JP2009030823A - Air conditioning control system and air conditioning control method - Google Patents

Air conditioning control system and air conditioning control method Download PDF

Info

Publication number
JP2009030823A
JP2009030823A JP2007192426A JP2007192426A JP2009030823A JP 2009030823 A JP2009030823 A JP 2009030823A JP 2007192426 A JP2007192426 A JP 2007192426A JP 2007192426 A JP2007192426 A JP 2007192426A JP 2009030823 A JP2009030823 A JP 2009030823A
Authority
JP
Japan
Prior art keywords
flow rate
valve
air conditioner
cold
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007192426A
Other languages
Japanese (ja)
Other versions
JP5209244B2 (en
Inventor
Keita Sato
慶大 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2007192426A priority Critical patent/JP5209244B2/en
Priority to CN2008101265343A priority patent/CN101354170B/en
Priority to TW097123553A priority patent/TW200912215A/en
Priority to KR1020080069410A priority patent/KR101003148B1/en
Publication of JP2009030823A publication Critical patent/JP2009030823A/en
Application granted granted Critical
Publication of JP5209244B2 publication Critical patent/JP5209244B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/00077Indoor units, e.g. fan coil units receiving heat exchange fluid entering and leaving the unit as a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioning control system and an air conditioning control method for preventing an increase in energy to be consumed even if a flow rate exceeding a maximum designed flow rate is demanded due to an error in a setting temperature and humidity. <P>SOLUTION: This air conditioning control system is provided with pumps 9-1, 9-2 feeding cold temperature water, air conditioners 5-1 to 5-3 receiving the supply of cold temperature water, valves 6-1 to 6-3 controlling flow rates of cold temperature water, flow rate measuring means incorporated in the valves 6-1 to 6-3, an air conditioning controller 14 controlling openings of the valves 6-1 to 6-3 based on the deviation of a temperature of the air fed out of the air conditioners 5-1 to 5-3 from the set temperature and limiting the openings of the valves so that flow rate of valve passing water is not higher than the maximum designed flow rate when the flow rate of valve passing water exceeds the maximum designed flow rate, and a feed water controller 15 controlling the pressure of feed water based on control states of the air conditioners 5-1 to 5-3 decided by the openings of the valves and the flow rate of valve passing water. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、バルブの開度を調節することにより空調機に流す冷温水の流量を制御する空調制御システムおよび空調制御方法に関するものである。   The present invention relates to an air conditioning control system and an air conditioning control method for controlling the flow rate of cold / hot water flowing through an air conditioner by adjusting the opening of a valve.

従来より、冷温水を熱媒体とする空調制御システムに関して、その熱媒体の送水圧力を制御するシステムが提案されている(例えば特許文献1、特許文献2参照)。
図1は本発明の第1の実施の形態に係る空調制御システムの構成を示すブロック図であるが、従来においてもその全体構成は同様であるので、図1を用いて従来の空調制御システムについて説明する。
Conventionally, regarding an air conditioning control system using cold / hot water as a heat medium, a system for controlling the water supply pressure of the heat medium has been proposed (see, for example, Patent Document 1 and Patent Document 2).
FIG. 1 is a block diagram showing the configuration of the air conditioning control system according to the first embodiment of the present invention. Since the overall configuration is the same in the prior art, the conventional air conditioning control system is shown in FIG. explain.

一次ポンプ2−1,2−2により圧送され熱源機1−1,1−2により熱量が付加された冷温水(送水)は、往路ヘッダー3−1に送られ、二次ポンプ9−1,9−2により圧送されて往路ヘッダー3−2を経て送水管路4に供給され、空調機5−1〜5−3を通過して還水管路7により還水として還路ヘッダー8に至り、再びポンプ2−1,2−2によって圧送される。
空調制御装置14は、空調機5−1〜5−3から送出される給気の温度と温度設定値との偏差、あるいは給気の湿度と湿度設定値との偏差に基づいてバルブ6−1〜6−3の開度を制御する。
Cold / hot water (water supply) pumped by the primary pumps 2-1 and 2-2 and added with heat by the heat source units 1-1 and 1-2 is sent to the forward header 3-1, and the secondary pumps 9-1, It is pumped by 9-2, supplied to the water supply line 4 through the forward header 3-2, passes through the air conditioners 5-1 to 5-3, and reaches the return path header 8 as return water by the return water pipe 7. Pumped again by the pumps 2-1 and 2-2.
The air-conditioning control device 14 controls the valve 6-1 based on the deviation between the temperature of the supply air sent from the air conditioners 5-1 to 5-3 and the temperature set value, or the difference between the humidity of the supply air and the humidity set value. Control the opening of ~ 6-3.

また、空調制御装置14は、バルブ6−1〜6−3の開度とバルブ通過流量に基づいて空調機制御ステータスを決定する。
送水制御装置15は、空調機制御ステータスに基づいて設定送水圧力を決定し、圧力センサ11によって計測される現在の送水圧力が設定送水圧力と一致するように、インバータ9−1a,9−2aを介して二次ポンプ9−1,9−2のインバータ回転数を制御する。
Moreover, the air-conditioning control apparatus 14 determines an air-conditioner control status based on the opening degree of the valves 6-1 to 6-3 and the valve passage flow rate.
The water supply control device 15 determines the set water supply pressure based on the air conditioner control status, and sets the inverters 9-1a and 9-2a so that the current water supply pressure measured by the pressure sensor 11 matches the set water supply pressure. The inverter rotational speed of the secondary pumps 9-1 and 9-2 is controlled via

特開平8−75223号公報JP-A-8-75223 特開平8−75224号公報JP-A-8-75224

特許文献1、特許文献2に開示された空調制御システムによれば、送水圧力を可変とすることにより、省エネルギーを実現することができる。
しかしながら、特許文献1、特許文献2に開示された空調制御システムでは、温湿度設定の誤り(過剰冷房、過剰暖房)等により設計最大流量を超える冷温水が空調機に流れると、空調制御システムの消費エネルギーが増加するという問題点があった。
According to the air conditioning control system disclosed in Patent Literature 1 and Patent Literature 2, energy saving can be realized by making the water supply pressure variable.
However, in the air conditioning control system disclosed in Patent Literature 1 and Patent Literature 2, if cold / warm water exceeding the design maximum flow rate flows into the air conditioner due to an error in temperature / humidity setting (overcooling, overheating), etc., the air conditioning control system There was a problem that energy consumption increased.

一般的に空調機の冷温水コイルは供給熱量に応じて設計されており、温度制御もしくは湿度制御は、温度偏差もしくは湿度偏差に基づくフィードバック制御により、バルブの開度を制御して、冷温水コイルを通過する冷温水の流量を制御している。
一方、一般的に温湿度設定はユーザもしくはビル管理担当者に委ねられており、彼らが設計条件を逸脱する設定変更をした場合、設計最大流量を逸脱した冷温水が空調機の冷温水コイルを通過する。冷温水コイルは、設計温度差条件と設計最大流量条件により最大熱量条件が定められている。
In general, the cold / hot water coil of an air conditioner is designed according to the amount of heat supplied, and the temperature control or humidity control is controlled by feedback control based on the temperature deviation or humidity deviation to control the opening of the valve. The flow rate of cold / hot water passing through is controlled.
On the other hand, temperature / humidity settings are generally left to the user or the building manager, and if they change the settings that deviate from the design conditions, the chilled / hot water that deviates from the design maximum flow rate will cause the chilled / hot water coil of the air conditioner to pass. In the cold / hot water coil, the maximum heat quantity condition is determined by the design temperature difference condition and the design maximum flow rate condition.

ここで、前述のように設計最大流量を超える冷温水が冷温水コイルに流れると、ポンプの搬送動力が増加して消費エネルギーが増加する。また、冷温水コイルにおいて設計条件以上で交換できる熱量はほぼ一定であるため、流量に反比例して空調機の入口と出口の冷温水の温度差が減少し、結果として熱源機の効率が悪化し、熱源機の消費エネルギーが増加する。   Here, when the cold / hot water exceeding the design maximum flow rate flows into the cold / hot water coil as described above, the conveyance power of the pump increases and the energy consumption increases. In addition, the amount of heat that can be exchanged over the design conditions in the cold / hot water coil is almost constant, so the temperature difference between the cold / hot water at the inlet and outlet of the air conditioner decreases in inverse proportion to the flow rate, resulting in a deterioration in the efficiency of the heat source machine. The energy consumption of the heat source machine will increase.

本来は、配管系統毎にバルブの開度が最大時に設計最大流量となるように手動バルブで調整するべきであるが、工数がかかるために行われていない。
また、要求流量が大きい系統のバルブの開度を送水制御の判断指標から外したり、送水制御における重み付けを弱めるなどの手法もあるが、現場作業の手間と工数が増大するという問題点があった。
Originally, it should be adjusted by a manual valve so that the opening degree of the valve is the maximum design flow rate at the maximum for each piping system, but this is not done because it takes time.
In addition, there are methods such as removing the valve opening of the system with a large required flow rate from the judgment index of water supply control, or weakening the weighting in water supply control, but there is a problem that labor and man-hours of field work increase. .

また、特許文献1、特許文献2に開示された空調制御システムでは、冷温水コイルに設計最大流量を超える冷温水を流していないにもかかわらず、空調機の入口と出口で冷温水の設計温度差を確保できず、空調制御システムの消費エネルギーが増加するという問題点があった。前述のとおり、設計温度差を確保できない場合には、熱源機の効率が悪化し、熱源機の消費エネルギーが増加する。設計最大流量を超える冷温水を流していないにもかかわらず、設計温度差を確保できない理由は、空調負荷に対して過流量となっているからである。   Moreover, in the air-conditioning control system disclosed in Patent Document 1 and Patent Document 2, the design temperature of the chilled / hot water at the inlet and the outlet of the air conditioner, even though the chilled / hot water coil does not flow the chilled / hot water exceeding the design maximum flow rate. There was a problem that the difference could not be secured and the energy consumption of the air conditioning control system increased. As described above, when the design temperature difference cannot be ensured, the efficiency of the heat source device deteriorates and the energy consumption of the heat source device increases. The reason why the design temperature difference cannot be ensured even though cold / hot water exceeding the design maximum flow rate is not flowing is that the flow rate is excessive with respect to the air conditioning load.

本発明は、上記課題を解決するためになされたもので、温湿度設定の誤り等により設計最大流量を超える流量要求が発生したとしても、消費エネルギーの増加を抑制することができる空調制御システムおよび空調制御方法を提供することを目的とする。
また、本発明は、空調負荷に対して過流量となっている場合に、消費エネルギーの増加を抑制することができる空調制御システムおよび空調制御方法を提供することを目的とする。
The present invention has been made in order to solve the above-described problem, and an air conditioning control system capable of suppressing an increase in energy consumption even when a flow rate request exceeding a design maximum flow rate occurs due to an error in temperature / humidity setting or the like. It aims at providing the air-conditioning control method.
Another object of the present invention is to provide an air-conditioning control system and an air-conditioning control method that can suppress an increase in energy consumption when the flow rate is excessive with respect to the air-conditioning load.

本発明の空調制御システムは、冷温水を送出するポンプと、前記冷温水の供給を受ける空調機と、この空調機に供給される冷温水の流量を制御するバルブと、前記バルブを通過する冷温水の流量を計測する流量計測手段と、前記空調機から送出される給気の温度と設定温度との偏差に基づいて前記バルブの開度を制御する空調制御手段と、前記流量計測手段によって計測されたバルブ通過流量が設計最大流量を超える場合に、前記バルブ通過流量が設計最大流量以下となるように前記バルブ開度を制限するバルブ開度制限手段と、前記バルブ開度とバルブ通過流量によって決定される空調機の制御状態に基づいて、前記ポンプから前記空調機に送出される冷温水の圧力である送水圧力を制御する送水圧力制御手段とを備えるものである。
また、本発明の空調制御システムは、冷温水を送出するポンプと、前記冷温水の供給を受ける空調機と、この空調機に供給される冷温水の流量を制御するバルブと、前記バルブを通過する冷温水の流量を計測する流量計測手段と、前記空調機を通過した還水の温度を計測する還水温度計測手段と、前記空調機から送出される給気の温度と設定温度との偏差に基づいて前記バルブの開度を制御する空調制御手段と、前記流量計測手段によって計測されたバルブ通過流量が設計最大流量以下で、かつ冷房運転のときに前記還水温度計測手段によって計測された計測還水温度が設計還水温度より低い場合又は暖房運転のときに前記計測還水温度が設計還水温度より高い場合に、冷房運転のときは前記計測還水温度が設計還水温度以上となり暖房運転のときは前記計測還水温度が設計還水温度以下となるように前記バルブ開度を制限するバルブ開度制限手段と、前記バルブ開度とバルブ通過流量によって決定される空調機の制御状態に基づいて、前記ポンプから前記空調機に送出される冷温水の圧力である送水圧力を制御する送水圧力制御手段とを備えるものである。
An air conditioning control system according to the present invention includes a pump that delivers cold / hot water, an air conditioner that receives the supply of cold / hot water, a valve that controls a flow rate of cold / hot water supplied to the air conditioner, and a cold / hot temperature that passes through the valve. Measured by flow rate measuring means for measuring the flow rate of water, air conditioning control means for controlling the opening of the valve based on the deviation between the temperature of the supply air sent from the air conditioner and the set temperature, and the flow rate measuring means A valve opening restricting means for restricting the valve opening so that the valve passing flow is less than or equal to the designed maximum flow when the valve passing flow exceeds the designed maximum flow, and the valve opening and the valve passing flow. Water supply pressure control means for controlling the water supply pressure, which is the pressure of the cold / hot water sent from the pump to the air conditioner, based on the determined control state of the air conditioner.
The air-conditioning control system of the present invention includes a pump that delivers cold / hot water, an air conditioner that receives supply of the cold / hot water, a valve that controls a flow rate of the cold / hot water supplied to the air conditioner, and a valve that passes through the valve. The flow rate measuring means for measuring the flow rate of the cold / hot water to be measured, the return water temperature measuring means for measuring the temperature of the return water that has passed through the air conditioner, and the difference between the temperature of the supply air sent from the air conditioner and the set temperature Air-conditioning control means for controlling the opening degree of the valve based on the above, and the valve passage flow rate measured by the flow rate measurement means is less than or equal to the design maximum flow rate, and was measured by the return water temperature measurement means during cooling operation When the measured return water temperature is lower than the design return water temperature or when the measured return water temperature is higher than the design return water temperature during heating operation, the measured return water temperature is equal to or higher than the design return water temperature during cooling operation. Heating operation When the valve opening degree is limited to restrict the valve opening so that the measured return water temperature is equal to or lower than the design return water temperature, and based on the control state of the air conditioner determined by the valve opening and the valve passage flow rate. Water supply pressure control means for controlling the water supply pressure, which is the pressure of the cold / hot water sent from the pump to the air conditioner.

また、ポンプと空調機とバルブとを備えた空調制御システムにおいて、本発明の空調制御方法は、前記空調機から送出される給気の温度と設定温度との偏差に基づいて前記バルブの開度を制御する空調制御手順と、前記バルブを通過する冷温水の流量を計測する流量計測手順と、この流量計測手順によって計測されたバルブ通過流量が設計最大流量を超える場合に、前記バルブ通過流量が設計最大流量以下となるように前記バルブ開度を制限するバルブ開度制限手順と、前記バルブ開度とバルブ通過流量によって決定される空調機の制御状態に基づいて、前記ポンプから前記空調機に送出される冷温水の圧力である送水圧力を制御する送水圧力制御手順とを備えるものである。
また、ポンプと空調機とバルブとを備えた空調制御システムにおいて、本発明の空調制御方法は、前記空調機から送出される給気の温度と設定温度との偏差に基づいて前記バルブの開度を制御する空調制御手順と、前記バルブを通過する冷温水の流量を計測する流量計測手順と、前記空調機を通過した還水の温度を計測する還水温度計測手順と、前記流量計測手順によって計測されたバルブ通過流量が設計最大流量以下で、かつ冷房運転のときに前記還水温度計測手順によって計測された計測還水温度が設計還水温度より低い場合又は暖房運転のときに前記計測還水温度が設計還水温度より高い場合に、冷房運転のときは前記計測還水温度が設計還水温度以上となり暖房運転のときは前記計測還水温度が設計還水温度以下となるように前記バルブ開度を制限するバルブ開度制限手順と、前記バルブ開度とバルブ通過流量によって決定される空調機の制御状態に基づいて、前記ポンプから前記空調機に送出される冷温水の圧力である送水圧力を制御する送水圧力制御手順とを備えるものである。
Further, in an air conditioning control system including a pump, an air conditioner, and a valve, the air conditioning control method of the present invention is based on the deviation between the temperature of the supply air sent from the air conditioner and the set temperature. The air conditioning control procedure for controlling the flow rate, the flow rate measurement procedure for measuring the flow rate of cold / hot water passing through the valve, and the valve flow rate when the valve flow rate measured by this flow rate measurement procedure exceeds the design maximum flow rate, From the pump to the air conditioner based on the valve opening restriction procedure for restricting the valve opening so as to be equal to or less than the design maximum flow rate, and the control state of the air conditioner determined by the valve opening and the flow rate through the valve. And a water supply pressure control procedure for controlling the water supply pressure, which is the pressure of the cold / warm water to be sent out.
Further, in an air conditioning control system including a pump, an air conditioner, and a valve, the air conditioning control method of the present invention is based on the deviation between the temperature of the supply air sent from the air conditioner and the set temperature. An air conditioning control procedure for controlling the flow rate, a flow rate measurement procedure for measuring the flow rate of cold / hot water passing through the valve, a return water temperature measurement procedure for measuring the temperature of the return water passing through the air conditioner, and the flow rate measurement procedure. The measured return flow when the measured valve passing flow rate is less than the design maximum flow rate and the measured return water temperature measured by the return water temperature measurement procedure during cooling operation is lower than the design return water temperature or during heating operation. When the water temperature is higher than the design return water temperature, the measured return water temperature is higher than the design return water temperature during cooling operation, and the measured return water temperature is lower than the design return water temperature during heating operation. Ba This is the pressure of cold / warm water sent from the pump to the air conditioner based on the valve opening degree restricting procedure for restricting the valve opening degree and the control state of the air conditioner determined by the valve opening degree and the valve passage flow rate. A water supply pressure control procedure for controlling the water supply pressure.

本発明によれば、計測したバルブ通過流量が設計最大流量を超える場合にバルブの開度を制限することで、温湿度設定の誤り(過剰冷房、過剰暖房)等により設計最大流量を超える流量要求が発生したとしても、バルブ通過流量が設計最大流量以下となるように抑制することができ、ポンプ搬送動力の増加による消費エネルギーの増加を抑制することができる。また、本発明では、バルブ通過流量が設計最大流量以下となるように抑制することで、空調機の入口と出口で冷温水の温度差を確保することができるので、熱源機の運転効率を向上させることができ、熱源機の消費エネルギーの増加を抑制することができる。さらに、本発明では、要求流量が大きい系統のバルブの開度を送水制御の判断指標から外したり、送水制御における重み付けを弱めるなどの手法をとる必要がなく、現場作業の手間を省くことができる。   According to the present invention, when the measured valve passage flow rate exceeds the design maximum flow rate, the flow rate request exceeds the design maximum flow rate due to an error in temperature / humidity setting (overcooling, overheating), etc. Even if this occurs, the flow rate through the valve can be suppressed to be equal to or lower than the design maximum flow rate, and an increase in energy consumption due to an increase in pump conveyance power can be suppressed. In addition, in the present invention, the temperature difference between cold and hot water can be ensured at the inlet and outlet of the air conditioner by suppressing the flow rate through the valve to be equal to or less than the design maximum flow rate, thereby improving the operating efficiency of the heat source device. It is possible to suppress the increase in energy consumption of the heat source machine. Furthermore, in the present invention, it is not necessary to take a method such as removing the valve opening degree of the system having a large required flow rate from the determination index of water supply control or weakening the weighting in the water supply control, and it is possible to save labor on site work. .

また、本発明では、計測したバルブ通過流量が設計最大流量以下で、かつ冷房運転のときに計測した計測還水温度が設計還水温度より低い場合又は暖房運転のときに計測還水温度が設計還水温度より高い場合に、バルブの開度を制限することで、空調負荷に対して過流量となっている場合にバルブ通過流量を抑制することができる。その結果、本発明では、空調機の入口と出口で冷温水の温度差を確保することができるので、熱源機の運転効率を向上させることができ、熱源機の消費エネルギーの増加を抑制することができる。   Further, in the present invention, the measured return water temperature is designed when the measured valve passing flow rate is less than the design maximum flow rate and the measured return water temperature measured during the cooling operation is lower than the designed return water temperature or during the heating operation. By limiting the opening of the valve when the temperature is higher than the return water temperature, the flow rate through the valve can be suppressed when the flow rate is excessive with respect to the air conditioning load. As a result, in the present invention, the temperature difference between cold and hot water can be secured at the inlet and outlet of the air conditioner, so that the operating efficiency of the heat source machine can be improved and the increase in energy consumption of the heat source machine can be suppressed. Can do.

[第1の実施の形態]
以下、本発明の実施の形態について図面を参照して説明する。図1は本発明の第1の実施の形態に係る空調制御システムの構成を示すブロック図である。
図1の空調制御システムは、冷温水を生成する冷温水発生機、ヒートポンプ、冷凍機、ボイラー等の熱源機1−1,1−2と、この熱源機1−1,1−2の補機としての一次ポンプ2−1,2−2と、複数の熱源機1−1,1−2からの冷温水を混合する往路ヘッダー3−1,3−2と、送水管路4と、空調機5−1〜5−3と、空調機5−1〜5−3に供給される冷温水の流量を制御するバルブ6−1〜6−3と、還水管路7と、空調機5−1〜5−3において熱交換され還水管路7を介して送られてくる冷温水が戻される還路ヘッダー8と、往路ヘッダー3−1と3−2の間に設けられた二次ポンプ9−1,9−2と、往路ヘッダー3−1と3−2の間に設けられたバイパス弁10と、配管系末端の送水圧力を計測する圧力センサ11と、空調機5−1〜5−3から送出される給気の温度を計測する給気温度センサ12−1〜12−3と、空調機5−1〜5−3を通過した還水の温度を計測する還水温度センサ(還水温度計測手段)13と、バルブ6−1〜6−3の開度を調整することにより空調機5−1〜5−3への冷温水の供給量を制御する空調制御装置14と、冷温水を空調機5−1〜5−3へ送出するポンプ9−1,9−2等を制御する送水制御装置15をから構成される。
[First Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of an air conditioning control system according to the first embodiment of the present invention.
The air-conditioning control system of FIG. 1 includes a cold / hot water generator for generating cold / hot water, heat source devices 1-1, 1-2 such as a heat pump, a refrigerator, and a boiler, and auxiliary devices for the heat source devices 1-1, 1-2. Primary pumps 2-1 and 2-2, forward headers 3-1 and 3-2 for mixing cold / hot water from a plurality of heat source devices 1-1 and 1-2, a water supply pipeline 4, and an air conditioner 5-1 to 5-3, valves 6-1 to 6-3 for controlling the flow rate of the cold / hot water supplied to the air conditioners 5-1 to 5-3, the return water pipe 7, and the air conditioner 5-1. ˜5-3, the return path header 8 to which the cold / hot water sent through the return water pipe 7 is returned, and the secondary pump 9− provided between the forward path headers 3-1 and 3-2. 1, 9-2, a bypass valve 10 provided between the forward headers 3-1 and 3-2, and a pressure sensor 11 for measuring the water supply pressure at the end of the piping system Supply air temperature sensors 12-1 to 12-3 for measuring the temperature of the supply air sent from the air conditioners 5-1 to 5-3, and the temperature of the return water that has passed through the air conditioners 5-1 to 5-3 The amount of cold / hot water supplied to the air conditioners 5-1 to 5-3 is controlled by adjusting the return water temperature sensor (return water temperature measuring means) 13 to be measured and the openings of the valves 6-1 to 6-3. The air-conditioning control device 14 that performs this operation and the water-feeding control device 15 that controls the pumps 9-1 and 9-2 that send cold / hot water to the air-conditioners 5-1 to 5-3 are configured.

バルブ6−1〜6−3は、それぞれバルブ6−1〜6−3を通過する冷温水の流量を計測する流量センサ(流量計測手段)を備えている。二次ポンプ9−1,9−2は、それぞれインバータ9−1a,9−2aを備えている。   The valves 6-1 to 6-3 are provided with a flow rate sensor (flow rate measuring means) that measures the flow rate of the cold / hot water that passes through the valves 6-1 to 6-3, respectively. The secondary pumps 9-1 and 9-2 include inverters 9-1a and 9-2a, respectively.

一次ポンプ2−1,2−2により圧送され熱源機1−1,1−2により熱量が付加された冷水又は温水等の熱媒(送水)は、往路ヘッダー3−1に送られ、二次ポンプ9−1,9−2により圧送されて往路ヘッダー3−2を経て送水管路4に供給され、空調機5−1〜5−3を通過して還水管路7により還水として還路ヘッダー8に至り、再びポンプ2−1,2−2によって圧送される。このように、冷温水は以上の経路を循環する。   Heat medium (water supply) such as cold water or hot water pressure-fed by the primary pumps 2-1 and 2-2 and added with heat by the heat source devices 1-1 and 1-2 is sent to the forward header 3-1, Pumped by pumps 9-1 and 9-2, supplied to the water supply line 4 through the forward header 3-2, passed through the air conditioners 5-1 to 5-3 and returned as return water by the return water pipe 7. It reaches the header 8 and is again pumped by the pumps 2-1 and 2-2. Thus, cold / hot water circulates through the above path.

なお、上述において、配管系末端とは、建物の1番高いところに設置されたバルブの近傍、またはポンプからの引き回し距離が最も長いバルブの近傍のどちらかである。このうちのどちらを選ぶかは建物によって適宜決めることができる。送水圧力を測定する場所はポンプとバルブとの間の配管ならばどこでも良いが、特に配管系末端で測定することが望ましい。すなわち、配管系末端は配管の圧損による送水圧低下の影響を最も受け易い場所なので、ここの送水圧力が所定の値を満足するように制御すれば、全ての配管系において所定の送水圧力を満足させることが可能となる。   In the above description, the end of the piping system is either in the vicinity of the valve installed at the highest place in the building or in the vicinity of the valve having the longest routing distance from the pump. Which of these should be chosen can be determined appropriately by the building. The place for measuring the water supply pressure may be anywhere as long as it is a pipe between the pump and the valve, but it is particularly desirable to measure at the end of the pipe system. In other words, since the end of the piping system is the place most susceptible to the drop in water pressure due to pressure loss in the pipe, if the water pressure here is controlled so as to satisfy the predetermined value, the predetermined water pressure is satisfied in all piping systems. It becomes possible to make it.

図2は空調制御装置14の構成例を示すブロック図である。空調制御装置14は、給気温度センサ12−1〜12−3が計測した給気温度の値を受信する給気温度受信部140と、バルブ6−1〜6−3の流量センサが計測した流量の値を受信する流量受信部141と、還水温度センサ13が計測した還水温度の値を受信する還水温度受信部142と、ユーザもしくは建物の管理担当者によって設定された温度設定値(または湿度設定値)を受ける設定部143と、空調機5−1〜5−3を流れる冷温水の設計最大流量の値と、設計還水温度の値とを予め記憶する記憶部144と、空調機5−1〜5−3へ供給する冷温水の設定流量を決定すると共に、空調機5−1〜5−3の制御状態(空調機制御ステータス)を決定する演算部145と、演算部145が決定した設定流量に基づいてバルブ6−1〜6−3の開度を制御するバルブ制御部146と、空調機制御ステータスを送水制御装置15へ送信する空調機制御ステータス送信部147とを有する。
演算部145とバルブ制御部146とは、空調制御手段とバルブ開度制限手段とを構成している。
FIG. 2 is a block diagram illustrating a configuration example of the air conditioning control device 14. The air conditioning control device 14 is measured by the supply air temperature receiver 140 that receives the value of the supply air temperature measured by the supply air temperature sensors 12-1 to 12-3 and the flow rate sensors of the valves 6-1 to 6-3. A flow rate receiving unit 141 that receives the value of the flow rate, a return water temperature receiving unit 142 that receives the value of the return water temperature measured by the return water temperature sensor 13, and a temperature setting value set by a user or a person in charge of building management A setting unit 143 that receives (or a humidity setting value), a storage unit 144 that stores in advance a design maximum flow rate value of cold / hot water flowing through the air conditioners 5-1 to 5-3, and a design return water temperature value; A calculation unit 145 for determining a set flow rate of the cold / hot water supplied to the air conditioners 5-1 to 5-3 and determining a control state (air conditioner control status) of the air conditioners 5-1 to 5-3; Based on the set flow rate determined by 145, valves 6-1 to 6-1 A valve control unit 146 for controlling -3 opening, and a air conditioner control status transmission unit 147 transmits the air conditioner control status to the water supply control unit 15.
The calculation unit 145 and the valve control unit 146 constitute air conditioning control means and valve opening restriction means.

図3は送水制御装置15の構成例を示すブロック図である。送水制御装置15は、圧力センサ11が計測した送水圧力の値を受信する送水圧力受信部150と、空調制御装置14から送信された空調機制御ステータスを受信する空調機制御ステータス受信部151と、空調機制御ステータスに基づいて設定送水圧力を決定する演算部152と、演算部152が決定した設定送水圧力に基づいてインバータ9−1a,9−2aを介して二次ポンプ9−1,9−2の回転数(以下、インバータ回転数という)を制御するポンプ制御部153とを有する。   FIG. 3 is a block diagram illustrating a configuration example of the water supply control device 15. The water supply control device 15 includes a water supply pressure receiving unit 150 that receives the value of the water supply pressure measured by the pressure sensor 11, an air conditioner control status receiving unit 151 that receives the air conditioner control status transmitted from the air conditioning control device 14, and A calculation unit 152 that determines the set water supply pressure based on the air conditioner control status, and the secondary pumps 9-1 and 9- via the inverters 9-1a and 9-2a based on the set water supply pressure determined by the calculation unit 152. And a pump control unit 153 that controls the rotation speed of 2 (hereinafter referred to as inverter rotation speed).

次に、本実施の形態の空調制御システムの動作について説明する。図4は空調制御装置14の動作を示すフローチャート、図5は空調制御装置14による空調機制御ステータスの決定方法を示すフローチャート、図6は送水制御装置15の動作を示すフローチャート、図7は送水制御装置15による総合送水ステータスの決定方法を示すフローチャートである。   Next, the operation of the air conditioning control system of the present embodiment will be described. 4 is a flowchart showing the operation of the air conditioning control device 14, FIG. 5 is a flowchart showing a method for determining the air conditioner control status by the air conditioning control device 14, FIG. 6 is a flowchart showing the operation of the water supply control device 15, and FIG. It is a flowchart which shows the determination method of the comprehensive water supply status by the apparatus 15.

空調機5−1〜5−3は、熱源機1−1,1−2から冷水又は温水の供給を受けて、空調制御エリアとなる室内から戻る空気(還気)と外気との混合気を冷却または加熱し、冷却または加熱した給気を室内に送り込む。
空調制御装置14の給気温度受信部140は、給気温度センサ12−1〜12−3によって計測された給気温度を示す給気温度信号を受信する(図4ステップS1)。
The air conditioners 5-1 to 5-3 receive the supply of cold water or hot water from the heat source devices 1-1 and 1-2 and generate a mixture of air (return air) returning from the room serving as the air conditioning control area and the outside air. Cool or heat and feed the cooled or heated supply air into the room.
The supply air temperature receiver 140 of the air conditioning controller 14 receives an intake air temperature signal indicating the supply air temperature measured by the supply air temperature sensors 12-1 to 12-3 (step S1 in FIG. 4).

演算部145は、設定部143によって設定された温度設定値と給気温度受信部140が受信した給気温度の値とが一致するように、バルブ6−1〜6−3の設定流量を算出する(ステップS2)。すなわち、演算部145は、温度設定値と給気温度との偏差に基づいて、例えばPID演算により設定流量を求める。演算部145は、このような設定流量の算出を、空調機とこれに対応する給気温度センサの組毎に行う。
なお、湿度センサによって給気の湿度を計測し、湿度設定値と現在の給気湿度との偏差に基づいて、設定流量を算出するようにしてもよい。
The computing unit 145 calculates the set flow rate of the valves 6-1 to 6-3 so that the temperature set value set by the setting unit 143 matches the value of the supply air temperature received by the supply air temperature receiving unit 140. (Step S2). That is, the calculation unit 145 obtains the set flow rate by, for example, PID calculation based on the deviation between the temperature set value and the supply air temperature. The calculation unit 145 calculates such a set flow rate for each set of the air conditioner and the corresponding supply air temperature sensor.
Note that the humidity of the supply air may be measured by a humidity sensor, and the set flow rate may be calculated based on the deviation between the humidity setting value and the current supply air humidity.

一方、流量受信部141は、バルブ6−1〜6−3の流量センサによって計測された冷温水のバルブ通過流量を示す流量信号を受信する(ステップS3)。
演算部145は、流量受信部141が受信した現在のバルブ通過流量の値と記憶部144に記憶された設計最大流量の値とを比較し、現在のバルブ通過流量が設計最大流量を超える場合(ステップS4において判定YES)、バルブ通過流量が設計最大流量以下となるようにバルブ6−1〜6−3の開度を制限する(ステップS5)。
On the other hand, the flow rate receiving unit 141 receives a flow rate signal indicating the flow rate of the cold / hot water through the valves measured by the flow rate sensors of the valves 6-1 to 6-3 (step S3).
The calculation unit 145 compares the value of the current valve passage flow rate received by the flow rate reception unit 141 with the value of the design maximum flow rate stored in the storage unit 144, and the current valve passage flow rate exceeds the design maximum flow rate ( In step S4, the determination is YES), and the opening degree of the valves 6-1 to 6-3 is limited so that the valve passage flow rate is equal to or less than the design maximum flow rate (step S5).

バルブ6−1〜6−3の開度制限の具体的な手法は、例えば以下のようになる。演算部145は、現在のバルブ通過流量が設計最大流量を超える場合で、かつステップS2で算出した設定流量が現在の設定流量および設計最大流量より小さい場合は、ステップS2で算出した設定流量を新たな設定流量として更新し、この更新後の設定流量をバルブ制御部146に出力することで、バルブ6−1〜6−3の開度を制限する(ステップS5)。また、演算部145は、現在のバルブ通過流量が設計最大流量を超える場合で、かつステップS2で算出した設定流量が現在の設定流量以上または設計最大流量以上の場合は、設計最大流量を新たな設定流量として、この更新後の設定流量をバルブ制御部146に出力することで、バルブ6−1〜6−3の開度を制限する(ステップS5)。   A specific method for limiting the opening of the valves 6-1 to 6-3 is, for example, as follows. When the current valve passing flow rate exceeds the design maximum flow rate and the set flow rate calculated in step S2 is smaller than the current set flow rate and the design maximum flow rate, the calculation unit 145 newly sets the set flow rate calculated in step S2. The set flow rate is updated, and the updated set flow rate is output to the valve control unit 146 to limit the opening of the valves 6-1 to 6-3 (step S5). In addition, when the current valve passage flow rate exceeds the design maximum flow rate and the set flow rate calculated in step S2 is equal to or higher than the current set flow rate or the design maximum flow rate, the calculation unit 145 sets a new design maximum flow rate. By outputting the updated set flow rate to the valve control unit 146 as the set flow rate, the opening degree of the valves 6-1 to 6-3 is limited (step S5).

バルブ制御部146は、現在のバルブ通過流量の値が演算部145から出力された設定流量の値に合致するように、バルブ6−1〜6−3の開度を制御する。こうして、バルブ6−1〜6−3の開度を制限することができる。演算部145は、ステップS4,S5の処理をバルブ6−1〜6−3毎に行う。
記憶部144に予め記憶させておく設計最大流量は、全ての空調機5−1〜5−3に共通の値でもよいし、空調機5−1〜5−3毎に定めた値でもよいことは言うまでもない。
The valve control unit 146 controls the opening degree of the valves 6-1 to 6-3 so that the current value of the flow rate through the valve matches the set flow rate value output from the calculation unit 145. Thus, the opening degree of the valves 6-1 to 6-3 can be limited. The calculating part 145 performs the process of step S4, S5 for every valve 6-1 to 6-3.
The design maximum flow rate stored in advance in the storage unit 144 may be a value common to all the air conditioners 5-1 to 5-3, or may be a value determined for each of the air conditioners 5-1 to 5-3. Needless to say.

次に、現在のバルブ通過流量が設計最大流量以下の場合(ステップS4において判定NO)、還水温度受信部142は、還水温度センサ13によって計測された還水温度を示す還水温度信号を受信する(ステップS6)。
演算部145は、還水温度受信部142が受信した現在の還水温度の値と記憶部144に記憶された設計還水温度の値とを比較し、現在の還水温度が設計還水温度より低い場合(ステップS7において判定YES)、還水温度が設計還水温度以上となるようにバルブ6−1〜6−3の開度を制限する(ステップS8)。
Next, when the current valve passage flow rate is equal to or less than the design maximum flow rate (determination NO in step S4), the return water temperature receiving unit 142 generates a return water temperature signal indicating the return water temperature measured by the return water temperature sensor 13. Receive (step S6).
The calculation unit 145 compares the current return water temperature value received by the return water temperature reception unit 142 with the design return water temperature value stored in the storage unit 144, and the current return water temperature is the design return water temperature. If lower (determination YES in step S7), the openings of the valves 6-1 to 6-3 are limited so that the return water temperature is equal to or higher than the design return water temperature (step S8).

バルブ6−1〜6−3の開度制限の具体的な手法は上記と同じである。また、演算部145は、ステップS7において現在の還水温度が設計還水温度以上の場合、ステップS2で算出した設定流量を新たな設定流量として、この更新後の設定流量をバルブ制御部146に出力することで、バルブ6−1〜6−3の開度を制御する(ステップS9)。   The specific method for limiting the opening of the valves 6-1 to 6-3 is the same as described above. When the current return water temperature is equal to or higher than the design return water temperature in step S7, the calculation unit 145 sets the set flow rate calculated in step S2 as a new set flow rate, and sends the updated set flow rate to the valve control unit 146. By outputting, the opening degree of the valves 6-1 to 6-3 is controlled (step S9).

なお、現在の還水温度が設計還水温度より低い場合にステップS7において判定YESとなるのは冷房運転の場合である。暖房運転の場合には、現在の還水温度が設計還水温度より高い場合にステップS7において判定YES、現在の還水温度が設計還水温度以下の場合に判定NOとなるようにし、ステップS7において判定YESの場合に還水温度が設計還水温度以下となるようにバルブ6−1〜6−3の開度を制限すればよい。設計還水温度は、冷水(冷房運転)の場合と温水(暖房運転)の場合で別々に設定されることは言うまでもない。   When the current return water temperature is lower than the design return water temperature, the determination YES in step S7 is the case of the cooling operation. In the case of heating operation, when the current return water temperature is higher than the design return water temperature, the determination is YES in step S7, and when the current return water temperature is equal to or lower than the design return water temperature, the determination is NO, step S7. When the determination is YES, the opening degree of the valves 6-1 to 6-3 may be limited so that the return water temperature is equal to or lower than the design return water temperature. Needless to say, the design return water temperature is set separately for cold water (cooling operation) and hot water (heating operation).

ステップS5,S8,S9の処理終了後、演算部145は、バルブ6−1〜6−3の流量制御状態に基づいて空調機5−1〜5−3の制御状態(空調機制御ステータス)を決定し(ステップS10)、この空調機制御ステータスを空調機制御ステータス送信部147を介して送水制御装置15へ送信する(ステップS11)。ステップS10における空調機制御ステータスの決定方法を図5を用いて説明する。   After the processing of steps S5, S8, and S9 is completed, the calculation unit 145 changes the control state (air conditioner control status) of the air conditioners 5-1 to 5-3 based on the flow rate control state of the valves 6-1 to 6-3. It determines (step S10), and transmits this air-conditioner control status to the water supply control apparatus 15 via the air-conditioner control status transmission part 147 (step S11). The method for determining the air conditioner control status in step S10 will be described with reference to FIG.

まず、演算部145は、バルブ6−1〜6−3の全開状態が所定時間(例えば5分)保持されたか否かをチェックし(図5ステップS21)、所定時間保持されなかった場合には、該当する空調機の空調機制御ステータスを「送水圧過多」とする(ステップS22)。また、演算部145は、バルブ6−1〜6−3の全開状態が所定時間保持された場合、流量不足状態(実際のバルブ通過流量が設定流量よりも不足している状態)が所定時間(例えば5分)保持されたか否かをチェックする(ステップS23)。   First, the calculation unit 145 checks whether or not the fully open state of the valves 6-1 to 6-3 has been held for a predetermined time (for example, 5 minutes) (step S21 in FIG. 5). The air conditioner control status of the corresponding air conditioner is set to “excess water supply pressure” (step S22). In addition, when the valves 6-1 to 6-3 are kept in the fully open state for a predetermined time, the calculation unit 145 indicates that the flow rate is insufficient (the actual valve passing flow rate is less than the set flow rate) for a predetermined time ( It is checked whether or not the data is held (for example, 5 minutes) (step S23).

演算部145は、流量不足状態が所定時間保持されなかった場合には、該当する空調機の空調機制御ステータスを「最適送水圧」とし(ステップS24)、流量不足状態が所定時間保持された場合には、該当する空調機の空調機制御ステータスを「送水圧不足」とする(ステップS25)。こうして、ステップS10の処理が終了する。演算部145は、ステップS10,S11の処理を空調機5−1〜5−3毎(バルブ6−1〜6−3毎)に行う。   If the insufficient flow rate state is not maintained for a predetermined time, the calculation unit 145 sets the air conditioner control status of the corresponding air conditioner to “optimum water supply pressure” (step S24), and the insufficient flow rate state is maintained for a predetermined time. The air conditioner control status of the corresponding air conditioner is set to “insufficient water supply pressure” (step S25). Thus, the process of step S10 is completed. The calculating part 145 performs the process of step S10, S11 for every air conditioner 5-1 to 5-3 (every valve 6-1 to 6-3).

空調制御装置14は、以上のような図4に示すステップS1〜S11の処理を、システムが動作停止するまで(図4ステップS12においてYES)、繰り返し行う。   The air-conditioning control device 14 repeatedly performs the processes in steps S1 to S11 shown in FIG. 4 as described above until the system stops operating (YES in step S12 in FIG. 4).

次に、送水制御装置15の動作を図6、図7を用いて説明する。送水制御装置15の空調機制御ステータス受信部151は、空調制御装置14から送られてくる空調機制御ステータスを受信する(図6ステップS31)。
送水制御装置15の演算部152は、受信した空調機制御ステータスに基づいて総合送水状態(総合送水ステータス)を決定する(ステップS32)。ステップS32における総合送水ステータスの決定方法を図7を用いて説明する。
Next, operation | movement of the water supply control apparatus 15 is demonstrated using FIG. 6, FIG. The air conditioner control status reception unit 151 of the water supply control device 15 receives the air conditioner control status sent from the air conditioning control device 14 (step S31 in FIG. 6).
The computing unit 152 of the water supply control device 15 determines the total water supply state (total water supply status) based on the received air conditioner control status (step S32). A method for determining the overall water supply status in step S32 will be described with reference to FIG.

まず、演算部152は、各空調機5−1〜5−3の空調機制御ステータスに「送水圧不足」が1つでもあるか否かをチェックし(図7ステップS41)、「送水圧不足」が1つでもあれば総合送水ステータスを「送水圧不足」と決定する(ステップS42)。演算部152は、各空調機5−1〜5−3の空調機制御ステータスに「送水圧不足」がない場合、「送水圧過多」の個数をチェックし(ステップS43)、「送水圧過多」の個数が設定個数(本実施例では1個)以上であれば、総合送水ステータスを「送水圧過多」と決定する(ステップS44)。また、演算部152は、「送水圧過多」の個数が設定個数未満であれば、総合送水ステータスを「最適送水圧」と決定する(ステップS45)。こうして、ステップS32の処理が終了する。   First, the calculation unit 152 checks whether there is at least one “insufficient water supply pressure” in the air conditioner control status of each of the air conditioners 5-1 to 5-3 (step S41 in FIG. 7). If there is at least one, the overall water supply status is determined as “water supply pressure shortage” (step S42). When the air conditioner control status of each of the air conditioners 5-1 to 5-3 does not include “insufficient water supply pressure”, the arithmetic unit 152 checks the number of “excess water supply pressure” (step S43), and “excess water supply pressure”. Is equal to or greater than the set number (one in this embodiment), the total water supply status is determined as “water supply pressure excess” (step S44). If the number of “excess water supply pressure” is less than the set number, the calculation unit 152 determines the total water supply status as “optimum water supply pressure” (step S45). Thus, the process of step S32 is completed.

次に、演算部152は、総合送水ステータスに基づいて、設定送水圧力を決定する(図6ステップS33)。設定送水圧力の決定方法は、例えば以下のようになる。演算部152は、総合送水ステータスが「最適送水圧」であれば、現在の設定送水圧力を変更せずに維持する(ステップS33)。また、演算部152は、総合送水ステータスが「送水圧不足」であれば、現在の設定送水圧力に所定の設定値変更量ΔPを加算した値を新たな設定送水圧力とする(ステップS33)。また、演算部152は、総合送水ステータスが「送水圧過多」であれば、現在の設定送水圧力から所定の設定値変更量ΔPを減算した値を新たな設定送水圧力とする(ステップS33)。   Next, the calculating part 152 determines setting water supply pressure based on comprehensive water supply status (step S33 of FIG. 6). The method for determining the set water supply pressure is, for example, as follows. If the total water supply status is “optimum water supply pressure”, the calculation unit 152 maintains the current set water supply pressure without being changed (step S33). Further, when the total water supply status is “insufficient water supply pressure”, the calculation unit 152 sets a value obtained by adding a predetermined set value change amount ΔP to the current set water supply pressure as a new set water supply pressure (step S33). Further, when the total water supply status is “excess water supply pressure”, the arithmetic unit 152 sets a value obtained by subtracting the predetermined set value change amount ΔP from the current set water supply pressure as a new set water supply pressure (step S33).

送水制御装置15の送水圧力受信部150は、圧力センサ11によって計測された送水圧力を示す送水圧力信号を受信する(ステップS34)。
そして、演算部152は、ステップS33で決定した設定送水圧力の値をポンプ制御部153に出力することで、送水圧力を制御する(ステップS35)。ポンプ制御部153は、圧力センサ11によって計測された現在の送水圧力が設定送水圧力と一致するように、インバータ9−1a,9−2aを介して二次ポンプ9−1,9−2のインバータ回転数を制御する。
送水制御装置15は、以上のような図6に示すステップS31〜S35の処理を、システムが動作停止するまで(図6ステップS36においてYES)、繰り返し行う。
The water supply pressure receiving unit 150 of the water supply control device 15 receives a water supply pressure signal indicating the water supply pressure measured by the pressure sensor 11 (step S34).
And the calculating part 152 controls a water supply pressure by outputting the value of the setting water supply pressure determined by step S33 to the pump control part 153 (step S35). The pump control unit 153 is connected to the inverters of the secondary pumps 9-1 and 9-2 via the inverters 9-1a and 9-2a so that the current water supply pressure measured by the pressure sensor 11 matches the set water supply pressure. Control the number of revolutions.
The water supply control device 15 repeatedly performs the processes in steps S31 to S35 shown in FIG. 6 as described above until the system stops operating (YES in step S36 in FIG. 6).

以上のように、本実施の形態では、計測したバルブ通過流量が設計最大流量を超える場合にバルブ6−1〜6−3の開度を制限することで、温湿度設定の誤り(過剰冷房、過剰暖房)等により設計最大流量を超える流量要求が発生したとしても、バルブ通過流量が設計最大流量以下となるように抑制することができ、ポンプ搬送動力の増加による消費エネルギーの増加を抑制することができる。また、本実施の形態では、バルブ通過流量が設計最大流量以下となるように抑制することで、空調機5−1〜5−3の入口と出口で冷温水の温度差を確保することができるので、熱源機1−1,1−2の運転効率を向上させることができ、熱源機1−1,1−2の消費エネルギーの増加を抑制することができる。また、本実施の形態では、要求流量が大きい系統のバルブの開度を送水制御の判断指標から外したり、送水制御における重み付けを弱めるなどの手法をとる必要がなく、現場作業の手間を省くことができる。   As described above, in the present embodiment, when the measured valve passage flow rate exceeds the design maximum flow rate, the opening degree of the valves 6-1 to 6-3 is limited, so that the temperature / humidity setting error (excessive cooling, Even if a flow rate request exceeding the design maximum flow rate occurs due to overheating, etc., the valve passage flow rate can be suppressed to be less than or equal to the design maximum flow rate, and an increase in energy consumption due to an increase in pump conveyance power can be suppressed. Can do. Moreover, in this Embodiment, the temperature difference of cold / warm water can be ensured by the inlet_port | entrance and exit of air conditioner 5-1 to 5-3 by suppressing so that a valve | bulb passage flow volume may become below a design maximum flow volume. Therefore, the operating efficiency of the heat source devices 1-1 and 1-2 can be improved, and an increase in energy consumption of the heat source devices 1-1 and 1-2 can be suppressed. In addition, in this embodiment, it is not necessary to take a method such as removing the valve opening degree of the system having a large required flow rate from the determination index of water supply control or weakening the weighting in the water supply control, so that the work on site is saved. Can do.

また、本実施の形態では、計測したバルブ通過流量が設計最大流量以下で、かつ冷房運転のときに計測した計測還水温度が設計還水温度より低い場合又は暖房運転のときに計測還水温度が設計還水温度より高い場合に、バルブ6−1〜6−3の開度を制限することで、空調負荷に対して過流量となっている場合にバルブ通過流量を抑制することができる。その結果、本実施の形態では、空調機5−1〜5−3の入口と出口で冷温水の温度差を確保することができるので、熱源機1−1,1−2の運転効率を向上させることができ、熱源機1−1,1−2の消費エネルギーの増加を抑制することができる。   In the present embodiment, the measured return water temperature when the measured valve passing flow rate is less than or equal to the design maximum flow rate and the measured return water temperature measured during the cooling operation is lower than the design return water temperature or during the heating operation. Is higher than the design return water temperature, by restricting the opening of the valves 6-1 to 6-3, the flow rate through the valve can be suppressed when the flow rate is excessive with respect to the air conditioning load. As a result, in this embodiment, the temperature difference between the cold and hot water can be secured at the inlets and outlets of the air conditioners 5-1 to 5-3, so that the operating efficiency of the heat source devices 1-1 and 1-2 is improved. It is possible to suppress the increase in the energy consumption of the heat source devices 1-1 and 1-2.

また、本実施の形態のように、バルブ6−1〜6−3に流量センサを内蔵させることで、配管への流量センサ施工の必要がなくなり、本発明の適用対象物件を広げることができる。
なお、本実施の形態では、二次ポンプ9−1,9−2を有するシステムへの適用例として説明したが、一次ポンプ2−1〜2−3のみを有するシステムにおいても、本実施の形態と同様にして一次ポンプ2−1〜2−3を制御すればよい。
Further, by incorporating the flow rate sensor in the valves 6-1 to 6-3 as in the present embodiment, it is not necessary to install the flow rate sensor on the pipe, and the objects to which the present invention is applied can be expanded.
In addition, although this Embodiment demonstrated as an example applied to the system which has the secondary pumps 9-1 and 9-2, also in the system which has only the primary pumps 2-1 to 2-3, this Embodiment The primary pumps 2-1 to 2-3 may be controlled in the same manner as described above.

また、本実施の形態で説明した空調制御装置14、送水制御装置15は、それぞれCPU、記憶装置およびインタフェースを備えたコンピュータとこれらのハードウェア資源を制御するプログラムによって実現することができる。これらのコンピュータのCPUは、記憶装置に格納されたプログラムに従って本実施の形態で説明した処理を実行する。   Further, the air conditioning control device 14 and the water supply control device 15 described in the present embodiment can be realized by a computer having a CPU, a storage device, and an interface, respectively, and a program for controlling these hardware resources. The CPUs of these computers execute the processing described in this embodiment in accordance with programs stored in the storage device.

本発明は、空調制御に適用することができる。   The present invention can be applied to air conditioning control.

本発明の第1の実施の形態に係る空調制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the air-conditioning control system which concerns on the 1st Embodiment of this invention. 図1の空調制御システムの空調制御装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the air-conditioning control apparatus of the air-conditioning control system of FIG. 図1の空調制御システムの送水制御装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the water supply control apparatus of the air-conditioning control system of FIG. 図2の空調制御装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the air-conditioning control apparatus of FIG. 図2の空調制御装置による空調機制御ステータスの決定方法を示すフローチャートである。It is a flowchart which shows the determination method of the air-conditioner control status by the air-conditioning control apparatus of FIG. 図3の送水制御装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the water supply control apparatus of FIG. 図3の送水制御装置による総合送水ステータスの決定方法を示すフローチャートである。It is a flowchart which shows the determination method of the comprehensive water supply status by the water supply control apparatus of FIG.

符号の説明Explanation of symbols

1−1,1−2…熱源機、2−1,2−2…一次ポンプ、3−1,3−2…往路ヘッダー、4…送水管路、5−1〜5−3…空調機、6−1〜6−3…バルブ、7…還水管路、8…還路ヘッダー、9−1,9−2…二次ポンプ、9−1a,9−2a…インバータ、10…バイパス弁、11…圧力センサ、12−1〜12−3…給気温度センサ、13…還水温度センサ、14…空調制御装置、15…送水制御装置、140…給気温度受信部、141…流量受信部、142…還水温度受信部、143…設定部、144…記憶部、145…演算部、146…バルブ制御部、147…空調機制御ステータス送信部、150…送水圧力受信部、151…空調機制御ステータス受信部、152…演算部、153…ポンプ制御部。   1-1, 1-2 ... heat source machine, 2-1, 2-2 ... primary pump, 3-1, 3-2 ... forward header, 4 ... water supply pipe, 5-1-5-3 ... air conditioner, 6-1 to 6-3 ... valve, 7 ... return water pipe, 8 ... return path header, 9-1, 9-2 ... secondary pump, 9-1a, 9-2a ... inverter, 10 ... bypass valve, 11 DESCRIPTION OF SYMBOLS ... Pressure sensor, 12-1 to 12-3 ... Supply air temperature sensor, 13 ... Return water temperature sensor, 14 ... Air-conditioning control device, 15 ... Water supply control device, 140 ... Supply air temperature receiving part, 141 ... Flow rate receiving part, 142 ... Return water temperature receiving unit, 143 ... Setting unit, 144 ... Storage unit, 145 ... Calculating unit, 146 ... Valve control unit, 147 ... Air conditioner control status sending unit, 150 ... Water pressure receiving unit, 151 ... Air conditioner control Status receiving unit, 152... Arithmetic unit, 153.

Claims (4)

冷温水を送出するポンプと、
前記冷温水の供給を受ける空調機と、
この空調機に供給される冷温水の流量を制御するバルブと、
前記バルブを通過する冷温水の流量を計測する流量計測手段と、
前記空調機から送出される給気の温度と設定温度との偏差に基づいて前記バルブの開度を制御する空調制御手段と、
前記流量計測手段によって計測されたバルブ通過流量が設計最大流量を超える場合に、前記バルブ通過流量が設計最大流量以下となるように前記バルブ開度を制限するバルブ開度制限手段と、
前記バルブ開度とバルブ通過流量によって決定される空調機の制御状態に基づいて、前記ポンプから前記空調機に送出される冷温水の圧力である送水圧力を制御する送水圧力制御手段とを備えることを特徴とする空調制御システム。
A pump that delivers cold and hot water;
An air conditioner that receives the supply of cold and hot water; and
A valve for controlling the flow rate of cold and hot water supplied to the air conditioner;
Flow rate measuring means for measuring the flow rate of cold and hot water passing through the valve;
Air conditioning control means for controlling the opening of the valve based on the deviation between the temperature of the supply air sent from the air conditioner and the set temperature;
A valve opening restriction means for restricting the valve opening so that the valve passage flow rate is equal to or less than the design maximum flow rate when the valve passage flow rate measured by the flow rate measurement unit exceeds a design maximum flow rate;
Water supply pressure control means for controlling the water supply pressure, which is the pressure of cold / hot water sent from the pump to the air conditioner, based on the control state of the air conditioner determined by the valve opening and the valve passage flow rate. Air conditioning control system characterized by
冷温水を送出するポンプと、
前記冷温水の供給を受ける空調機と、
この空調機に供給される冷温水の流量を制御するバルブと、
前記バルブを通過する冷温水の流量を計測する流量計測手段と、
前記空調機を通過した還水の温度を計測する還水温度計測手段と、
前記空調機から送出される給気の温度と設定温度との偏差に基づいて前記バルブの開度を制御する空調制御手段と、
前記流量計測手段によって計測されたバルブ通過流量が設計最大流量以下で、かつ冷房運転のときに前記還水温度計測手段によって計測された計測還水温度が設計還水温度より低い場合又は暖房運転のときに前記計測還水温度が設計還水温度より高い場合に、冷房運転のときは前記計測還水温度が設計還水温度以上となり暖房運転のときは前記計測還水温度が設計還水温度以下となるように前記バルブ開度を制限するバルブ開度制限手段と、
前記バルブ開度とバルブ通過流量によって決定される空調機の制御状態に基づいて、前記ポンプから前記空調機に送出される冷温水の圧力である送水圧力を制御する送水圧力制御手段とを備えることを特徴とする空調制御システム。
A pump that delivers cold and hot water;
An air conditioner that receives the supply of cold and hot water; and
A valve for controlling the flow rate of cold and hot water supplied to the air conditioner;
Flow rate measuring means for measuring the flow rate of cold and hot water passing through the valve;
Return water temperature measuring means for measuring the temperature of the return water that has passed through the air conditioner;
Air conditioning control means for controlling the opening of the valve based on the deviation between the temperature of the supply air sent from the air conditioner and the set temperature;
When the valve passing flow rate measured by the flow rate measuring means is less than or equal to the design maximum flow rate and the measured return water temperature measured by the return water temperature measuring means during cooling operation is lower than the designed return water temperature or in heating operation When the measured return water temperature is higher than the design return water temperature, the measured return water temperature is higher than the design return water temperature during cooling operation, and the measured return water temperature is lower than the design return water temperature during heating operation. A valve opening restriction means for restricting the valve opening so as to be,
Water supply pressure control means for controlling the water supply pressure, which is the pressure of cold / hot water sent from the pump to the air conditioner, based on the control state of the air conditioner determined by the valve opening and the valve passage flow rate. Air conditioning control system characterized by
冷温水を送出するポンプと、前記冷温水の供給を受ける空調機と、この空調機に供給される冷温水の流量を制御するバルブとを備えた空調制御システムにおいて、前記バルブの開度を制御する空調制御方法であって、
前記空調機から送出される給気の温度と設定温度との偏差に基づいて前記バルブの開度を制御する空調制御手順と、
前記バルブを通過する冷温水の流量を計測する流量計測手順と、
この流量計測手順によって計測されたバルブ通過流量が設計最大流量を超える場合に、前記バルブ通過流量が設計最大流量以下となるように前記バルブ開度を制限するバルブ開度制限手順と、
前記バルブ開度とバルブ通過流量によって決定される空調機の制御状態に基づいて、前記ポンプから前記空調機に送出される冷温水の圧力である送水圧力を制御する送水圧力制御手順とを備えることを特徴とする空調制御方法。
In an air conditioning control system comprising a pump that delivers cold / hot water, an air conditioner that receives the supply of cold / hot water, and a valve that controls the flow rate of the cold / hot water supplied to the air conditioner, the opening degree of the valve is controlled. An air conditioning control method for
An air-conditioning control procedure for controlling the opening of the valve based on the deviation between the temperature of the supply air sent from the air conditioner and the set temperature;
A flow rate measurement procedure for measuring the flow rate of cold and hot water passing through the valve;
A valve opening restriction procedure for restricting the valve opening so that the valve passage flow is less than or equal to the design maximum flow when the valve passage flow measured by the flow measurement procedure exceeds the design maximum flow;
A water supply pressure control procedure for controlling a water supply pressure, which is a pressure of cold / hot water sent from the pump to the air conditioner, based on a control state of the air conditioner determined by the valve opening degree and the valve passage flow rate. An air conditioning control method.
冷温水を送出するポンプと、前記冷温水の供給を受ける空調機と、この空調機に供給される冷温水の流量を制御するバルブとを備えた空調制御システムにおいて、前記バルブの開度を制御する空調制御方法であって、
前記空調機から送出される給気の温度と設定温度との偏差に基づいて前記バルブの開度を制御する空調制御手順と、
前記バルブを通過する冷温水の流量を計測する流量計測手順と、
前記空調機を通過した還水の温度を計測する還水温度計測手順と、
前記流量計測手順によって計測されたバルブ通過流量が設計最大流量以下で、かつ冷房運転のときに前記還水温度計測手順によって計測された計測還水温度が設計還水温度より低い場合又は暖房運転のときに前記計測還水温度が設計還水温度より高い場合に、冷房運転のときは前記計測還水温度が設計還水温度以上となり暖房運転のときは前記計測還水温度が設計還水温度以下となるように前記バルブ開度を制限するバルブ開度制限手順と、
前記バルブ開度とバルブ通過流量によって決定される空調機の制御状態に基づいて、前記ポンプから前記空調機に送出される冷温水の圧力である送水圧力を制御する送水圧力制御手順とを備えることを特徴とする空調制御方法。
In an air conditioning control system comprising a pump that delivers cold / hot water, an air conditioner that receives the supply of cold / hot water, and a valve that controls the flow rate of the cold / hot water supplied to the air conditioner, the opening degree of the valve is controlled. An air conditioning control method for
An air-conditioning control procedure for controlling the opening of the valve based on the deviation between the temperature of the supply air sent from the air conditioner and the set temperature;
A flow rate measurement procedure for measuring the flow rate of cold and hot water passing through the valve;
Return water temperature measurement procedure for measuring the temperature of the return water that has passed through the air conditioner;
When the valve passing flow rate measured by the flow rate measurement procedure is less than or equal to the design maximum flow rate and the measured return water temperature measured by the return water temperature measurement procedure during cooling operation is lower than the design return water temperature or in heating operation When the measured return water temperature is higher than the design return water temperature, the measured return water temperature is higher than the design return water temperature during cooling operation, and the measured return water temperature is lower than the design return water temperature during heating operation. A valve opening restriction procedure for restricting the valve opening so that
A water supply pressure control procedure for controlling a water supply pressure, which is a pressure of cold / hot water sent from the pump to the air conditioner, based on a control state of the air conditioner determined by the valve opening degree and the valve passage flow rate. An air conditioning control method.
JP2007192426A 2007-07-24 2007-07-24 Air conditioning control system and air conditioning control method Expired - Fee Related JP5209244B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007192426A JP5209244B2 (en) 2007-07-24 2007-07-24 Air conditioning control system and air conditioning control method
CN2008101265343A CN101354170B (en) 2007-07-24 2008-06-24 Air conditioner control system and method
TW097123553A TW200912215A (en) 2007-07-24 2008-06-24 Air conditioning control system and air conditioning control method
KR1020080069410A KR101003148B1 (en) 2007-07-24 2008-07-17 Air conditioning control system and air conditioning control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007192426A JP5209244B2 (en) 2007-07-24 2007-07-24 Air conditioning control system and air conditioning control method

Publications (2)

Publication Number Publication Date
JP2009030823A true JP2009030823A (en) 2009-02-12
JP5209244B2 JP5209244B2 (en) 2013-06-12

Family

ID=40307102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007192426A Expired - Fee Related JP5209244B2 (en) 2007-07-24 2007-07-24 Air conditioning control system and air conditioning control method

Country Status (4)

Country Link
JP (1) JP5209244B2 (en)
KR (1) KR101003148B1 (en)
CN (1) CN101354170B (en)
TW (1) TW200912215A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153809A (en) * 2010-01-28 2011-08-11 Arefu Net:Kk Heat source control system and heat source control method
JP2012013254A (en) * 2010-06-29 2012-01-19 Ryobi Ltd Control method of air conditioning system and air conditioning system
JP2012047412A (en) * 2010-08-27 2012-03-08 Yamatake Corp Air conditioning control system, and air conditioning control method
JP2013092327A (en) * 2011-10-27 2013-05-16 E & E Planning:Kk Air conditioning heat source system for building
CN103245037A (en) * 2013-05-30 2013-08-14 谢乐 Method and system for controlling air-conditioning variable water temperatures
JP2013204957A (en) * 2012-03-29 2013-10-07 Azbil Corp System and method for controlling air conditioning
JP2013245861A (en) * 2012-05-25 2013-12-09 Ntt Facilities Inc Water-cooled air conditioning system
CN103438541A (en) * 2013-04-03 2013-12-11 友达光电股份有限公司 Flow balance control method
JP2014047931A (en) * 2012-08-29 2014-03-17 Azbil Corp Temperature set value control device and temperature set value control method
KR20150107029A (en) * 2014-03-13 2015-09-23 정기영 Cooling and heating system using flow rate and flow velocity control for reduces energy loss
TWI507628B (en) * 2013-03-04 2015-11-11 Johnson Controls Tech Co A modular liquid based heating and cooling system
JP2017122529A (en) * 2016-01-06 2017-07-13 株式会社朝日工業社 Comfortable air-conditioning system of air-conditioned space
KR101854549B1 (en) * 2013-12-03 2018-06-08 미츠비시 쥬코 서멀 시스템즈 가부시키가이샤 Device for controlling number of operating heat source devices, heat source system, control method, and program
WO2019058506A1 (en) * 2017-09-22 2019-03-28 三菱電機株式会社 Air conditioning device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI435038B (en) 2011-12-14 2014-04-21 Ind Tech Res Inst Air conditioning control device and method thereof
CN102635927B (en) * 2012-04-26 2018-05-11 青岛海尔空调电子有限公司 Pressure regulation device and method for air-conditioning system
CN103383121B (en) * 2012-05-03 2016-08-31 南京市建筑设计研究院有限责任公司 Regional air conditioner dispersion secondary pumping system
CN103673201B (en) * 2012-09-10 2017-09-22 杭州三花研究院有限公司 A kind of adaptive air-conditioning end control system of temp.-differential and control method
JP6100523B2 (en) * 2012-12-28 2017-03-22 株式会社Nttファシリティーズ Cold water circulation system
CN105066341B (en) * 2015-07-31 2017-10-20 新智能源系统控制有限责任公司 Suitable for the change water temperature control system of air-conditioning Primary pump system
CN106594911B (en) * 2016-12-22 2019-06-21 四川长虹空调有限公司 A kind of air-conditioning system
CN107166805B (en) * 2017-05-18 2019-10-18 浙江理工大学 A kind of air source heat pump computer room is grouped group control system for valve to pump

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165242A (en) * 1990-10-29 1992-06-11 Takasago Thermal Eng Co Ltd Variable water flow control method in aqueous heat source air conditioner
JPH0875223A (en) * 1994-09-09 1996-03-19 Shinryo Corp Control system for air conditioning
JP2002089935A (en) * 2000-09-18 2002-03-27 Dai-Dan Co Ltd Primary/secondary pump type heat source variable flow rate system
JP2004184052A (en) * 2002-12-06 2004-07-02 Mitsubishi Jisho Sekkei Inc Control device
JP2005300118A (en) * 2004-04-16 2005-10-27 Kajima Corp Air-conditioning control method and air-conditioning system
JP2005351587A (en) * 2004-06-14 2005-12-22 Matsushita Ecology Systems Co Ltd Air conditioning control system for building
JP2007017135A (en) * 2005-07-11 2007-01-25 Kajima Corp Air conditioning system
JP2007155232A (en) * 2005-12-06 2007-06-21 Hitachi Cable Ltd Cold water circulating system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10213339A (en) 1997-01-30 1998-08-11 Mitsubishi Electric Corp Air conditioner
JP2002031376A (en) 2000-07-19 2002-01-31 Aisin Seiki Co Ltd Air-conditioning system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165242A (en) * 1990-10-29 1992-06-11 Takasago Thermal Eng Co Ltd Variable water flow control method in aqueous heat source air conditioner
JPH0875223A (en) * 1994-09-09 1996-03-19 Shinryo Corp Control system for air conditioning
JP2002089935A (en) * 2000-09-18 2002-03-27 Dai-Dan Co Ltd Primary/secondary pump type heat source variable flow rate system
JP2004184052A (en) * 2002-12-06 2004-07-02 Mitsubishi Jisho Sekkei Inc Control device
JP2005300118A (en) * 2004-04-16 2005-10-27 Kajima Corp Air-conditioning control method and air-conditioning system
JP2005351587A (en) * 2004-06-14 2005-12-22 Matsushita Ecology Systems Co Ltd Air conditioning control system for building
JP2007017135A (en) * 2005-07-11 2007-01-25 Kajima Corp Air conditioning system
JP2007155232A (en) * 2005-12-06 2007-06-21 Hitachi Cable Ltd Cold water circulating system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153809A (en) * 2010-01-28 2011-08-11 Arefu Net:Kk Heat source control system and heat source control method
JP2012013254A (en) * 2010-06-29 2012-01-19 Ryobi Ltd Control method of air conditioning system and air conditioning system
JP2012047412A (en) * 2010-08-27 2012-03-08 Yamatake Corp Air conditioning control system, and air conditioning control method
JP2013092327A (en) * 2011-10-27 2013-05-16 E & E Planning:Kk Air conditioning heat source system for building
JP2013204957A (en) * 2012-03-29 2013-10-07 Azbil Corp System and method for controlling air conditioning
JP2013245861A (en) * 2012-05-25 2013-12-09 Ntt Facilities Inc Water-cooled air conditioning system
JP2014047931A (en) * 2012-08-29 2014-03-17 Azbil Corp Temperature set value control device and temperature set value control method
TWI507628B (en) * 2013-03-04 2015-11-11 Johnson Controls Tech Co A modular liquid based heating and cooling system
US11079122B2 (en) 2013-03-04 2021-08-03 Johnson Controls Technology Company Modular liquid based heating and cooling system
CN103438541A (en) * 2013-04-03 2013-12-11 友达光电股份有限公司 Flow balance control method
CN103438541B (en) * 2013-04-03 2015-08-12 友达光电股份有限公司 Flow balance control method
CN103245037A (en) * 2013-05-30 2013-08-14 谢乐 Method and system for controlling air-conditioning variable water temperatures
KR101854549B1 (en) * 2013-12-03 2018-06-08 미츠비시 쥬코 서멀 시스템즈 가부시키가이샤 Device for controlling number of operating heat source devices, heat source system, control method, and program
KR20150107029A (en) * 2014-03-13 2015-09-23 정기영 Cooling and heating system using flow rate and flow velocity control for reduces energy loss
KR101592866B1 (en) 2014-03-13 2016-02-11 정기영 Cooling and heating system using flow rate and flow velocity control for reduces energy loss
JP2017122529A (en) * 2016-01-06 2017-07-13 株式会社朝日工業社 Comfortable air-conditioning system of air-conditioned space
WO2019058506A1 (en) * 2017-09-22 2019-03-28 三菱電機株式会社 Air conditioning device
JPWO2019058506A1 (en) * 2017-09-22 2020-04-02 三菱電機株式会社 Air conditioner
EP3686512A4 (en) * 2017-09-22 2020-09-30 Mitsubishi Electric Corporation Air conditioning device
US11199350B2 (en) 2017-09-22 2021-12-14 Mitsubishi Electric Corporation Air-conditioning apparatus with regulated flow of a heat medium

Also Published As

Publication number Publication date
CN101354170B (en) 2010-07-28
CN101354170A (en) 2009-01-28
KR20090010894A (en) 2009-01-30
TW200912215A (en) 2009-03-16
KR101003148B1 (en) 2010-12-21
TWI348533B (en) 2011-09-11
JP5209244B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5209244B2 (en) Air conditioning control system and air conditioning control method
JP2009030821A (en) Water supply control system and water supply control method
TWI407060B (en) Air conditioner controlling apparatus and method
JP5274222B2 (en) Heat source control system for air conditioning equipment
JP4602816B2 (en) Heat source pump control method and air conditioning heat source system
US10203128B2 (en) Cold water circulation system with control of supply of cold water based on degree of air handler surplus
CN102466303B (en) Controlling device and method
JP6644559B2 (en) Heat source control system, control method and control device
WO2020038005A1 (en) Control method for multi-split air conditioning system
JP6681896B2 (en) Refrigeration system
JP2012047412A (en) Air conditioning control system, and air conditioning control method
JP2004278884A (en) Control device
JP6434848B2 (en) Heat source control system
JP4249591B2 (en) Primary pump type heat source variable flow rate control system and primary pump minimum flow rate securing method
JP6198398B2 (en) Control method for determining the number of operating pumps in a two-pump heat source facility
CN104913464A (en) Thermal Source Instrument Controlling Device and Air-Conditioning System
JP2001241735A (en) Air conditioning system and its controlling method
JP2009019842A (en) Water delivery control system and water delivery control method
JP2003262384A (en) Air conditioning heat source system and controlling method of the air conditioning heat source system
JP2006266566A (en) Operation control method for two pump system heating source facility
US20220228766A1 (en) Device management apparatus, heat source system, management apparatus, and device management system
JP5926660B2 (en) Rotation speed control system and method for cold / hot water circulation pump
JP2009121722A (en) Water supply pressure control system and method
JP2011112277A (en) System and method for controlling water supply pressure
JP5285925B2 (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5209244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees