JP2010276006A - Pump number control by pump shaft power - Google Patents
Pump number control by pump shaft power Download PDFInfo
- Publication number
- JP2010276006A JP2010276006A JP2009142728A JP2009142728A JP2010276006A JP 2010276006 A JP2010276006 A JP 2010276006A JP 2009142728 A JP2009142728 A JP 2009142728A JP 2009142728 A JP2009142728 A JP 2009142728A JP 2010276006 A JP2010276006 A JP 2010276006A
- Authority
- JP
- Japan
- Prior art keywords
- pump
- control
- pressure
- number control
- shaft power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Control Of Non-Positive-Displacement Pumps (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Abstract
Description
本発明は、熱交換器用熱源送水二次ポンプの台数制御に関するものである。 The present invention relates to control of the number of heat source water supply secondary pumps for heat exchangers.
従来の送水二次ポンプ台数制御は負荷流量計測による冷水または温水の負荷流量を流量計で計測し、二位置調節器のオンオフにて台数制御を実施する方式または台数制御コントローラにポンプの流量定格値を設定し一定時間の平均値演算した結果で負荷に合ったポンプ台数を増減段して負荷に送水する方式が広く知られている。 Conventional control of the number of secondary water pumps uses a flow meter to measure the load flow of cold water or hot water by load flow measurement, and controls the number of units by turning on and off the two-position controller. A method of supplying water to the load by increasing / decreasing the number of pumps suitable for the load based on the result of calculating the average value for a certain period of time is widely known.
従来の送水二次ポンプ台数制御は負荷流量計測による二位置調節器のオンオフにて台数制御する方式または台数制御コントローラで台数制御をするため、流量計を送水配管に取付ける必要があり流量計本体と配管工事および配線工事が必要で費用が高額になる。 The conventional control of the number of secondary water pumps controls the number of units by turning on and off the two-position controller based on load flow measurement, or the number control controller controls the number of units, so it is necessary to attach a flow meter to the water supply pipe. Piping work and wiring work are necessary, and the cost is high.
近年ではポンプ台数制御に合わせて送水圧力制御にインバータを採用してポンプ回転数を制御してより適切な流量制御を実施しているがポンプ増減段をポンプ定格流量にて判断するためポンプ軸動力が考慮されていない。 In recent years, an inverter has been adopted to control the number of pumps to control the pump rotation speed by controlling the pump rotation speed. Is not taken into account.
また送水圧力制御も送水元圧力制御より送水負荷側の末端にて圧力制御する末端圧制御または末端差圧制御方式で、負荷側の熱交換器流量に合った送水で省エネルギー効果が得られることから近年多くの送水二次ポンプで採用されているが、この末端に取付けた圧力発信器または差圧発信器を有効に利用していない。 Also, the water pressure control is a terminal pressure control or terminal differential pressure control system that controls the pressure at the terminal on the water supply load side than the water source pressure control, and energy saving effect is obtained by water supply that matches the flow rate of the heat exchanger on the load side. In recent years, it has been adopted in many water secondary pumps, but the pressure transmitter or differential pressure transmitter attached to this end is not used effectively.
本発明は末端圧発信器または末端差圧発信器からの圧力制御で圧力調節器の制御出力信号から運転中のポンプインバータ周波数状態と圧力バイパス弁開度状態から台数制御コントローラがポンプの軸動力演算とバイパス流量を判断しポンプの台数制御をするものである。 In the present invention, the pressure control from the terminal pressure transmitter or the terminal differential pressure transmitter is used to calculate the shaft power of the pump based on the pump inverter frequency state and the pressure bypass valve opening state during operation from the control output signal of the pressure regulator. The bypass flow rate is judged and the number of pumps is controlled.
本発明は下記に記載されるような効果がある。 The present invention has the following effects.
流量計本体と配管工事および配線工事が不必要で費用が軽減できる。 The flow meter body, piping work and wiring work are unnecessary and the cost can be reduced.
ポンプにはインバータが必要だが台数制御コントローラがポンプの軸動力を考慮してポンプの台数制御を適正に判断して熱交換器負荷に対応できため無駄なエネルギーを使わずランニングコストの低減と省エネルギー効果が多くなり、地球温暖化ガスO2排出量の削減に貢献できる。 Although an inverter is required for the pump, the unit controller can properly determine the number control of the pump in consideration of the shaft power of the pump and respond to the heat exchanger load, thus reducing the running cost without using wasted energy and saving energy Can contribute to the reduction of global warming gas O2 emissions.
図3は熱交換器用熱源計装図で送水配管末端に取付けた末端差圧発信器3から圧力信号を圧力用調節器2に入力し制御された制御出力信号を変換器4に入力して出力をポンプ用インバータ6で送水ポンプ5の回転数制御と圧力制御バイパス弁7の開度調整により適切な送水圧制御を実施する。 FIG. 3 is a heat source instrumentation diagram for a heat exchanger. A pressure signal is input to a
圧力用調節器2からの制御出力を台数制御コントローラに入力し、制御出力信号と運転台数により軸動力演算の結果で増減段判断を実行しポンプ台数制御をする。 The control output from the
図4、(A)図は圧力制御用調節器の制御信号グラフでその信号を変換器4に入力して変換器4出力の一例として(B)図グラフのようにポンプ用インバータを50%から100%周波数で動作させ、圧力制御バイパス弁を0%から100%で作動させた場合を示している。 FIGS. 4A and 4B are control signal graphs of the pressure control regulator, and the signals are input to the
図5はポンプ回転数による変化グラフで流量(C)図と吐出圧力(D)図およびポンプ用三相電動モータの軸動力(E)図であり流量は比例して吐出圧力は2乗に比例する、またポンプ用三相電動モータの軸動力は3乗に比例するため、周波数100%で運転しているときは流量、吐出圧、軸動力は100%で周波数を60%に変えると理論上流量は60%になり吐出圧は36%でポンプ用三相電動モータの軸動力は21.6%になる。 FIG. 5 is a graph showing the flow rate (C), the discharge pressure (D), and the shaft power (E) of the three-phase electric motor for the pump. The flow rate is proportional and the discharge pressure is proportional to the square. The shaft power of the three-phase electric motor for pumps is proportional to the third power, so when operating at a frequency of 100%, the flow rate, discharge pressure, shaft power is 100% and the frequency is changed to 60%. The flow rate is 60%, the discharge pressure is 36%, and the shaft power of the pump three-phase electric motor is 21.6%.
このことから1台のポンプで100%の運転より、60%の2台運転の方がポンプ用三相電動モータの軸動力43.2%の消費で送水流量が120%と多くなる。 Therefore, 60% of the two pumps consume 43.2% of the shaft power of the pump three-phase electric motor and 120% of the water supply flow rate is higher than that of 100% with one pump.
図6は熱交換器用熱源送水配管の抵抗線図13で流量が増加すると配管抵抗も増加していく、このときの送水圧として送水ポンプが負荷側の送水圧力として必要な圧力14の線図になる。 FIG. 6 is a resistance diagram of the heat source water supply piping for the heat exchanger. As the flow rate increases, the piping resistance also increases. As a water supply pressure at this time, the water pump shows a pressure 14 required as a load side water supply pressure. Become.
また図6にポンプ台数制御時の定格運転のポンプ1台運転9a、2台運転10a、3台運転11a、4台運転12aおよびインバータ最低設定周波数の一例として1台運転9b、2台運転10b、3台運転11b、4台運転12bの圧力線図を示してある。 FIG. 6 shows a single operation 9b, a two operation 10b as an example of the pump single operation 9a, a two
従来の流量制御によるポンプ台数制御はポンプの定格値により増段ポイント15を設定し、流量が増段設定流量を一定時間超えるとポンプ増段を実行して減段ポイント16を一定時間下回るとポンプ減段を実行する。 In the conventional control of the number of pumps by the flow rate control, the step increase point 15 is set according to the rated value of the pump, and when the flow rate exceeds the step increase set flow rate for a certain time, the pump step increase is executed and when the flow rate control falls below the step decrease
図7は本発明の実施例をグラフに示した抵抗線図13と供給圧力として必要な圧力14の線図に加え定格運転のポンプ1台運転9a、2台運転10aとインバータによる最低設定周波数の一例として1台運転9b、台運転10bを示した圧力線図にポンプ1台をインバータ運転で周波数を増加させたときの圧力線図9cが示してあります。 FIG. 7 is a graph showing the resistance diagram 13 of the embodiment of the present invention and the diagram of the pressure 14 required as the supply pressure, in addition to the rated operation of the single pump operation 9a, the
この圧力線図を確認するとインバータにより周波数を増加させた1台運転の圧力線図9cが最低周波数で2台運転した時の圧力線図10bを越えてしまうポイントが発生します。このときに1台運転で周波数を上げた軸動力と2台最低周波数で運転した軸動力を比較した結果、2台運転の軸動力が少なければ2台のポンプで負荷側に送水する方が適切かつ省エネルギーな台数制御が可能になる。 If this pressure diagram is confirmed, there will be a point where the pressure diagram 9c of the single unit operation with the frequency increased by the inverter exceeds the pressure diagram 10b when two units are operated at the lowest frequency. At this time, as a result of comparing the shaft power increased in frequency with one unit and the shaft power operated at the lowest frequency of two units, it is more appropriate to feed water to the load side with two pumps if the shaft power of two units is small In addition, energy-saving unit control is possible.
ポンプの増減段は台数制御コントローラのプログラム演算で最適軸動力を判断させポンプ増段を実行し減段は送水流量が減ることでインバータの周波数が最低になったのち圧力制御バイパス弁7が開き始めの一定開度を超えたときポンプ減段を実行する。 The increase / decrease stage of the pump determines the optimum shaft power by the program calculation of the unit controller, and the pump increase stage is executed. In the decrease stage, the pressure
図3では末端差圧発信器3で末端差圧を測定する形態を示したが、末端にある熱交換器上流配管部から取出した圧力発信器の形態であっても本発明の効果は同一である。 Although FIG. 3 shows a form in which the terminal differential pressure is measured by the terminal
図1は台数制御コントローラ制御ブロック図で示すように圧力制御信号によりポンプ軸動力を演算して運転台数を掛算した値とポンプ最低周波数に運転台数プラス1台の軸動力を掛けた値を比較判断し、増断タイマーの設定タイムアップ後にポンプ増断をする。 Figure 1 shows a comparison of the value obtained by calculating the pump shaft power by the pressure control signal and multiplying the number of operating units by the pressure control signal and the value obtained by multiplying the minimum pump frequency by the number of operating units plus one shaft power Then, the pump is cut off after the set-up timer is up.
なお、ポンプ最低周波数に運転台数プラス1台の軸動力を掛けた値には運転台数により運転台数補正値を付加することでポンプ吐出圧補正を実施する。 The pump discharge pressure correction is carried out by adding the operation number correction value to the value obtained by multiplying the minimum pump frequency by the number of operating units plus one shaft power.
また減段は、圧力制御信号でポンプ用インバータの最低周波数に落ちた後に圧力制御バイパス弁が一定開度以上で減段タイマーの設定タイムアップ後にポンプ減段をする。 The step-down step is performed after the pressure control bypass valve is over a certain opening degree after the pressure control signal falls to the lowest frequency of the pump inverter, and the step-down timer is set up after the step-down timer is set up.
増断または減段が実行された後は圧力制御を安定させる時間として効果待ちタイマーを設定し、つぎの増減断判断を実行する。 After the increase or decrease step is executed, an effect waiting timer is set as the time to stabilize the pressure control, and the next increase / decrease determination is executed.
図2は台数制御コントローラのブロック図を示してあるが、圧力制御部とインバータ出力信号および圧力制御バイパス出力信号を備えた形態であっても本発明の効果は同一である。 FIG. 2 shows a block diagram of the unit control controller, but the effect of the present invention is the same even if the pressure control unit, the inverter output signal, and the pressure control bypass output signal are provided.
1、台数制御コントローラ
2、差圧力調節器
3、差圧発信器
4、変換器
5、送水ポンプ
6、インバータ
7、バイパス弁
8、熱交換器
9、1台運転時ポンプ吐出圧力線図
10、2台運転時ポンプ吐出圧力線図
11、3台運転時ポンプ吐出圧力線図
12、4台運転時ポンプ吐出圧力線図
13、送水配管圧力損失線図
14、必要送水圧力線図
15、ポンプ増段ポイント
16、ポンプ減段ポイント
201、圧力制御信号
401、インバータ動作グラフ
402、圧力制御バイパス弁動作グラフ1.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009142728A JP2010276006A (en) | 2009-05-26 | 2009-05-26 | Pump number control by pump shaft power |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009142728A JP2010276006A (en) | 2009-05-26 | 2009-05-26 | Pump number control by pump shaft power |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010276006A true JP2010276006A (en) | 2010-12-09 |
Family
ID=43423175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009142728A Pending JP2010276006A (en) | 2009-05-26 | 2009-05-26 | Pump number control by pump shaft power |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010276006A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102418703A (en) * | 2011-11-29 | 2012-04-18 | 深圳市宏事达实业发展有限公司 | Online matching control device for intelligent water pump system |
JP2014145493A (en) * | 2013-01-28 | 2014-08-14 | Shin Nippon Air Technol Co Ltd | Pump operation unit number decision control method in two-pump type heat source equipment |
CN104884809A (en) * | 2012-12-17 | 2015-09-02 | Itt制造企业有限责任公司 | Optimized technique for staging and de-staging pumps in a multiple pump system |
-
2009
- 2009-05-26 JP JP2009142728A patent/JP2010276006A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102418703A (en) * | 2011-11-29 | 2012-04-18 | 深圳市宏事达实业发展有限公司 | Online matching control device for intelligent water pump system |
CN104884809A (en) * | 2012-12-17 | 2015-09-02 | Itt制造企业有限责任公司 | Optimized technique for staging and de-staging pumps in a multiple pump system |
US10082804B2 (en) | 2012-12-17 | 2018-09-25 | Itt Manufacturing Enterprises Llc | Optimized technique for staging and de-staging pumps in a multiple pump system |
JP2014145493A (en) * | 2013-01-28 | 2014-08-14 | Shin Nippon Air Technol Co Ltd | Pump operation unit number decision control method in two-pump type heat source equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110274361B (en) | Water multi-connected air conditioning system and control method of variable-frequency water pump thereof | |
CN102997373B (en) | Method for controlling outdoor fan of air conditioner according to environmental wind direction | |
JP4106054B2 (en) | Stability control system and method for centrifugal compressors operated in parallel | |
WO2021008146A1 (en) | Control method and apparatus for water pumps in air conditioning system, and air conditioning system | |
EP2372127A1 (en) | Control device for waste heat recovery system | |
JP2007240131A (en) | Optimization control of heat source unit and accessory | |
CN106168404A (en) | The secondary pump air-conditioner water system flow-changing control method of temperature difference correction and device | |
CN110793173B (en) | Water pump frequency conversion control method based on dynamic change of worst air conditioner tail end | |
CN203010850U (en) | Control circuit of air conditioner outdoor fan and air conditioner | |
CN104534628A (en) | Control method and system of variable-frequency cooling water pump | |
CN109681416A (en) | The control method of cooling pump | |
KR20120117355A (en) | Variable flow heating control system and heating control method using thereof | |
JP2010276006A (en) | Pump number control by pump shaft power | |
JP2007092582A (en) | Fluid control device and fluid control method | |
CN205783571U (en) | A kind of central air conditioner cooling system energy-saving control apparatus | |
JP5261153B2 (en) | Heat source system | |
JP4939612B2 (en) | Compressor control device and control method | |
CN114383174A (en) | Unit control method and device and unit | |
JP2007024325A (en) | Method of controlling heat medium transporting device in air conditioning heat source system | |
WO2013016883A1 (en) | Flow-changing cyclic heat pump water heater | |
CN204987368U (en) | Refrigerated water pump package energy -saving control system | |
CN101363654B (en) | Power-saving device of central air-conditioning | |
CN109307316A (en) | Energy-saving control method and heat exchange station for frequency conversion pump group | |
KR101367857B1 (en) | Booster pump control system having complex inverter type and control method thereof | |
CN203024338U (en) | Energy-saving control device of central air conditioner and central air conditioner |