JP2009030821A - Water supply control system and water supply control method - Google Patents

Water supply control system and water supply control method Download PDF

Info

Publication number
JP2009030821A
JP2009030821A JP2007192386A JP2007192386A JP2009030821A JP 2009030821 A JP2009030821 A JP 2009030821A JP 2007192386 A JP2007192386 A JP 2007192386A JP 2007192386 A JP2007192386 A JP 2007192386A JP 2009030821 A JP2009030821 A JP 2009030821A
Authority
JP
Japan
Prior art keywords
water supply
differential pressure
pump
water
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007192386A
Other languages
Japanese (ja)
Inventor
Masafumi Takesako
雅史 竹迫
Atsushi Mizutaka
淳 水高
Dan Morita
暖 森田
Keita Sato
慶大 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2007192386A priority Critical patent/JP2009030821A/en
Priority to CN2008101265358A priority patent/CN101354171B/en
Priority to TW097123743A priority patent/TW200914775A/en
Priority to KR1020080069409A priority patent/KR101022295B1/en
Publication of JP2009030821A publication Critical patent/JP2009030821A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1015Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves
    • F24D19/1021Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves a by pass valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0003Exclusively-fluid systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/046Pressure sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • F24F2140/12Heat-exchange fluid pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform end differential pressure control for performing pressure control by an invertor pump on the basis of end differential pressure even if a pipe end cannot be specified. <P>SOLUTION: This water supply control system comprises differential pressure measuring means mounted to valves 6-1 to 6-3 disposed at inlets of a plurality of load apparatuses 5-1 to 5-3 and measuring differential pressure between supply water at the inlet of each of the plurality of load apparatuses 5-1 to 5-3 and return water at the outlet of each of the plurality of load apparatuses 5-1 to 5-3, and the water supply control device 12 comparing the plurality of differential pressure measured by the differential pressure measuring means, specifying the end differential pressure of the pipe end, and controlling rotational speeds of pumps 9-1, 9-2 and an opening of a bypass valve 10 based on the end differentioal pressure. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、熱源機により生成された冷温水を負荷機器へ送出するポンプ等を制御する送水制御システムおよび送水制御方法に関するものである。   The present invention relates to a water supply control system and a water supply control method for controlling a pump or the like that sends cold / hot water generated by a heat source device to a load device.

従来、空調制御システム等においては、冷水や温水等の熱媒を搬送するポンプのインバータによる省エネルギーを実現する場合、配管の末端に圧力発信器を設置し、末端差圧に基づいて送水圧力を設定し、この設定した送水圧力に基づいてポンプのインバータ回転数とバイパス弁の開度を制御していた(例えば特許文献1参照)。図9は特許文献1に開示された従来の空調制御システムの構成を示すブロック図である。   Conventionally, in air-conditioning control systems, etc., when energy saving is achieved by an inverter of a pump that conveys a heat medium such as cold water or hot water, a pressure transmitter is installed at the end of the pipe, and the water supply pressure is set based on the differential pressure at the end And the inverter rotation speed of the pump and the opening degree of the bypass valve were controlled based on the set water supply pressure (see, for example, Patent Document 1). FIG. 9 is a block diagram showing a configuration of a conventional air conditioning control system disclosed in Patent Document 1. In FIG.

図9の空調制御システムは、冷水や温水等の熱媒を生成する熱源機21−1〜21−3と、この熱源機21−1〜21−3の補機としての一次ポンプ22−1〜22−3と、複数の熱源機21−1〜21−3からの熱媒を混合する往路ヘッダー23−1,23−2と、送水管路24と、ファンコイルユニットや空調機等の負荷機器25−1〜25−3と、末端差圧P2を計測する差圧センサ26と、還水管路27と、負荷機器25−1〜25−3において熱交換され還水管路27を介して送られてくる熱媒が戻される還路ヘッダー28と、往路ヘッダー23−1と23−2の間に設けられた二次ポンプ29−1〜29−3と、往路ヘッダー23−1と23−2の間に設けられたバイパス弁30と、送水圧力P1を計測する圧力センサ31と、熱媒を負荷機器25−1〜25−3へ送出するポンプ29−1〜29−3等を制御する送水制御装置32とから構成される。二次ポンプ29−1,29−2は、それぞれインバータ29−1a,29−2aを備えている。   The air conditioning control system in FIG. 9 includes heat source devices 21-1 to 21-3 that generate a heat medium such as cold water and hot water, and primary pumps 22-1 to 22-1 as auxiliary devices of the heat source devices 21-1 to 21-3. 22-3, forward headers 23-1, 23-2 for mixing the heat medium from the plurality of heat source devices 21-1 to 21-3, water supply conduit 24, and load devices such as a fan coil unit and an air conditioner 25-1 to 25-3, a differential pressure sensor 26 for measuring the terminal differential pressure P2, a return water pipe 27, and heat exchange in the load devices 25-1 to 25-3 and sent via the return water pipe 27. Return path header 28 to which the incoming heat medium is returned, secondary pumps 29-1 to 29-3 provided between forward headers 23-1 and 23-2, and forward headers 23-1 and 23-2 A bypass valve 30 provided therebetween, a pressure sensor 31 for measuring the water supply pressure P1, Composed of water control device 32 for controlling the pump 29-1~29-3 like for delivering medium to the load device 25-1 to 25-3. The secondary pumps 29-1 and 29-2 include inverters 29-1a and 29-2a, respectively.

一次ポンプ22−1〜22−3により圧送され熱源機21−1〜21−3により熱量が付加された冷水又は温水等の熱媒(送水)は、往路ヘッダー23−1に送られ、二次ポンプ29−1〜29−3により圧送されて往路ヘッダー23−2を経て送水管路24に供給され、負荷機器25−1〜25−3を通過して還水管路27により還水として還路ヘッダー28に至り、再びポンプ22−1〜22−3によって圧送される。こうして、熱媒は以上の経路を循環する。   Heat medium (water supply) such as cold water or hot water pressure-fed by the primary pumps 22-1 to 22-3 and heated by the heat source devices 21-1 to 21-3 is sent to the forward header 23-1, Pumped by the pumps 29-1 to 29-3, supplied to the water supply pipe 24 through the forward header 23-2, passed through the load devices 25-1 to 25-3, and returned as return water by the return water pipe 27. It reaches the header 28 and is again pumped by the pumps 22-1 to 22-3. Thus, the heat medium circulates through the above path.

図9のような空調制御システムにおいて、圧力センサ31は送水圧力P1を計測する。差圧センサ26は、配管の末端、すなわち送水管路24から送水が出力される側(負荷機器側)の最端部に設けられた負荷機器25−3に入力される送水と負荷機器25−3から出力される還水との圧力差である末端差圧P2を計測する。そして、送水制御装置32は、末端差圧P2に基づいて送水圧力を設定し、この送水圧力設定値に基づいて二次ポンプ9−1,9−2のインバータ回転数およびバイパス弁30の開度を制御していた。   In the air conditioning control system as shown in FIG. 9, the pressure sensor 31 measures the water supply pressure P1. The differential pressure sensor 26 supplies water to the load device 25-3 and the load device 25-, which are provided at the end of the pipe, that is, the extreme end on the side where the water is output from the water supply pipe 24 (load device side). The terminal differential pressure P2 which is a pressure difference with the return water output from 3 is measured. And the water supply control apparatus 32 sets water supply pressure based on the terminal differential pressure P2, and based on this water supply pressure setting value, the inverter rotational speed of the secondary pumps 9-1 and 9-2 and the opening degree of the bypass valve 30 Was controlling.

特開2005−299980号公報JP 2005-299980 A

図9に示したシステムによれば、ポンプ揚程にかかるエネルギーを削減することが可能となり、省エネルギー化を実現することができる。
しかしながら、図9に示したシステムの導入にあたっては、配管の末端を特定し、この末端部に差圧センサを設置する必要があるが、配管の末端を特定することが難しく、配管の末端への差圧センサの設置が難しいため、システムの導入を断念している場合が多いという問題点があった。
According to the system shown in FIG. 9, the energy required for the pump head can be reduced, and energy saving can be realized.
However, when the system shown in FIG. 9 is introduced, it is necessary to specify the end of the pipe and install a differential pressure sensor at this end, but it is difficult to specify the end of the pipe. Since the installation of the differential pressure sensor is difficult, there is a problem that the introduction of the system is often abandoned.

本発明は、上記課題を解決するためになされたもので、差圧センサの設置時に配管末端を特定できない場合でも、インバータポンプによる圧力制御を末端差圧に基づいて行う末端差圧制御を実現でき、省エネルギー化を実現することができる送水制御システムおよび送水制御方法を提供することを目的とする。   The present invention has been made to solve the above-described problem, and even when the end of the pipe cannot be specified when the differential pressure sensor is installed, the end differential pressure control in which the pressure control by the inverter pump is performed based on the end differential pressure can be realized. An object is to provide a water supply control system and a water supply control method capable of realizing energy saving.

本発明の送水制御システムは、複数の負荷機器からの還水に圧力を付加した送水を前記負荷機器に送出するポンプと、前記還水が入力される前記ポンプの入力側と前記送水が出力される前記ポンプの出力側とを接続するバイパスに設けられたバイパス弁と、前記複数の負荷機器の入口に配置されたバルブの各々に設けられ、前記負荷機器の入口における前記送水と前記負荷機器の出口における前記還水との差圧を計測する複数の第1の差圧計測手段と、この第1の差圧計測手段で計測された複数の差圧を比較して、配管末端の末端差圧を特定する末端差圧特定手段と、前記末端差圧に基づいて、前記ポンプの回転数および前記バイパス弁の開度を制御する制御手段とを備えるものである。
また、本発明の送水制御システムの1構成例は、さらに、前記ポンプの出口における前記送水の圧力を計測する送水圧力計測手段を備え、前記制御手段は、前記末端差圧に基づいて前記ポンプの出口における前記送水の圧力を設定し、この設定値と前記送水圧力計測手段によって計測される送水圧力に基づいて前記ポンプの回転数および前記バイパス弁の開度を制御するものである。
また、本発明の送水制御システムの1構成例は、さらに、前記ポンプの出口における前記送水と前記ポンプの入口における前記還水との差圧を計測する第2の差圧計測手段を備え、前記制御手段は、前記末端差圧に基づいて前記ポンプの出口における前記送水と前記ポンプの入口における前記還水との差圧を設定し、この設定値と前記第2の差圧計測手段によって計測される差圧に基づいて前記ポンプの回転数および前記バイパス弁の開度を制御するものである。
In the water supply control system of the present invention, a pump for sending water supplied with pressure to return water from a plurality of load devices to the load device, an input side of the pump to which the return water is input, and the water supply are output. A bypass valve provided in a bypass connecting the output side of the pump and a valve disposed at an inlet of the plurality of load devices, and the water supply at the inlet of the load device and the load device By comparing the plurality of first differential pressure measuring means for measuring the differential pressure with the return water at the outlet and the plurality of differential pressures measured by the first differential pressure measuring means, the terminal differential pressure at the end of the pipe And a control means for controlling the rotational speed of the pump and the opening of the bypass valve based on the terminal differential pressure.
Moreover, one structural example of the water supply control system of this invention is further provided with the water supply pressure measurement means which measures the pressure of the said water supply in the exit of the said pump, The said control means of the said pump based on the said terminal differential pressure | voltage The water supply pressure at the outlet is set, and the rotational speed of the pump and the opening of the bypass valve are controlled based on the set value and the water supply pressure measured by the water supply pressure measuring means.
Further, one configuration example of the water supply control system of the present invention further includes second differential pressure measuring means for measuring a differential pressure between the water supply at the outlet of the pump and the return water at the inlet of the pump, The control means sets a differential pressure between the water supply at the outlet of the pump and the return water at the inlet of the pump based on the terminal differential pressure, and is measured by the set value and the second differential pressure measuring means. The rotational speed of the pump and the opening of the bypass valve are controlled based on the differential pressure.

また、本発明は、冷温水を生成する熱源機と、複数の負荷機器からの還水に圧力を付加した送水を前記負荷機器に送出するポンプと、前記還水が入力される前記ポンプの入力側と前記送水が出力される前記ポンプの出力側とを接続するバイパスに設けられたバイパス弁とを備えた送水制御システムにおいて、前記熱源機により生成された冷温水を前記負荷機器に送出する送水制御方法であって、前記複数の負荷機器の各々に設けられたバルブにおいて、前記負荷機器の入口における前記送水と前記負荷機器の出口における前記還水との差圧を計測する差圧計測手順と、この差圧計測手順で計測された複数の差圧を比較して、配管末端の末端差圧を特定する末端差圧特定手順と、前記末端差圧に基づいて、前記ポンプの回転数および前記バイパス弁の開度を制御する制御手順とを備えるものである。   The present invention also relates to a heat source device that generates cold / hot water, a pump that supplies water to which pressure is added to return water from a plurality of load devices, and an input to the pump to which the return water is input. In the water supply control system comprising a bypass valve provided in a bypass that connects the output side of the pump to which the water supply is output, the water supply that sends the cold / hot water generated by the heat source device to the load device A control method, comprising: a differential pressure measuring procedure for measuring a differential pressure between the water supply at the inlet of the load device and the return water at the outlet of the load device in a valve provided in each of the plurality of load devices; , Comparing a plurality of differential pressures measured in this differential pressure measurement procedure, specifying a terminal differential pressure at the end of the pipe, and based on the terminal differential pressure, the pump rotation speed and the Vipa In which a control procedure for controlling the opening of the valve.

本発明によれば、複数の負荷機器に設けられるバルブの各々に、負荷機器の入口における送水と負荷機器の出口における還水との差圧を計測する複数の第1の差圧計測手段を設け、この第1の差圧計測手段で計測された複数の差圧を比較して末端差圧を特定するようにしたので、差圧計測手段の設置時に配管末端を特定できない場合でも、インバータポンプおよびバイパス弁による圧力制御を末端差圧に基づいて行う末端差圧制御を実現することができ、省エネルギー化を実現することができる。   According to the present invention, each of the valves provided in the plurality of load devices is provided with a plurality of first differential pressure measuring means for measuring a differential pressure between water supply at the inlet of the load device and return water at the outlet of the load device. Since the terminal differential pressure is specified by comparing the plurality of differential pressures measured by the first differential pressure measuring means, the inverter pump and the pump can be specified even when the pipe terminal cannot be specified when the differential pressure measuring means is installed. It is possible to realize the terminal differential pressure control in which the pressure control by the bypass valve is performed based on the terminal differential pressure, and energy saving can be realized.

[第1の実施の形態]
以下、本発明の実施の形態について図面を参照して説明する。図1は本発明の第1の実施の形態に係る空調制御システムの構成を示すブロック図である。本実施の形態は、負荷機器への送水方式として複式ポンプ方式を用いるものである。
[First Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of an air conditioning control system according to the first embodiment of the present invention. In the present embodiment, a dual pump system is used as a water supply system to load equipment.

本実施の形態の空調制御システムは、冷水や温水等の熱媒を生成する、冷温水発生機、ヒートポンプ、冷凍機、ボイラー等の熱源機1−1〜1−3と、この熱源機1−1〜1−3の補機としての一次ポンプ2−1〜2−3と、複数の熱源機1−1〜1−3からの熱媒を混合する往路ヘッダー3−1,3−2と、送水管路4と、ファンコイルユニットや空調機等の負荷機器5−1〜5−3と、負荷機器5−1〜5−3に供給される熱媒の流量を制御するバルブ6−1〜6−3と、還水管路7と、負荷機器5−1〜5−3において熱交換され還水管路7を介して送られてくる熱媒が戻される還路ヘッダー8と、往路ヘッダー3−1と3−2の間に設けられた二次ポンプ9−1〜9−3と、往路ヘッダー3−1と3−2の間に設けられたバイパス弁10と、送水圧力P1を計測する圧力センサ(送水圧力計測手段)11と、熱媒を負荷機器5−1〜5−3へ送出するポンプ9−1〜9−3等を制御する送水制御装置12と、バルブ6−1〜6−3の開度を調整することにより負荷機器5−1〜5−3への熱媒の供給量を制御する負荷機器制御装置13とから構成される。二次ポンプ9−1,9−2は、それぞれインバータ9−1a,9−2aを備えている。   The air conditioning control system of the present embodiment generates a heat medium such as cold water and hot water, and heat source devices 1-1 to 1-3 such as a cold / hot water generator, a heat pump, a refrigerator, and a boiler, and the heat source device 1- Primary pumps 2-1 to 2-3 as auxiliary machines 1-1 to 1-3, forward headers 3-1 and 3-2 for mixing the heat medium from the plurality of heat source apparatuses 1-1 to 1-3, Water supply conduit 4, load devices 5-1 to 5-3 such as a fan coil unit and an air conditioner, and valves 6-1 to control the flow rate of the heat medium supplied to the load devices 5-1 to 5-3 6-3, return water pipe 7, return path header 8 to which heat medium exchanged in the load devices 5-1 to 5-3 and sent via the return water pipe 7 is returned, and forward path header 3- Secondary pumps 9-1 to 9-3 provided between 1 and 3-2 and bypass valves provided between forward headers 3-1 and 3-2 0, a pressure sensor (water supply pressure measuring means) 11 for measuring the water supply pressure P1, a water supply control device for controlling the pumps 9-1 to 9-3 for sending the heat medium to the load devices 5-1 to 5-3, etc. 12 and a load device control device 13 that controls the supply amount of the heat medium to the load devices 5-1 to 5-3 by adjusting the opening degree of the valves 6-1 to 6-3. The secondary pumps 9-1 and 9-2 include inverters 9-1a and 9-2a, respectively.

この空調制御システムのうち、熱源機1−1〜1−3、一次ポンプ2−1〜2−3、往路ヘッダー3−1,3−2、送水管路4、還水管路7、還路ヘッダー8、二次ポンプ9−1〜9−3、バイパス弁10、圧力センサ11および送水制御装置12は、送水制御システムを構成している。   Among these air conditioning control systems, heat source devices 1-1 to 1-3, primary pumps 2-1 to 2-3, forward headers 3-1 and 3-2, water supply pipeline 4, return water pipeline 7 and return header 8, the secondary pumps 9-1 to 9-3, the bypass valve 10, the pressure sensor 11, and the water supply control device 12 constitute a water supply control system.

一次ポンプ2−1〜2−3により圧送され熱源機1−1〜1−3により熱量が付加された冷水又は温水等の熱媒(送水)は、往路ヘッダー3−1に送られ、二次ポンプ9−1〜9−3により圧送されて往路ヘッダー3−2を経て送水管路4に供給され、負荷機器5−1〜5−3を通過して還水管路7により還水として還路ヘッダー8に至り、再びポンプ2−1〜2−3によって圧送される。このように、熱媒は以上の経路を循環する。   A heat medium (water supply) such as cold water or hot water pressure-fed by the primary pumps 2-1 to 2-3 and heated by the heat source units 1-1 to 1-3 is sent to the forward header 3-1, Pumped by the pumps 9-1 to 9-3, supplied to the water supply pipe 4 through the forward header 3-2, passed through the load devices 5-1 to 5-3, and returned as return water by the return water pipe 7. It reaches the header 8 and is again pumped by the pumps 2-1 to 2-3. Thus, the heat medium circulates through the above path.

送水圧力P1とは、二次ポンプ9−1〜9−3等により圧送されて送水管路4に送られた送水の圧力のことを意味する。
また、末端差圧P2とは、図1の空調制御システムが設けられた建造物の末端、すなわち送水管路4から送水が出力される側(負荷機器側)の最端部に設けられた負荷機器に入力される送水と、この負荷機器から出力される還水との圧力差のことを意味する。ここで、配管末端とはポンプから見て配管抵抗が最も大きい箇所を意味するが、以下のような理由により実際の配管末端を特定することは困難である。
The water supply pressure P1 means the pressure of water supplied by the secondary pumps 9-1 to 9-3 or the like and sent to the water supply pipeline 4.
Moreover, the terminal differential pressure P2 is the load provided at the end of the building where the air conditioning control system of FIG. 1 is provided, that is, the extreme end on the side where the water supply is output from the water supply conduit 4 (load device side). It means the pressure difference between the water input to the device and the return water output from this load device. Here, the pipe end means a portion having the largest pipe resistance as viewed from the pump, but it is difficult to specify the actual pipe end for the following reason.

配管末端を理論上(図面上)から特定することは可能であるが、実際に配管施工した後の配管抵抗値の最大箇所は、必ずしも配管長が最長の箇所にならない可能性があり、また手動弁で絞られた箇所のような不確定要素もあるため、実際の配管末端を正確に特定することは困難である。また、一般的にはヘッダーから配管が複数系統立ち上がるため、少なくともその系統ごとに配管抵抗が最も大きい箇所を特定しないと、全空調機の能力を保証することにはならない。   Although it is possible to specify the end of the pipe from the theory (on the drawing), the maximum pipe resistance value after actual pipe construction may not necessarily be the longest pipe length, and manual Since there are some uncertain factors such as the location that is throttled by the valve, it is difficult to accurately identify the actual pipe end. In general, since a plurality of pipes start from the header, the capacity of all the air conditioners cannot be guaranteed unless at least the part having the largest pipe resistance is specified for each system.

そこで、本実施の形態では、制御を安全に実施する(すなわち、空調機の能力不足を起こさないようにする)ために、配管末端と想定される箇所に設置されている複数のバルブ6−1〜6−3に、送水と還水との圧力差を計測する差圧センサ(差圧計測手段)を設けるようにした。このように、バルブ6−1〜6−3に差圧センサを内蔵させることで、配管末端への差圧センサの施工を不要にしている。   Therefore, in the present embodiment, in order to perform the control safely (that is, to prevent the air conditioner from being insufficient in capacity), a plurality of valves 6-1 installed at locations assumed to be the end of the pipe. ˜6-3 was provided with a differential pressure sensor (differential pressure measuring means) for measuring the pressure difference between the water supply and the return water. In this manner, by installing the differential pressure sensor in the valves 6-1 to 6-3, it is not necessary to install the differential pressure sensor at the end of the pipe.

図2は送水制御装置12の構成例を示すブロック図である。送水制御装置12は、圧力センサ11が計測した送水圧力P1の値を受信する送水圧力受信部120と、バルブ6−1〜6−3の差圧センサが計測した差圧の値を負荷機器制御装置13を介して受信する差圧受信部121と、ユーザの操作入力等により末端差圧設定値P2setを設定する設定部122と、差圧受信部121が受信した複数の差圧を比較して末端差圧P2を特定する末端差圧特定部123と、送水圧力受信部120が受信した送水圧力P1と末端差圧特定部123が特定した末端差圧P2と設定部122により設定された末端差圧設定値P2setに基づいて二次ポンプ9−1,9−2のインバータ回転数およびバイパス弁10の開度を演算する演算部124と、演算部124の演算結果に基づきインバータ9−1a,9−2aを介して二次ポンプ9−1,9−2の回転数(以下、インバータ回転数という)を制御するポンプ制御部125と、演算部124の演算結果に基づいてバイパス弁10の開度を制御するバイパス弁制御部126とを有する。   FIG. 2 is a block diagram illustrating a configuration example of the water supply control device 12. The water supply control device 12 performs load device control on the water pressure receiving unit 120 that receives the value of the water pressure P1 measured by the pressure sensor 11 and the value of the differential pressure measured by the differential pressure sensors of the valves 6-1 to 6-3. The differential pressure receiving unit 121 received via the device 13, the setting unit 122 that sets the terminal differential pressure setting value P2set by the user's operation input, etc., and a plurality of differential pressures received by the differential pressure receiving unit 121 are compared. The terminal differential pressure specifying unit 123 that specifies the terminal differential pressure P2, the water supply pressure P1 received by the water supply pressure receiving unit 120, the terminal differential pressure P2 specified by the terminal differential pressure specifying unit 123, and the terminal difference set by the setting unit 122 Based on the pressure set value P2set, a calculation unit 124 that calculates the inverter rotation speed of the secondary pumps 9-1 and 9-2 and the opening of the bypass valve 10, and inverters 9-1a and 9 based on the calculation result of the calculation unit 124 -2a A pump control unit 125 that controls the rotation speed of the secondary pumps 9-1 and 9-2 (hereinafter referred to as inverter rotation speed), and a bypass that controls the opening degree of the bypass valve 10 based on the calculation result of the calculation unit 124. And a valve control unit 126.

演算部124とポンプ制御部125とバイパス弁制御部126とは、制御手段を構成している。
ポンプ制御部125は、設定部122を介してのユーザによる操作入力または演算部124の演算結果に基づいて、二次ポンプ9−3のON/OFFに関する動作制御を行う。また、ポンプ制御部125は、二次ポンプ9−1〜9−3の運転状況に関する情報を演算部124に送信する。
The calculation unit 124, the pump control unit 125, and the bypass valve control unit 126 constitute a control unit.
The pump control unit 125 performs operation control related to ON / OFF of the secondary pump 9-3 based on the operation input by the user via the setting unit 122 or the calculation result of the calculation unit 124. In addition, the pump control unit 125 transmits information related to the operation status of the secondary pumps 9-1 to 9-3 to the calculation unit 124.

次に、本実施の形態の動作について図1〜図5を参照して説明する。図3は送水制御装置12の動作を示すフローチャート、図4は送水圧力と末端差圧との関係を説明する図、図5はインバータ回転数およびバイパス弁開度と送水圧力との関係を説明する図である。   Next, the operation of the present embodiment will be described with reference to FIGS. FIG. 3 is a flowchart showing the operation of the water supply control device 12, FIG. 4 is a diagram for explaining the relationship between the water supply pressure and the terminal differential pressure, and FIG. 5 is for explaining the relationship between the inverter rotational speed and the bypass valve opening and the water supply pressure. FIG.

まず、負荷機器5−1〜5−3が空調機である場合を例に挙げて、負荷機器制御装置13の動作について説明する。負荷機器5−1〜5−3は、熱源機1−1〜1−3から熱媒の供給を受けて、空調制御エリアとなる室内から戻る空気(還気)と外気との混合気を冷却または加熱し、冷却または加熱した給気を送風機によって室内に送り込む。負荷機器制御装置13は、負荷機器5−1〜5−3から送出される給気の温度と設定温度とが一致するように、例えばPID演算によって操作量を算出し、算出した操作量をバルブ6−1〜6−3に出力して、バルブ6−1〜6−3の開度を制御する。   First, the operation of the load device control device 13 will be described by taking the case where the load devices 5-1 to 5-3 are air conditioners as an example. The load devices 5-1 to 5-3 receive the supply of the heat medium from the heat source devices 1-1 to 1-3, and cool the mixture of the air (return air) returning from the room serving as the air conditioning control area and the outside air. Alternatively, the heated and cooled or heated supply air is sent into the room by a blower. The load device control device 13 calculates an operation amount by, for example, PID calculation so that the temperature of the supply air sent from the load devices 5-1 to 5-3 matches the set temperature, and the calculated operation amount is set to the valve. Output to 6-1 to 6-3 to control the opening degree of the valves 6-1 to 6-3.

こうして、負荷機器側では以上のような空調制御が行われる一方で、熱源機側では以下のような送水制御が行われる。
まず、バルブ6−1に内蔵された差圧センサは、負荷機器5−1へ送る送水と負荷機器5−1を出た還水との差圧を計測する。同様に、バルブ6−2,6−3に内蔵された差圧センサは、負荷機器5−1,5−2へ送る送水と負荷機器5−1,5−2を出た還水との差圧を計測する。
Thus, while the air conditioning control as described above is performed on the load device side, the following water supply control is performed on the heat source device side.
First, the differential pressure sensor built in the valve 6-1 measures the differential pressure between the water sent to the load device 5-1 and the return water from the load device 5-1. Similarly, the differential pressure sensor built in the valves 6-2 and 6-3 is a difference between the water sent to the load devices 5-1 and 5-2 and the return water from the load devices 5-1 and 5-2. Measure the pressure.

これらの差圧センサによって計測された差圧を示す差圧信号は、負荷機器制御装置13に送られる。負荷機器制御装置13と送水制御装置12とは、有線や無線などの通信回線により接続されている。負荷機器制御装置13は、差圧信号を、通信回線を介して送水制御装置12に送信する。   A differential pressure signal indicating the differential pressure measured by these differential pressure sensors is sent to the load device control device 13. The load device control device 13 and the water supply control device 12 are connected by a communication line such as wired or wireless. The load device control device 13 transmits the differential pressure signal to the water supply control device 12 via the communication line.

送水制御装置12の差圧受信部121は、負荷機器制御装置13から送信された差圧信号を受信する(図3ステップS1)。
一方、送水圧力受信部120は、圧力センサ11によって計測された送水圧力P1の値を示す送水圧力信号を受信する(ステップS2)。
The differential pressure receiving unit 121 of the water supply control device 12 receives the differential pressure signal transmitted from the load device control device 13 (step S1 in FIG. 3).
On the other hand, the water supply pressure receiving unit 120 receives a water supply pressure signal indicating the value of the water supply pressure P1 measured by the pressure sensor 11 (step S2).

末端差圧特定部123は、差圧受信部121が受信した差圧信号が示す複数の差圧の値を比較して、これらの差圧の最悪値を末端差圧P2とする(ステップS3)。ここでは、複数の差圧のうちの最小値を最悪値とする。   The terminal differential pressure specifying unit 123 compares a plurality of differential pressure values indicated by the differential pressure signal received by the differential pressure receiving unit 121, and sets the worst value of these differential pressures as the terminal differential pressure P2 (step S3). . Here, the minimum value among the plurality of differential pressures is defined as the worst value.

次に、演算部124は、図4に示すように、ユーザ等により予め設定された末端差圧設定値P2setに基づいて、PID制御で送水圧力を設定する(ステップS4)。演算部124は、末端差圧特定部123が特定した末端差圧P2が、末端差圧設定値P2setよりも小さい場合、P動作(比例動作)により送水圧力を大きく設定する。また、演算部124は、末端差圧P2が、末端差圧設定値P2setよりも大きい場合、P動作により送水圧力を小さく設定する。   Next, as shown in FIG. 4, the calculation unit 124 sets the water supply pressure by PID control based on the terminal differential pressure setting value P2set preset by the user or the like (step S4). When the terminal differential pressure P2 specified by the terminal differential pressure specifying unit 123 is smaller than the terminal differential pressure set value P2set, the calculation unit 124 sets the water supply pressure to be large by the P operation (proportional operation). Further, when the terminal differential pressure P2 is larger than the terminal differential pressure set value P2set, the calculation unit 124 sets the water supply pressure to be small by the P operation.

例えば、図4において、末端差圧P2が末端差圧設定値P2setよりも小さい末端差圧P2aの場合、送水圧力が大きくなれば末端差圧P2aも大きくなるので、送水圧力設定値P1setを、末端差圧設定値P2setに対応する送水圧力xよりも大きい送水圧力aに設定する。また、図4において、末端差圧P2が末端差圧設定値P2setよりも大きい末端差圧P2aの場合、送水圧力が大きくなれば末端差圧P2aも大きくなるので、送水圧力設定値P1setを、末端差圧設定値P2setに対応する送水圧力xよりも小さい送水圧力bに設定する。   For example, in FIG. 4, when the terminal differential pressure P2 is the terminal differential pressure P2a smaller than the terminal differential pressure set value P2set, the terminal differential pressure P2a increases as the water supply pressure increases. The water supply pressure a is set higher than the water supply pressure x corresponding to the differential pressure set value P2set. In FIG. 4, when the terminal differential pressure P2 is the terminal differential pressure P2a larger than the terminal differential pressure set value P2set, the terminal differential pressure P2a increases as the water supply pressure increases. A water supply pressure b smaller than the water supply pressure x corresponding to the differential pressure set value P2set is set.

また、I動作(積分動作)により偏差がなくなるので、現在の末端差圧P2が末端差圧設定値P2setよりも小さいときには送水圧力設定値P1setはさらに大きくなり、現在の末端差圧P2が末端差圧設定値P2setよりも大きいときには送水圧力設定値P1setはさらに小さくなる。   Further, since the deviation is eliminated by the I operation (integration operation), when the current terminal differential pressure P2 is smaller than the terminal differential pressure set value P2set, the water supply pressure set value P1set is further increased, and the current terminal differential pressure P2 becomes the terminal differential. When it is larger than the pressure set value P2set, the water supply pressure set value P1set is further reduced.

続いて、演算部124は、ステップS4で設定した送水圧力設定値P1setに基づいて、二次ポンプ9−1,9−2のインバータ回転数およびバイパス弁10の開度を決定する(ステップS5)。演算部124は、圧力センサ11によって計測された送水圧力P1が送水圧力設定値P1setよりも小さい場合、インバータ回転数を大きくし、送水圧力P1が送水圧力設定値P1setよりも大きい場合、インバータ回転数を小さくする。こうして、送水圧力P1が送水圧力設定値P1setと一致するように、インバータ回転数を決定する。また、演算部124は、送水圧力P1が送水圧力設定値P1setよりもかなり大きく、インバータ回転数を下限値にしても、送水圧力P1を送水圧力設定値P1setと一致させることができない場合、現在の送水圧力P1の程度に応じてバイパス弁10が開くようにその開度を決定する。   Subsequently, the calculation unit 124 determines the inverter rotational speed of the secondary pumps 9-1 and 9-2 and the opening degree of the bypass valve 10 based on the water supply pressure set value P1set set in step S4 (step S5). . The calculation unit 124 increases the inverter rotation speed when the water supply pressure P1 measured by the pressure sensor 11 is smaller than the water supply pressure set value P1set, and the inverter rotation speed when the water supply pressure P1 is larger than the water supply pressure set value P1set. Make it smaller. Thus, the inverter rotational speed is determined so that the water supply pressure P1 matches the water supply pressure set value P1set. In addition, the calculation unit 124, when the water supply pressure P1 is considerably larger than the water supply pressure set value P1set and the water supply pressure P1 cannot be matched with the water supply pressure set value P1set even if the inverter rotation speed is set to the lower limit value, The opening degree is determined so that the bypass valve 10 is opened according to the level of the water supply pressure P1.

図5において、I1,I2はインバータ回転数と送水圧力との関係を示す特性、Bはバイパス弁開度と送水圧力との関係を示す特性である。インバータ回転数と送水圧力との関係は、インバータ付きのポンプ(本実施の形態では二次ポンプ9−1,9−2)だけが運転しているポンプ単独運転時と、インバータ付きポンプとインバータ未設置のポンプ(本実施の形態では二次ポンプ9−3)が同時に運転しているポンプ並列運転時で異なり、インバータ回転数の下限値が切り替わるようになっている。I1がポンプ単独運転時の特性、I2がポンプ並列運転時の特性である。   In FIG. 5, I1 and I2 are characteristics indicating the relationship between the inverter rotational speed and the water supply pressure, and B is a characteristic indicating the relationship between the bypass valve opening and the water supply pressure. The relationship between the inverter rotational speed and the water supply pressure is as follows: when the pump is operated alone by the pump with the inverter (secondary pumps 9-1 and 9-2 in this embodiment), and when the pump with the inverter is not connected to the inverter. The lower limit value of the inverter rotation speed is switched, which is different in the pump parallel operation in which the installed pump (secondary pump 9-3 in the present embodiment) is operating simultaneously. I1 is a characteristic at the time of pump independent operation, and I2 is a characteristic at the time of pump parallel operation.

例えば、図5において、圧力センサ11によって計測された送水圧力P1が送水圧力設定値P1setよりも小さい送水圧力P1aの場合、インバータ回転数を上げれば送水圧力が大きくなるので、インバータ回転数を送水圧力設定値P1setに対応する送水圧力yよりも大きいインバータ回転数aに設定する。また、図5において、送水圧力P1が送水圧力設定値P1setよりも大きい送水圧力P1bの場合、インバータ回転数を下げれば送水圧力が小さくなるので、インバータ回転数を送水圧力設定値P1setに対応する送水圧力yよりも小さいインバータ回転数bに設定する。さらに、図5において、送水圧力P1が送水圧力設定値P1setよりもさらに大きい送水圧力P1cの場合は、インバータ回転数が既に下限値に達しているため、バイパス弁10を開くことにより送水圧力P1を下げる。したがって、バイパス弁10の開度を、図5に示すように開度cに設定する。   For example, in FIG. 5, when the water supply pressure P1 measured by the pressure sensor 11 is a water supply pressure P1a smaller than the water supply pressure set value P1set, the water supply pressure increases as the inverter rotational speed is increased. The inverter speed a is set higher than the water supply pressure y corresponding to the set value P1set. Further, in FIG. 5, when the water supply pressure P1 is a water supply pressure P1b larger than the water supply pressure set value P1set, the water supply pressure becomes smaller if the inverter rotation speed is lowered. Therefore, the water supply pressure corresponding to the water supply pressure set value P1set is reduced. The inverter speed b is set lower than the pressure y. Furthermore, in FIG. 5, when the water supply pressure P1 is a water supply pressure P1c that is larger than the water supply pressure set value P1set, the inverter rotational speed has already reached the lower limit value. Lower. Therefore, the opening degree of the bypass valve 10 is set to the opening degree c as shown in FIG.

上記のように、インバータ回転数の下限値は二次ポンプ9−1〜9−3の運転状況によって切り替わる。この下限値の切替は、インバータ未設置の二次ポンプ9−3の運転状況に基づいて、演算部124により行われる。   As described above, the lower limit value of the inverter rotational speed is switched depending on the operation status of the secondary pumps 9-1 to 9-3. The lower limit value is switched by the calculation unit 124 based on the operation status of the secondary pump 9-3 without an inverter.

ポンプ制御部125は、演算部124の決定に基づいてインバータ9−1a,9−2aを介して二次ポンプ9−1,9−2のインバータ回転数を制御する。なお、インバータ未設置の二次ポンプ9−3が動作する場合、ポンプ9−3の送水圧力は常に定格値(最大値)に設定される。
バイパス弁制御部126は、演算部124の決定に基づいてバイパス弁10の開度を制御する。
The pump control unit 125 controls the inverter rotation speed of the secondary pumps 9-1 and 9-2 via the inverters 9-1a and 9-2a based on the determination of the calculation unit 124. In addition, when the secondary pump 9-3 without an inverter operates, the water supply pressure of the pump 9-3 is always set to the rated value (maximum value).
The bypass valve control unit 126 controls the opening degree of the bypass valve 10 based on the determination of the calculation unit 124.

以上のような図3に示す処理が、システムが動作停止するまで(図3ステップS6においてYES)、繰り返し行われる。
こうして、本実施の形態では、配管の末端と想定される箇所に設置されている複数のバルブ6−1〜6−3の各々に差圧センサを設け、この差圧センサで計測された複数の差圧を比較して末端差圧P2を特定するようにしたので、差圧センサの設置時に配管末端を特定できない場合でも、末端差圧P2の情報を取得することができる。また、本実施の形態では、バルブ6−1〜6−3に差圧センサを内蔵させることにより、配管末端を特定してその配管末端に差圧センサを設置する必要がなくなる。
The process shown in FIG. 3 as described above is repeated until the system stops operating (YES in step S6 in FIG. 3).
Thus, in the present embodiment, a differential pressure sensor is provided for each of the plurality of valves 6-1 to 6-3 installed at locations assumed to be the ends of the pipes, and a plurality of the differential pressure sensors measured by the differential pressure sensors are provided. Since the terminal differential pressure P2 is specified by comparing the differential pressure, information of the terminal differential pressure P2 can be acquired even when the pipe terminal cannot be specified at the time of installing the differential pressure sensor. Further, in the present embodiment, by incorporating the differential pressure sensor in the valves 6-1 to 6-3, it is not necessary to specify the end of the pipe and install the differential pressure sensor at the end of the pipe.

そして、本実施の形態では、末端差圧P2に基づいて送水圧力を設定し、この設定した送水圧力に基づいて二次ポンプ9−1,9−2のインバータ回転数とバイパス弁10の開度を制御することより、省エネルギー化を実現することができる。すなわち、本実施の形態では、末端差圧P2に応じて送水圧力を変更するので、流量が少ないときには送水圧力を少なくできる。したがって、ポンプ揚程にかかるエネルギーも削減することが可能となり、結果として、さらなる省エネルギー化を実現することができる。   In the present embodiment, the water supply pressure is set based on the terminal differential pressure P2, and the inverter rotational speeds of the secondary pumps 9-1 and 9-2 and the opening degree of the bypass valve 10 are set based on the set water supply pressure. By controlling the above, energy saving can be realized. That is, in this embodiment, since the water supply pressure is changed according to the terminal differential pressure P2, the water supply pressure can be reduced when the flow rate is small. Therefore, the energy required for the pump head can be reduced, and as a result, further energy saving can be realized.

また、本実施の形態において、負荷機器制御装置13は負荷機器5−1〜5−3の近傍に設けられ、送水制御装置12は二次ポンプ9−1〜9−3の近傍に設けられる。負荷機器制御装置13と送水制御装置12とは有線や無線などの通信回線により接続されているので、配管末端からポンプ動力盤が設置されている機械室までの大掛かりな配線施工の必要がなく、配線施工を容易にすることができる。   Moreover, in this Embodiment, the load equipment control apparatus 13 is provided in the vicinity of the load equipment 5-1 to 5-3, and the water supply control apparatus 12 is provided in the vicinity of the secondary pumps 9-1 to 9-3. Since the load device control device 13 and the water supply control device 12 are connected by a communication line such as wired or wireless, there is no need for large-scale wiring construction from the end of the pipe to the machine room where the pump power panel is installed. Wiring construction can be facilitated.

また、本実施の形態では、送水圧力P1に基づいて二次ポンプ9−1,9−2のインバータ回転数およびバイパス弁10の開度を設定するようにしているが、ヘッダー間(図1ではヘッダー3−1とヘッダー3−2との間)の差圧に基づいて、上記インバータ回転数およびバイパス弁10の開度を設定するようにしてもよい。   Further, in the present embodiment, the inverter rotational speed of the secondary pumps 9-1 and 9-2 and the opening degree of the bypass valve 10 are set based on the water supply pressure P1, but between the headers (in FIG. 1) The inverter rotation speed and the opening degree of the bypass valve 10 may be set based on the pressure difference between the header 3-1 and the header 3-2.

[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。図6は本発明の第2の実施の形態に係る空調制御システムの構成を示すブロック図であり、図1と同様の構成には同一の符号を付してある。本実施の形態は、負荷機器への送水方式として単式ポンプ方式を用いるものである。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. FIG. 6 is a block diagram showing a configuration of an air conditioning control system according to the second embodiment of the present invention, and the same reference numerals are given to the same configurations as those in FIG. In the present embodiment, a single pump system is used as a water supply system to load equipment.

本実施の形態の空調制御システムは、熱源機1−1〜1−3と、一次ポンプ2−1〜2−3と、複数の熱源機1−1〜1−3からの熱媒を混合する往路ヘッダー3と、送水管路4と、負荷機器5−1〜5−3と、バルブ6−1〜6−3と、還水管路7と、還路ヘッダー8と、熱媒を負荷機器5−1〜5−3へ送出するポンプ2−1〜2−3等を制御する送水制御装置12aと、負荷機器制御装置13と、往路ヘッダー3と還路ヘッダー8との間の差圧を計測する差圧計(差圧計測手段)14と、往路ヘッダー3と還路ヘッダー8との間に設けられたバイパス弁15とから構成される。
この空調制御システムのうち、熱源機1−1〜1−3、一次ポンプ2−1〜2−3、往路ヘッダー3、送水管路4、還水管路7、還路ヘッダー8、送水制御装置12a、差圧計14およびバイパス弁15は、送水制御システムを構成している。
The air conditioning control system of the present embodiment mixes heat source devices 1-1 to 1-3, primary pumps 2-1 to 2-3, and heat media from a plurality of heat source devices 1-1 to 1-3. Outbound header 3, water supply conduit 4, load devices 5-1 to 5-3, valves 6-1 to 6-3, return water conduit 7, return conduit header 8, and heat medium as load device 5 The differential pressure between the water supply control device 12a for controlling the pumps 2-1 to 2-3 to be sent to -1 to 5-3, the load device control device 13, and the forward header 3 and the return header 8 is measured. Differential pressure gauge (differential pressure measuring means) 14 and a bypass valve 15 provided between the forward header 3 and the return header 8.
Among these air conditioning control systems, the heat source devices 1-1 to 1-3, the primary pumps 2-1 to 2-3, the forward header 3, the water supply pipeline 4, the return water pipeline 7, the return route header 8, and the water supply control device 12a. The differential pressure gauge 14 and the bypass valve 15 constitute a water supply control system.

一次ポンプ2−1〜2−3により圧送され熱源機1−1〜1−3により熱量が付加された冷水又は温水等の熱媒(送水)は、往路ヘッダー3を経て送水管路4に供給され、負荷機器5−1〜5−3を通過して還水管路7により還水として還路ヘッダー8に至り、再びポンプ2−1〜2−3によって圧送される。このように、熱媒は以上の経路を循環する。ここで、一次ポンプ2−1,2−2は、それぞれインバータ2−1a,2−2aを備えている。   Heat medium (water supply) such as cold water or hot water pressure-fed by the primary pumps 2-1 to 2-3 and heated by the heat source units 1-1 to 1-3 is supplied to the water supply pipeline 4 via the forward header 3. Then, it passes through the load devices 5-1 to 5-3, reaches the return path header 8 as return water by the return water pipeline 7, and is again pumped by the pumps 2-1 to 2-3. Thus, the heat medium circulates through the above path. Here, the primary pumps 2-1 and 2-2 include inverters 2-1a and 2-2a, respectively.

本実施の形態は、末端差圧P2に基づいてヘッダー間差圧を設定し、この設定したヘッダー間差圧に基づきインバータ2−1a,2−2aを介して一次ポンプ2−1,2−2のインバータ回転数とバイパス弁15の開度を制御するものである。ここで、ヘッダー間差圧とは、往路ヘッダー3と還路ヘッダー8との間の差圧、すなわち往路ヘッダー3から送水管路4に送出される送水と還水管路7から還路ヘッダー8に送出される還水との圧力差を意味する。   In the present embodiment, the header differential pressure is set based on the terminal differential pressure P2, and the primary pumps 2-1 and 2-2 are connected via the inverters 2-1a and 2-2a based on the set header differential pressure. The inverter rotation speed and the opening degree of the bypass valve 15 are controlled. Here, the inter-header differential pressure is the differential pressure between the forward header 3 and the return header 8, that is, the water sent from the forward header 3 to the water supply pipeline 4 and the return water pipeline 7 to the return header 8. It means the pressure difference with the returned water being sent out.

図7は送水制御装置12aの構成例を示すブロック図であり、図2と同様の構成には同一の符号を付してある。送水制御装置12は、差圧受信部121と、設定部122と、末端差圧特定部123と、差圧計14が計測したヘッダー間差圧と末端差圧特定部123が特定した末端差圧P2と設定部122により設定された末端差圧設定値P2setに基づいて二次ポンプ9−1,9−2のインバータ回転数およびバイパス弁10の開度を演算する演算部124aと、演算部124aの演算結果に基づきインバータ2−1a,2−2aを介して一次ポンプ2−1,2−2の回転数(以下、インバータ回転数という)を制御するポンプ制御部125aと、演算部124aの演算結果に基づいてバイパス弁15の開度を制御するバイパス弁制御部126aと、差圧計14が計測したヘッダー間差圧DPの値を受信する差圧受信部127とを有する。   FIG. 7 is a block diagram showing a configuration example of the water supply control device 12a, and the same reference numerals are given to the same configurations as those in FIG. The water supply control device 12 includes a differential pressure receiving unit 121, a setting unit 122, a terminal differential pressure specifying unit 123, a header differential pressure measured by the differential pressure gauge 14, and a terminal differential pressure specifying unit 123 specified by the terminal differential pressure P2. And a calculation unit 124a for calculating the inverter rotational speed of the secondary pumps 9-1 and 9-2 and the opening degree of the bypass valve 10 based on the terminal differential pressure setting value P2set set by the setting unit 122, and the calculation unit 124a A pump control unit 125a that controls the rotation speeds of the primary pumps 2-1 and 2-2 (hereinafter referred to as inverter rotation speeds) via the inverters 2-1a and 2-2a based on the calculation results, and the calculation results of the calculation unit 124a The bypass valve control unit 126a that controls the opening degree of the bypass valve 15 based on the above, and the differential pressure receiving unit 127 that receives the value of the inter-header differential pressure DP measured by the differential pressure gauge 14.

次に、本実施の形態の動作について図8を参照して説明する。図8は送水制御装置12aの動作を示すフローチャートである。
負荷機器5−1〜5−3、バルブ6−1〜6−3及び負荷機器制御装置13の動作は、第1の実施の形態と同じである。
Next, the operation of the present embodiment will be described with reference to FIG. FIG. 8 is a flowchart showing the operation of the water supply control device 12a.
The operations of the load devices 5-1 to 5-3, the valves 6-1 to 6-3, and the load device control device 13 are the same as those in the first embodiment.

送水制御装置12aの差圧受信部121は、負荷機器制御装置13から送信された差圧信号を受信する(図8ステップS11)。
一方、差圧受信部127は、差圧計14によって計測されたヘッダー間差圧DPの値を示すヘッダー間差圧信号を受信する(ステップS12)。
The differential pressure receiving unit 121 of the water supply control device 12a receives the differential pressure signal transmitted from the load device control device 13 (step S11 in FIG. 8).
On the other hand, the differential pressure receiving unit 127 receives an inter-header differential pressure signal indicating the value of the inter-header differential pressure DP measured by the differential pressure gauge 14 (step S12).

末端差圧特定部123は、第1の実施の形態と同様に末端差圧P2を特定する(ステップS13)。
次に、演算部124aは、ユーザ等により予め設定された末端差圧設定値P2setに基づいて、PID制御でヘッダー間差圧を設定する(ステップS14)。続いて、演算部124aは、ステップS14で設定したヘッダー間差圧設定値DPsetに基づいて、一次ポンプ2−1,2−2のインバータ回転数およびバイパス弁15の開度を決定する(ステップS15)。こうして、差圧計14によって計測されるヘッダー間差圧DPがヘッダー間差圧設定値DPsetと一致するように、インバータ回転数およびバイパス弁開度が決定される。
The terminal differential pressure specifying unit 123 specifies the terminal differential pressure P2 as in the first embodiment (step S13).
Next, the calculation unit 124a sets the inter-header differential pressure by PID control based on the terminal differential pressure setting value P2set preset by the user or the like (step S14). Subsequently, the calculation unit 124a determines the inverter speed of the primary pumps 2-1 and 2-2 and the opening degree of the bypass valve 15 based on the header differential pressure setting value DPset set in step S14 (step S15). ). Thus, the inverter rotational speed and the bypass valve opening are determined so that the inter-header differential pressure DP measured by the differential pressure gauge 14 matches the inter-header differential pressure setting value DPset.

ポンプ制御部125aは、演算部124aの決定に基づいてインバータ2−1a,2−2aを介して一次ポンプ2−1,2−2のインバータ回転数を制御する。なお、インバータ未設置の一次ポンプ2−3が動作する場合、ポンプ2−3の送水圧力は常に定格値(最大値)に設定される。
バイパス弁制御部126aは、演算部124aの決定に基づいてバイパス弁15の開度を制御する。
The pump control unit 125a controls the inverter rotation speed of the primary pumps 2-1 and 2-2 via the inverters 2-1a and 2-2a based on the determination of the calculation unit 124a. In addition, when the primary pump 2-3 without an inverter operates, the water supply pressure of the pump 2-3 is always set to a rated value (maximum value).
The bypass valve control unit 126a controls the opening degree of the bypass valve 15 based on the determination of the calculation unit 124a.

以上のような図8に示す処理が、システムが動作停止するまで(図8ステップS16においてYES)、繰り返し行われる。
こうして、本実施の形態においても、第1の実施の形態と同様の効果を得ることができる。
The process shown in FIG. 8 as described above is repeated until the system stops operating (YES in step S16 in FIG. 8).
Thus, also in this embodiment, the same effect as that of the first embodiment can be obtained.

また、第1、第2の実施の形態で説明した送水制御装置12,12a、負荷機器制御装置13は、それぞれCPU、記憶装置およびインタフェースを備えたコンピュータとこれらのハードウェア資源を制御するプログラムによって実現することができる。これらのコンピュータのCPUは、記憶装置に格納されたプログラムに従って第1、第2の実施の形態で説明した処理を実行する。   Further, the water supply control devices 12 and 12a and the load device control device 13 described in the first and second embodiments are respectively a computer having a CPU, a storage device and an interface, and a program for controlling these hardware resources. Can be realized. The CPUs of these computers execute the processes described in the first and second embodiments in accordance with programs stored in the storage device.

本発明は、熱源機により生成された冷温水を負荷機器へ送出する送水制御システムに適用することができる。   The present invention can be applied to a water supply control system that sends cold / hot water generated by a heat source machine to a load device.

本発明の第1の実施の形態に係る空調制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the air-conditioning control system which concerns on the 1st Embodiment of this invention. 図1の空調制御システムの送水制御装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the water supply control apparatus of the air-conditioning control system of FIG. 図2の送水制御装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the water supply control apparatus of FIG. 送水圧力と末端差圧との関係を説明する図である。It is a figure explaining the relationship between water supply pressure and terminal differential pressure. インバータ回転数およびバイパス弁開度と送水圧力との関係を説明する図である。It is a figure explaining the relationship between an inverter rotation speed, a bypass valve opening degree, and water supply pressure. 本発明の第2の実施の形態に係る空調制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the air-conditioning control system which concerns on the 2nd Embodiment of this invention. 図6の空調制御システムの送水制御装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the water supply control apparatus of the air-conditioning control system of FIG. 図7の送水制御装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the water supply control apparatus of FIG. 従来の空調制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the conventional air conditioning control system.

符号の説明Explanation of symbols

1−1〜1−3…熱源機、2−1〜2−3…一次ポンプ、2−1a〜2−2a…インバータ、3,3−1,3−2…往路ヘッダー、4…送水管路、5−1〜5−3…負荷機器、6−1〜6−3…バルブ、7…還水管路、8…還路ヘッダー、9−1〜9−3…二次ポンプ、9−1a,9−2a…インバータ、10,15…バイパス弁、11…圧力センサ、12,12a…送水制御装置、13…負荷機器制御装置、14…差圧計、120…送水圧力受信部、121…差圧受信部、122…設定部、123…末端差圧特定部、124,124a…演算部、125,125a…ポンプ制御部、126,126a…バイパス弁制御部、127…差圧受信部。   1-1 to 1-3 ... heat source machine, 2-1 to 2-3 ... primary pump, 2-1a to 2-2a ... inverter, 3, 3-1, 3-2 ... forward header, 4 ... water supply pipeline 5-1 to 5-3 ... load equipment, 6-1 to 6-3 ... valve, 7 ... return water pipe, 8 ... return path header, 9-1 to 9-3 ... secondary pump, 9-1a, 9-2a ... Inverter 10, 15 ... Bypass valve, 11 ... Pressure sensor, 12, 12a ... Water supply control device, 13 ... Load device control device, 14 ... Differential pressure gauge, 120 ... Water supply pressure receiving unit, 121 ... Differential pressure reception , 122 ... setting unit, 123 ... terminal differential pressure specifying unit, 124, 124a ... calculation unit, 125, 125a ... pump control unit, 126, 126a ... bypass valve control unit, 127 ... differential pressure receiving unit.

Claims (4)

熱源機により生成された冷温水を負荷機器に送出する送水制御システムにおいて、
複数の負荷機器からの還水に圧力を付加した送水を前記負荷機器に送出するポンプと、
前記還水が入力される前記ポンプの入力側と前記送水が出力される前記ポンプの出力側とを接続するバイパスに設けられたバイパス弁と、
前記複数の負荷機器の入口に配置されたバルブの各々に設けられ、前記負荷機器の入口における前記送水と前記負荷機器の出口における前記還水との差圧を計測する複数の第1の差圧計測手段と、
この第1の差圧計測手段で計測された複数の差圧を比較して、配管末端の末端差圧を特定する末端差圧特定手段と、
前記末端差圧に基づいて、前記ポンプの回転数および前記バイパス弁の開度を制御する制御手段とを備えることを特徴とする送水制御システム。
In a water supply control system that sends cold / hot water generated by a heat source machine to load equipment,
A pump for sending water to which the pressure is applied to the return water from a plurality of load devices to the load device;
A bypass valve provided in a bypass connecting the input side of the pump to which the return water is input and the output side of the pump from which the water supply is output;
A plurality of first differential pressures that are provided in each of the valves disposed at the inlets of the plurality of load devices, and that measure a differential pressure between the water supply at the inlet of the load device and the return water at the outlet of the load device. Measuring means;
A terminal differential pressure specifying means for comparing a plurality of differential pressures measured by the first differential pressure measuring means and specifying a terminal differential pressure at a pipe end; and
A water supply control system comprising: control means for controlling the rotational speed of the pump and the opening of the bypass valve based on the terminal differential pressure.
請求項1記載の送水制御システムにおいて、
さらに、前記ポンプの出口における前記送水の圧力を計測する送水圧力計測手段を備え、
前記制御手段は、前記末端差圧に基づいて前記ポンプの出口における前記送水の圧力を設定し、この設定値と前記送水圧力計測手段によって計測される送水圧力に基づいて前記ポンプの回転数および前記バイパス弁の開度を制御することを特徴とする送水制御システム。
In the water supply control system according to claim 1,
Furthermore, it comprises a water supply pressure measuring means for measuring the pressure of the water supply at the outlet of the pump,
The control means sets the water supply pressure at the outlet of the pump based on the terminal differential pressure, and based on the set value and the water supply pressure measured by the water supply pressure measurement means, the rotation speed of the pump and the A water supply control system that controls the opening degree of a bypass valve.
請求項1記載の送水制御システムにおいて、
さらに、前記ポンプの出口における前記送水と前記ポンプの入口における前記還水との差圧を計測する第2の差圧計測手段を備え、
前記制御手段は、前記末端差圧に基づいて前記ポンプの出口における前記送水と前記ポンプの入口における前記還水との差圧を設定し、この設定値と前記第2の差圧計測手段によって計測される差圧に基づいて前記ポンプの回転数および前記バイパス弁の開度を制御することを特徴とする送水制御システム。
In the water supply control system according to claim 1,
And a second differential pressure measuring means for measuring a differential pressure between the water supply at the outlet of the pump and the return water at the inlet of the pump,
The control means sets a differential pressure between the water supply at the outlet of the pump and the return water at the inlet of the pump based on the terminal differential pressure, and is measured by the set value and the second differential pressure measuring means. A water supply control system that controls the rotation speed of the pump and the opening of the bypass valve based on the differential pressure that is generated.
冷温水を生成する熱源機と、複数の負荷機器からの還水に圧力を付加した送水を前記負荷機器に送出するポンプと、前記還水が入力される前記ポンプの入力側と前記送水が出力される前記ポンプの出力側とを接続するバイパスに設けられたバイパス弁とを備えた送水制御システムにおいて、前記熱源機により生成された冷温水を前記負荷機器に送出する送水制御方法であって、
前記複数の負荷機器の各々に設けられたバルブにおいて、前記負荷機器の入口における前記送水と前記負荷機器の出口における前記還水との差圧を計測する差圧計測手順と、
この差圧計測手順で計測された複数の差圧を比較して、配管末端の末端差圧を特定する末端差圧特定手順と、
前記末端差圧に基づいて、前記ポンプの回転数および前記バイパス弁の開度を制御する制御手順とを備えることを特徴とする送水制御方法。
A heat source device for generating cold / hot water, a pump for sending water to which the pressure is added to the return water from a plurality of load devices, the input side of the pump to which the return water is input, and the water output is output In a water supply control system comprising a bypass valve provided in a bypass that connects the output side of the pump, a water supply control method for sending cold / warm water generated by the heat source device to the load device,
In a valve provided in each of the plurality of load devices, a differential pressure measurement procedure for measuring a differential pressure between the water supply at the inlet of the load device and the return water at the outlet of the load device;
Comparing a plurality of differential pressures measured in this differential pressure measurement procedure, a terminal differential pressure specifying procedure for specifying the terminal differential pressure at the end of the pipe,
A water supply control method comprising: a control procedure for controlling the rotational speed of the pump and the opening of the bypass valve based on the terminal differential pressure.
JP2007192386A 2007-07-24 2007-07-24 Water supply control system and water supply control method Pending JP2009030821A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007192386A JP2009030821A (en) 2007-07-24 2007-07-24 Water supply control system and water supply control method
CN2008101265358A CN101354171B (en) 2007-07-24 2008-06-24 Water supply control system and method
TW097123743A TW200914775A (en) 2007-07-24 2008-06-25 Water delivery control system and water delivery control method
KR1020080069409A KR101022295B1 (en) 2007-07-24 2008-07-17 Water supply control apparatus and water supply control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007192386A JP2009030821A (en) 2007-07-24 2007-07-24 Water supply control system and water supply control method

Publications (1)

Publication Number Publication Date
JP2009030821A true JP2009030821A (en) 2009-02-12

Family

ID=40307103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007192386A Pending JP2009030821A (en) 2007-07-24 2007-07-24 Water supply control system and water supply control method

Country Status (4)

Country Link
JP (1) JP2009030821A (en)
KR (1) KR101022295B1 (en)
CN (1) CN101354171B (en)
TW (1) TW200914775A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121722A (en) * 2007-11-13 2009-06-04 Yamatake Corp Water supply pressure control system and method
JP2011242057A (en) * 2010-05-18 2011-12-01 Tokyo Gas Co Ltd Water supply control system and control method of the same
JP2012013344A (en) * 2010-07-02 2012-01-19 Yamatake Corp System and method for controlling rotation speed of cold/hot water circulation pump
JP2012207872A (en) * 2011-03-30 2012-10-25 Sanki Eng Co Ltd Air-conditioning system
CN105739469A (en) * 2016-03-18 2016-07-06 天津惠普数据中心设计工程有限公司 Data center machine room freeze water secondary pump redundancy control system and method
KR101805334B1 (en) * 2014-02-20 2017-12-05 도시바 캐리어 가부시키가이샤 Heat source device
KR101854549B1 (en) * 2013-12-03 2018-06-08 미츠비시 쥬코 서멀 시스템즈 가부시키가이샤 Device for controlling number of operating heat source devices, heat source system, control method, and program
JP2022033612A (en) * 2020-08-17 2022-03-02 東京瓦斯株式会社 Heat supply control system
JP7455627B2 (en) 2020-03-24 2024-03-26 東芝キヤリア株式会社 Heat Source System

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI1008786B1 (en) 2009-02-13 2020-11-24 Toshiba Carrier Corporation secondary pump type heat source system and secondary pump type heat source control method
CN101839586B (en) * 2010-04-09 2013-08-28 上海斯图华纳空调有限公司 Air source split-type combined digital compressor capability-variable heat pump hot water conditioning system
CN103203376B (en) * 2012-01-13 2015-03-11 鞍钢股份有限公司 Accuracy control method for pressure of cold-rolling strip steel emulsion system
JP5836156B2 (en) 2012-02-28 2015-12-24 三菱重工業株式会社 Heat source system and heating medium flow rate control method thereof
CN102705956B (en) * 2012-06-01 2014-07-30 武汉裕生智能节能设备有限公司 Optimal control device and method for primary pump variable flow system
CN104422068B (en) * 2013-08-26 2017-02-01 珠海格力电器股份有限公司 Water pump interlocking control system and method
KR101508154B1 (en) * 2013-11-25 2015-04-14 김은기 Automatic control system for district heating plant
US10695810B2 (en) * 2015-02-09 2020-06-30 Toshiba Mitsubishi-Electric Industrial Systems Corporation Descaling system, control device of the descaling system, and method for controlling the descaling system
CN104964398A (en) * 2015-07-16 2015-10-07 珠海格力电器股份有限公司 Flow control method and device for air conditioning system
JP6388987B1 (en) * 2017-08-14 2018-09-12 伸和コントロールズ株式会社 Liquid supply device and liquid temperature control system
EP3588234B1 (en) * 2018-06-21 2021-03-17 Grundfos Holding A/S Control system and method for controlling a water supply from at least two separate input lines into a sector of a water supply network
WO2020012750A1 (en) * 2018-07-09 2020-01-16 東芝キヤリア株式会社 Heat source system, heat source machine, and control device
CN111795480B (en) * 2019-04-08 2023-08-22 开利公司 Thermal circulation system and control method for thermal circulation system
CN111089371A (en) * 2019-12-13 2020-05-01 南京卓恒科技有限公司 Electronic factory building cold source station control system and control method thereof
CN111189103A (en) * 2020-01-13 2020-05-22 欧贝多物联科技(嵊州)有限公司 Intelligent bypass valve device
CN112781130A (en) * 2020-12-30 2021-05-11 深圳市前海能源科技发展有限公司 Energy-saving control method for delivery pump based on regional centralized cooling and heating system
KR20230126527A (en) 2022-02-23 2023-08-30 대한민국(산림청 국립산림과학원장) Composition of Anomis commode attractant and uses thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079638U (en) * 1983-11-09 1985-06-03 東洋熱工業株式会社 Air conditioning heat source control device
JPH06281300A (en) * 1993-03-29 1994-10-07 Toshiba Corp Air conditioner
JPH07158935A (en) * 1993-12-07 1995-06-20 Matsushita Seiko Co Ltd Fan coil unit
JP2002106860A (en) * 2000-09-28 2002-04-10 Kajima Corp Double tube heat supply system for a plurality of heat sources, and its pressure control method
JP2003176965A (en) * 2001-12-11 2003-06-27 Denso Corp Expansion valve
JP2005147528A (en) * 2003-11-17 2005-06-09 Sanken Setsubi Kogyo Co Ltd Air conditioning system
JP2005299980A (en) * 2004-04-08 2005-10-27 Yamatake Corp Water supply control device, and its method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271120A (en) * 2006-03-30 2007-10-18 Osaka Gas Co Ltd Heating medium conveyance system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079638U (en) * 1983-11-09 1985-06-03 東洋熱工業株式会社 Air conditioning heat source control device
JPH06281300A (en) * 1993-03-29 1994-10-07 Toshiba Corp Air conditioner
JPH07158935A (en) * 1993-12-07 1995-06-20 Matsushita Seiko Co Ltd Fan coil unit
JP2002106860A (en) * 2000-09-28 2002-04-10 Kajima Corp Double tube heat supply system for a plurality of heat sources, and its pressure control method
JP2003176965A (en) * 2001-12-11 2003-06-27 Denso Corp Expansion valve
JP2005147528A (en) * 2003-11-17 2005-06-09 Sanken Setsubi Kogyo Co Ltd Air conditioning system
JP2005299980A (en) * 2004-04-08 2005-10-27 Yamatake Corp Water supply control device, and its method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121722A (en) * 2007-11-13 2009-06-04 Yamatake Corp Water supply pressure control system and method
JP2011242057A (en) * 2010-05-18 2011-12-01 Tokyo Gas Co Ltd Water supply control system and control method of the same
JP2012013344A (en) * 2010-07-02 2012-01-19 Yamatake Corp System and method for controlling rotation speed of cold/hot water circulation pump
JP2012207872A (en) * 2011-03-30 2012-10-25 Sanki Eng Co Ltd Air-conditioning system
KR101854549B1 (en) * 2013-12-03 2018-06-08 미츠비시 쥬코 서멀 시스템즈 가부시키가이샤 Device for controlling number of operating heat source devices, heat source system, control method, and program
KR101805334B1 (en) * 2014-02-20 2017-12-05 도시바 캐리어 가부시키가이샤 Heat source device
CN105739469A (en) * 2016-03-18 2016-07-06 天津惠普数据中心设计工程有限公司 Data center machine room freeze water secondary pump redundancy control system and method
JP7455627B2 (en) 2020-03-24 2024-03-26 東芝キヤリア株式会社 Heat Source System
JP2022033612A (en) * 2020-08-17 2022-03-02 東京瓦斯株式会社 Heat supply control system

Also Published As

Publication number Publication date
KR101022295B1 (en) 2011-03-21
CN101354171B (en) 2012-06-27
TW200914775A (en) 2009-04-01
CN101354171A (en) 2009-01-28
KR20090010893A (en) 2009-01-30

Similar Documents

Publication Publication Date Title
JP2009030821A (en) Water supply control system and water supply control method
JP5209244B2 (en) Air conditioning control system and air conditioning control method
EP3637006B1 (en) Heat source system
JP5537253B2 (en) Water supply control system and control method thereof
CN102308155A (en) Secondary pump type heat source system and secondary pump type heat source control method
JP2001193992A (en) Multi-room type air conditioner
JP5015523B2 (en) Heat source machine operation control method and apparatus
JP6566916B2 (en) Air conditioning system and operation control method
CN103154626A (en) Heat source apparatus
JP6198398B2 (en) Control method for determining the number of operating pumps in a two-pump heat source facility
JP6434848B2 (en) Heat source control system
JP4426363B2 (en) Water supply control apparatus and method
JP4249591B2 (en) Primary pump type heat source variable flow rate control system and primary pump minimum flow rate securing method
CN104913464A (en) Thermal Source Instrument Controlling Device and Air-Conditioning System
JP5558202B2 (en) Water supply control system and control method thereof
JP2009019842A (en) Water delivery control system and water delivery control method
JP4925885B2 (en) Flow rate measurement method for piping system equipment
JP6603627B2 (en) Air conditioning system and operation control method
JP3957309B2 (en) Operation control method for two-pump heat source equipment
JP2006132918A (en) Air conditioner and its control method
WO2018146800A1 (en) Refrigeration cycle device
JP5806555B2 (en) Heat source machine control device and heat source machine control method
JP3972342B2 (en) Control method and control apparatus for air conditioning system and air conditioning system
JP3320631B2 (en) Cooling and heating equipment
JP4984302B2 (en) Water pressure control system and water pressure control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120313