JP2007024325A - Method of controlling heat medium transporting device in air conditioning heat source system - Google Patents

Method of controlling heat medium transporting device in air conditioning heat source system Download PDF

Info

Publication number
JP2007024325A
JP2007024325A JP2005202679A JP2005202679A JP2007024325A JP 2007024325 A JP2007024325 A JP 2007024325A JP 2005202679 A JP2005202679 A JP 2005202679A JP 2005202679 A JP2005202679 A JP 2005202679A JP 2007024325 A JP2007024325 A JP 2007024325A
Authority
JP
Japan
Prior art keywords
rotation speed
secondary pump
pump
time
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005202679A
Other languages
Japanese (ja)
Other versions
JP4669335B2 (en
Inventor
Kazuki Nakano
一樹 中野
Toru Aida
徹 合田
Hisashi Saito
久士 齋藤
Yoji Sasaki
洋二 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Dan Co Ltd
Original Assignee
Dai Dan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Dan Co Ltd filed Critical Dai Dan Co Ltd
Priority to JP2005202679A priority Critical patent/JP4669335B2/en
Publication of JP2007024325A publication Critical patent/JP2007024325A/en
Application granted granted Critical
Publication of JP4669335B2 publication Critical patent/JP4669335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/13Pump speed control

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of controlling a heat medium transporting device in an air conditioning heat source system capable of reducing transporting power of the heat medium transporting device in the air conditioning heat source system. <P>SOLUTION: A rotational frequency control device 16 calculates stage-up rotational frequency Fk on the basis of a time to achieve desired rotational frequency of a rotational frequency control device 16 in stage-up starting of secondary pumps 14a-14d by an operation number control device 28, the rotational frequencies of the increased secondary pump and the secondary pump under operation are increased to the calculated rotational frequency Fk, and the rotational frequencies of the increased secondary pump and the secondary pump under operation are controlled to the rotational frequency in accordance with load target, after the lapse of a waiting time for stabilization in stage-up from the start of the operation of the increased pump. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、空調熱源システムにおける熱媒搬送装置の制御方法に関し、さらに詳細には二次ポンプの増段起動、または減段停止する際に二次ポンプの回転数を負荷目標に応じて制御する熱媒搬送装置の制御方法に関する。   The present invention relates to a method for controlling a heat transfer device in an air-conditioning heat source system, and more specifically, controls the rotational speed of a secondary pump according to a load target when the secondary pump is started to increase or decrease. The present invention relates to a method for controlling a heat transfer device.

特許文献1(特開2003−106731号公報)に開示された加圧送水ポンプシステムは、以下のように構成されていた。すなわち、戻りヘッダからの冷水あるいは温水を冷凍機、冷温水発生機又はボイラを介して第1の送りヘッダに送る一次送水ポンプと、第1の送りヘッダから第2の送りヘッダに冷水あるいは温水を送る二次送水ポンプと、第2の送りヘッダから戻りヘッダへの流量を測定する流量センサと、第2の送りヘッダと戻りヘッダとの圧力差を測定する差圧センサと、送水圧を測定する圧力センサとを備え、二次送水ポンプがインバータを有している加圧送水ポンプシステムにおいて、流量センサの測定信号と外部入力信号あるいはデータ蓄積部のテーブルに基づいてシステム全体の固定抵抗と、管路定数と、摩擦損失水頭計算式による定数の数値とを選択して演算された送水圧力または差圧センサで計測された吐出圧力を基に演算を行い、インバータの回転数を決定する入力演算部を有する二次ポンプコントローラを備えていることを特徴としている。
特開2003−106731号公報
The pressurized water pump system disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2003-106731) is configured as follows. That is, a primary water pump that sends cold water or hot water from the return header to the first feed header via a refrigerator, a cold / hot water generator or a boiler, and cold water or hot water from the first feed header to the second feed header. A secondary water pump for sending, a flow sensor for measuring a flow rate from the second feed header to the return header, a differential pressure sensor for measuring a pressure difference between the second feed header and the return header, and a water pressure In a pressurized water pump system comprising a pressure sensor and a secondary water pump having an inverter, the fixed resistance of the entire system and the pipe based on the measurement signal of the flow sensor and the external input signal or the table of the data storage unit, Calculation based on the water supply pressure calculated by selecting the road constant and the constant value by the friction loss head calculation formula or the discharge pressure measured by the differential pressure sensor. It is characterized in that it comprises a secondary pump controller having an input calculation unit which determines the rotation speed of the motor.
JP 2003-106731 A

一般的な加圧送水ポンプシステムでは、二次送水ポンプの回転数を二次ポンプの送水圧力値と差圧センサで計測された吐出圧力とを基に演算を行って制御している。他方、特許文献1に開示された二次ポンプの制御方法では、例えば増段時には、増段した二次ポンプの回転数を運転中の二次ポンプと同じ回転数まで上げ、また、減段時には、継続して運転する二次ポンプの回転数を最大(MAX%)まで上げ、その後、いずれの場合も負荷に応じた回転数に変化させることとなるので、増段起動時および減段停止時ともに流量(回転数)の変化が大きくなる。そのため、管路内の圧力変動、流量変動の幅が大きくなり、空調機側の制御乱れの原因となるばかりかエネルギー損失も大きい、という問題があった。   In a general pressurized water pump system, the rotation speed of the secondary water pump is controlled by performing a calculation based on the water pressure value of the secondary pump and the discharge pressure measured by the differential pressure sensor. On the other hand, in the control method of the secondary pump disclosed in Patent Document 1, for example, when increasing the stage, the rotational speed of the increased secondary pump is increased to the same rotational speed as that of the operating secondary pump. Since the rotation speed of the secondary pump that is continuously operated is increased to the maximum (MAX%) and then changed to the rotation speed according to the load in any case, the increase stage start and the stop stage stop In both cases, the change in flow rate (number of revolutions) increases. For this reason, there has been a problem that the pressure fluctuation and flow fluctuation in the pipe line are widened, causing not only control disturbance on the air conditioner side but also energy loss.

この発明の目的は、かかる従来の問題点を解決するためになされたもので、熱源装置、負荷側装置、前記熱源装置と前記負荷側装置とに対応する熱媒搬送装置、該熱媒搬送装置を構成する二次ポンプの運転台数を制御する台数制御装置および回転数を制御する回転数制御装置から構成される空調熱源システムにおいて圧力変動や流量変動幅を小さくし、熱媒搬送装置の搬送動力を削減し、より大きな省エネルギー効果を得ることが可能な空調熱源システムにおける熱媒搬送装置の制御方法を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to solve such conventional problems, and includes a heat source device, a load side device, a heat medium transport device corresponding to the heat source device and the load side device, and the heat medium transport device. In the air conditioning heat source system composed of a number control device that controls the number of operating secondary pumps and a rotation speed control device that controls the rotation speed, the pressure fluctuation and flow fluctuation width are reduced, and the conveyance power of the heat medium conveyance device Is to provide a method for controlling a heat transfer device in an air-conditioning heat source system capable of obtaining a greater energy saving effect.

前記課題を解決するための本発明の前提は、熱源装置と、負荷側装置と、前記熱源装置と前記負荷側装置とに対応する熱媒搬送装置として設けられた一次ポンプおよび並列に複数台設けられ、回転数変換装置を備えた二次ポンプと、複数の二次ポンプの運転台数を制御する台数制御装置と、二次ポンプの回転数を負荷目標に応じて制御する回転数制御装置とを備える空調熱源システムにおける熱媒搬送装置の制御方法である。   The premise of the present invention to solve the above problems is that a heat source device, a load side device, a primary pump provided as a heat transfer device corresponding to the heat source device and the load side device, and a plurality of units in parallel are provided. A secondary pump equipped with a rotational speed conversion device, a number control device for controlling the number of operating secondary pumps, and a rotational speed control device for controlling the rotational speed of the secondary pumps according to a load target. It is a control method of the heat carrier transport device in the air conditioning heat source system provided.

かかる空調熱源システムにおける熱媒搬送装置の制御方法において第1の発明の特徴は、台数制御装置により二次ポンプの少なくとも2台目以上が増段起動する際に、回転数制御装置が、該回転数制御装置の所望の回転数に達するまでの時間を基にして増段時回転数を算出し、増段した二次ポンプと運転中の二次ポンプとの回転数を算出された値まで変化させ、増段した二次ポンプの運転開始から増段時安定化待ち時間を経過した後に、増段した二次ポンプと運転中の二次ポンプとの回転数を負荷目標に応じた回転数に制御することである。   In the control method of the heat transfer device in such an air conditioning heat source system, the first invention is characterized in that when the number control device starts at least the second or more secondary pumps, the rotation speed control device Based on the time required to reach the desired number of revolutions of the number control device, the number of revolutions at the time of step increase is calculated, and the number of revolutions of the increased secondary pump and the operating secondary pump changes to the calculated value. After the increased secondary pump stabilization wait time has elapsed from the start of operation of the increased secondary pump, the rotation speed of the increased secondary pump and the operating secondary pump is set to the rotation speed according to the load target. Is to control.

また、かかる空調熱源システムにおける熱媒搬送装置の制御方法において第2の発明の特徴は、台数制御装置により二次ポンプが少なくとも1台以上継続して運転する減段停止時に、回転数制御装置が、該回転数制御装置の所望の回転数に達するまでの時間を基にして減段時回転数を算出し、その後、継続運転している二次ポンプの回転数を前記算出した値まで変化させると共に減段した二次ポンプの運転を停止するか低速待機運転し、減段した二次ポンプの運転停止時又は低速待機運転時から減段時安定化待ち時間を経過した後に、継続運転している二次ポンプの回転数を負荷目標に応じた回転数に制御することである。   In addition, in the control method of the heat transfer device in such an air conditioning heat source system, the second invention is characterized in that the rotation speed control device is configured so that the rotation speed control device can be used when the number of control devices continuously stops at least one secondary pump. The rotation speed at the time of step reduction is calculated based on the time required to reach the desired rotation speed of the rotation speed control device, and then the rotation speed of the secondary pump that is continuously operated is changed to the calculated value. Stop the operation of the reduced secondary pump or perform low-speed standby operation, and continue the operation after the reduced-stage stabilization waiting time has elapsed since the operation of the reduced secondary pump stopped or during low-speed standby operation. The rotational speed of the secondary pump is controlled to the rotational speed corresponding to the load target.

第1の発明に係る空調熱源システムにおける熱媒搬送装置の制御方法における実施形態の一例としては、増段した二次ポンプの運転開始から所定時間だけ遅らせて、継続運転している二次ポンプの回転数を算出された値まで変化させることである。   As an example of the embodiment of the control method of the heat transfer device in the air conditioning heat source system according to the first invention, the secondary pump that is continuously operated is delayed by a predetermined time from the start of operation of the increased secondary pump. The rotational speed is changed to the calculated value.

また、第2の発明に係る空調熱源システムにおける熱媒搬送装置の制御方法における実施形態の一例としては、減段した二次ポンプの運転停止時又は低速待機運転時から所定時間だけ遅らせて、継続運転している二次ポンプの回転数を前記算出された値に変化させることである。   In addition, as an example of the embodiment of the control method of the heat transfer device in the air conditioning heat source system according to the second invention, the secondary pump that has been stepped down is delayed by a predetermined time from the stoppage or the low-speed standby operation, and continued. Changing the rotational speed of the operating secondary pump to the calculated value.

さらに、第1および第2の発明に係る空調熱源システムにおける熱媒搬送装置の制御方法における実施形態の一例としては、複数の二次ポンプが回転数変換装置を備えており、回転数制御装置を用いて二次ポンプの回転数が制御されることである。   Furthermore, as an example of the embodiment of the control method of the heat transfer device in the air conditioning heat source system according to the first and second inventions, the plurality of secondary pumps are provided with a rotation speed conversion device, and the rotation speed control device is Use to control the rotational speed of the secondary pump.

第1の発明に係る空調熱源システムにおける熱媒搬送装置の制御方法によると、二次ポンプが増段起動、又は減段停止する際に、圧力変動と流量変動幅を最小にする最適な回転数に制御され、その後に実際の負荷目標に応じた回転数に制御されることから搬送エネルギー損失が少なく、省エネルギー運転となって運転コストの低減を図ることができる。   According to the control method of the heat transfer device in the air-conditioning heat source system according to the first aspect of the invention, when the secondary pump starts to increase or decrease, the optimum rotation speed that minimizes the pressure fluctuation and flow fluctuation width Therefore, since the rotation speed is controlled in accordance with the actual load target after that, there is little loss of conveyance energy, and the operation cost can be reduced because of energy saving operation.

また、この発明に係る空調熱源システムにおける熱媒搬送装置の制御方法によれば、増段した二次ポンプの運転開始から所定時間だけ遅らせて全体管路の状態を安定化待ちさせる。さらに、継続運転している二次ポンプの回転数を算出された値まで下げ、減段した二次ポンプの運転停止時又は低速待機運転時から所定時間だけ遅らせて、継続運転している二次ポンプの回転数を算出された値まで上げるように制御するので、圧力と流量の変化が小さく、その結果として安定した制御動作を実現することができる。   Further, according to the control method of the heat transfer device in the air-conditioning heat source system according to the present invention, the state of the entire pipeline is awaited for stabilization by delaying a predetermined time from the start of operation of the increased secondary pump. Furthermore, the rotation speed of the secondary pump that is continuously operated is lowered to the calculated value, and the secondary pump that is continuously operated is delayed by a predetermined time from the stoppage of the reduced secondary pump or the low-speed standby operation. Since the control is performed so that the number of rotations of the pump is increased to the calculated value, changes in pressure and flow rate are small, and as a result, a stable control operation can be realized.

添付の図面を参照して、本発明に係る空調熱源システムにおける熱媒搬送装置の制御方法における詳細を説明すると、以下のとおりである。図1は、本発明に係る制御方法を実施する空調熱源システムの構成を概略的に示す構成説明図である。図1に示される空調熱源システム10は、冷温水発生機11a,11bからなる熱源装置11と、この熱源装置11に対応する熱媒搬送装置12として各冷温水発生器11a,11bの吸込口に管路で接続された冷温水一次ポンプ(以下、一次ポンプという)12a,12bとを備えている。   The details of the method for controlling the heat medium transfer device in the air conditioning heat source system according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a configuration explanatory diagram schematically showing the configuration of an air conditioning heat source system that implements a control method according to the present invention. An air conditioning heat source system 10 shown in FIG. 1 includes a heat source device 11 composed of cold / hot water generators 11a and 11b and a heat medium transport device 12 corresponding to the heat source device 11 at the suction port of each of the cold / hot water generators 11a and 11b. It includes cold and hot water primary pumps (hereinafter referred to as primary pumps) 12a and 12b connected by pipes.

各冷温水発生器11a,11bは、それらの吐出口がそれぞれ送水一次ヘッダ13に管路により接続され、この送水一次ヘッダ13は、並列に4台設けられた冷温水二次ポンプ(以下、二次ポンプという)14a,14b,14c,14dに管路により接続されている。これら二次ポンプ14a,14b,14c,14dは、例えばインバータのような回転数変換装置15a,15b,15c,15dを備えており、各二次ポンプ14a,14b,14c,14dの回転数は、回転数制御装置16が各回転数変換装置15a,15b,15c,15dによる周波数のパルス振幅変調(PAM制御)、或いはパルス幅変調(PWM制御)を行わせることにより変化される。   Each of the cold / hot water generators 11a and 11b has a discharge port connected to the water supply primary header 13 via a pipe line. The water supply primary header 13 includes four cold / hot water secondary pumps (hereinafter referred to as two pumps) provided in parallel. 14a, 14b, 14c, and 14d) are connected by pipe lines. These secondary pumps 14a, 14b, 14c, 14d are provided with rotational speed converters 15a, 15b, 15c, 15d such as inverters, for example. The rotational speeds of the secondary pumps 14a, 14b, 14c, 14d are as follows: The rotation speed control device 16 is changed by performing pulse amplitude modulation (PAM control) or pulse width modulation (PWM control) of the frequency by the rotation speed conversion devices 15a, 15b, 15c, and 15d.

これら二次ポンプ14a,14b,14c,14dの吐出口は送水二次ヘッダ17に接続されている。送水一次ヘッダ13と送水二次ヘッダ17との間には逃がし弁18を備えた管路が接続されている。送水二次ヘッダ17は、並列に2台設置されている空調機19a,19bの冷温水吸入口に管路で接続されている。すなわち、送水二次ヘッダ17に接続された1つの管路から2つの管路が分岐し、各分岐管はそれぞれの空調機19a,19bの冷温水吸入口に接続されている。各空調機19a,19bの冷温水吐出口には、管路20a,20bのそれぞれ一端部が接続され、これら管路20a,20bには二方弁21a,21bが設けられている。各管路20a,20bの他端部は管路22に合流され、該管路22は還水二次ヘッダ23に接続されている。   The discharge ports of these secondary pumps 14 a, 14 b, 14 c and 14 d are connected to the water supply secondary header 17. A conduit having a relief valve 18 is connected between the water supply primary header 13 and the water supply secondary header 17. The water supply secondary header 17 is connected to the cold / hot water inlet of the air conditioners 19a, 19b installed in parallel by two pipes. That is, two pipes branch from one pipe connected to the water supply secondary header 17, and each branch pipe is connected to the cold / hot water inlet of each air conditioner 19a, 19b. One ends of the pipes 20a and 20b are connected to the cold / hot water discharge ports of the air conditioners 19a and 19b, and two-way valves 21a and 21b are provided in the pipes 20a and 20b. The other ends of the pipes 20 a and 20 b are joined to a pipe 22, and the pipe 22 is connected to a return water secondary header 23.

還水二次ヘッダ23は、管路24を介して還水一次ヘッダ25に連通されており、該管路24には流量センサ26が設けられている。還水一次ヘッダ25からは、3つの管路27a,27b,27cが延びていて、1つの管路27aは送水一次ヘッダ13に直接接続され、他の2つの管路27b,27cはそれぞれ一次ポンプ12a,12bに接続されている。このように構成された空調熱源システム10は、さらに台数制御装置28を備えると共に送水二次ヘッダ16には圧力センサ29が設けられている。   The return water secondary header 23 communicates with the return water primary header 25 via a conduit 24, and a flow rate sensor 26 is provided in the conduit 24. Three pipes 27a, 27b, and 27c extend from the return water primary header 25. One pipe 27a is directly connected to the water supply primary header 13, and the other two pipes 27b and 27c are respectively primary pumps. 12a and 12b. The air conditioning heat source system 10 configured as described above further includes a number control device 28 and a pressure sensor 29 is provided in the water supply secondary header 16.

前述した回転数制御装置16は、各二次ポンプ14a,14b,14c,14dの回転数変換装置15a〜15dと、流量センサ26と、台数制御装置28と、圧力センサ29とに電気的に接続され、また、台数制御装置28は、各回転数変換装置15a〜15dと流量センサ26と逃がし弁18とに電気的に接続されている。   The aforementioned rotational speed control device 16 is electrically connected to the rotational speed conversion devices 15a to 15d of the secondary pumps 14a, 14b, 14c, and 14d, the flow rate sensor 26, the number control device 28, and the pressure sensor 29. The number control device 28 is electrically connected to each of the rotation speed conversion devices 15a to 15d, the flow sensor 26, and the relief valve 18.

次に、本発明に係る空調熱源システムにおける熱媒搬送装置の制御方法を、上述の如く構成された空調熱源システム10を例について説明する。説明の便宜上、全てのポンプは同容量で、1台のポンプの容量を超える二次側負荷があった時、次のポンプが起動するものとする。図1に示された空調熱源システム10では、二次ポンプ14a〜14dが4台あり、ポンプ回転数の範囲を0〜100%と仮定した場合、一台の二次ポンプを100%で運転したときの流量は25%、従って負荷は25%となる。このような空調熱源システム10の場合、流量による台数制御は図2に示されるようになる。すなわち、台数制御装置28は、二次側流量(負荷)が25%までのときは1台の二次ポンプ14a(運転機1)を運転するように制御し、二次側流量(負荷)が25%を越えて50%になると、運転中の1台の二次ポンプ14aに他の1台の二次ポンプ14b(運転機2)を増段して運転するように制御する。   Next, the control method of the heat transfer device in the air conditioning heat source system according to the present invention will be described by taking the air conditioning heat source system 10 configured as described above as an example. For convenience of explanation, it is assumed that all pumps have the same capacity and the next pump is activated when there is a secondary load exceeding the capacity of one pump. In the air-conditioning heat source system 10 shown in FIG. 1, when there are four secondary pumps 14a to 14d and the range of the pump rotation speed is assumed to be 0 to 100%, one secondary pump is operated at 100%. When the flow rate is 25%, the load is 25%. In the case of such an air conditioning heat source system 10, the number control by the flow rate is as shown in FIG. That is, when the secondary flow rate (load) is up to 25%, the unit control device 28 controls to operate one secondary pump 14a (operator 1), and the secondary flow rate (load) is When it exceeds 50% and reaches 50%, control is performed so that one secondary pump 14a (operator 2) is increased in operation to one secondary pump 14a that is being operated.

さらに、二次側流量(負荷)が50%を越えて75%になると、運転中の2台の二次ポンプ14a,14bに他の1台の二次ポンプ14c(運転機3)を増段して運転するように制御し、二次側流量(負荷)が75%を越えて100%になると、運転中の3台の二次ポンプ14a,14b,14cに他の1台の二次ポンプ14d(運転機4)を増段して運転するように制御する。二次側流量(負荷)が減少するときは、台数制御装置28は、上述した増段とは逆に、二次側流量(負荷)の減少に応じて運転台数を減段する制御を行う。実際には、4台の二次ポンプ14a〜14d(運転機1〜4)が、台数制御装置28によって二次側流量(負荷)の変化に応じて増段されたり減段されたりして常に最適な運転台数に制御される。   Furthermore, when the secondary flow rate (load) exceeds 75% and reaches 75%, another secondary pump 14c (operator 3) is increased in stage to the two secondary pumps 14a and 14b in operation. When the secondary flow rate (load) exceeds 75% and reaches 100%, the three secondary pumps 14a, 14b, and 14c in operation are replaced with another secondary pump. 14d (operator 4) is controlled to increase the stage. When the secondary-side flow rate (load) decreases, the number control device 28 performs control to reduce the number of operating units according to the decrease in the secondary-side flow rate (load), contrary to the above-described increase step. Actually, the four secondary pumps 14a to 14d (operators 1 to 4) are always increased or decreased by the number control device 28 according to the change of the secondary flow rate (load). It is controlled to the optimum number of operating units.

このように台数制御装置28が、二次側流量(負荷)の変化により適切な台数を選択して二次ポンプを運転させるべく制御するが、二次ポンプの増段又は減段のときには、回転数制御装置16が運転中の二次ポンプおよび増段起動した二次ポンプ、又は減段停止後に継続運転する二次ポンプの回転数を制御する。この発明は、二次側流量(負荷)の変化に伴う二次ポンプの増段起動時又は減段停止時のときに圧力変動と流量変動を低減させ、省エネルギー効果を得られるような二次ポンプの回転数制御を特徴としている。そこで、二次側流量(負荷)の変化に伴う増段起動時又は減段停止時における二次ポンプ回転数制御の方法について、回転数制御装置による冷温水二次ポンプ回転数制御のフローチャート(図3,図4)、二次ポンプの運転状態を示す状態説明図(図5〜図10)、および負荷目標に応じたポンプ回転数制御動作説明図(図11,図12)を参照して具体的に説明する。   As described above, the number control device 28 controls the operation of the secondary pump by selecting an appropriate number according to the change in the secondary flow rate (load). The number control device 16 controls the rotational speed of the secondary pump that is in operation and the secondary pump that has started to increase the stage, or the secondary pump that continues to operate after the stage is stopped. The present invention reduces the pressure fluctuation and the flow fluctuation when the secondary pump starts to increase or stops when the secondary flow (load) changes, so that the energy saving effect can be obtained. It is characterized by control of the number of rotations. Therefore, for the method of controlling the secondary pump rotational speed at the time of start-up or step-down stop accompanying a change in the secondary side flow rate (load), a flowchart of the control of the chilled / hot water secondary pump speed by the speed control device (Fig. 3, 4), state explanatory diagrams showing the operation state of the secondary pump (FIGS. 5 to 10), and pump rotational speed control operation explanatory diagrams according to the load target (FIG. 11, FIG. 12) I will explain it.

この空調熱源システム10の設置時における回転数制御装置16には、図3および図4のフローチャートに示されるように二次ポンプの通常起動時処理のとき及び通常停止時処理のときに制御される回転数が設定値として入力される(ステップS−1)。すなわち、後述する通常起動時処理と通常停止時処理における二次ポンプの回転数は予め定数として決めておく。次に、後述する二次ポンプ回転数計算式(1),(2)の設定値、即ち増段時インバータ加減速時間(TiI)、増段時遅延時間(TiD)、減段時回転数変換装置による減段時インバータ加減速時間(TdI)、および減段時遅延時間(TdD)が入力(ステップS‐2)される。   The rotation speed control device 16 at the time of installation of the air-conditioning heat source system 10 is controlled at the time of normal startup processing and normal stop processing of the secondary pump as shown in the flowcharts of FIGS. The rotational speed is input as a set value (step S-1). That is, the rotation speed of the secondary pump in the normal startup process and the normal stop process, which will be described later, is determined in advance as a constant. Next, set values of secondary pump rotation speed calculation formulas (1) and (2), which will be described later, that is, inverter acceleration / deceleration time (TiI) at increasing stage, delay time (TiD) at increasing stage, and rotation speed conversion at decreasing stage The step-down inverter acceleration / deceleration time (TdI) and the step-down delay time (TdD) are input (step S-2).

この状態で空調熱源システム10が作動されているとき、現在の二次ポンプの運転台数(n)が取得(ステップS−3)される。二次側流量(負荷)に変化が生じると、台数制御装置28がその負荷に応じた適切な二次ポンプの運転台数を選択して運転の指示を出し、その指示情報は回転数制御装置16に出力され、この情報に基づいて二次ポンプの台数変化(m)が取得(ステップS−4)される。そして、変化前(n)と変化後(m)の二次ポンプ運転台数の変化が判定され(ステップS−5)、この判定には、(1)の場合と、(2)の場合と、(1)と(2)のいずれでもない場合とがある。(1)の場合はn=0からm≧1台に変化(運転中の二次ポンプが存在しない状態から1台以上の二次ポンプが増段起動)したとき、(2)の場合はn≧1台からm>n台に変化(運転中の二次ポンプが1台以上あるときの増段起動)したときであり、これら(1)と(2)の場合に応じた処理方法に分かれる。なお、(1)と(2)のいずれでもない場合とは、二次側空調負荷に変化が無く、新たに二次ポンプの増段起動が必要ない場合である。   When the air conditioning heat source system 10 is operating in this state, the current number of operating secondary pumps (n) is acquired (step S-3). When a change occurs in the secondary-side flow rate (load), the number control device 28 selects an appropriate number of secondary pumps to operate according to the load and issues an operation instruction. Based on this information, the change (m) in the number of secondary pumps is acquired (step S-4). Then, a change in the number of secondary pumps operating before the change (n) and after the change (m) is determined (step S-5), and this determination includes the cases (1), (2), There are cases where neither (1) nor (2) is present. In the case of (1), when n = 0 changes to m ≧ 1 (when there is no secondary pump in operation, one or more secondary pumps start up), in the case of (2) n ≥1 unit changed to m> n units (increased start-up when there are one or more secondary pumps in operation), and it is divided into processing methods according to these cases (1) and (2) . Note that the case where neither of (1) and (2) is present is a case where there is no change in the secondary air conditioning load and it is not necessary to newly start up the secondary pump.

(1)の場合は、前述したように運転中の二次ポンプが存在しない状態から1台もしくはそれ以上の二次ポンプが増段起動した場合である。この状態を言い換えると、空調システムが停止している状態から運転を開始したときの状態であり、このような場合には、通常起動時処理が実施され(ステップS−6)、ステップS−1で設定した起動時回転数で1台の二次ポンプが起動される(ステップS−7)。   In the case of (1), as described above, one or more secondary pumps are staged up from a state where there is no operating secondary pump. In other words, this is a state when the operation is started from the state where the air conditioning system is stopped. In such a case, the normal startup process is performed (step S-6), and step S-1 is performed. One secondary pump is started at the starting rotational speed set in (Step S-7).

(2)の場合は、運転中の二次ポンプが1台以上あり、その際、二次側流量(負荷)が増加して1台もしくはそれ以上の二次ポンプが増段起動する場合である。この場合には、増段起動時処理が実施され(ステップS−8)、増段起動直前に運転されている二次ポンプの回転数(Fm)と増段起動直前の増段機(ここで、増段機とは、運転中の二次ポンプに加えて新たに主動作運転される二次ポンプをいう)の回転数(Fw)が取得される(ステップS−9)。「主動作運転」という用語は、増段機が増段運転直前まで完全に停止している場合もあるが、配管内の冷温水をわずかに流しておく必要から低速待機運転をさせている場合もあるので、このような待機時の低速運転と区別するために使用している。したがって、増段機が、低速待機運転をしている場合にはその低速待機運転時の回転数(Fw)が取得される。なお、(1)でも(2)でもない場合には、ステップS−5からステップS−12へ直接移行する。   In the case of (2), there are one or more secondary pumps in operation, and at that time, the secondary flow rate (load) increases and one or more secondary pumps start up in stages. . In this case, the process at the time of starting the increased stage is performed (step S-8), and the rotational speed (Fm) of the secondary pump operated immediately before starting the increased stage and the increased stage immediately before starting the increased stage (here, The stage increasing machine is the rotation speed (Fw) of the secondary pump that is newly operated in the main operation in addition to the operating secondary pump (step S-9). The term “main operation operation” is used when the step-up machine is completely stopped until just before the step-up operation, but when a low-temperature standby operation is required because a small amount of cold / hot water in the piping is required. Therefore, it is used to distinguish from such low-speed operation during standby. Therefore, when the step increasing machine is performing the low-speed standby operation, the rotation speed (Fw) during the low-speed standby operation is acquired. If neither (1) nor (2) is obtained, the process directly proceeds from step S-5 to step S-12.

次いで、増段起動時における二次ポンプの回転数を算出する下記の計算式(1)により回転数Fkが演算される(ステップS−10)。
(数1)
Fk=[Fm+((100/TiI)×TiD)]/2………(1)
この増段起動時の二次ポンプ回転数計算式(1)において、Fkは、負荷目標に応じたポンプ回転数(%)、Fmは、増段起動直前の運転中ポンプの回転数(%)、TiIは、増段時におけるインバータによる加減速時間、TiDは、増段時遅延時間(TiI≧TiD)である。この計算式(1)の算出方法については後で詳細に説明する。
Next, the rotational speed Fk is calculated by the following calculation formula (1) for calculating the rotational speed of the secondary pump at the time of starting up the stage (step S-10).
(Equation 1)
Fk = [Fm + ((100 / TiI) × TiD)] / 2 (1)
In the secondary pump rotational speed calculation formula (1) at the time of starting the increased stage, Fk is the pump rotational speed (%) corresponding to the load target, and Fm is the rotational speed (%) of the operating pump immediately before starting the increased stage. , TiI is the acceleration / deceleration time by the inverter at the time of increasing stage, and TiD is the delay time at increasing stage (TiI ≧ TiD). The calculation method of the calculation formula (1) will be described in detail later.

その後、増段機は、上記の計算式(1)で演算された二次ポンプ回転数Fkで運転を開始し、また運転中の二次ポンプは、増段時遅延時間(TiD)を経過した後に上記の計算式(1)で求められたポンプ回転数(Fk)で運転が継続される(ステップS−11)と共に二次ポンプの制御が継続される(ステップS−12)。そして、二次側流量(負荷)に変化が起こると、再びステップS−3の前に戻り、そのときのポンプ運転台数(n)を取得するステップS−3へと移行する。二次ポンプの増段起動時における概略の制御ステップは以上である。次に、二次ポンプの減段停止時における概略の制御ステップについて図4のフローチャートを参照して説明する。   After that, the step-up machine started operation at the secondary pump speed Fk calculated by the above formula (1), and the operating secondary pump passed the step-up delay time (TiD). Later, the operation is continued at the pump rotation speed (Fk) obtained by the above formula (1) (step S-11) and the control of the secondary pump is continued (step S-12). And when a change occurs in the secondary side flow rate (load), the process returns to step S-3 again, and the process proceeds to step S-3 where the number of pumps operated (n) at that time is acquired. The general control steps at the time of starting up the secondary pump are as described above. Next, an outline of control steps when the secondary pump is stopped will be described with reference to the flowchart of FIG.

図4においてステップS−1〜ステップS−4までは図3に示す増段起動時の制御と共通するステップであり、これらステップは既に説明されているので省略する。空調熱源システム10の作動中に、二次側流量(負荷)に変化が生じると、台数制御装置28がその負荷に応じた適切な二次ポンプの運転台数を選択して運転の指示を出すが、その指示情報に基づいて変化前(n)と変化後(m)の二次ポンプ運転台数の変化が判定される(ステップS−5)。減段の場合、この判定には(3)の場合と、(4)の場合と、(3)と(4)のいずれでもない場合とがあり、(3)の場合は、n>m台からm≧1台に変化(運転を継続する二次ポンプが1台以上存在するときの減段)するとき、(4)の場合は、n≧1台からm=0台に変化(運転を継続する二次ポンプがなくなる(0台)状態に減段)するときであり、これら(3)と(4)の場合に応じた処理方法に分かれる。なお、(3)と(4)のいずれでもない場合とは、二次側空調負荷に変化が無く、新たに二次ポンプの減段が必要ない場合である。   In FIG. 4, steps S-1 to S-4 are steps common to the control at the time of starting the stage increase shown in FIG. 3, and these steps have already been described and will be omitted. If a change occurs in the secondary-side flow rate (load) during the operation of the air conditioning heat source system 10, the unit control device 28 selects an appropriate number of secondary pumps to be operated according to the load and issues an operation instruction. Based on the instruction information, a change in the number of secondary pumps operating before the change (n) and after the change (m) is determined (step S-5). In the case of step reduction, this determination may be (3), (4), or neither (3) nor (4). In case (3), n> m In case of (4) when changing from m ≧ 1 to m ≧ 1 (stepping down when there are one or more secondary pumps to continue operation), in case of (4), change from n ≧ 1 to m = 0 This is the time when there are no secondary pumps to continue (steps down to zero), and the processing methods are divided according to these cases (3) and (4). Note that the case where neither of (3) and (4) is present is a case where there is no change in the secondary-side air-conditioning load and no new reduction of the secondary pump is required.

(3)の場合、すなわち二次側流量(負荷)が減少して1台もしくはそれ以上の二次ポンプが停止し、その際に運転を継続する二次ポンプが1台以上あるときには、減段停止時処理が実施され(ステップS−13)、減段停止直前に運転されている二次ポンプの回転数(Fm)が取得される(ステップS−14)。   In the case of (3), that is, when the secondary flow rate (load) decreases and one or more secondary pumps stop and there are one or more secondary pumps that continue to operate at that time, the stage is reduced. A process at the time of stop is performed (step S-13), and the rotation speed (Fm) of the secondary pump that is operating immediately before the stage stop is acquired (step S-14).

次いで、減段停止時に二次ポンプの回転数を算出する下記の計算式(2)により回転数Fkが演算される(ステップS−15)。
(数2)
Fk=[Fm+(((−100/TdI)×TdD)+100)]/2………(2)
この減段停止時における継続運転中のポンプの回転数計算式(2)において、Fkは、負荷目標に応じたポンプ回転数(%)、Fmは、減段停止直前の運転中ポンプの回転数(%)、TdIは、減段時におけるインバータによる加減速時間、TdDは、減段時遅延時間(TdI≧TdD)である。この計算式(2)の算出方法については後に詳細に説明する。
Next, the rotational speed Fk is calculated by the following calculation formula (2) for calculating the rotational speed of the secondary pump at the time of step reduction stop (step S-15).
(Equation 2)
Fk = [Fm + (((− 100 / TdI) × TdD) +100)] / 2 (2)
In the rotational speed calculation formula (2) of the pump during continuous operation at the time of the speed reduction stop, Fk is the pump speed (%) according to the load target, and Fm is the speed of the operating pump immediately before the speed reduction stop. (%), TdI is the acceleration / deceleration time by the inverter at the time of step reduction, and TdD is the delay time at the step reduction (TdI ≧ TdD). The calculation method of the calculation formula (2) will be described in detail later.

減段停止後に継続運転される二次ポンプは、上記の計算式(2)で演算された二次ポンプ回転数Fkで運転される(ステップS−16)。その際、減段停止された二次ポンプは、完全に停止される場合もあるが、前述したように配管内の冷温水をわずかに流しておく必要から低速待機運転をさせている場合もあり、後者の場合にはステップS−1で設定した停止時回転数で低速待機運転される。そして、二次側流量(負荷)に変化が起こると、再びステップS−3の前に戻り、そのときのポンプ運転台数(n)を取得するステップS−3へと移行する。   The secondary pump that is continuously operated after the stage reduction stop is operated at the secondary pump rotational speed Fk calculated by the above-described calculation formula (2) (step S-16). At that time, the secondary pump that has been step-down stopped may be completely stopped, but as described above, it may be operated at a low-speed standby because it is necessary to slightly flow the cold / hot water in the piping. In the latter case, a low-speed standby operation is performed at the stop speed set in step S-1. And when a change occurs in the secondary side flow rate (load), the process returns to step S-3 again, and the process proceeds to step S-3 where the number of pumps operated (n) at that time is acquired.

また、(4)の場合は、運転を継続する二次ポンプが存在しなくなる(0台となる)ときである。この状態を言い換えると、空調機19a,19bが停止した状態であり、このような場合には、通常停止時処理が実施され(ステップS−17)、前述したように配管内の冷温水をわずかに流しておく必要から低速待機運転をさせる場合にはステップS−1で設定した停止時回転数で低速待機運転される(ステップS−18)。なお、(3)でも(4)でもない場合には、ステップS−5からステップS−12へ直接移行する。   In the case of (4), there are no secondary pumps that continue to operate (zero units). In other words, the air conditioners 19a and 19b are in a stopped state. In such a case, the normal stop process is performed (step S-17), and the cold and hot water in the pipe is slightly reduced as described above. When the low-speed standby operation is performed because it is necessary to flow in the low-speed operation, the low-speed standby operation is performed at the stop rotation speed set in step S-1 (step S-18). If neither (3) nor (4), the process proceeds directly from step S-5 to step S-12.

増段起動時と減段停止時とにおける二次ポンプの概略的な制御方法は、図3および図4に示した2つのフローチャートに基づいて説明したとおりであるが、本発明に係る制御方法を増段起動時と減段停止時との2つのフローチャートに分けたのは説明の便宜上である。実際には、ステップS−5において、増段起動又は減段停止のいずれかが判定され、さらに増段起動時には(1)と(2)のいずれかの場合および(1)と(2)のいずれでもない場合に判定され、また減段停止時には(3)と(4)のいずれかの場合および(3)と(4)のいずれでもない場合に判定されてそれ以後の処理がなされる。   The general control method of the secondary pump at the time of starting up the stage and at the time of stopping the stage of reduction is as described based on the two flowcharts shown in FIG. 3 and FIG. 4, but the control method according to the present invention is the same. For convenience of explanation, it is divided into two flowcharts, namely, at the time of increasing the stage and at the time of stopping the lowering. Actually, in step S-5, it is determined whether the stage is increased or stopped. Further, at the time of increased stage activation, either (1) or (2) and (1) and (2) The determination is made when neither of them is satisfied, and when the stage is stopped, it is determined if any of (3) and (4) and not (3) or (4), and the subsequent processing is performed.

次に、増段起動時と減段停止時における二次ポンプのさらに具体的な運転状態について図5〜図10を参照して説明する。図5〜図10は、増段起動時と減段停止時とにおける二次ポンプ14a〜14dの運転状態を、横軸を時間軸として時系列に示している。すなわち、図5〜図10の各図は、縦軸方向の上段に二次側流量(負荷)の推移(A)、中段に参考として従来の空調熱源システムにおける制御の状態(二次ポンプの回転数の推移(B))、下段に本発明の一実施形態による回転数制御動作状態(C)を時間の経過に伴った変化として示しており、それら変化、即ち状態A1,B1,C1を第1のグループとして図5に、また状態A2,B2,C2を第2のグループとして図6に、状態A3,B3,C3を第3のグループとして図7に、状態A4,B4,C4を第4のグループとして図8に、状態A5,B5,C5を第5のグループとして図9に、状態A6,B6,C6を第6のグループとして図10にそれぞれ示し、第1のグループ〜第6のグループ、即ち図5〜図10に示されるそれぞれの状態が時系列に変化している。   Next, a more specific operation state of the secondary pump at the time of starting to increase the stage and stopping to reduce the stage will be described with reference to FIGS. FIGS. 5 to 10 show the operating states of the secondary pumps 14a to 14d at the time of start-up and step-down stop in time series with the horizontal axis as a time axis. That is, in each of FIGS. 5 to 10, the transition (A) of the secondary flow rate (load) is shown in the upper part of the vertical axis direction, and the control state in the conventional air conditioning heat source system is shown in the middle part (rotation of the secondary pump). Number transition (B)), the lower part shows the rotational speed control operation state (C) according to one embodiment of the present invention as a change with time, and these changes, that is, states A1, B1, C1 5 as a group of 1, state A2, B2, C2 as a second group in FIG. 6, state A3, B3, C3 as a third group in FIG. 7, state A4, B4, C4 as a fourth group. FIG. 8 shows states A5, B5, and C5 as a fifth group, FIG. 9 shows states A6, B6, and C6 as a sixth group, and FIG. That is, each shown in FIGS. It has been changed to a time series of state.

図5の上段に状態A1で示されるように、二次側流量(負荷)が0%のときは、4台の二次ポンプ14a〜14dすべての運転が停止した状態にある。二次側流量(負荷)が0%から上昇し始めると、状態C1に示されるように台数制御装置28が1台の二次ポンプ14a(図5において運転機1と表示)を運転し、該二次ポンプ14a(運転機1)は、回転数制御装置16により、運転開始時点から増段時安定化待ち時間の間、出力100%で運転され、その後、二次側流量(負荷)に応じたポンプ回転数(周波数出力)に制御される。すなわち、図5の状態A1に示されるように二次側流量(負荷)が20%であるときには、状態C1に示されるように増段時安定化待ち時間経過後に、この二次側流量(負荷)に対応した回転数(出力)80%に制御される。このように1台の二次ポンプ14aが運転を開始した場合の回転数制御は、従来の制御(状態B1)と本発明による制御とで特に異なる点はない。   As indicated by the state A1 in the upper part of FIG. 5, when the secondary flow rate (load) is 0%, the operation of all four secondary pumps 14a to 14d is stopped. When the secondary flow rate (load) starts to increase from 0%, the unit controller 28 operates one secondary pump 14a (indicated as operating unit 1 in FIG. 5) as shown in the state C1, The secondary pump 14a (operating machine 1) is operated at an output of 100% by the rotation speed control device 16 from the operation start time to the stabilization time at the time of step increase, and then according to the secondary side flow rate (load). The pump rotation speed (frequency output) is controlled. That is, when the secondary flow rate (load) is 20% as shown in the state A1 of FIG. 5, the secondary side flow rate (load) is increased after the stabilization waiting time at the time of step increase as shown in the state C1. ) Is controlled to 80% (output). As described above, the rotational speed control when one secondary pump 14a starts operation is not particularly different between the conventional control (state B1) and the control according to the present invention.

しかし、図6の状態A2に示されるように二次側流量(負荷)が25%を越えて35%まで上昇すると、運転中の二次ポンプ14aは、状態C2に示されるように回転数制御装置16によりその出力が80%から最大の100%に上昇されて運転されるが、1台の二次ポンプ14aの最大出力における二次側流量が25%なので、二次ポンプ14aだけで賄うことができず、台数制御装置28は他の1台の二次ポンプ14b(図6において運転機2と表示)の運転を指示して増段起動を図る。   However, when the secondary flow rate (load) increases from 25% to 35% as shown in state A2 of FIG. 6, the operating secondary pump 14a controls the rotational speed as shown in state C2. The device 16 is operated with its output increased from 80% to a maximum of 100%, but the secondary flow rate at the maximum output of one secondary pump 14a is 25%, so the secondary pump 14a alone should cover it. Therefore, the unit control device 28 instructs the operation of the other secondary pump 14b (indicated as the operating unit 2 in FIG. 6) to start increasing the stage.

その際、増段した二次ポンプ14b(運転機2)は、前述した増段起動時のポンプ回転数計算式(1)により算出した、負荷目標に応じたポンプ回転数Fkで運転される。負荷目標に応じたポンプ回転数Fkは、回転数制御装置16により増段起動時直前の二次ポンプの回転数など必要な情報を前述の計算式(1)に代入して求められる。すなわち、台数制御装置28が流量センサ26等の情報から二次ポンプの増段起動を指示したとき、その情報は回転数制御装置16にも同時に信号入力され、その情報信号を受けて回転数制御装置16は、前述の計算式(1)に基づき、増段起動する二次ポンプのための負荷目標に応じたポンプ回転数Fkを算出して該増段起動された二次ポンプ14bの回転数変換装置15bに信号出力される。他方、運転中の二次ポンプ14a(運転機1)は、運転機2である二次ポンプ14bの増段起動時には最大ポンプ回転数100%(MAX%)で運転されており、その状態を所定時間だけ維持する。この所定時間を「増段時遅延時間」と称し、この増段時遅延時間は、上述したように上記計算式(1)中のTiDである。   At that time, the secondary pump 14b (operator 2) increased in stage is operated at the pump rotation speed Fk corresponding to the load target calculated by the above-described pump rotation speed calculation formula (1) at the time of increase start. The pump rotational speed Fk corresponding to the load target is obtained by substituting necessary information such as the rotational speed of the secondary pump immediately before the increase stage start by the rotational speed control device 16 into the above-described calculation formula (1). That is, when the number control device 28 instructs the secondary pump to start increasing from the information of the flow sensor 26 etc., the information is simultaneously input to the rotation speed control device 16 and receives the information signal to control the rotation speed. The device 16 calculates the pump rotation speed Fk corresponding to the load target for the secondary pump that starts increasing in stages based on the above-described calculation formula (1), and the rotation speed of the secondary pump 14b that starts increasing in stages. A signal is output to the converter 15b. On the other hand, the operating secondary pump 14a (operating machine 1) is operated at a maximum pump speed of 100% (MAX%) when the secondary pump 14b, which is the operating machine 2, is started to increase in stage. Keep only for hours. This predetermined time is referred to as “delay time at the time of step increase”, and this delay time at the time of step increase is TiD in the calculation formula (1) as described above.

運転中の二次ポンプ14a(運転機1)は、増段時遅延時間TiDが経過すると、計算式(1)で算出された回転数Fkまで回転数制御装置16により下げられ、従って運転機1と運転機2は同じ回転数で運転される。この計算式(1)は回転数制御装置16のメモリに記憶されており、台数制御装置28が流量センサ26等の情報から二次ポンプの増段起動を指示したとき、その情報が回転数制御装置16にも同時に入力され、その情報信号に基づいて回転数制御装置16のメモリに記憶されている計算式(1)に必要な数値が代入され、これにより増段起動後の二次ポンプの回転数として負荷目標に応じたポンプ回転数Fkが算出され、二次ポンプ14a,14bの回転数変換装置15a,15bに信号出力される。継続して運転されている運転機1の回転数を運転機2の増段起動時から所定時間だけ遅らせて制御する理由は、二次側管路内における圧力変化と流量変化を小さくして制御状態を安定させるためである。   The secondary pump 14a (operating machine 1) in operation is lowered by the rotational speed control device 16 to the rotational speed Fk calculated by the calculation formula (1) when the delay time TiD at the time of increase elapses. And the operating machine 2 are operated at the same rotational speed. This calculation formula (1) is stored in the memory of the rotation speed control device 16, and when the unit control device 28 instructs the secondary pump to start increasing from the information such as the flow sensor 26, the information is the rotation speed control. At the same time, the numerical value necessary for the calculation formula (1) stored in the memory of the rotational speed control device 16 is substituted based on the information signal, and thereby the secondary pump after the start of the stage increase is started. The pump speed Fk corresponding to the load target is calculated as the speed and is output as a signal to the speed converters 15a and 15b of the secondary pumps 14a and 14b. The reason for controlling the rotation speed of the operating machine 1 that is continuously operated by delaying a predetermined time from the time when the operating machine 2 is increased is controlled by reducing the pressure change and the flow rate change in the secondary side pipe line. This is to stabilize the state.

二次ポンプ14bが増段起動した時点から増段時安定化待ち時間(TiS)が経過した後は、二次ポンプ14a,14bは、通常の回転数制御により目標負荷に応じた回転数に制御される。すなわち、目標負荷が35%であった場合には、1台の二次ポンプが負担する出力は目標負荷の半分である17.5%であるので、各二次ポンプ14a,14bの出力回転数はそれぞれ70%となる。   After the stage increase stabilization waiting time (TiS) has elapsed since the secondary pump 14b has started to increase the stage, the secondary pumps 14a and 14b are controlled to the number of rotations corresponding to the target load by normal rotation speed control. Is done. That is, when the target load is 35%, the output borne by one secondary pump is 17.5%, which is half of the target load, and therefore the output rotation speed of each secondary pump 14a, 14b. Respectively becomes 70%.

このような増段起動の場合、従来の制御方法では、図6における中段の状態図、即ち従来の空調熱源装置における二次ポンプの回転数の推移における状態B2から明らかなように、増段起動した2台目の二次ポンプ14b(運転機2)は最大ポンプ回転数100%(MAX%)で運転を始め、増段時安定化待ち時間を経過するまでこの状態を維持する。従って、運転機1,2の両方が増段時安定化待ち時間を経過するまで最大ポンプ回転数100%(MAX%)で運転される。   In the case of such a step-up startup, in the conventional control method, as shown in the middle stage diagram in FIG. 6, that is, the state B2 in the transition of the rotation speed of the secondary pump in the conventional air-conditioning heat source device, the step-up startup is performed. The second secondary pump 14b (operator 2) starts operation at the maximum pump speed of 100% (MAX%) and maintains this state until the stabilization waiting time at the time of increasing the stage elapses. Therefore, both of the operating units 1 and 2 are operated at the maximum pump speed of 100% (MAX%) until the stabilization waiting time at the time of increase is elapsed.

従来の空調熱源システムにおける制御では、図6の状態B2に示されるように運転機2が増段起動された時点から増段時安定化待ち時間までの間、運転機1,2共に最大のポンプ回転数で運転され、その後に目標負荷に応じた回転数に制御されるので、管路内の圧力変動、流量変動の幅が大きくなり、その結果として空調機側の制御乱れの原因となるばかりかエネルギー損失が大きい。しかし、この発明に係る制御方法では、前述したように増段起動する運転機2を最大ポンプ回転数では運転せず、計算式(1)から演算された回転数に制御して運転すると共に、運転機1も増段起動時点から増段時遅延時間TiDが経過すると計算式(1)で演算された回転数(結果として運転機2と同じ回転数となる)に下げて運転されるので、圧力変動と流量変動による空調機側の制御乱れを低減させ、かつ省エネルギー効果が高い運転を行うことになる。   In the control in the conventional air-conditioning heat source system, as shown in the state B2 in FIG. 6, the maximum pumps for both the operating units 1 and 2 are from the point in time when the operating unit 2 is started up to the stabilization waiting time at the time of increasing the stage. Since it is operated at the number of revolutions and then controlled to the number of revolutions according to the target load, the range of pressure fluctuations and flow fluctuations in the pipe line increases, and as a result, it causes control disturbance on the air conditioner side. Or energy loss is great. However, in the control method according to the present invention, as described above, the operating unit 2 that starts increasing the stage is not operated at the maximum pump speed, but is operated while being controlled to the speed calculated from the calculation formula (1). Since the driving machine 1 is also operated by lowering the rotation speed calculated by the calculation formula (1) (resulting in the same rotation speed as the driving machine 2) when the delay time TiD at the time of the increase has elapsed since the start of the increase of the stage, The control disturbance on the air conditioner side due to pressure fluctuation and flow rate fluctuation is reduced, and operation with high energy saving effect is performed.

次に、二次ポンプ14a,14b(運転機1,2)がそれぞれ出力70%で運転されている際に図7の状態A3に示されるように二次側流量(負荷)が80%に上がった場合について説明する。二次側流量(負荷)が80%に上昇すると、運転中の二次ポンプ14a,14bは、図7の状態C3に示されるように回転数制御装置16によりそのポンプ回転数が70%から最大の100%に上昇されて運転される。しかし、2台の二次ポンプ14a,14bの最大出力における二次側流量がそれぞれ25%なので、二次ポンプ14a,14bだけで賄うことができず、台数制御装置28は二次側流量(負荷)に対応した台数で運転させるべく他の2台の二次ポンプ14c、14d(図7において運転機3、4と表示)の運転を指示して増段起動を図る。   Next, when the secondary pumps 14a and 14b (operators 1 and 2) are respectively operated at an output of 70%, the secondary flow rate (load) increases to 80% as shown in the state A3 of FIG. The case will be described. When the secondary flow rate (load) increases to 80%, the operating secondary pumps 14a and 14b have their pump rotation speeds increased from 70% to 70% by the rotation speed controller 16 as shown in the state C3 of FIG. It is raised to 100% of the driving. However, since the secondary flow rates at the maximum output of the two secondary pumps 14a and 14b are 25%, respectively, they cannot be covered by the secondary pumps 14a and 14b alone. In order to operate with the number corresponding to the number of the secondary pumps 14c and 14d (indicated as operating units 3 and 4 in FIG. 7), an increase in the number of stages is started.

その際も、増段起動された2台の二次ポンプ14c,14dは、前述した状態C2と同じように増段起動時のポンプ回転数を計算する前述の計算式(1)により算出された回転数Fkで運転するように制御される。他方、運転中の二次ポンプ14a、14b(運転機1,2)は、運転機3,4である二次ポンプ14c,14dの増段起動時には最大出力100%で運転されており、その状態を図6の状態C2と同様に増段時遅延時間TiDだけ維持する。運転中の二次ポンプ14a,14b(運転機1,2)は、増段時遅延時間が経過すると、計算式(1)で算出された回転数Fkまで回転数制御装置16により下げられ、従って運転機1〜4は同じ回転数で運転される。   Also in this case, the two secondary pumps 14c and 14d that have been started up in stages are calculated by the above-described calculation formula (1) that calculates the pump rotation speed at the start up of the stage in the same manner as in the state C2 described above. It is controlled to operate at the rotational speed Fk. On the other hand, the operating secondary pumps 14a and 14b (operating units 1 and 2) are operated at a maximum output of 100% when the secondary pumps 14c and 14d as the operating units 3 and 4 are started up in stages. Is maintained for the delay time TiD at the time of step increase similarly to the state C2 of FIG. The secondary pumps 14a and 14b (operators 1 and 2) in operation are lowered by the rotational speed control device 16 to the rotational speed Fk calculated by the calculation formula (1) when the delay time at the time of increase has elapsed. The drivers 1 to 4 are operated at the same rotational speed.

増段起動開始時点から増段時安定化待ち時間が経過した後は、二次ポンプ14a〜14dは、通常の回転数制御により目標負荷に応じた回転数に制御される。すなわち、目標負荷が80%であった場合には、1台の二次ポンプが負担する出力は目標負荷の1/4、即ち20%であるので、各二次ポンプ14a〜14dの回転数はそれぞれ80%となる。   After the stage increase stabilization waiting time has elapsed since the start of the stage increase start, the secondary pumps 14a to 14d are controlled to the rotation speed corresponding to the target load by the normal rotation speed control. That is, when the target load is 80%, the output of one secondary pump is 1/4 of the target load, that is, 20%. Therefore, the rotation speed of each secondary pump 14a to 14d is Each is 80%.

このような増段起動の場合における従来の制御方法では、図7における中段の状態B3から明らかなように、増段起動した3,4台目の二次ポンプ14c,14d(運転機3,4)は最大(100%)のポンプ回転数で運転を始め、増段時安定化待ち時間を経過するまでこの状態を維持する。従って、運転機1〜4のすべてが増段時安定化待ち時間を経過するまで最大ポンプ回転数100%で運転され、その後に目標負荷に応じた回転数に制御されるので、圧力変動や流量変動幅が大きく空調機側の制御乱れが大きくなると共にエネルギー損失も大きい。しかし、この発明に係る制御方法では、増段起動する運転機3,4を最大出力では運転せず、計算式(1)から演算された回転数に制御して運転すると共に、運転機1,2も増段起動時点から増段時遅延時間TiDが経過すると計算式(1)で演算された回転数(結果として運転機3,4と同じ回転数となる)に下げて運転されるので、圧力変動と流量変動による空調機側の制御乱れを低減させ、かつ省エネルギー効果が高い運転を行うことになる。   In the conventional control method in the case of such a step-up startup, as is apparent from the middle stage state B3 in FIG. 7, the third and fourth secondary pumps 14c, 14d (operators 3, 4) that have been stepped up. ) Starts operation at the maximum (100%) pump speed, and maintains this state until the stabilization waiting time at the time of increasing the stage elapses. Therefore, all of the operating units 1 to 4 are operated at a maximum pump speed of 100% until the stabilization waiting time at the time of increasing stage elapses, and then controlled to a speed corresponding to the target load. The fluctuation range is large, the control disturbance on the air conditioner side becomes large, and the energy loss is also large. However, in the control method according to the present invention, the operating units 3 and 4 that are to be stepped up are not operated at the maximum output, but are operated while being controlled at the rotation speed calculated from the calculation formula (1). 2 is also operated by lowering to the rotation speed calculated by the calculation formula (1) (resulting in the same rotation speed as that of the operating units 3 and 4) when the delay time TiD at the increase stage elapses from the start stage of the increase stage. The control disturbance on the air conditioner side due to pressure fluctuation and flow rate fluctuation is reduced, and operation with high energy saving effect is performed.

次に、二次ポンプを減段する場合の制御について図8〜図10を参照しながら説明する。図8において上段に状態A4で示されるように、二次側流量(負荷)が75%を下回って60%に低下する傾向を示すとき、4台の二次ポンプ14a〜14dすべての運転を行う必要がないので、台数制御装置28により減段制御がなされる。すなわち、二次側流量(負荷)が75%を下回ると、状態C4に示されるように台数制御装置28が二次ポンプ14d(運転機4)を減段停止する。   Next, control when the secondary pump is stepped down will be described with reference to FIGS. 8, when the secondary flow rate (load) shows a tendency to fall below 75% to 60% as indicated by the state A4 in the upper stage, all four secondary pumps 14a to 14d are operated. Since there is no need, the number reduction control is performed by the number control device 28. That is, when the secondary flow rate (load) is less than 75%, the unit control device 28 stops the secondary pump 14d (operating machine 4) in a step-down manner as shown in the state C4.

継続運転中の二次ポンプ14a,14b,14cは、所定時間の間、減段停止時直前の回転数を維持して運転される。この所定時間を「減段時遅延時間」と称し、この増段時遅延時間は、前述した計算式(2)中のTdDである。この減段時遅延時間が経過すると、二次ポンプ14a〜14cは、次の計算式(2)により算出した負荷目標に応じたポンプ回転数Fkで運転される。この計算式(2)も回転数制御装置16のメモリ等の記憶装置に記憶されており、台数制御装置28が流量センサ26等の情報から二次ポンプの減段停止を指示したとき、その情報は回転数制御装置16にも同時に信号入力され、その情報信号に基づいて回転数制御装置16のメモリに記憶されている計算式(2)に必要な数値が代入され、これにより減段後に継続運転する二次ポンプの回転数として負荷目標に応じたポンプ回転数Fkが算出され、現に運転中の二次ポンプ14a,14b,14cに信号出力される。   The secondary pumps 14a, 14b, and 14c that are in continuous operation are operated while maintaining the rotation speed immediately before the stage-reduction stop for a predetermined time. This predetermined time is referred to as a “delay time delay time”, and the step delay time is TdD in the above-described calculation formula (2). When this step-down delay time elapses, the secondary pumps 14a to 14c are operated at the pump speed Fk corresponding to the load target calculated by the following calculation formula (2). This calculation formula (2) is also stored in a storage device such as a memory of the rotation speed control device 16, and when the unit control device 28 instructs the secondary pump to stop the stage from the information such as the flow sensor 26, the information Is simultaneously input to the rotational speed control device 16 and a necessary numerical value is substituted into the calculation formula (2) stored in the memory of the rotational speed control device 16 based on the information signal, thereby continuing after the step reduction. A pump rotational speed Fk corresponding to the load target is calculated as the rotational speed of the secondary pump to be operated, and a signal is output to the currently operating secondary pumps 14a, 14b, and 14c.

1台の二次ポンプ14dを減段した際に、継続運転中の二次ポンプ14a,14b,14cを減段時遅延時間だけ減段停止時直前の回転数で運転する理由は、二次側管路内における圧力変化と流量変化を小さくして管路内状態の安定化を図るためである。二次ポンプ14dが減段停止した時点から減段時安定化待ち時間が経過した後は、二次ポンプ14a,14b,14cは、通常の回転数制御により目標負荷に応じた回転数に制御される。すなわち、目標負荷が60%であった場合には、1台の二次ポンプが負担する出力は目標負荷の1/3である20%であるので、各二次ポンプ14a,14b,14cの出力(回転数)はそれぞれ80%となる。   The reason for operating the secondary pumps 14a, 14b, 14c during continuous operation at the rotational speed immediately before the stage reduction stop for the stage reduction delay time when the stage of the secondary pump 14d is reduced is the secondary side This is because the pressure change and the flow rate change in the pipe line are reduced to stabilize the state in the pipe line. After the step-down stabilization waiting time has elapsed since the time when the secondary pump 14d has stopped stepping down, the secondary pumps 14a, 14b, 14c are controlled to the number of rotations corresponding to the target load by normal rotation number control. The That is, when the target load is 60%, the output borne by one secondary pump is 20%, which is 1/3 of the target load, and therefore the output of each secondary pump 14a, 14b, 14c. (Rotational speed) is 80%.

このような減段停止の場合、従来の制御方法では、図8において中段に示す従来の空調熱源システムにおける二次ポンプの回転数の推移における状態B4から明らかなように、1台の二次ポンプ14d(運転機4)の減段停止後に継続運転している二次ポンプ14a,14b,14c(運転機1,2,3)は最大ポンプ回転数(100%)で運転を始め、減段時安定化待ち時間を経過するまでこの状態を維持する。従って、運転機1,2,3が減段時安定化待ち時間を経過するまで最大ポンプ回転数100%で運転され、その後に目標負荷に応じた回転数に制御されるので、圧力変動や流量変動幅が大きく空調機側の制御乱れが大きくなると共にエネルギー損失が大きい。しかし、この発明に係る制御方法では、減段停止後に継続して運転される運転機1,2,3を最大ポンプ回転数では運転せず、計算式(2)から演算された回転数に制御して運転するので、圧力変動と流量変動による空調機側の制御乱れを低減させ、かつ省エネルギー効果が高い運転を行うことになる。   In the case of such a stage reduction stop, in the conventional control method, as is apparent from the state B4 in the transition of the rotation speed of the secondary pump in the conventional air conditioning heat source system shown in the middle stage in FIG. The secondary pumps 14a, 14b, 14c (operators 1, 2, and 3) that are continuously operated after the step reduction stop of 14d (operator 4) start operation at the maximum pump speed (100%), and when the gear is reduced This state is maintained until the stabilization waiting time elapses. Accordingly, the operating units 1, 2, and 3 are operated at the maximum pump speed of 100% until the stabilization time at the time of step reduction elapses, and then controlled to the speed corresponding to the target load. The fluctuation range is large, the control disturbance on the air conditioner side becomes large, and the energy loss is large. However, in the control method according to the present invention, the operating units 1, 2, and 3 that are continuously operated after the stage reduction stop are not operated at the maximum pump rotational speed, but are controlled to the rotational speed calculated from the calculation formula (2). Therefore, the control disturbance on the air conditioner side due to the pressure fluctuation and the flow fluctuation is reduced, and the operation with high energy saving effect is performed.

次に、二次ポンプ14a,14b,14cのそれぞれがポンプ回転数80%で運転されているときに、図9の状態A5に示されるように二次側流量(負荷)が15%に低下したとすると、この二次側流量(負荷)に対しては1台の二次ポンプの運転で十分に賄えるので、台数制御装置28がこのことを判断して2台の二次ポンプ14b,14c(運転機2,3)を減段停止すべく制御する(状態C5参照)。そのとき、継続運転される二次ポンプ14aは、回転数制御装置16により減段時遅延時間だけ減段停止直前の回転数を維持して運転され、さらに減段時遅延時間経過後には計算式(2)により演算された回転数Fkで運転すべく制御される。   Next, when each of the secondary pumps 14a, 14b, and 14c is operated at a pump speed of 80%, the secondary flow rate (load) is reduced to 15% as shown in the state A5 of FIG. Then, since this secondary flow rate (load) can be sufficiently covered by the operation of one secondary pump, the unit controller 28 judges this and determines the two secondary pumps 14b, 14c ( The operating units 2 and 3) are controlled to stop step-down (see state C5). At that time, the continuously operated secondary pump 14a is operated by the rotational speed control device 16 while maintaining the rotational speed immediately before the stage reduction stop by the stage reduction delay time. Control is performed to operate at the rotational speed Fk calculated in (2).

2台の二次ポンプ14b、14cが減段停止された際に継続運転中の二次ポンプ14a(二次ポンプ14dは既に運転が停止されている)を減段時遅延時間だけ減段停止時直前の回転数で運転する理由は、二次側管路内における流量変化を小さくして管路内の状態安定化を図るためである。   When the two secondary pumps 14b and 14c are stepped down, the secondary pump 14a that is continuously operating (the secondary pump 14d has already stopped operating) is stopped at the step reduction time. The reason for operating at the immediately preceding rotational speed is to reduce the flow rate change in the secondary side pipe line and to stabilize the state in the pipe line.

二次ポンプ14b,14cが減段停止した時点から減段時安定化待ち時間が経過した後は、二次ポンプ14aは、通常の回転数制御により目標負荷に応じた回転数に制御される。すなわち、目標負荷が15%であった場合には、1台の二次ポンプが負担するポンプ回転数は25%であるので、二次ポンプ14aのポンプ回転数は60%となる。   After the step-down stabilization waiting time has elapsed since the time when the secondary pumps 14b and 14c stopped step-down, the secondary pump 14a is controlled to the number of rotations corresponding to the target load by normal rotation number control. That is, when the target load is 15%, the pump speed of one secondary pump is 25%, so the pump speed of the secondary pump 14a is 60%.

このような増段起動の場合、従来の制御方法では、図9において中段に示す従来の空調熱源システムにおける二次ポンプの回転数の推移における状態B5から明らかなように、2台の二次ポンプ14b,14c(運転機2,3)の減段停止後に継続運転している1台の二次ポンプ14a(運転機1)は最大(100%)のポンプ回転数で運転を始め、減段時安定化待ち時間を経過するまでこの状態を維持し、その後に目標負荷に応じたポンプ回転数に制御されるので、圧力変動や流量変動幅が大きく空調機側の制御乱れが大きくなると共にエネルギー損失が大きい。しかし、この発明に係る制御方法では、減段停止後に継続して運転される運転機1を最大ポンプ回転数では運転せず、計算式(2)から演算された回転数に制御して運転するので、省エネルギー効果が高い運転を行うことになる。   In the case of such a step-up startup, in the conventional control method, as is apparent from the state B5 in the transition of the rotation speed of the secondary pump in the conventional air conditioning heat source system shown in the middle stage in FIG. One secondary pump 14a (operator 1), which is continuously operated after the stage reduction stop of 14b and 14c (operators 2 and 3), starts operation at the maximum (100%) pump speed, and when the stage is reduced This state is maintained until the stabilization waiting time elapses, and then the pump rotation speed is controlled according to the target load, so the pressure fluctuation and flow fluctuation range are large, and the control disturbance on the air conditioner side increases and energy loss occurs. Is big. However, in the control method according to the present invention, the operating machine 1 that is continuously operated after the stage reduction stop is not operated at the maximum pump speed, but is operated while being controlled at the speed calculated from the calculation formula (2). Therefore, driving with high energy saving effect will be performed.

さらに、図10の状態A6に示されるように二次側流量(負荷)が15%を下回って0%(空調機19a,19bの運転停止)になった場合、運転中の二次ポンプ14aは、状態C6に示されるように回転数制御装置16によりその出力が60%から0%、言い換えれば運転が停止される。このように1台の二次ポンプ14aの運転中に二次側流量(負荷)が0%になり、この二次ポンプ14aが減段停止する場合には、従来の制御方法と本発明に係る制御方法とに特に異なる点はない。   Furthermore, as shown in state A6 of FIG. 10, when the secondary flow rate (load) falls below 15% to 0% (air conditioners 19a and 19b are stopped), the operating secondary pump 14a is As shown in the state C6, the rotation speed control device 16 outputs 60% to 0%, in other words, the operation is stopped. As described above, when the secondary flow rate (load) becomes 0% during the operation of one secondary pump 14a and the secondary pump 14a stops step-down, the conventional control method and the present invention are applied. There is no particular difference in the control method.

次に、増段起動時のポンプ回転数計算式(1)の算出方法について説明する。図11には、増段起動時におけるポンプ回転数の推移を示す特性曲線が示されている。この特性曲線は、図6の状態C2を拡大して部分的に示したものである。図11の特性図では、横軸(X軸)を時間、縦軸(Y軸)をポンプ回転数とし、継続運転中の二次ポンプ(「運転機」と称する)におけるポンプ回転数変化曲線を符号30で示し、増段起動された二次ポンプ(「増段機」と称す)におけるポンプ回転数変化曲線を符号40で示している。これら運転機と増段機は、例えばインバータのような回転数変換装置を備え、その回転数変換装置を回転数制御装置16によりPAM制御又はPWN制御により自由に制御して回転数を可変し得るようになっている。   Next, a calculation method of the pump rotational speed calculation formula (1) at the time of increasing the stage start will be described. FIG. 11 shows a characteristic curve showing the transition of the pump rotation speed at the time of starting the increased stage. This characteristic curve is a partially enlarged view of the state C2 in FIG. In the characteristic diagram of FIG. 11, the horizontal axis (X axis) is time, the vertical axis (Y axis) is the pump rotational speed, and the pump rotational speed change curve in the secondary pump (referred to as “operator”) during continuous operation is shown. Reference numeral 30 denotes a pump rotational speed change curve in a secondary pump (referred to as “stage increaser”) that has been started up in stages. These operating units and step-up machines are provided with a rotation speed conversion device such as an inverter, for example, and the rotation speed conversion device 16 can be freely controlled by PAM control or PWN control by the rotation speed control device 16 to change the rotation speed. It is like that.

図11は、運転中のポンプ回転制御範囲をMIN%〜MAX%と仮定したときの動作例である。運転機が、その定格最大ポンプ回転数(MAX)で運転されているとき、二次側流量(負荷)が上昇して台数制御装置28が1台の二次ポンプを増段起動させる指示を出した場合、増段機がその運転開始と同時に所定出力(ポンプ回転数Fk)で運転するかのようにほぼ垂直に立ち上がって描かれている(符号41で示す実線)。これは図6でも同様であるが、説明を理解し易くするためであって、実際には増段機の立ち上がり時の回転数は回転数制御装置によってポイントAから二次関数曲線で描かれる緩やかな曲線で増加する。しかし、説明を分かり易くするため、点線42のようにほぼy=ax(a>1)で描かれるような直線で増加するものとして、ある時間が経過したときに設計上の最大ポンプ回転数(100%)であるポイントBに達する。そのときの、ポイントAからポイントBまでの時間が増段時インバータ加減速時間(Til)である。この増段時インバータ加減速時間(Til)は、使用する二次ポンプの特性値であるので、図3のフローチャートで説明したようにステップS−2で予め回転数制御装置16に定数として記憶されている。   FIG. 11 is an operation example when the pump rotation control range during operation is assumed to be MIN% to MAX%. When the operating unit is operating at its rated maximum pump speed (MAX), the secondary flow rate (load) increases and the unit controller 28 issues an instruction to start one secondary pump in stages. In this case, the step-up machine is drawn up almost vertically as if it were operating at a predetermined output (pump rotation speed Fk) simultaneously with the start of operation (solid line indicated by reference numeral 41). This is the same as in FIG. 6, but is for ease of understanding of the explanation. Actually, the rotational speed at the time of start-up of the step-up machine is a gentle curve drawn from the point A by the quadratic function curve by the rotational speed control device. It increases with a simple curve. However, in order to make the explanation easy to understand, it is assumed that it increases in a straight line as drawn by a dotted line 42 as approximately y = ax (a> 1). 100%) is reached. The time from point A to point B at this time is the inverter acceleration / deceleration time (Til) at the time of step increase. Since the inverter acceleration / deceleration time (Til) at the stage increase is a characteristic value of the secondary pump to be used, it is stored in advance as a constant in the rotation speed control device 16 in step S-2 as described in the flowchart of FIG. ing.

この点線42を便宜的に「増段時加速線」という。この増段時加速線42の傾斜角度θは、回転数0%から100%に達するまでの時間が増段時インバータ加減速時間(Til)であるので、100/Tilである。したがって、傾斜角度θは、上記のy=axにおける傾きaに相当する。そして、このy=(100/Til)・xにおいて、xとして増段時遅延時間(Tid)を代入すると、増段時加速線42上のポイントDの回転数が出る。運転中の二次ポンプの回転数は、増段機の運転開始から増段時遅延時間を経過したときに下げられるが、そのときの減速線は、前述の増段時加速線42と傾斜の向きがマイナスになるだけである。この増段時減速線43と増段時加速線42とが交わる位置(ポイントC)が負荷目標に応じた回転数Fkである。このとき、図11における斜線で示される領域を画成している三角形は二等辺三角形であるので、y=(100/Til)・Tidに運転中の運転機1の回転数Fmを加えて2等分すればポイントCの回転数が算出される。   The dotted line 42 is referred to as an “acceleration line during step increase” for convenience. The inclination angle θ of the accelerating line 42 at the time of step increase is 100 / Til because the time until the rotation speed reaches 0% to 100% is the inverter acceleration / deceleration time (Til) at step increase. Therefore, the inclination angle θ corresponds to the inclination a when y = ax. In this y = (100 / Til) · x, if the delay time (Tid) at the time of increase is substituted as x, the rotation speed of the point D on the acceleration line 42 at the time of increase is obtained. The rotational speed of the secondary pump during operation is lowered when the delay time at the time of increase has elapsed since the start of the operation of the step-up machine. The deceleration line at that time is inclined with respect to the acceleration line 42 at the time of increase. Only the direction is negative. The position (point C) where the speed increasing deceleration line 43 and the speed increasing acceleration line 42 intersect is the rotational speed Fk corresponding to the load target. At this time, since the triangle defining the region indicated by the oblique line in FIG. 11 is an isosceles triangle, the rotational speed Fm of the operating unit 1 in operation is added to y = (100 / Til) · Tid to obtain 2 If it is equally divided, the number of rotations of point C is calculated.

他方、図12には、減段停止時における継続運転中のポンプ回転数の推移についての特性曲線が示されている。この特性曲線は、図8の状態C4を拡大して部分的に示したものである。図12の特性図において、減段時加速線は符号45で示され、減段時減速線は符号46で示されている。運転中の二次ポンプ(「運転機」)は、減段機が運転を停止(低速運転の場合を含む)した後、減段機遅延時間(TdD)が経過すると、その時点(ポイントE)から徐々にその回転数が高められ、負荷目標に応じた回転数Fk(ポイントF)に達すると仮定する。このポイントFを通る、回転数変換装置による減速線46を描くと、この減速線46の傾きは、既に増段起動時の場合について説明した理由により、−100/TdIとなり、説明を分かり易くするためこれを一次関数の方程式で表すと、y=(−100/TdI)×xとなる。このxに減段時遅延期間であるTdDを代入すると、y=(−100/TdI)×xで表される直線上において、100%からポイントGまでの回転数分(y1)が計算される。したがって、ポイントGにおける実際の回転数は、100(%)+(−100/TdI)×TdDとなる。   On the other hand, FIG. 12 shows a characteristic curve with respect to the transition of the pump rotation speed during the continuous operation at the time of step reduction. This characteristic curve is a partially enlarged view of the state C4 in FIG. In the characteristic diagram of FIG. 12, the acceleration line at the time of step reduction is indicated by reference numeral 45, and the deceleration line at the time of reduction step is indicated by reference numeral 46. The secondary pump in operation (“operator”) is stopped at the point where the step-down device delay time (TdD) elapses after the step-down device stops operating (including the case of low-speed operation) (point E). , It is assumed that the rotational speed is gradually increased and reaches the rotational speed Fk (point F) corresponding to the load target. When the deceleration line 46 by the rotational speed converter passing through the point F is drawn, the inclination of the deceleration line 46 becomes −100 / TdI for the reason already explained at the time of starting the step increase, and the explanation is easy to understand. Therefore, when this is expressed by an equation of a linear function, y = (− 100 / TdI) × x. By substituting TdD, which is a delay time during step-down, into x, the number of revolutions (y1) from 100% to point G is calculated on the straight line represented by y = (− 100 / TdI) × x. . Therefore, the actual rotational speed at the point G is 100 (%) + (− 100 / TdI) × TdD.

前述した二次ポンプの減段時加速線45の傾きは、正負の違いのみで実質的に同じであるので、増段起動時におけるポンプ回転数の推移と同様に斜線で示した領域は2等辺三角形となる。よって、ポイントFは、減段機が停止する直前の運転機の回転数(Fm)とポイントGにおける回転数〔100(%)+(−100/TdI)×TdD〕とを加算して2等分すれば求められる。その計算式が、式(2)である。   Since the slope of the acceleration line 45 at the time of reduction of the secondary pump described above is substantially the same with only a difference between positive and negative, the region indicated by the oblique line is an isosceles as in the transition of the pump speed at the start of the increase in stage. It becomes a triangle. Therefore, the point F is 2 etc. by adding the rotational speed (Fm) of the operating machine immediately before the reduction gear stops and the rotational speed at the point G [100 (%) + (− 100 / TdI) × TdD]. If you divide, it will be required. The calculation formula is Formula (2).

以上説明したように、本発明に係る空調熱源システムにおける熱媒搬送装置の制御方法によれば、二次ポンプの増段起動時または減段停止の際に該二次ポンプを負荷目標に応じた回転数に制御し、その後に実際の負荷目標に応じた回転数に制御することにより圧力変動と流量変動による空調機側の制御乱れを低減させ、かつエネルギー損失が少なく、省エネルギー運転となって運転コストの低減を図ることができる。   As described above, according to the control method of the heat transfer device in the air-conditioning heat source system according to the present invention, the secondary pump is set in accordance with the load target when the secondary pump is started up or stopped. By controlling to the number of revolutions and then to the number of revolutions according to the actual load target, control disturbances on the air conditioner side due to pressure fluctuations and flow fluctuations are reduced, and energy loss is reduced and energy saving operation is performed. Cost can be reduced.

また、この発明に係る空調熱源システムにおける熱媒搬送装置の制御方法によれば、増段した二次ポンプの運転開始から所定時間だけ遅らせて、継続運転している二次ポンプの回転数を算出された値まで下げ、また減段した二次ポンプの運転停止時又は低速待機運転時から所定時間だけ遅らせて、継続運転している二次ポンプの回転数を算出された値まで上げるように制御するので、流量の変化が小さく、その結果として制御状態の安定化を図ることができる。   Moreover, according to the control method of the heat transfer device in the air-conditioning heat source system according to the present invention, the rotation speed of the secondary pump that is continuously operated is calculated by delaying a predetermined time from the start of operation of the increased secondary pump. Control is performed to increase the rotation speed of the continuously operating secondary pump to the calculated value by delaying it by a predetermined time from when the secondary pump that has been stepped down is stopped or at low speed standby operation. Therefore, the change in the flow rate is small, and as a result, the control state can be stabilized.

本発明に係る制御方法を実施する空調熱源システムの構成を概略的に示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS Configuration explanatory drawing which shows roughly the structure of the air-conditioning heat-source system which implements the control method which concerns on this invention. 台数制御装置により二次ポンプの運転台数を制御する状態を示す特性図。The characteristic view which shows the state which controls the driving | operation number of a secondary pump with a number control apparatus. 増段起動時における回転数制御装置による二次ポンプ回転数制御動作を示すフローチャート。The flowchart which shows the secondary pump rotation speed control operation by the rotation speed control apparatus at the time of stage increase starting. 減段停止時における回転数制御装置による二次ポンプ回転数制御動作を示すフローチャート。The flowchart which shows secondary pump rotation speed control operation | movement by the rotation speed control apparatus at the time of a stage reduction stop. 増段起動時の二次ポンプにおける回転数の制御状態を示す状態説明図。State explanatory drawing which shows the control state of the rotation speed in the secondary pump at the time of stage increase starting. 増段起動時の二次ポンプにおける回転数の制御状態を示す状態説明図。State explanatory drawing which shows the control state of the rotation speed in the secondary pump at the time of stage increase starting. 増段起動時の二次ポンプにおける回転数の制御状態を示す状態説明図。State explanatory drawing which shows the control state of the rotation speed in the secondary pump at the time of stage increase starting. 減段停止時の継続運転中における二次ポンプの回転数制御状態を示す状態説明図。State explanatory drawing which shows the rotation speed control state of the secondary pump during the continuous operation at the time of the stage reduction stop. 減段停止時の継続運転中における二次ポンプの回転数制御状態を示す状態説明図。State explanatory drawing which shows the rotation speed control state of the secondary pump during the continuous operation at the time of the stage reduction stop. 減段停止時の継続運転中における二次ポンプの回転数制御状態を示す状態説明図。State explanatory drawing which shows the rotation speed control state of the secondary pump during the continuous operation at the time of the stage reduction stop. 増段起動時における負荷目標に応じた二次ポンプ回転数制御動作を示す特性図。The characteristic view which shows the secondary pump rotation speed control operation | movement according to the load target at the time of stage increase starting. 減段停止時における負荷目標に応じた二次ポンプ回転数制御動作を示す特性図。The characteristic view which shows secondary pump rotation speed control operation | movement according to the load target at the time of a stage reduction stop.

符号の説明Explanation of symbols

10 空調熱源装置
11 熱源装置
11a,11b 冷温水発生機
12 熱媒搬送装置
12a,12b 一次ポンプ
13 送水一次ヘッダ
14a,14b,14c,14d 二次ポンプ
15a,15b,15c,15d 回転数変換装置
16 回転数制御装置
17 送水二次ヘッダ
19a,19b 空調機
26 流量センサ
28 台数制御装置
29 圧力センサ
DESCRIPTION OF SYMBOLS 10 Air-conditioning heat source apparatus 11 Heat source apparatus 11a, 11b Cold / hot water generator 12 Heat medium conveying apparatus 12a, 12b Primary pump 13 Water supply primary header 14a, 14b, 14c, 14d Secondary pump 15a, 15b, 15c, 15d Rotational speed converter 16 Rotational speed control device 17 Water supply secondary header 19a, 19b Air conditioner 26 Flow rate sensor 28 Number control device 29 Pressure sensor

Claims (5)

熱源装置と、負荷側装置と、前記熱源装置と前記負荷側装置とに対応する熱媒搬送装置として設けられた一次ポンプおよび並列に複数台設けられ、回転数変換装置を備えた二次ポンプと、複数の前記二次ポンプの運転台数を制御する台数制御装置と、前記二次ポンプの回転数を負荷目標に応じて制御する回転数制御装置とを備える空調熱源システムにおける熱媒搬送装置の制御方法おいて、
前記台数制御装置により前記二次ポンプの少なくとも2台目以上が増段起動する際に、前記回転数制御装置が、該回転数制御装置の所望の回転数に達するまでの時間を基にして増段時回転数を算出し、増段した前記二次ポンプと運転中の前記二次ポンプとの回転数を前記算出された値まで変化させ、増段した前記二次ポンプの運転開始から増段時安定化待ち時間を経過した後に、増段した前記二次ポンプと運転中の前記二次ポンプとの回転数を負荷目標に応じた回転数に制御することを特徴とする前記空調熱源システムにおける熱媒搬送装置の制御方法。
A heat source device, a load side device, a primary pump provided as a heat transfer device corresponding to the heat source device and the load side device, and a secondary pump provided in parallel with a rotation speed converter Control of the heat transfer device in the air-conditioning heat source system, comprising: a number control device that controls the number of operating secondary pumps; and a rotation speed control device that controls the rotation speed of the secondary pumps according to a load target In the way
When at least two or more of the secondary pumps are started up in stages by the number control device, the rotation speed control device increases based on the time required to reach the desired rotation speed of the rotation speed control device. Calculate the stage rotation speed, change the rotation speed of the increased secondary pump and the operating secondary pump to the calculated value, and increase the stage from the start of operation of the increased secondary pump. In the air conditioning heat source system, the rotational speed of the secondary pump that has been increased and the secondary pump that is in operation is controlled to a rotational speed that corresponds to a load target after the time stabilization waiting time has elapsed. Control method for heat transfer device.
増段した前記二次ポンプの運転開始から所定時間だけ遅らせて、継続運転している前記二次ポンプの回転数を前記算出された値まで変化させる請求項1に記載の空調熱源システムにおける熱媒搬送装置の制御方法。   2. The heat medium in the air conditioning heat source system according to claim 1, wherein the rotation speed of the secondary pump that is continuously operated is changed to the calculated value after a predetermined time delay from the start of operation of the secondary pump that has been increased. A control method of the transport device. 熱源装置と、負荷側装置と、前記熱源装置と前記負荷側装置とに対応する熱媒搬送装置として設けられた一次ポンプおよび並列に複数台設けられ、回転数変換装置を備えた二次ポンプと、複数の前記二次ポンプの運転台数を制御する台数制御装置と、前記二次ポンプの回転数を負荷目標に応じて制御する回転数制御装置とを備える空調熱源システムにおける熱媒搬送装置の制御方法において、
前記台数制御装置により前記二次ポンプが少なくとも1台以上継続して運転する減段停止時に、前記回転数制御装置が、該回転数制御装置の所望の回転数に達するまでの時間を基にして減段時回転数を算出し、その後、継続運転している前記二次ポンプの回転数を前記算出した値まで変化させると共に減段した前記二次ポンプの運転を停止するか低速待機運転し、減段した前記二次ポンプの運転停止時又は低速待機運転時から減段時安定化待ち時間を経過した後に、継続運転している前記二次ポンプの回転数を負荷目標に応じた回転数に制御することを特徴とする前記空調熱源システムにおける熱媒搬送装置の制御方法。
A heat source device, a load side device, a primary pump provided as a heat transfer device corresponding to the heat source device and the load side device, and a secondary pump provided in parallel with a rotation speed converter Control of the heat transfer device in the air-conditioning heat source system, comprising: a number control device that controls the number of operating secondary pumps; and a rotation speed control device that controls the rotation speed of the secondary pumps according to a load target In the method
Based on the time until the rotational speed control device reaches the desired rotational speed of the rotational speed control device at the time of step-down stop in which at least one secondary pump is continuously operated by the number control device. Calculate the rotation speed at the time of step reduction, and then change the rotation speed of the secondary pump that is continuously operated to the calculated value and stop the operation of the secondary pump that has been stepped down or perform low-speed standby operation, After the stepped down stabilization waiting time has elapsed since the secondary pump that has been stepped down has stopped operating or has been in low-speed standby operation, the rotational speed of the secondary pump that is continuously operated is set to the number of revolutions according to the load target. A method for controlling a heat transfer device in the air conditioning heat source system.
減段した前記二次ポンプの運転停止時又は低速待機運転時から所定時間だけ遅らせて、継続運転している前記二次ポンプの回転数を前記算出された値に変化させる請求項3に記載の空調熱源システムにおける熱媒搬送装置の制御方法。   4. The rotation speed of the secondary pump that is continuously operated is changed to the calculated value by delaying by a predetermined time from the stoppage of the stepped-down secondary pump or the low-speed standby operation. A method for controlling a heat transfer device in an air conditioning heat source system. 複数の前記二次ポンプが回転数変換装置を備え、前記回転数制御装置を用いて前記二次ポンプの回転数が制御される請求項1〜4のいずれかに記載の空調熱源システムにおける熱媒搬送装置の制御方法。
The heat medium in the air-conditioning heat source system according to any one of claims 1 to 4, wherein the plurality of secondary pumps include a rotation speed conversion device, and the rotation speed of the secondary pump is controlled using the rotation speed control device. A control method of the transport device.
JP2005202679A 2005-07-12 2005-07-12 Control method of heat transfer device in air conditioning heat source system Active JP4669335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005202679A JP4669335B2 (en) 2005-07-12 2005-07-12 Control method of heat transfer device in air conditioning heat source system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005202679A JP4669335B2 (en) 2005-07-12 2005-07-12 Control method of heat transfer device in air conditioning heat source system

Publications (2)

Publication Number Publication Date
JP2007024325A true JP2007024325A (en) 2007-02-01
JP4669335B2 JP4669335B2 (en) 2011-04-13

Family

ID=37785326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005202679A Active JP4669335B2 (en) 2005-07-12 2005-07-12 Control method of heat transfer device in air conditioning heat source system

Country Status (1)

Country Link
JP (1) JP4669335B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030818A (en) * 2007-07-24 2009-02-12 Yamatake Corp Heat source control device and its method
JP2009121769A (en) * 2007-11-15 2009-06-04 Toshiba Mitsubishi-Electric Industrial System Corp Cold water supply method, cold water supply device and control method for cold water supply device
JP2013050236A (en) * 2011-08-30 2013-03-14 Azbil Corp Device and method for controlling heat source machine
WO2014083680A1 (en) * 2012-11-30 2014-06-05 三菱電機株式会社 Air conditioning device
WO2014091572A1 (en) * 2012-12-12 2014-06-19 三菱電機株式会社 Air conditioner device
JP2014129937A (en) * 2012-12-28 2014-07-10 Ntt Facilities Inc Cold water circulation system
WO2015083394A1 (en) * 2013-12-03 2015-06-11 三菱重工業株式会社 Device for controlling number of operating heat source devices, heat source system, control method, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751981A (en) * 1980-09-12 1982-03-27 Toshiba Corp Pump operation control device
JPS60145486A (en) * 1983-12-30 1985-07-31 Hitachi Ltd Pressure control for pump
JPH09126144A (en) * 1995-08-31 1997-05-13 Ebara Corp Operation method for variable speed feed water pump
JPH11287189A (en) * 1998-04-02 1999-10-19 Kazuo Sugata Pump control method
JP2002213802A (en) * 2001-01-22 2002-07-31 Yokogawa Electric Corp Air-conditioning system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751981A (en) * 1980-09-12 1982-03-27 Toshiba Corp Pump operation control device
JPS60145486A (en) * 1983-12-30 1985-07-31 Hitachi Ltd Pressure control for pump
JPH09126144A (en) * 1995-08-31 1997-05-13 Ebara Corp Operation method for variable speed feed water pump
JPH11287189A (en) * 1998-04-02 1999-10-19 Kazuo Sugata Pump control method
JP2002213802A (en) * 2001-01-22 2002-07-31 Yokogawa Electric Corp Air-conditioning system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030818A (en) * 2007-07-24 2009-02-12 Yamatake Corp Heat source control device and its method
JP2009121769A (en) * 2007-11-15 2009-06-04 Toshiba Mitsubishi-Electric Industrial System Corp Cold water supply method, cold water supply device and control method for cold water supply device
JP2013050236A (en) * 2011-08-30 2013-03-14 Azbil Corp Device and method for controlling heat source machine
JP5855279B2 (en) * 2012-11-30 2016-02-09 三菱電機株式会社 Air conditioner
WO2014083680A1 (en) * 2012-11-30 2014-06-05 三菱電機株式会社 Air conditioning device
US9638430B2 (en) 2012-11-30 2017-05-02 Mitsubishi Electric Corporation Air-conditioning apparatus
JPWO2014083680A1 (en) * 2012-11-30 2017-01-05 三菱電機株式会社 Air conditioner
JP5933031B2 (en) * 2012-12-12 2016-06-08 三菱電機株式会社 Air conditioner
WO2014091572A1 (en) * 2012-12-12 2014-06-19 三菱電機株式会社 Air conditioner device
JP2014129937A (en) * 2012-12-28 2014-07-10 Ntt Facilities Inc Cold water circulation system
JP2015108461A (en) * 2013-12-03 2015-06-11 三菱重工業株式会社 Number-of-active-heat-source-machines control device, heat source system, control method, and program
WO2015083394A1 (en) * 2013-12-03 2015-06-11 三菱重工業株式会社 Device for controlling number of operating heat source devices, heat source system, control method, and program
CN105683671A (en) * 2013-12-03 2016-06-15 三菱重工业株式会社 Device for controlling number of operating heat source devices, heat source system, control method, and program
US10655868B2 (en) 2013-12-03 2020-05-19 Mitsubishi Heavy Industries Thermal Systems, Ltd. Device for controlling number of operating heat source devices, heat source system, control method, and program

Also Published As

Publication number Publication date
JP4669335B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
JP4669335B2 (en) Control method of heat transfer device in air conditioning heat source system
US9746213B2 (en) Demand flow for air cooled chillers
JP4594276B2 (en) Cold / hot water control method for cold / hot heat source machine and air conditioning system used therefor
US10655868B2 (en) Device for controlling number of operating heat source devices, heat source system, control method, and program
CN107148541B (en) Heat source system, and control device and control method therefor
JP2008045800A (en) Heat source unit operation control method and device
JP2006292329A (en) Heat source system, and control device and control method thereof
Ahonen et al. Energy efficiency optimizing speed control method for reservoir pumping applications
JP5284295B2 (en) Heat source control system and heat source control method
JP2001342989A (en) Method of driving and controlling dc pump
JP2004353986A (en) Air-conditioning system
JP5261153B2 (en) Heat source system
JP2012159043A (en) Power generation plant, intake air cooling control device in power generation plant and operation control method of power generation plant
CN115451600B (en) Combined air-cooled module unit and energy control method thereof
JP5422366B2 (en) Coordinated control device and coordinated control method for heat source system
KR101852187B1 (en) Coolant flow rate control method for the optimum operation of the vacuum condenser
JP5313848B2 (en) Water supply pressure control system and method
JP2005147528A (en) Air conditioning system
JP2010276006A (en) Pump number control by pump shaft power
JP2005023818A (en) Compressor system
JP2003207190A (en) Air conditioning system
JP5963305B2 (en) Feed water flow control device and ventilation flow control device for power plant
CN110793089A (en) Water pressure control method of heat pump system and heat pump system
JP5455877B2 (en) Water supply equipment
JP2019174047A (en) Heat source system, control method of heat source system and control program of heat source system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4669335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250