each heat source device, A first bypass and a first bypass valve that connect the second feed header and the third feed header; a second bypass that connects the first feed header portion or its vicinity and the return header portion or its vicinity; and the heat source device Operation unit control and front In 2 pump type heat source equipment and a control device that performs operation control of the secondary pump,
A flow meter for measuring the circulation flow rate Q on the external load device side, a differential pressure meter for measuring a differential pressure between the second feed header and the third feed header, and a means for detecting the number of operating secondary pumps And
The control device obtains the power consumption Wp of the secondary pump by the following equation (11), determines the number of operating units including the condition that the pump power consumption Wp is minimum as the optimum operating unit number Nop, A two-pump heat source that executes a command to change the number of operating secondary pumps to the optimum operating number Nop when the operating number N and the optimum operating number Nop are continuously different for a predetermined time or more. Control method for determining the number of pumps in the facility.
Qs: Secondary pump flow rate setting value e: Pump efficiency N: Number of secondary pumps
前記外部負荷機器側の循環流量Qを測定するための流量計と、前記第2送りヘッダと第3送りヘッダとの間の差圧を測定する差圧計と、前記2次ポンプの運転台数検出手段とを配設し、
前記制御装置は、下式(11)により前記2次ポンプの消費電力Wpを求め、このポンプ消費電力Wpが最小となることを条件に含む運転台数時を最適運転台数Nopとして決定することを特徴とする2ポンプ方式熱源設備におけるポンプ運転台数決定制御方法。
Qs:2次ポンプの流量設定値
e:ポンプ効率(下式(10)により算出したもの)
N:2次ポンプの運転台数
fs:2次ポンプの運転周波数
F:ポンプの定格周波数
Ae,Be,Ce:係数 A plurality of heat source devices that cool or heat the heat medium, a primary pump that is provided corresponding to each heat source device and that pumps the cooled or heated heat medium, and a heat pump that collects the heat medium from the heat source device. One feed header, a second feed header into which the heat medium from the first feed header flows, a plurality of secondary pumps that feed the heat medium from the second feed header, and a heat medium from the secondary pump are collected A third feed header, an external load device to which a heat medium is supplied from the third feed header, a heat medium that is heat-exchanged by the external load device is returned, and a return header that is distributed to each heat source device, A first bypass and a first bypass valve that connect the second feed header and the third feed header; a second bypass that connects the first feed header portion or its vicinity and the return header portion or its vicinity; and the heat source device Operation unit control and front In 2 pump type heat source equipment and a control device that performs operation control of the secondary pump,
A flow meter for measuring the circulation flow rate Q on the external load device side, a differential pressure meter for measuring a differential pressure between the second feed header and the third feed header, and a means for detecting the number of operating secondary pumps And
The control device obtains the power consumption Wp of the secondary pump by the following equation (11), and determines the number of operating units including the condition that the pump power consumption Wp is minimized as the optimum operating number Nop. A control method for determining the number of operating pumps in a two-pump heat source facility
Qs: Secondary pump flow rate set value e: Pump efficiency (calculated by the following formula (10))
N: Number of operating secondary pumps
fs: secondary pump operating frequency F: rated pump frequency
Ae, Be, Ce: Coefficient
B"=Bp×Qs/F
C"=Ap×Qs2−Ps
Qs:2次ポンプの流量設定値
Ps:両ヘッダ間の差圧の設定値
F:ポンプの定格周波数
Ap,Bp,Cp:係数
条件1:ポンプ運転周波数fsがポンプ最大周波数fmax以下。
条件2:ポンプ消費電力Wpが最小。 The control device includes a current operation number of the secondary pumps, an increase of one unit that is increased from the current operation number, and a decrease of one unit that is decreased by one from the current operation number. The pump power consumption Wp is obtained for each of the above, and the pump operating frequency fs is obtained by the following equation (7), and the number of operating vehicles satisfying the following conditions 1 and 2 is determined as the optimum operating number Nop: 2. A method for determining the number of pumps to be operated in the two-pump heat source facility according to any one of the above.
B "= Bp × Qs / F
C "= Ap × Qs 2 −Ps
Qs: Secondary pump flow rate setting
Ps: Set value of differential pressure between both headers F: Rated frequency of pump
Ap, Bp, Cp: Coefficient condition 1: Pump operating frequency fs is less than pump maximum frequency fmax.
Condition 2: Pump power consumption Wp is minimum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013012865A JP6198398B2 (en) | 2013-01-28 | 2013-01-28 | Control method for determining the number of operating pumps in a two-pump heat source facility |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013012865A JP6198398B2 (en) | 2013-01-28 | 2013-01-28 | Control method for determining the number of operating pumps in a two-pump heat source facility |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014145493A JP2014145493A (en) | 2014-08-14 |
JP6198398B2 true JP6198398B2 (en) | 2017-09-20 |
Family
ID=51425883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013012865A Active JP6198398B2 (en) | 2013-01-28 | 2013-01-28 | Control method for determining the number of operating pumps in a two-pump heat source facility |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6198398B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6210219B2 (en) * | 2014-01-31 | 2017-10-11 | 三菱重工サーマルシステムズ株式会社 | Pump number control method, pump number control device, pump system, heat source system, and program |
WO2016059996A1 (en) * | 2014-10-15 | 2016-04-21 | 株式会社Ihi | Bog compression equipment and reciprocating compressor control method |
CN105865105B (en) * | 2016-03-30 | 2019-01-15 | 北京百度网讯科技有限公司 | The control method and device of chilled water secondary pumping system |
CN109974308B (en) * | 2019-02-19 | 2021-04-13 | 广东芬尼克兹节能设备有限公司 | Control method and system of multi-online heat pump system |
CN113465442B (en) * | 2021-06-29 | 2024-07-09 | 青岛海尔空调电子有限公司 | Method and system for determining energy consumption of cooling tower |
JP2023137404A (en) * | 2022-03-18 | 2023-09-29 | ダイキン工業株式会社 | heat source system |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003262384A (en) * | 2002-03-08 | 2003-09-19 | Yamatake Corp | Air conditioning heat source system and controlling method of the air conditioning heat source system |
JP4213502B2 (en) * | 2003-04-15 | 2009-01-21 | 株式会社山武 | Rotational speed control method and apparatus for cold / hot water circulation pump |
JP2006194186A (en) * | 2005-01-14 | 2006-07-27 | Sayama Seisakusho:Kk | Large flow rate operation control method and large flow rate operation control system |
JP4440147B2 (en) * | 2005-03-10 | 2010-03-24 | 新日本空調株式会社 | Operation control method for two-pump heat source equipment |
JP4579805B2 (en) * | 2005-09-21 | 2010-11-10 | 株式会社日立産機システム | How to operate the refrigerator |
JP4829818B2 (en) * | 2007-03-15 | 2011-12-07 | 新日本空調株式会社 | Operation control method for 1 pump heat source equipment |
JP2010276006A (en) * | 2009-05-26 | 2010-12-09 | Shigeru Ogura | Pump number control by pump shaft power |
JP5462728B2 (en) * | 2010-06-25 | 2014-04-02 | 鹿島建設株式会社 | Method and apparatus for determining the number of operating refrigerators |
-
2013
- 2013-01-28 JP JP2013012865A patent/JP6198398B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014145493A (en) | 2014-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6198398B2 (en) | Control method for determining the number of operating pumps in a two-pump heat source facility | |
JP4829818B2 (en) | Operation control method for 1 pump heat source equipment | |
KR101662468B1 (en) | Heat source system, and device and method for controlling cooling water supply device | |
KR101508448B1 (en) | Heat source system and number-of-machines control method for heat source system | |
JP5209244B2 (en) | Air conditioning control system and air conditioning control method | |
EP2397786B1 (en) | Secondary pump type heat source system and secondary pump type heat source control method | |
EP2837898B1 (en) | Air-conditioning system | |
JP6644559B2 (en) | Heat source control system, control method and control device | |
EP3115707A1 (en) | Heat source device | |
JP2006266644A (en) | Control method of pump for heat source machine, and air-conditioning heat source system | |
JP2010127559A (en) | Heat source control system for air conditioning facility | |
JP2007127321A (en) | Cold water load factor controller for refrigerator | |
JP4523461B2 (en) | Operation control method for 1-pump heat source equipment | |
Tianyi et al. | An optimal differential pressure reset strategy based on the most unfavorable thermodynamic loop on-line identification for a variable water flow air conditioning system | |
JP6434848B2 (en) | Heat source control system | |
JP4440147B2 (en) | Operation control method for two-pump heat source equipment | |
JP4925885B2 (en) | Flow rate measurement method for piping system equipment | |
JP2005127586A (en) | Primary pump type heat source variable flow rate control system and primary pump minimum flow rate securing method | |
CN204943786U (en) | Be applicable to the vari-able flow control system of air-conditioning Primary pump system | |
CN113983675B (en) | Bypass differential pressure variable frequency air conditioner chilled water adjusting system and hydraulic balance method thereof | |
JP7118689B2 (en) | HEAT SOURCE SYSTEM, HEAT SOURCE SYSTEM CONTROL METHOD, HEAT SOURCE SYSTEM CONTROL PROGRAM, AND HEAT SOURCE SYSTEM CONTROL DEVICE | |
JP5313848B2 (en) | Water supply pressure control system and method | |
CN116261305A (en) | Rack-level end cooling system for data center and control method | |
JP2006266566A (en) | Operation control method for two pump system heating source facility | |
JP2015169367A (en) | Air conditioning system and air conditioning system control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161121 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170426 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170516 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170802 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170822 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6198398 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |