JPH0816478B2 - How to calibrate pump head characteristics - Google Patents

How to calibrate pump head characteristics

Info

Publication number
JPH0816478B2
JPH0816478B2 JP63109883A JP10988388A JPH0816478B2 JP H0816478 B2 JPH0816478 B2 JP H0816478B2 JP 63109883 A JP63109883 A JP 63109883A JP 10988388 A JP10988388 A JP 10988388A JP H0816478 B2 JPH0816478 B2 JP H0816478B2
Authority
JP
Japan
Prior art keywords
pump
pressure
characteristic
impeller
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63109883A
Other languages
Japanese (ja)
Other versions
JPH01280698A (en
Inventor
徹雄 深沢
重吉 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Machinery and Engineering Co Ltd
Original Assignee
Pacific Machinery and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Machinery and Engineering Co Ltd filed Critical Pacific Machinery and Engineering Co Ltd
Priority to JP63109883A priority Critical patent/JPH0816478B2/en
Publication of JPH01280698A publication Critical patent/JPH01280698A/en
Publication of JPH0816478B2 publication Critical patent/JPH0816478B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、輻流速度成分の小さい羽根車により得られ
る、急な右下がりでかつ相似則に合致する揚程特性を有
するターボポンプと、ポンプの回転数を検知する装置
と、入口および出口の圧力を検知する装置とを備えたポ
ンプ系でポンプ揚程特性の経年変化を較正する方法に関
する。
Description: TECHNICAL FIELD The present invention relates to a turbo pump having a head characteristic which is obtained by an impeller having a small radiant velocity component, has a steep downward slope, and has a lift characteristic that conforms to the similarity rule, and a pump. The present invention relates to a method for calibrating secular change in pump head characteristics in a pump system including a device for detecting the number of rotations of the pump and a device for detecting pressures at the inlet and outlet.

(従来の技術および解決しようとする課題) 従来設計の一般の遠心ポンプでは、第7図に示すよう
に、その揚程特性のカーブの勾配がゆるやかなカーブに
なり、従って揚程の微小変化量ΔHに対して流量の微小
変化量ΔQの値が大きくなるので、圧力(全揚程)に対
する流量の指示精度が悪い。さらに、一般の設計の遠心
ポンプの場合、回転数の上限の20%以内では相似則を使
ってもよいことがJIS規格で規定されているが、このこ
とは、それ以外の回転数範囲では相似則に合致しないこ
とを意味する。従って、使用回転数範囲が広い場合に
は、計算値と実測値が一致しないので、各回転数ごと
に、例えば30r.p.mや50r.p.mごとに実測してその揚程特
性をコンピュータに記憶させてあかなければならず、こ
のためメモリー容量が膨大となり、従って大型コンピュ
ータが必要となり、実際的ではない。
(Prior Art and Problems to be Solved) In a general centrifugal pump of conventional design, as shown in FIG. 7, the gradient of the curve of its lift characteristic becomes a gentle curve, and therefore, the minute change amount ΔH of the lift is reduced. On the other hand, since the value of the minute change amount ΔQ of the flow rate becomes large, the accuracy of the flow rate instruction with respect to the pressure (total head) is poor. Furthermore, in the case of centrifugal pumps of general design, the JIS standard stipulates that the similarity rule may be used within 20% of the upper limit of the rotational speed, but this is similar in other rotational speed ranges. It means that the rule is not met. Therefore, when the number of revolutions used is wide, the calculated value and the measured value do not match.For each number of revolutions, for example, 30m.pm or 50r.pm are measured and the head characteristics are stored in the computer. This is impractical, which results in enormous memory capacity and thus requires a large computer, which is impractical.

また、ターボホンプの場合、長い間使用しているうち
に、羽根車、ケーシングなどが摩耗や腐食をしてその揚
程特性が変化するのが普通である。前述のように、一般
の設計の遠心ポンプの相似則の成立範囲が狭いので、較
正の際にポンプの設置現場で各回転数ごとに較正し、各
回転数における揚程特性を全て較正しなければならず、
実際上は不可能である。
Further, in the case of a turbo hoop, it is usual that the impeller, the casing, etc. are worn or corroded and the lift characteristics are changed during long-term use. As mentioned above, since the similarity range of the general design centrifugal pump is narrow, the calibration must be performed at the pump installation site for each rotation speed, and all the lift characteristics at each rotation speed must be calibrated. Not
Practically impossible.

一方、本出願人は、特開昭61−229989号公報(特願昭
60−50576)、特願昭63−34070により羽根数の少ない軸
流形状のターボポンプと、特願昭63−34070によりラジ
アル形状のターボポンプを出願している。これらのター
ボポンプに共通した点は、入口案内装置により羽根入口
で急激な流れの方向変化を起こさずに羽根車の中へ抵抗
なく流体を流入させ、羽根車では、摩擦損失ヘッドが小
さくかつ輻流方向羽根車内速度成分Cmが従来の羽根車の
Cmに比較して1/10程度まで小さく、羽根を出るときの出
口での流速の方向変化が非常におだやかになっているこ
とである。
On the other hand, the applicant of the present invention has filed Japanese Patent Application Laid-Open No. 61-229989 (Japanese Patent Application No.
60-50576), Japanese Patent Application No. 63-34070, and an axial flow turbo pump with a small number of blades, and Japanese Patent Application No. 63-34070, a radial turbo pump. The common point of these turbo pumps is that the inlet guide device allows the fluid to flow into the impeller without resistance without causing a sudden change in the flow direction at the impeller inlet. The velocity component Cm in the flow direction impeller is
It is smaller than Cm by about 1/10 and the direction change of the flow velocity at the exit when leaving the blade is very gentle.

上記のような輻流速度成分の小さい羽根車を有するタ
ーボポンプを用いると、第一にその揚程特性が第1図
(一枚羽根型軸流形状のターボポンプの場合)に示すよ
うに直線状の急激な右下がり特性を示すことが分かっ
た。この右下がりの勾配の曲線は、従来設計の遠心ポン
プの揚程特性の曲線(第7図)と比較すれば分かるよう
に、同じ揚程の微小変化量ΔHに対する流量の微小変化
量ΔQの大きさがきわめて小さくなるので、圧力(全揚
程)に対する流量の指示精度が高くなる。第二に、前記
のターボポンプによれば、第1図のように、各回転数の
ポンプ揚程曲線が相似則に合致することが見出された。
これについては、後述する。
When a turbo pump having an impeller with a small radiative velocity component as described above is used, first of all, its lift characteristics are linear as shown in FIG. 1 (in the case of a single-blade axial flow turbo pump). It has been found that a sharp downward slope characteristic of is shown. As can be seen from comparison with the curve of the lift characteristic of the centrifugal pump of the conventional design (FIG. 7), the curve of the slope to the lower right shows that the magnitude of the minute change amount ΔQ of the flow rate with respect to the minute change amount ΔH of the same head. Since it is extremely small, the accuracy of indicating the flow rate with respect to the pressure (total head) is high. Secondly, according to the turbo pump described above, as shown in FIG. 1, it was found that the pump head curve at each rotation speed conforms to the similarity rule.
This will be described later.

本発明の目的は、ポンプの揚程特性の経年変化を現場
で簡単に較正できる方法を提供することである。
It is an object of the present invention to provide a method that allows easy on-site calibration of aging of pump head characteristics.

(課題を解決するための装置) 上記の目的を達成するために、本発明による方法は、
ポンプ系出口に弁を付設し、初期に弁を完全に閉じて、
実際に使う液体を用いてポンプを基準回転数近傍で回転
させて締切り圧力を計測し、基準回転数に換算した締切
り圧力として記憶し、較正時に弁を閉じて同様な操作を
行い、初期基準回転数のポンプの締切り圧力と、較正時
に計測して較正基準回転数のポンプの締切り圧力との差
を計算し、この差の量だけ予め記憶されたポンプの揚程
曲線を下方へ平行にずらすことからなる。
(Apparatus for Solving the Problems) In order to achieve the above object, the method according to the present invention comprises:
Attach a valve to the pump system outlet and completely close the valve in the initial stage,
The pump is rotated near the reference speed using the liquid that is actually used to measure the cut-off pressure, which is stored as the cut-off pressure converted to the reference speed, and the valve is closed during calibration to perform the same operation. Number of pump cut-off pressures and the difference between the pump cut-off pressure at the calibration reference speed measured during calibration and the difference between the pump pressure curves stored in advance stored in parallel by the amount of this difference. Become.

(実施例) 以下、本発明の方法を実施例について図面により説明
する。
(Example) Hereinafter, the method of the present invention will be described with reference to the accompanying drawings.

前述したように、本出願人が先に出願したターボポン
プは、その揚程特性を使用して流量指示または制御しよ
うとする場合に長期にわたって信頼性や精度を維持する
ために必要な二つの条件、すなわち揚程特性が直線また
は直線に近い急激に右下がり特性を示すこと、可変速装
置と共に使用する場合に要求される広い回転数領域でポ
ンプ揚程特性が相似則に合致することの二条件を満足す
る。本出願人の出願したターボポンプは、ラジアル型と
軸流型形状と二種類あるが、一枚羽根形羽根車を有する
軸流型形状のターボポンプの構造について第2図により
説明する。
As described above, the applicant previously applied for the turbo pump has two conditions necessary for maintaining reliability and accuracy for a long period of time when attempting to indicate or control the flow rate by using its lift characteristic. That is, the two conditions are satisfied: the pump head characteristic shows a straight line or a steep downward-sloping characteristic close to a straight line, and the pump head characteristic conforms to the similarity law in a wide rotational speed range required when used with a variable speed device. . There are two types of turbo pumps filed by the applicant, a radial type and an axial flow type. The structure of the axial flow type turbo pump having a single-blade impeller will be described with reference to FIG.

このターボボンプ20の一枚羽根形羽根車22では、駆動
軸21に固定された円錐台状ハブ23に、円滑状に流体をそ
ぎ取るように、羽根車軸線にほぼ垂直な流入面を有する
羽根入口を形成し、そこから羽根24が出口側まで一巻き
以上連続してハブ23の週面に巻き回され、その際出口ま
で遠心作用が生ずるように入口から出口に向かうにした
がい羽根24が羽根車軸線に向かって前方に順次傾斜して
ゆくように配置されている。ハブ23の周面に隣り合う羽
根と羽根の間の流路は、入口から出口までほぼ等しい断
面を有するように形成されている。この羽根車では、そ
の軸線に垂直な平面に対する羽根の巻き回し角度が小さ
いので、羽根内の流体の輻流速度成分Cmが従来に比較し
て1/10程度に小さくなる点に特徴がある。
In this single vane type impeller 22 of the turbo pump 20, a frusto-conical hub 23 fixed to the drive shaft 21 has a blade inlet having an inflow surface substantially perpendicular to the impeller axis so as to smoothly remove the fluid. From the inlet to the outlet so that the blade 24 is continuously wound around the week surface of the hub 23 for one or more turns to the outlet side, and the centrifugal force is generated from the inlet to the outlet. They are arranged so that they gradually incline forward toward the line. The flow paths between the blades adjacent to each other on the peripheral surface of the hub 23 are formed so as to have substantially the same cross section from the inlet to the outlet. This impeller is characterized in that the wrapping angle of the blade with respect to the plane perpendicular to the axis is small, so that the radiant velocity component Cm of the fluid in the blade becomes about 1/10 of that in the conventional case.

ポンプケーシング25の入口側フランジに、環状の吸い
込み室27aを有する吸込ケーシング27が取りつけられて
いる。吸込ケーシング27には、感情の吸い込み室27aに
開口する入口ポート28を有する。吸込ケーシング27とポ
ンプケーシング25に挟まれて、吸込ケーシング27の下流
に、羽根車22の羽根入口側に隣接して入口案内装置とし
ての入口ガイドベーン部材26が取外し可能に装着されて
いる。入口ガイドベーン部材26には、吸い込みケーシン
グ27に周方向に開口する流体通路の二つの入口29aと29
a′が対称に設けられ、各入口から流体通路29はそれぞ
れ周方向に180゜旋回する間にその断面積が軸方向に次
第に縮小するように形成され、従って流体通路29の壁面
30が羽根車の羽根入口に向って近接してゆき、最後に下
部(実線)と上部(仮想線)に示すように羽根入口面に
隣接するようになる。この構成では、入口ポート28から
入った流体は、吸込ケーシング27の吸込室27aに流入し
た後、入口ガイドベーン部材26の入口29aと29a′からそ
れぞれ流入して180゜旋回する間に羽根車の羽根入口に
次第に近接するように軸方向に強制的に案内されて、つ
いに回転している羽根車の羽根入口に自然に流入するこ
とができる。
A suction casing 27 having an annular suction chamber 27a is attached to the inlet side flange of the pump casing 25. The suction casing 27 has an inlet port 28 opening to the emotion suction chamber 27a. An inlet guide vane member 26 as an inlet guide device is removably mounted downstream of the suction casing 27, sandwiched between the suction casing 27 and the pump casing 25, adjacent to the blade inlet side of the impeller 22. The inlet guide vane member 26 has two inlets 29a and 29a of the fluid passage opening in the suction casing 27 in the circumferential direction.
a ′ are provided symmetrically, and the fluid passages 29 are formed so that their cross-sectional areas gradually decrease in the axial direction while rotating 180 ° in the circumferential direction from the respective inlets.
30 approaches toward the blade entrance of the impeller, and finally comes to be adjacent to the blade entrance surface as shown in the lower part (solid line) and the upper part (phantom line). In this configuration, the fluid that has entered from the inlet port 28 flows into the suction chamber 27a of the suction casing 27, and then from the inlets 29a and 29a 'of the inlet guide vane member 26, respectively, and while swirling 180 °, It is forcibly guided in the axial direction so as to gradually come closer to the blade inlet, and finally can naturally flow into the blade inlet of the rotating impeller.

さらに、羽根車22の羽根出口側に隣接して出口案内装
置としてのリング状出口ガイドベーン部材31がポンプケ
ーシング25内にアダプター32により取外し可能に取りつ
けられている。この出口ガイドベーン部材31の流体通路
33は、その断面積が、羽根車の羽根出口に隣接している
流体通路の入口34から出口に向かって次第に増大するよ
うに形成され、かつ出口ガイドベーン部材の出口側でポ
ンプケーシング25の吐出通路25aに接続されている。な
お、35は、ポンプケーシング25の吐出通路25aに接線方
向に接続された吐出ポートである。
Further, a ring-shaped outlet guide vane member 31 as an outlet guide device is removably attached to the inside of the pump casing 25 by an adapter 32 adjacent to the blade outlet side of the impeller 22. Fluid passage of this outlet guide vane member 31
33 is formed such that the cross-sectional area thereof gradually increases from the inlet 34 of the fluid passage adjacent to the blade outlet of the impeller toward the outlet, and the discharge of the pump casing 25 on the outlet side of the outlet guide vane member. It is connected to the passage 25a. Reference numeral 35 is a discharge port tangentially connected to the discharge passage 25a of the pump casing 25.

この軸流形状の一枚羽根形ターボポンプの揚程特性が
第1図に示したグラフである。前述したように、第2図
のターボポンプは、輻流速度成分の小さい羽根車を有す
るので、そのポンプ揚程曲線が第1図に示すように相似
則に合致し、計算値と実測値が合致することが良く分か
る。すなわち、一点鎖線で示す曲線が相似則を示す曲線
であり、4,000r.p.m.の実測値を基にして6,000、8,00
0、・・・r.p.m.の回転数で相似則に従って計算した の値を同じ回転数でプロットして得られた揚程曲線に の値がよく一致していることが分かる。
FIG. 1 is a graph showing the lift characteristic of the axial-flow single-blade turbo pump. As described above, the turbo pump shown in FIG. 2 has the impeller with a small radiant velocity component, so that the pump head curve thereof conforms to the similarity rule as shown in FIG. 1, and the calculated value and the measured value match. I understand what to do. That is, the curve indicated by the alternate long and short dash line is a curve showing the law of similarity, 6,000, 8,000 based on the measured value at 4,000 rpm.
Calculated according to the similarity rule at 0 ... In the heading curve obtained by plotting the value of It can be seen that the values of match well.

上記のターボボンプの揚程特性を用いて流量指示また
は制御するポンプ系を第3図に示す。1はモータ、2は
カップリングを介して連結された前記のターボボンプ、
3はポンプの回転数を計測するための回転数センサ、4
はポンプ2の入口に接続された圧力センサ、5はポンプ
の出口に接続された圧力センサ、6はポンプ吐出管に接
続された遮断弁、7はコンピュータ、8は流量表示をす
るための装置、9はポンプを広い回転数範囲にわたって
使用する際に必要な可変速装置としてのインバータを示
す。モータ1はインバータ9に接続され、回転数センサ
3、圧力センサ4と5がコンピュータ7に接続され、コ
ンピュータ7が流量表示装置8に接続されている。
FIG. 3 shows a pump system for instructing or controlling the flow rate using the above-mentioned pump head lift characteristic. 1 is a motor, 2 is the above-mentioned turbo pump connected through a coupling,
3 is a rotation speed sensor for measuring the rotation speed of the pump, 4
Is a pressure sensor connected to the inlet of the pump 2, 5 is a pressure sensor connected to the outlet of the pump, 6 is a shutoff valve connected to the pump discharge pipe, 7 is a computer, 8 is a device for displaying a flow rate, Reference numeral 9 indicates an inverter as a variable speed device required when the pump is used over a wide range of rotation speeds. The motor 1 is connected to an inverter 9, the rotation speed sensor 3, pressure sensors 4 and 5 are connected to a computer 7, and the computer 7 is connected to a flow rate display device 8.

第3図に示したポンプ系において、ターボポンプ2の
揚程特性を用いて流量指示する方法では、回転数センサ
3により検知された回転数と、コンピュータ7に予め記
憶されているポンプ揚程特性を示す数式とを用いてその
回転数のときのポンプ揚程特性を演算し、この特性と、
実際にポンプ入口圧力センサ4と出口圧力センサ5によ
り検知された入口と出口の圧力差から得られた全揚程圧
力とによりポンプ流量を計算してこの値を流量表示装置
により表示する。
In the pump system shown in FIG. 3, in the method of instructing the flow rate using the lift characteristic of the turbo pump 2, the rotation speed detected by the rotation speed sensor 3 and the pump lift characteristic previously stored in the computer 7 are shown. Calculate the pump head characteristic at that number of revolutions using the formula and this characteristic,
The pump flow rate is actually calculated from the total head pressure obtained from the pressure difference between the inlet and outlet detected by the pump inlet pressure sensor 4 and the outlet pressure sensor 5, and this value is displayed by the flow rate display device.

第4図には、前記ターボポンプの全揚程曲線を用いて
流量制御するためのポンプ系を示す。第3図と同様な部
品には、同様な参照数字を付けてある。第3図と異なる
点はコンピュータ7が制御部10に接続され、この制御部
が可変速装置としてのインバータ9に接続されている点
である。回転数センサ3、入口の圧力センサ4、出口の
圧力センサ5により実際の測定値がコンピュータ7にフ
ィードバックされ、これらの値に基づいて前述したよう
にその回転数の全揚程特性から流量を演算して制御部10
にフィードバックし、この値をインバータ9に入力して
インバータによりモータ1、従ってポンプ2の回転数を
制御する。
FIG. 4 shows a pump system for controlling the flow rate by using the total lift curve of the turbo pump. Similar parts to those in FIG. 3 are provided with similar reference numerals. The difference from FIG. 3 is that the computer 7 is connected to the control unit 10, and this control unit is connected to the inverter 9 as a variable speed device. Actual measurement values are fed back to the computer 7 by the rotation speed sensor 3, the inlet pressure sensor 4, and the outlet pressure sensor 5, and based on these values, the flow rate is calculated from the total head characteristic of the rotation speed as described above. Control unit 10
To the inverter 9, and the inverter controls the rotation speed of the motor 1 and hence the pump 2.

また一般に、ターボポンプの場合、羽根、ケーシング
などの摩耗や腐食によりその揚程特性が低下するのが通
例であるので、この低下した特性を現場で定期的に確認
してその特性を簡単に較正し、以後の流量指示、制御を
その較正した特性で行なえるようにしておく必要があ
る。このために本発明では、第3図と第4図に示したよ
うに、ポンプ吐出口に完全に管路を閉鎖しうる弁6を設
け、これを完全に締め切ることにより流量ゼロのときの
締切圧力を確認し、この値を用いて予め記憶されている
ポンプ揚程特性を表す数式の値を較正する。
Generally, in the case of turbo pumps, the lift characteristics are usually degraded due to wear and corrosion of the blades, casing, etc., so this degraded characteristic should be regularly checked on site to calibrate it easily. It is necessary that the subsequent flow rate instruction and control can be performed with the calibrated characteristics. Therefore, in the present invention, as shown in FIG. 3 and FIG. 4, a valve 6 capable of completely closing the pipe line is provided at the pump discharge port, and the valve 6 is completely closed to shut off the valve when the flow rate is zero. The pressure is confirmed and this value is used to calibrate the value of the pre-stored equation representing the pump head characteristic.

実際の過程では、ポンプを設置した現場で、初期に、
実際に使う液体を用いてポンプを基準回転数近傍で回転
させて締切圧力を計測し、基準回転数に換算した締切圧
力として記憶または記録しておく。その後、較正時に同
様な操作を行い、初期基準回転数のポンプ締切圧力と、
較正時に計測した較正基準回転数のポンプの締切圧力と
の差を計算し、この差の量だけ初期のポンプ揚程特性を
単に下方へ平行にずらせば、その特性曲線が較正時の特
性曲線となる。その理由は、輻流速度成分の小さい羽根
車を有するターボポンプを用いているため、第5図と第
6図に示すように摩耗や間隙の変化したときの揚程特性
曲線が始めの揚程特性曲線に対して平行に変化するから
である。
In the actual process, at the site where the pump was installed, at the beginning,
The dead pressure is measured by rotating the pump in the vicinity of the reference speed using the liquid actually used, and is stored or recorded as the dead pressure converted to the reference speed. After that, perform the same operation at the time of calibration, and set the pump cutoff pressure at the initial reference speed and
Calculate the difference between the calibration reference speed measured at the time of calibration and the dead pressure of the pump, and simply shift the initial pump head characteristic downward in parallel by the amount of this difference, and the characteristic curve becomes the characteristic curve at the time of calibration. . The reason is that a turbo pump having an impeller with a small radiant velocity component is used, and therefore the lift characteristic curve when the wear or the gap changes as shown in FIGS. 5 and 6 is the first lift characteristic curve. This is because it changes parallel to.

なお、経年変化の較正のための締切以外の特性は、予
めその特性の変化を事前に調査して記憶しておき、それ
に従って決定すればよい。この事前調査の例として、第
5図には、軸流形状の一枚羽根ターボポンプ(特願昭60
−50576、特願昭63−34070)の羽根車とケーシングの間
の間隙の変化に対するポンプ揚程特性をグラフで示す。
この形式のターボポンプの場合には、片側オープンの羽
根のためそのケーシングと羽根車先端との間隙がポンプ
揚程特性に大きな影響を与えるので、その間隙を拡げて
いった場合の揚程特性の変化を示す。また、第6図に
は、前記の軸流形状のターボポンプの基準揚程特性を清
水で計測した後、摩耗性の砂、例えば粒度のそろった珪
砂を水に混ぜてポンプ内を流し、揚程特性の変化を調べ
た結果を示す。これらの二つのグラフから見ると、前記
の軸流形状のターボポンプの場合、その揚程特性がほと
んど平行に移動することが分かる。これらの例のような
場合には、簡単にQ=0の点のHの値を前述の実液で計
測したときの低下分(揚程mAq)だけ全域で下げて較正
特性とすればよい。
It should be noted that the characteristics other than the deadline for calibrating the secular change may be previously investigated and stored in advance, and the characteristics may be determined accordingly. As an example of this preliminary investigation, FIG. 5 shows an axial flow single-blade turbo pump (Japanese Patent Application No. 60
-50576, Japanese Patent Application No. 63-34070), the characteristics of the pump head against changes in the gap between the impeller and the casing are shown in the graph.
In the case of this type of turbo pump, the gap between the casing and the tip of the impeller has a great influence on the pump head characteristics due to the blades that are open on one side. Show. In addition, FIG. 6 shows that after measuring the reference lift characteristics of the above-mentioned axial flow type turbo pump with fresh water, abrasive sand, for example, silica sand with a uniform grain size, is mixed with water and allowed to flow in the pump to obtain the lift characteristics. The results of examining changes in From these two graphs, it can be seen that, in the case of the above-described axial flow type turbo pump, the lift characteristics move almost in parallel. In the case of these examples, the H value at the point of Q = 0 can be simply lowered for the entire range by the amount of decrease (lifting mAq) when measured with the above-mentioned actual liquid to obtain the calibration characteristic.

第7図は、一般の遠心ポンプの羽根車のオープン羽根
の先端とケーシングの間隙aおよび裏羽根とケーシング
の間隙bをそれぞれ広げていった場合の揚程特性の変化
を示す。なお、第7図のような一般の遠心ポンプの揚程
特性曲線の場合でも較正することが可能であるが、曲線
が互いに平行ではなく、末広がりとなるので、精度が悪
い点に問題がある。
FIG. 7 shows changes in the lift characteristics when the gap a between the open blade and the casing and the gap b between the back blade and the casing of the impeller of a general centrifugal pump are widened. Although it is possible to calibrate even in the case of the general characteristic curve of the centrifugal pump as shown in FIG. 7, the curves are not parallel to each other and spread out, so that there is a problem in that the accuracy is poor.

(発明の効果) 本発明は、以上説明したように構成されているので、
以下に記載されるような効果を奏する。
(Effect of the Invention) Since the present invention is configured as described above,
The following effects are achieved.

ターボポンプの揚程特性の経年変化を較正する本発明
の方法では、ポンプ系出口に弁を付設し、初期に弁を完
全に閉じて、実際に使う液体を用いてポンプを基準回転
数近傍で回転させて締切り圧力を計測し、基準回転数に
換算した締切り圧力として記憶し、較正時に弁を閉じて
同様な操作を行い、初期基準回転数のポンプの締切り圧
力と、較正時に計測した較正基準回転数のポンプの締切
り圧力との差を計算し、この差の量だけ予め記憶された
ポンプの揚程曲線を下方へ平行にずらすだけでよいの
で、ポンプが設置された現場で定期的にきわめて容易に
短時間で較正を行うことができ、従って長期的に精度の
高い、正確で信頼のおけるポンプ系が得られる。
In the method of the present invention for calibrating the secular change of the head characteristic of the turbo pump, a valve is attached to the outlet of the pump system, the valve is completely closed in the initial stage, and the pump is rotated in the vicinity of the reference speed by using the liquid actually used. Then, the cutoff pressure is measured and stored as the cutoff pressure converted to the reference speed.The valve is closed during calibration and the same operation is performed, and the cutoff pressure of the pump at the initial reference speed and the calibration reference rotation measured at the time of calibration are stored. The difference between a certain number of pump shutoff pressures can be calculated and the pre-stored pump head curve can be shifted parallel downwards by this amount, which makes it extremely easy to perform regularly at the site where the pump is installed. The calibration can be performed in a short time, and thus a long-term accurate, accurate and reliable pump system can be obtained.

【図面の簡単な説明】 第1図は急な右下がりでかつ相似則に合致するポンプ揚
程特性を有する軸流形状の一枚羽根形ターボポンプの揚
程曲線を示すグラフ、第2図は第1図の揚程特性を示す
軸流形状のターボポンプの縦断面図、第3図は流量指示
の方法を実施するためのポンプ系の概略図、第4図は流
量制御の方法を実施するためのポンプ系の概略図、第5
図は輻流速度成分の小さい羽根車とケーシング間隙の変
化に対する揚程特性のグラフ、第6図は摩耗による揚程
特性の変化を示すグラフ、第7図は従来の遠心ポンプに
おける第5図に対応する羽根車とケーシングの間隙の変
化に対する揚程特性を示すグラフである。 2,20……ターボポンプ 3……ポンプ回転数検知装置 4……ポンプ入口の圧力検知装置 5……ポンプ出口の圧力検知装置 6……弁 9……ポンプ可変速装置 22……羽根車 24……羽根
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing a pumping curve of a single-blade turbopump having an axial flow shape, which has a pumping head characteristic which is steep to the right and which conforms to the law of similarity, and FIG. FIG. 3 is a vertical cross-sectional view of an axial flow type turbo pump showing the pump head characteristic, FIG. 3 is a schematic diagram of a pump system for carrying out the method of indicating the flow rate, and FIG. 4 is a pump for carrying out the method of flow rate control. Schematic of the system, fifth
FIG. 6 is a graph of the lift characteristic with respect to the change of the impeller having a small radial velocity component and the casing gap, FIG. 6 is a graph showing the change of the lift characteristic due to wear, and FIG. 7 is corresponding to FIG. 5 of the conventional centrifugal pump. It is a graph which shows the lift characteristic with respect to the change of the gap of an impeller and a casing. 2,20 ...... Turbo pump 3 …… Pump speed detection device 4 …… Pump inlet pressure detection device 5 …… Pump outlet pressure detection device 6 …… Valve 9 …… Pump variable speed device 22 …… Impeller 24 ...... Feather

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】輻流速度成分の小さい羽根車により得られ
る、急な右下がりでかつ相似則に合致する揚程特性を有
するターボポンプと、ポンプの回転数を検知する装置
と、ポンプの入口および出口の圧力を検知する装置とを
備えたポンプ系で予め記憶されている揚程特性の経年変
化を較正する方法において、ポンプ系出口に弁を付設
し、初期に弁を完全に閉じて、実際に使う液体を用いて
ポンプを基準回転数近傍で回転させて締切り圧力を計測
し、基準回転数に換算した締切り圧力として記憶し、較
正時に弁を閉じて同様な操作を行い、初期基準回転数の
ポンプの締切り圧力と、較正時に計測した較正基準回転
数のポンプの締切り圧力との差を計算し、この差の量だ
け予め記憶されたポンプの揚程曲線を下方へ平行にずら
すことを特徴とする方法。
Claim: What is claimed is: 1. A turbo pump having a head characteristic which is obtained by an impeller having a small radiant velocity component and which is steeply descending to the right and which conforms to the similarity law, a device for detecting the rotational speed of the pump, an inlet of the pump, and In a method of calibrating the secular change of the lift characteristic stored in advance in a pump system equipped with a device for detecting the pressure of the outlet, a valve is attached to the outlet of the pump system, and the valve is completely closed at the beginning, Using the liquid to be used, rotate the pump near the reference speed to measure the cutoff pressure, store it as the cutoff pressure converted to the reference speed, and close the valve during calibration to perform the same operation. It is characterized in that the difference between the cutoff pressure of the pump and the cutoff pressure of the pump at the calibration reference speed measured at the time of calibration is calculated, and the pump head curve stored in advance is shifted downward in parallel by the amount of this difference. Person .
JP63109883A 1988-05-07 1988-05-07 How to calibrate pump head characteristics Expired - Lifetime JPH0816478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63109883A JPH0816478B2 (en) 1988-05-07 1988-05-07 How to calibrate pump head characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63109883A JPH0816478B2 (en) 1988-05-07 1988-05-07 How to calibrate pump head characteristics

Publications (2)

Publication Number Publication Date
JPH01280698A JPH01280698A (en) 1989-11-10
JPH0816478B2 true JPH0816478B2 (en) 1996-02-21

Family

ID=14521578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63109883A Expired - Lifetime JPH0816478B2 (en) 1988-05-07 1988-05-07 How to calibrate pump head characteristics

Country Status (1)

Country Link
JP (1) JPH0816478B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013529975A (en) * 2010-06-22 2013-07-25 ソラテック コーポレーション Apparatus and method for modifying the pressure-flow characteristics of a pump

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100290496B1 (en) * 1996-01-31 2001-11-15 가나이 쓰도무 Turbomachinery driving apparatus and method of controlling the same
JP4072808B2 (en) * 1998-03-04 2008-04-09 株式会社荏原製作所 Fluid machinery performance adjustment device
US6691047B1 (en) 2000-03-16 2004-02-10 Aksys, Ltd. Calibration of pumps, such as blood pumps of dialysis machine
JP4925885B2 (en) * 2007-03-26 2012-05-09 新日本空調株式会社 Flow rate measurement method for piping system equipment
CN114417707A (en) * 2021-12-27 2022-04-29 浙江工业大学台州研究院 Centrifugal pump efficiency prediction method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195097A (en) * 1982-05-08 1983-11-14 Ebara Corp Monitoring method of pump flow rate
JPS60156995A (en) * 1984-01-26 1985-08-17 Ebara Corp Variable speed water supply device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013529975A (en) * 2010-06-22 2013-07-25 ソラテック コーポレーション Apparatus and method for modifying the pressure-flow characteristics of a pump

Also Published As

Publication number Publication date
JPH01280698A (en) 1989-11-10

Similar Documents

Publication Publication Date Title
KR100386179B1 (en) Surge detection device
US5129264A (en) Centrifugal pump with flow measurement
US6776584B2 (en) Method for determining a centrifugal pump operating state without using traditional measurement sensors
JPH0816478B2 (en) How to calibrate pump head characteristics
EP2325494A1 (en) Torque-based sensor and control method for varying gas-liquid fractions of fluids for turbomachines
US6981838B2 (en) Method and apparatus for detecting the occurrence of surge in a centrifugal compressor
US6126392A (en) Integral pump/orifice plate for improved flow measurement in a centrifugal pump
EP0032910B1 (en) Turbine flowmeters
JP7159754B2 (en) Impeller type flow meter
Soltis et al. Investigation of the Performance of a 78 Degree Flat-plate Helical Inducer
JP3093963B2 (en) Fluid machinery with variable guide vanes
Ferrara et al. Instabilities investigation in wet gas compressor by flow visualisation
Ferrara Wet gas compressors-stability and range
EP2702381B1 (en) Method and device for measuring air tightness
JPH0979181A (en) Fluid machine having variable guide vane
JP3095208B2 (en) Fluid machinery with variable guide vanes
CN111656018B (en) Method for determining the operating point of a ventilator
AU2006329691B2 (en) Turbine for fluid meter, particularly water meter
JPH09133093A (en) Fluid machine and its operation control method
JPH09196715A (en) Flow rate sensor
Lynn et al. Prediction of centrifugal pump performance on theoretical and experimental observation at constant speed of impeller
JPH04301200A (en) Control method of surging of fluid machinery
JP3093958B2 (en) Fluid machinery with variable guide vanes
JPH0842492A (en) Fluid machine with variable guide vane
JPS6388300A (en) Method and device for monitoring surging of axial flow compressor