JPH04301200A - Control method of surging of fluid machinery - Google Patents

Control method of surging of fluid machinery

Info

Publication number
JPH04301200A
JPH04301200A JP6602091A JP6602091A JPH04301200A JP H04301200 A JPH04301200 A JP H04301200A JP 6602091 A JP6602091 A JP 6602091A JP 6602091 A JP6602091 A JP 6602091A JP H04301200 A JPH04301200 A JP H04301200A
Authority
JP
Japan
Prior art keywords
surging
blower
limit
generation
impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6602091A
Other languages
Japanese (ja)
Inventor
Koji Nakagawa
中川 幸二
Hidetoshi Terasaka
英俊 寺坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6602091A priority Critical patent/JPH04301200A/en
Publication of JPH04301200A publication Critical patent/JPH04301200A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To carry out highly precise detection of surging generation limit by making the limit whereat surging prevention control is started under a specified condition in a fluid machine wherein a premonitory phenomenon of surging generation is detected to control flow and pressure and prevent generation of surging. CONSTITUTION:When necessary gas glow of a supply destination 8 whereto compressed gas is supplied from a blower 1 is less than the flow of surging generation limit of the blower 1, the generation of surging 1 is prevented by opening a blow-off valve 6 and increasing the flow of passing gas of the blower 1. In this case, a microphone 2 that measures the sound that the blower 1 produces is provided, and the measured sound signal is spectrally analyzed by a frequency analyzer 5. And, the state wherein the spectral height of both the component of the product of the number of blades of the impeller of the obtained frequency spectrum and the rotation speed of the impeller and its integral multiple or one of them exceeded a critical value is constituted as the limit whereat surging prevention control is started, and the blow-off valve 6 is opened by a valve driving system 5 when it reached the surging generation limit.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はターボブロワあるいは圧
縮機などの流体機械のサージング制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surging control method for a fluid machine such as a turbo blower or compressor.

【0002】0002

【従来の技術】ターボブロワあるいは圧縮機では流量が
限界値より減少するか、ターボブロワあるいは圧縮機前
後の圧力上昇が限界値を超えると、いわゆるサージング
現象をおこし、特徴的な周期音,激しい振動あるいは騒
音を発生する。このサージング現象に伴う激しい振動あ
るいは騒音は大容量の機種では機器の破損,故障の原因
になる。このようなサージング発生防止については、た
とえば生井、井上著『ターボ送風機と圧縮機』、コロナ
社昭63−8、598ページないし600ページに述べ
られている。
[Prior Art] In a turbo blower or compressor, when the flow rate decreases below a limit value, or when the pressure rise before and after the turbo blower or compressor exceeds a limit value, a so-called surging phenomenon occurs, resulting in characteristic periodic sounds, intense vibrations, or noise. occurs. The severe vibration or noise that accompanies this surging phenomenon can cause equipment damage or failure in large-capacity models. Such prevention of surging is described, for example, in ``Turbo Blower and Compressor'' by Ikui and Inoue, Corona Publishing, 1983-8, pages 598 to 600.

【0003】0003

【発明が解決しようとする課題】このため運転流量,圧
力上昇を常時監視しこれらの量が限界を超えた場合はバ
イパス制御などによる流量増加,機器の停止などを行い
サージング現象の発生を防止する。しかしながらサージ
ング発生限界の流量,圧力上昇はターボブロワあるいは
圧縮機の吸込温度,回転数変動、さらには羽根車の汚れ
などによって変化する。このため通常、運転状態が実際
のサージング発生限界に達する以前にサージング発生防
止の運転操作を行わねばならずバイパス制御などによる
エネルギー損失の増加、あるいは機器の停止回数の低減
が困難であった。
[Problem to be solved by the invention] For this reason, the operating flow rate and pressure rise are constantly monitored, and if these amounts exceed the limits, the flow rate is increased by bypass control, etc., and the equipment is stopped, etc., to prevent the occurrence of the surging phenomenon. . However, the flow rate and pressure rise at the threshold for surging change depending on the suction temperature of the turbo blower or compressor, fluctuations in rotational speed, and dirt on the impeller. For this reason, normally, operating operations to prevent surging must be performed before the operating state reaches the actual surging generation limit, which increases energy loss due to bypass control or the like, or makes it difficult to reduce the number of times the equipment stops.

【0004】0004

【課題を解決するための手段】本発明は流体機械の内部
あるいは外部に圧力センサー,マイクロホンあるいは流
体機械壁面の振動を測定する加速度センサーを設置して
測定した圧力,音響あるいは振動の周波数スペクトルを
分析する手段と、分析した周波数スペクトル分布を判別
する手段と(1)可動可変に構成した羽根車羽根あるい
は静止構造物の一方あるいは両方を可変制御する手段。 (2)回転数制御を制御する手段。(3)ターボブロワ
あるいは圧縮機の吸入側吐出側間の圧力差を制御する手
段。(4)流量を制御する手段。の一種あるいは二種以
上の組合せによって流体機械の流量と圧力上昇の両方あ
るいは一方を制御する手段から成る。
[Means for Solving the Problems] The present invention analyzes the frequency spectrum of the measured pressure, sound, or vibration by installing a pressure sensor, a microphone, or an acceleration sensor for measuring the vibration of the wall surface of the fluid machine inside or outside the fluid machine. means for determining the analyzed frequency spectrum distribution; and (1) means for variably controlling one or both of the movable and variable impeller blades and/or the stationary structure. (2) Means for controlling rotation speed control. (3) Means for controlling the pressure difference between the suction and discharge sides of the turbo blower or compressor. (4) Means for controlling flow rate. It consists of means for controlling both or one of the flow rate and pressure rise of a fluid machine by one or a combination of two or more types.

【0005】[0005]

【作用】ターボブロワあるいは圧縮機などの流体機械で
は一般に、運転状態がサージング発生限界に近づくと羽
根車あるいはディフューザ旋回失速が発生する。旋回失
速は羽根車回転数の数分の1程度の周波数の明瞭な圧力
変動を発生するためサージング発生限界検出にはこの圧
力変動を検出することが有効であるが、旋回失速発生の
極めて初期の段階では旋回失速が間欠的かつ極めて短い
時間発生する。この状態では旋回失速に起因する圧力変
動は極めて短い時間継続するのみであり観測は困難であ
る。しかしながらターボブロワあるいは圧縮機の内部あ
るいは外部で測定した圧力,音響あるいはターボブロワ
あるいは圧縮機壁面の振動の周波数スペクトルの羽根車
羽根数と羽根車回転数の積とその整数倍の成分は極めて
短い時間継続する旋回失速の圧力変動に対してもスペク
トル高さ,スペクトル幅の一方あるいは両方が増加する
。このスペクトル変化の検出によってサージング発生限
界を高精度に検出しサージング防止制御を開始する限界
とする。また(1)可動可変に構成した羽根車羽根ある
いは静止構造物の一方あるいは両方の可変制御。 (2)回転数制御。(3)ターボブロワあるいは圧縮機
の吸入側吐出側間の圧力差の制御。(4)流量制御。の
一種あるいは二種以上の組合せによってターボブロワあ
るいは圧縮機の流量と圧力上昇の両方あるいは一方を制
御することにより運転状態がサージング防止制御を開始
する限界に達した状態よりサージング状態に近づくこと
がないように制御を行う。
[Operation] In a fluid machine such as a turbo blower or a compressor, impeller or diffuser rotating stall generally occurs when operating conditions approach the surging generation limit. Since a rotating stall generates clear pressure fluctuations with a frequency of about a fraction of the impeller rotation speed, it is effective to detect this pressure fluctuation to detect the limit of surging occurrence. During this phase, rotating stalls occur intermittently and for extremely short periods of time. In this state, pressure fluctuations caused by rotating stall only last for a very short time and are difficult to observe. However, components of the product of the number of impeller blades and the number of rotations of the impeller and its integral multiples in the frequency spectrum of the pressure, sound, or vibration of the turbo blower or compressor wall measured inside or outside the turbo blower or compressor continue for an extremely short time. The spectral height, spectral width, or both increase also in response to pressure fluctuations during a rotating stall. By detecting this spectrum change, the surging generation limit is detected with high precision and is set as the limit at which surging prevention control is started. (1) Variable control of one or both of the impeller blades configured to be movable and/or the stationary structure. (2) Rotation speed control. (3) Controlling the pressure difference between the suction and discharge sides of a turbo blower or compressor. (4) Flow rate control. By controlling both or one of the flow rate and pressure rise of the turbo blower or compressor using one or a combination of two or more of the following, the operating state is prevented from approaching a surging state from the state where the limit for starting surging prevention control is reached. control.

【0006】[0006]

【実施例】以下に述べる実施例では簡単のためターボブ
ロワあるいは圧縮機などの流体機械を単にブロワと呼ぶ
。実施例を図1乃至図4によって説明する。図1はブロ
ワの外部で測定した音響によってサージング発生限界を
高精度で検出しサージング防止制御を開始する限界とす
る場合を示す。ブロワ1は供給先8に圧縮気体を供給す
る。供給先8の必要気体流量がブロワ1のサージング発
生限界流量以下の場合は放風弁6を開いて圧縮気体を放
風管7に流出させてブロワ1の通過気体流量を増加させ
てサージングの発生を防止する構成である。サージング
発生限界の判別のためブロワ1の外部にはマイクロホン
2が設置されブロワ1の発生する音響を測定する。マイ
クロホン2で測定した音響信号は周波数分析器3によっ
てスペクトル分析される。コントローラ4は周波数分析
器3によって得られたスペクトルによってブロワ1の運
転状態がサージング発生限界に達しているか否かを判別
し、サージング発生限界に達している場合は弁駆動機5
により放風弁6を開きブロワ1がサージングに入らない
ようにする。サージング発生限界判別の動作は連続的で
も間歇的でも良い。以下に判別法の詳細および放風弁6
の操作をのべる。
Embodiments In the embodiments described below, a fluid machine such as a turbo blower or a compressor will be simply referred to as a blower for the sake of simplicity. An embodiment will be described with reference to FIGS. 1 to 4. FIG. 1 shows a case in which the surging generation limit is detected with high accuracy based on sound measured outside the blower and is set as the limit at which surging prevention control is started. The blower 1 supplies compressed gas to a supply destination 8 . If the required gas flow rate of the supply destination 8 is less than the surging generation limit flow rate of the blower 1, the blower valve 6 is opened and the compressed gas flows out to the blower pipe 7 to increase the gas flow rate passing through the blower 1, thereby causing surging. This is a configuration that prevents this. A microphone 2 is installed outside the blower 1 to measure the sound generated by the blower 1 in order to determine the surging generation limit. The acoustic signal measured by the microphone 2 is subjected to spectrum analysis by the frequency analyzer 3. The controller 4 determines whether the operating state of the blower 1 has reached the surging generation limit based on the spectrum obtained by the frequency analyzer 3, and if the operating state of the blower 1 has reached the surging generation limit, the valve driver 5
The blower valve 6 is opened to prevent the blower 1 from surging. The operation of determining the surging occurrence limit may be continuous or intermittent. Details of the discrimination method and air release valve 6 are shown below.
Describe the operation.

【0007】図2はブロワ1の特性を示す図である。ブ
ロワ運転点の流量と圧力上昇の関係が領域aにある場合
、ブロワは正常な状態である。図3はこの状態のスペク
トル分布を示す。羽根車羽根数と羽根車回転数の積ωr
とその整数倍に高いスペクトルが現れる。ωrの整数倍
の高いスペクトルは羽根車の下流直後に静止翼を設けた
場合に明瞭に現れる。運転点が領域bにある場合、羽根
車あるいはディフューザで旋回失速が発生する。旋回失
速は羽根車回転数の数分の1程度の周波数の明瞭な圧力
変動を発生するがωrとその整数倍のスペクトルも変化
する。図4は運転点が領域bにある場合のスペクトルを
示す。旋回失速が発生するとブロワ内部流れ乱れの大幅
な増加によって旋回失速周波数以外の変動も増加する。 このためスペクトル高さは全体に高くなるがωrとその
整数倍のスペクトルは高さの増加が著しいのに加えスペ
クトル幅が増加する。またスペクトル幅の増加は低周波
側に大きい。従ってωrとその整数倍のスペクトルの高
さ、あるいは幅もしくは両方の値が基準状態である領域
aの状態を超えるか否かによって旋回失速発生の有無、
従って運転点が領域aにあるのか領域bにあるかの判断
が可能になる。
FIG. 2 is a diagram showing the characteristics of the blower 1. When the relationship between the flow rate and pressure rise at the blower operating point is in region a, the blower is in a normal state. FIG. 3 shows the spectral distribution in this state. Product of impeller blade number and impeller rotation speed ωr
and a high spectrum appears at an integer multiple of that. A spectrum with a high integral multiple of ωr clearly appears when a stationary blade is provided immediately downstream of the impeller. When the operating point is in region b, a rotating stall occurs in the impeller or diffuser. The rotating stall generates clear pressure fluctuations with a frequency of about a fraction of the impeller rotation speed, but the spectrum of ωr and its integral multiples also changes. FIG. 4 shows a spectrum when the operating point is in region b. When a rotating stall occurs, fluctuations other than the rotating stall frequency also increase due to a significant increase in blower internal flow turbulence. Therefore, the overall spectral height increases, but in the spectrum of ωr and its integral multiples, the height increases not only significantly, but also the spectral width increases. Furthermore, the increase in spectral width is large on the low frequency side. Therefore, depending on whether or not the height or width of the spectrum of ωr and its integral multiple, or both values exceed the state of region a, which is the reference state, the occurrence of a turning stall can be determined.
Therefore, it becomes possible to determine whether the operating point is in region a or region b.

【0008】放風弁6の操作法は、いくつかある。ブロ
ワ1が高圧気体を圧縮する機種あるいは高速回転する機
種の場合、多くの場合、旋回失速自身も激しい振動ある
いは騒音を発生するため長時間の運転は好ましくない。 このような場合は、運転点が領域bに入ったことを判別
後、直ちに領域aの状態になるまで放風弁6を開き運転
点を、たとえば図2のM点の位置まで移動させる。
There are several methods of operating the blowoff valve 6. In the case of a model in which the blower 1 compresses high-pressure gas or rotates at high speed, long-term operation is undesirable because rotating stall itself generates severe vibration or noise in many cases. In such a case, after determining that the operating point has entered region b, the blowoff valve 6 is immediately opened until the operating point is in region a, and the operating point is moved, for example, to the position of point M in FIG. 2.

【0009】旋回失速に伴う振動あるいは騒音の増加が
少ない場合は運転点を直ちに領域aの状態ブロワにする
必要はないから、運転点が領域bに入ったことを判別後
放風弁6を僅かに開く。この後、前記の方法によって運
転点が依然として領域bにあればさらに放風弁6を僅か
に開く。こうした動作をくりかえして運転点が領域aと
領域bの境界Rに達するまで放風弁6を開いて行く。
If the increase in vibration or noise due to rotating stall is small, it is not necessary to immediately change the operating point to the state of the blower in region a, so after determining that the operating point has entered region b, the blower valve 6 is slightly turned off. Open to. Thereafter, if the operating point is still in region b, the blowoff valve 6 is further opened slightly using the method described above. By repeating these operations, the blowoff valve 6 is opened until the operating point reaches the boundary R between area a and area b.

【0010】また運転点が領域bに入ったことを判別後
、上記の操作とともに警報を発するか警報は発するが放
風弁操作は別に設けた制御系を用いる方法もある。
[0010] Furthermore, after determining that the operating point has entered region b, there is also a method in which an alarm is issued along with the above operations, or an alarm is issued but a control system provided separately is used to operate the blow-off valve.

【0011】一般に領域bはサージング発生限界Sの近
くに限られ領域aに比較して著しく狭いから、サージン
グ発生限界の検出を高精度で行いサージング発生防止の
ためのエネルギー損失の増加、あるいは機器の停止回数
を低減できる。
In general, region b is limited to the vicinity of the surging occurrence limit S and is significantly narrower than region a. Therefore, the surging occurrence limit must be detected with high precision to prevent the occurrence of surging, resulting in an increase in energy loss or an increase in equipment loss. The number of stops can be reduced.

【0012】実施例は放風制御によるブロワ運転点の制
御を行うが他の制御方法を用いても同様の効果が得られ
る。図5はブロワで圧縮したガスを機器の外部に放出で
きない場合に適した実施例である。即ちブロワの吸入側
と吐出側を、戻し管9で接続したうえ中間に戻し弁10
を設ける。戻し弁10を開く吸入側と吐出側の間の圧力
差が減少しブロワ通過流量が増加する。従って戻し弁1
0の制御方法は図1の実施例の放風弁と全く同様である
In the embodiment, the blower operating point is controlled by air discharge control, but the same effect can be obtained by using other control methods. FIG. 5 shows an embodiment suitable for the case where the gas compressed by the blower cannot be discharged to the outside of the equipment. That is, the suction side and the discharge side of the blower are connected by a return pipe 9, and a return valve 10 is installed in the middle.
will be established. When the return valve 10 is opened, the pressure difference between the suction side and the discharge side decreases, and the flow rate passing through the blower increases. Therefore, return valve 1
The control method of 0 is exactly the same as the blowoff valve of the embodiment shown in FIG.

【0013】図6は大容量の機種に適した実施例であり
ブロワを通過する流量が減少してサージング発生限界に
達した場合には以下の方法の組合せによってサージング
発生を回避する。(1)ブロワを駆動する電動機12が
可変速になっており、ブロワを通過する流量が減少して
サージング発生限界に達した場合は回転数コントローラ
11によって回転数を低下させる。(2)入口静翼13
が静翼駆動機15によって回転可動に支持されており、
ブロワを通過する流量が減少してサージング発生限界に
達した場合は入口静翼を羽根車の回転軸方向から離れる
方向に回転させる。(3)羽根車に装着される動翼14
が動翼駆動機16によって回転可動に支持されており、
ブロワを通過する流量が減少してサージング発生限界に
達した場合は、コントローラ4で発生させた制御信号を
スリップリング17を介して動翼駆動機16に伝え動翼
14を羽根車の回転軸方向から離れる方向に回転させる
。この実施例ではブロワを通過する流量が減少するので
通過気体を昇圧するのに必要な動力そのものも減少しエ
ネルギー効率が良好である。
FIG. 6 shows an embodiment suitable for a large-capacity model, and when the flow rate passing through the blower decreases and reaches the surging generation limit, surging generation is avoided by a combination of the following methods. (1) The electric motor 12 that drives the blower has a variable speed, and when the flow rate passing through the blower decreases and reaches the surging generation limit, the rotation speed controller 11 lowers the rotation speed. (2) Inlet stationary blade 13
is rotatably supported by a stator blade drive machine 15,
When the flow rate passing through the blower decreases and reaches the surging generation limit, the inlet stationary blade is rotated in a direction away from the rotation axis of the impeller. (3) Moving blade 14 attached to the impeller
is rotatably supported by a rotor blade drive machine 16,
When the flow rate passing through the blower decreases and reaches the surging generation limit, a control signal generated by the controller 4 is transmitted to the rotor blade driver 16 via the slip ring 17 to move the rotor blade 14 in the direction of the rotation axis of the impeller. Rotate it in the direction away from the In this embodiment, since the flow rate passing through the blower is reduced, the power required to boost the pressure of the passing gas is also reduced, resulting in good energy efficiency.

【0014】また運転状態の検出は音響に限らず、内部
あるいは外部の圧力変動,ブロワ壁面の振動を用いても
同様の効果が得られる。ブロワ1は1枚の羽根車を持つ
1台のブロワに限られず多数の羽根車を持つブロワ、多
数のブロワでもよい。
[0014] The detection of the operating state is not limited to sound; similar effects can be obtained by using internal or external pressure fluctuations or vibrations of the blower wall surface. The blower 1 is not limited to one blower having one impeller, but may be a blower having many impellers or a large number of blowers.

【0015】[0015]

【発明の効果】本発明によればサージング発生限界の検
出を高精度で行うことが可能になるともに、サージング
発生防止の運転操作回数を低減することによりサージン
グ発生防止のためのエネルギー損失の増加、あるいは機
器の停止回数を低減することが可能になる。
According to the present invention, it is possible to detect the limit of surging occurrence with high accuracy, and by reducing the number of driving operations to prevent surging occurrence, the energy loss for preventing surging occurrence is increased. Alternatively, it becomes possible to reduce the number of times the equipment is stopped.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】ブロワの流量と圧力上昇の関係を示す図。FIG. 2 is a diagram showing the relationship between blower flow rate and pressure rise.

【図3】ブロワの正常な運転状態にえける音響スペクト
ルを示す図。
FIG. 3 is a diagram showing the acoustic spectrum of the blower under normal operating conditions.

【図4】ブロワの発生限界の運転状態における音響スペ
クトルを示す図。
FIG. 4 is a diagram showing an acoustic spectrum of the blower in the operating state at the generation limit.

【図5】本発明の他の実施例を示す構成図。FIG. 5 is a configuration diagram showing another embodiment of the present invention.

【図6】本発明の更に他の実施例を示す構成図。FIG. 6 is a configuration diagram showing still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…ブロワ、2…マイクロホン、3…周波数分析器、4
…コントローラ、5…弁駆動機、6…放風弁、7…放風
管、8…供給先、9…戻し管、10…戻し弁、11…回
転数コントローラ、12…電動機、13…入口静翼、1
4…動翼、15…静翼駆動機、16…動翼駆動機、17
…スリップリング。
1...Blower, 2...Microphone, 3...Frequency analyzer, 4
... Controller, 5 ... Valve drive machine, 6 ... Air discharge valve, 7 ... Air discharge pipe, 8 ... Supply destination, 9 ... Return pipe, 10 ... Return valve, 11 ... Rotation speed controller, 12 ... Electric motor, 13 ... Inlet static wings, 1
4... Moving blade, 15... Stator blade drive machine, 16... Moving blade drive machine, 17
...Slip ring.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】流体機械の圧力,音響壁面の振動を測定す
る手段と、測定した圧力,音響振動の周波数スペクトル
を分析する手段と、分析した周波数スペクトル分布によ
ってサージング発生の前兆現象を検出してターボブロワ
あるいは圧縮機の流量と圧力上昇を制御してサージング
の発生を防止するターボブロワ及び圧縮機において、分
析した周波数スペクトルの羽根車羽根数と羽根車回転数
の積の成分とその整数倍の両方あるいは一方のスペクト
ル高さが臨界値を超えた状態をサージング防止制御を開
始する限界とすることを特徴とする流体機械のサージン
グ制御方法。
Claim 1: Means for measuring the pressure of a fluid machine and acoustic wall vibration, means for analyzing the frequency spectrum of the measured pressure and acoustic vibration, and detecting a precursor phenomenon of surging based on the analyzed frequency spectrum distribution. In turbo blowers and compressors that control the flow rate and pressure rise of the turbo blower or compressor to prevent the occurrence of surging, both the component of the product of the number of impeller blades and the impeller rotation speed of the analyzed frequency spectrum and the integral multiple thereof, or A surging control method for a fluid machine, characterized in that a state in which one spectrum height exceeds a critical value is set as a limit for starting surging prevention control.
JP6602091A 1991-03-29 1991-03-29 Control method of surging of fluid machinery Pending JPH04301200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6602091A JPH04301200A (en) 1991-03-29 1991-03-29 Control method of surging of fluid machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6602091A JPH04301200A (en) 1991-03-29 1991-03-29 Control method of surging of fluid machinery

Publications (1)

Publication Number Publication Date
JPH04301200A true JPH04301200A (en) 1992-10-23

Family

ID=13303831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6602091A Pending JPH04301200A (en) 1991-03-29 1991-03-29 Control method of surging of fluid machinery

Country Status (1)

Country Link
JP (1) JPH04301200A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614050A1 (en) * 1993-03-04 1994-09-07 Joh. Vaillant GmbH u. Co. Heater
CN108612664A (en) * 2018-05-04 2018-10-02 重庆江增船舶重工有限公司 A kind of automatic detection of surge in centrifugal compressors, regulating system
CN110925233A (en) * 2019-12-05 2020-03-27 中国航发四川燃气涡轮研究院 Compressor surge fault diagnosis method based on acoustic signals
CN112983879A (en) * 2021-05-10 2021-06-18 亿昇(天津)科技有限公司 Starting control method of high-speed turbine vacuum pump and vacuum pumping system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614050A1 (en) * 1993-03-04 1994-09-07 Joh. Vaillant GmbH u. Co. Heater
CN108612664A (en) * 2018-05-04 2018-10-02 重庆江增船舶重工有限公司 A kind of automatic detection of surge in centrifugal compressors, regulating system
CN110925233A (en) * 2019-12-05 2020-03-27 中国航发四川燃气涡轮研究院 Compressor surge fault diagnosis method based on acoustic signals
CN112983879A (en) * 2021-05-10 2021-06-18 亿昇(天津)科技有限公司 Starting control method of high-speed turbine vacuum pump and vacuum pumping system
CN112983879B (en) * 2021-05-10 2021-08-10 亿昇(天津)科技有限公司 Starting control method of high-speed turbine vacuum pump and vacuum pumping system

Similar Documents

Publication Publication Date Title
US5913248A (en) Surge detection device and turbomachinery therewith
EP0654161B1 (en) Process and device for monitoring and for controlling of a compressor
US6092029A (en) Method and apparatus for diagnosing and controlling rotating stall and surge in rotating machinery
JP4017631B2 (en) System and method for detecting rotational stall in a centrifugal compressor
KR100381464B1 (en) Turbomachinery with variable angle fluid guiding devices
EP2129921B1 (en) Method for detecting rotating stall in a compressor
JPH08503042A (en) Method and apparatus for monitoring the excitation of an axial compressor
JP4174031B2 (en) Turbomachine surging limit or blade damage warning
JP6005181B2 (en) Preventing pump surging in compressors
JPH11117898A (en) Turbo machine
JPH04301200A (en) Control method of surging of fluid machinery
JPH10252691A (en) Moving blade variable axial flow fan and operation method thereof
JPH08254127A (en) Supercharger
JPH0816479B2 (en) Surge prevention device for compressor
JPH01394A (en) Compressor surging prevention device
US11913476B2 (en) Compressor system
JP5881390B2 (en) Rotating machine
JP2003013748A (en) Variable stator blade device and controlling method therefor
JPS6118239Y2 (en)
JPH0447197A (en) Turning stall preventing device for compressor
JPS6388300A (en) Method and device for monitoring surging of axial flow compressor
Jin et al. The flow and rotation characteristics of a centrifugal compressor during surge
PL240006B1 (en) Method of monitoring unstable flow structures in a compression system
Okada et al. Stall inception process and prospects for active hub-flap control in three-stage axial flow compressor
KR100543671B1 (en) Apparatus and Method of Rotating Stall Warning in Compressor using Spatial Fourier Coefficient