JP2006132918A - Air conditioner and its control method - Google Patents

Air conditioner and its control method Download PDF

Info

Publication number
JP2006132918A
JP2006132918A JP2005131999A JP2005131999A JP2006132918A JP 2006132918 A JP2006132918 A JP 2006132918A JP 2005131999 A JP2005131999 A JP 2005131999A JP 2005131999 A JP2005131999 A JP 2005131999A JP 2006132918 A JP2006132918 A JP 2006132918A
Authority
JP
Japan
Prior art keywords
heat source
temperature
water
header
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005131999A
Other languages
Japanese (ja)
Other versions
JP4600139B2 (en
Inventor
Toshio Umemoto
俊夫 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005131999A priority Critical patent/JP4600139B2/en
Publication of JP2006132918A publication Critical patent/JP2006132918A/en
Application granted granted Critical
Publication of JP4600139B2 publication Critical patent/JP4600139B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner which can quickly correspond to a load variation and has improved operation efficiency, and its control method. <P>SOLUTION: Pipes are connected so as to converge cold water fed from a plurality of refrigerators 5 with a cold water pump 3 into a supply primary header 1a, to feed the cold water into a plurality of loads from a supply secondary header 1b, to converge return water from the loads 6 into a return primary header 2a, and to return the return water from the return secondary header 2b into the refrigerators. A balance pipe 7 is connected between a connection pipe line 1c among supply headers and a connection pipe line 2c among return headers. Temperature sensors 11-14 are provided for sensing water temperature at key places. The temperature of the cold water by the refrigerator 5 and the flow rate of the flow by the cold water pump 3 are controlled on the basis of the temperature detected by a control section 4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、熱源で生成された熱源水を往ヘッダーを介して負荷に供給し、負荷で熱交換がなされた還流水を環ヘッダーを介して熱源に戻し、熱回復させて再び負荷に供給する空調装置及びその制御方法に関するものである。   In the present invention, the heat source water generated by the heat source is supplied to the load via the forward header, the reflux water subjected to heat exchange by the load is returned to the heat source via the ring header, the heat is recovered, and the load is supplied again to the load. The present invention relates to an air conditioner and a control method thereof.

冷暖房を実施するために、熱源により所定温度に生成した水を負荷に送水し、負荷で空気と熱交換して温度変化した還流水を熱源に戻して所定温度に回復させ、再び負荷に送水する熱源水の循環により空調装置が構成される。   In order to carry out cooling and heating, the water generated at a predetermined temperature by the heat source is sent to the load, and the reflux water whose temperature has changed by exchanging heat with the air at the load is returned to the heat source to be restored to the predetermined temperature, and is again supplied to the load. An air conditioner is configured by circulating the heat source water.

このような空調装置の従来技術として、図4に示すように、複数の冷凍機109と複数の負荷103とを往ヘッダー101及び環ヘッダー105を介して接続し、複数の冷凍機109から供給される冷水を複数の負荷103に供給するように構成したものが知られている(例えば特許文献1参照)。   As a prior art of such an air conditioner, as shown in FIG. 4, a plurality of refrigerators 109 and a plurality of loads 103 are connected via a forward header 101 and a ring header 105 and supplied from the plurality of refrigerators 109. What is comprised so that the cold water which supplies may be supplied to the some load 103 is known (for example, refer patent document 1).

この空調装置では、往ヘッダー101及び還ヘッダー105を介して一次側を熱源とし、二次側を負荷103とする空調システムが構成されており、往ヘッダー101と環ヘッダー105との間に配設されたバランス管106に流量計112を設けると共に、各冷凍機109の入口と出口との間にバルブ117を配したバイパス管116を設け、各冷凍機109からの流量を制御する流量可変冷水ポンプ114及び負荷103に供給する冷水の流量を制御するポンプ流量可変制御装置102を設けて構成されている。   In this air conditioner, an air conditioning system in which the primary side is a heat source and the secondary side is a load 103 via the forward header 101 and the return header 105 is arranged between the forward header 101 and the ring header 105. The balance pipe 106 is provided with a flow meter 112 and a bypass pipe 116 provided with a valve 117 between the inlet and outlet of each refrigerator 109 to control the flow rate from each refrigerator 109. 114 and a pump flow rate variable control device 102 for controlling the flow rate of the cold water supplied to the load 103 is provided.

本空調装置においては、流量計112によって検出される数値を指標として一次側水量及び二次側水量を制御し、外気状態と負荷状態とバランス管106内の流量変化とを検出し、冷凍機109の立ち上げ及び停止に必要な所定時間後の負荷状態及び流量を事前に予測推論して冷凍機109を発停制御し、バイパス管106のバルブ117を制御して、負荷103への送水温度が急変することを極力防止するようにしている。   In this air conditioner, the primary side water amount and the secondary side water amount are controlled by using the numerical value detected by the flow meter 112 as an index, the outside air state, the load state, and the flow rate change in the balance pipe 106 are detected, and the refrigerator 109 The load state and the flow rate after a predetermined time required for starting and stopping the machine are predicted and inferred in advance, and the refrigerator 109 is controlled to start and stop, the valve 117 of the bypass pipe 106 is controlled, and the water supply temperature to the load 103 is We try to prevent sudden changes as much as possible.

すなわち、負荷が増加すると負荷への流量が増加するので、バイパス管を通じて還流水が送水側に戻るバイパス流量が増加して負荷に送給する送水温度が上昇する。一方、負荷が減少すると負荷への流量が減少するので、バイパス管を通じて負荷への送水の一部が還流水に混合し、冷凍機に還流される還流水温度が低下し、冷凍機の負荷率が低下する。   That is, when the load increases, the flow rate to the load increases, so that the bypass flow rate at which the reflux water returns to the water supply side through the bypass pipe increases, and the water supply temperature supplied to the load increases. On the other hand, when the load decreases, the flow rate to the load decreases, so a part of the water sent to the load is mixed with the reflux water through the bypass pipe, the temperature of the reflux water returned to the refrigerator decreases, and the load factor of the refrigerator Decreases.

これを防止すべく往ヘッダーと還ヘッダーとの間を接続するバランス管に流量計を配し、バランス管内を流れる水量がゼロになるように制御する。また、バイパス管のバルブを開閉制御して冷凍機の立ち上げ、立ち下げ時に送水温度が上昇した冷水を負荷に送ることを防止している。
特開平4−327738号公報(第2〜3頁、図1)
In order to prevent this, a flow meter is arranged in the balance pipe connecting the forward header and the return header, and the amount of water flowing in the balance pipe is controlled to be zero. In addition, the valve of the bypass pipe is controlled to be opened / closed to prevent the cold water whose water supply temperature has risen when starting or stopping the refrigerator from being sent to the load.
Japanese Patent Laid-Open No. 4-327738 (pages 2 and 3, FIG. 1)

以上のように従来の技術では、送水温度が上昇した冷水を負荷に送ることを防止するため、バイパス管の流量を調整する必要がある。すなわち、複数のバイパス管を設ける等の複雑な構成や流量計などの設置により、設備や工事が複雑となるとともに、制御動作も複雑となり、設備や工事の費用も増加するという課題があった。   As described above, in the conventional technique, it is necessary to adjust the flow rate of the bypass pipe in order to prevent the cold water whose water supply temperature has risen from being sent to the load. That is, the complicated configuration such as the provision of a plurality of bypass pipes and the installation of a flow meter make the equipment and construction complicated, and the control operation becomes complicated, increasing the cost of the equipment and construction.

また、冷凍機の負荷率が考慮されていないため、空調装置としての消費電力が徒に増加する課題があった。ここで冷凍機の負荷率とは、冷凍機の定格の冷却能力に対する、実際の運転中の冷却能力を百分率表示したもので、例えば、冷凍機入口水温が定格の標準時より上昇すれば、出口水温は一定のため、冷却能力(出入口温度差)は小さくなり、負荷率も低くなる。   In addition, since the load factor of the refrigerator is not taken into account, there is a problem that power consumption as an air conditioner increases easily. Here, the load factor of the refrigerator is a percentage of the cooling capacity during the actual operation relative to the rated cooling capacity of the refrigerator.For example, if the refrigerator inlet water temperature rises from the rated standard time, the outlet water temperature Therefore, the cooling capacity (inlet / outlet temperature difference) is reduced and the load factor is also reduced.

本発明は、このような従来の課題を解決するものであり、簡易な制御構造と精度の高い制御方法により、送水温度が上昇した冷水を負荷に送ることを防止し、二次側冷水送水温度の補償を可能とすると共に、熱源を高い負荷率で運転することにより消費電力比を高め、不要な電力の消費の削減を図る空調装置とその制御方法を提供することを目的とする。   The present invention solves such a conventional problem, and prevents cold water having an increased water supply temperature from being sent to a load by a simple control structure and a highly accurate control method, and provides a secondary side cold water supply temperature. It is an object of the present invention to provide an air conditioner and a control method thereof that can compensate for the above and increase the power consumption ratio by operating a heat source at a high load factor to reduce unnecessary power consumption.

本発明は、上記目的を達成するために、往ヘッダー及び還ヘッダーを介して一次側を熱源とし、二次側を負荷とする空調装置であって、熱源ポンプにより複数の熱源から送出された熱源水を往ヘッダーに集束し、複数の負荷それぞれに熱源水を送給し、各負荷からの還流水を還ヘッダーに集束し、各熱源に還流水を戻すように配管接続すると共に、往ヘッダーと還ヘッダーとの間にバランス管を接続し、往ヘッダー内の熱源水の温度を検出する熱源水温度検出手段を設け、熱源水温度検出手段によって検出された温度に基づいて熱源の温度制御を行う制御手段が設けられてなることを特徴とする。   In order to achieve the above object, the present invention is an air conditioner having a primary side as a heat source and a secondary side as a load via a forward header and a return header, and a heat source sent from a plurality of heat sources by a heat source pump Concentrate the water on the forward header, supply heat source water to each of the multiple loads, condense the reflux water from each load to the return header, connect the piping to return the reflux water to each heat source, A balance pipe is connected between the return header and a heat source water temperature detecting means for detecting the temperature of the heat source water in the forward header is provided, and the temperature of the heat source is controlled based on the temperature detected by the heat source water temperature detecting means. Control means is provided.

上記構成によれば、往ヘッダー内の熱源水の温度を検出することにより、負荷が増え、二次側の還流水がバランス管を、還ヘッダーから往ヘッダーへと流れる(以下、「逆流する」と記載)ことを速やかに検出し、制御手段により熱源の温度制御を実行することができる。   According to the above configuration, by detecting the temperature of the heat source water in the forward header, the load increases and the secondary reflux water flows from the return header to the forward header through the balance pipe (hereinafter referred to as “reverse flow”). And the temperature control of the heat source can be executed by the control means.

さらに還ヘッダーの入口における還流水の温度を検出する還流水一次温度検出手段と、還ヘッダーの出口における還流水の温度を検出する還流水二次温度検出手段と、バランス管内の水温を検出するバランス管内水温検出手段とを設け、熱源水温度検出手段、還流水一次温度検出手段、還流水二次温度検出手段及びバランス管内水温検出手段によって検出された温度を必要に応じて選択し、その選択された温度に基づいて熱源の温度制御及び熱源ポンプによる流量制御を行う制御手段が設けられてなることを特徴とする。   Further, a reflux water primary temperature detecting means for detecting the temperature of the reflux water at the return header inlet, a reflux water secondary temperature detecting means for detecting the temperature of the reflux water at the return header outlet, and a balance for detecting the water temperature in the balance pipe. The temperature detected by the heat source water temperature detection means, the reflux water primary temperature detection means, the reflux water secondary temperature detection means, and the balance pipe water temperature detection means is selected as necessary. Control means for controlling the temperature of the heat source and the flow rate control by the heat source pump based on the measured temperature is provided.

上記構成によれば、配管接続構造と要所への温度検出手段の配設とにより、負荷変動に伴う一次側と二次側との間の流量バランスの崩れを速やかに検出し、制御手段により熱源の温度制御と流量制御とを実行することができる。   According to the above configuration, the flow rate balance between the primary side and the secondary side due to load fluctuation is quickly detected by the pipe connection structure and the temperature detection means at the important points, and the control means Temperature control and flow rate control of the heat source can be executed.

上記構成において、複数の熱源のうち特定の熱源に対応する熱源ポンプを流量可変構造とし、それを制御手段による制御対象とすることにより、制御構成をより簡易に構成することができる。   In the above configuration, the heat source pump corresponding to a specific heat source among the plurality of heat sources has a variable flow rate structure, and is controlled by the control means, whereby the control configuration can be configured more simply.

また、往ヘッダーは、熱源ポンプにより複数の熱源から送出された熱源水を集束する往一次ヘッダーと、複数の負荷それぞれに熱源水を供給する往二次ヘッダーとから構成され、還ヘッダーは、各負荷からの還流水を集束する還一次ヘッダーと、各熱源に還流水を戻す還二次ヘッダーとから構成されている。   The forward header is composed of a forward primary header that focuses heat source water sent from a plurality of heat sources by a heat source pump, and a forward and secondary header that supplies heat source water to each of a plurality of loads. It consists of a return primary header that focuses the reflux water from the load and a return secondary header that returns the reflux water to each heat source.

上記構成によれば、往ヘッダー内では複数の熱源からの熱源水を混合し、還ヘッダー内では各負荷からの還流水を混合できるので、各負荷及び各熱源に均一な温度の熱源水、還流水を供給できる。   According to the above configuration, heat source water from a plurality of heat sources can be mixed in the forward header, and reflux water from each load can be mixed in the return header. Can supply running water.

また、往ヘッダー及び還ヘッダーを介して一次側を熱源とし、二次側を負荷とする空調装置の制御方法であって、空調装置は、熱源ポンプにより複数の熱源から送出された熱源水を往ヘッダーに集束し、複数の負荷それぞれに熱源水を供給し、各負荷からの還流水を還ヘッダーに集束し、各熱源に還流水を戻すように配管接続すると共に、往ヘッダーと還ヘッダーとの間にバランス管を接続して構成され、往ヘッダー内の熱源水温度を検出して、この熱源水温度に基づいて熱源を温度制御することを特徴とする。   Also, there is provided a control method for an air conditioner using a primary side as a heat source and a secondary side as a load via a forward header and a return header. The air conditioner sends heat source water sent from a plurality of heat sources by a heat source pump. Concentrate on the header, supply heat source water to each of the multiple loads, condense the reflux water from each load to the return header, connect the piping to return the reflux water to each heat source, and connect the forward header and return header The heat source water temperature in the forward header is detected, and the temperature of the heat source is controlled based on the heat source water temperature.

上記制御方法によれば、往ヘッダー内の熱源水温度によりバランス管の逆流が速やかに検出でき、熱源の温度制御を実行することができる。   According to the above control method, the backflow of the balance pipe can be detected quickly based on the heat source water temperature in the forward header, and the temperature control of the heat source can be executed.

また、上記制御方法に加えて、還ヘッダーの入口における還流水一次温度と、還二次ヘッダーの出口における還流水二次温度とを検出して、還流水一次温度と還流水二次温度との温度差に基づいて熱源ポンプを流量制御し、バランス管内の水温検出に基づいて熱源ポンプを流量制御することを特徴とする。   In addition to the above control method, the primary temperature of the reflux water at the inlet of the return header and the secondary temperature of the reflux water at the outlet of the secondary header are detected, and the primary temperature of the reflux water and the secondary temperature of the reflux water are detected. The flow rate of the heat source pump is controlled based on the temperature difference, and the flow rate of the heat source pump is controlled based on the detection of the water temperature in the balance pipe.

上記制御方法によれば、負荷変動に伴う一次側と二次側との間の流量バランスの崩れを速やかに検出し、熱源の温度制御と流量制御とを実行することができるので、制御が簡易であり、より確実な制御を速やかに実行することができ、熱源の負荷率が高い状態を保って運転することができる。   According to the above control method, the flow rate balance between the primary side and the secondary side due to load fluctuation can be quickly detected, and the temperature control and flow rate control of the heat source can be executed, so the control is simple. Thus, more reliable control can be executed promptly and operation can be performed while maintaining a high load factor of the heat source.

また、上記制御方法において、往ヘッダー内の熱源水温度と、熱源から送出された熱源水の温度とが一致するように、熱源を温度制御することにより、制御構成が簡易となり、負荷に送給する熱源水温度の変化を防止することができる。   In the above control method, the temperature of the heat source is controlled so that the temperature of the heat source water in the forward header matches the temperature of the heat source water sent from the heat source, thereby simplifying the control configuration and supplying the load to the load. It is possible to prevent the heat source water temperature from changing.

また、還流水一次温度と還流水二次温度との温度差に基づいて特定の熱源に対応する熱源ポンプを流量制御することにより、制御構成が簡易であり、負荷変動を速やかに検知し
て熱源の入口、出口間の温度差を大きくして熱源の負荷率を高い状態に維持することができる。
In addition, by controlling the flow rate of the heat source pump corresponding to a specific heat source based on the temperature difference between the primary temperature of the reflux water and the secondary temperature of the reflux water, the control configuration is simple and the load source can be detected quickly to detect the heat source. By increasing the temperature difference between the inlet and outlet, the load factor of the heat source can be kept high.

また、バランス管内の水温検出に基づいて特定の熱源に対応する熱源ポンプを流量制御することにより、負荷変動をより速やかに検知することができ、上記還流水一次温度と還流水二次温度との温度差に基づく制御を補間することができる。   Further, by controlling the flow rate of the heat source pump corresponding to the specific heat source based on the detection of the water temperature in the balance pipe, the load fluctuation can be detected more quickly, and the above-mentioned reflux water primary temperature and reflux water secondary temperature can be detected. Control based on the temperature difference can be interpolated.

本発明によれば、往ヘッダー内の熱源水の温度を検出する熱源水温度検出手段を設け、前記熱源水温度検出手段によって検出された温度に基づいて熱源の温度制御を行う制御手段を設けたことにより、バイパス管や流量計も不要で設備や工事が複雑にならず、簡易な制御で送水温度が上昇した冷水を負荷に送ることを防止し、二次側冷水送水温度の補償ができる。   According to the present invention, the heat source water temperature detecting means for detecting the temperature of the heat source water in the forward header is provided, and the control means for controlling the temperature of the heat source based on the temperature detected by the heat source water temperature detecting means is provided. This eliminates the need for a bypass pipe and a flow meter, and does not complicate the facilities and construction, prevents the cold water whose temperature is raised by simple control from being sent to the load, and compensates the secondary side cold water feed temperature.

さらに、熱源の流量制御により、熱源の負荷率を高い状態に維持できるので、空調装置の消費電力の削減を図ることができる。   Furthermore, since the load factor of the heat source can be maintained at a high level by controlling the flow rate of the heat source, the power consumption of the air conditioner can be reduced.

図1は、本実施形態に係る空調装置の構成を示すもので、ヘッダーを介して一次側を熱源とし、二次側を負荷とする密閉タイプの空調システムとして構成されている。ここでは、冷房運転を実施する状態に構成され、熱源として冷凍機5が配設されている。複数の冷凍機(熱源)5から送給される冷水(熱源水)は、往一次ヘッダー1a及び往二次ヘッダー1bから複数の負荷6に供給され、負荷6で熱交換により温度上昇した還流水を還一次ヘッダー2a及び還二次ヘッダー2bから冷凍機5に戻し、冷却により再び冷水として負荷6に送給する循環経路が形成されている。尚、図1において、本実施形態の構成及び制御に直接的に関与しないポンプやバルブ等の記載は省略している。   FIG. 1 shows a configuration of an air conditioner according to the present embodiment, which is configured as a hermetic type air conditioning system with a primary side as a heat source and a secondary side as a load via a header. Here, the cooling operation is performed, and the refrigerator 5 is provided as a heat source. Cold water (heat source water) supplied from a plurality of refrigerators (heat sources) 5 is supplied to a plurality of loads 6 from the forward and backward headers 1a and 1b, and the reflux water whose temperature has been increased by heat exchange at the loads 6 Is returned to the refrigerator 5 from the return primary header 2a and the return secondary header 2b, and a circulation path is formed in which cooling water is supplied again to the load 6 by cooling. In FIG. 1, descriptions of pumps and valves that are not directly involved in the configuration and control of this embodiment are omitted.

複数の冷凍機5は、それぞれ所定温度(例えば、7〜9℃)の冷水を送給できるように温度設定が可能であり、制御部4により設定温度が変更できる温度可変に構成されている。これら複数の冷凍機5から送給される冷水は往一次ヘッダー1aに集束され、往ヘッダー間接続管路1cから往二次ヘッダー1bに送られ、往二次ヘッダー1bから複数の負荷6に分配送給される。   The plurality of refrigerators 5 can be temperature-set so that cold water at a predetermined temperature (for example, 7 to 9 ° C.) can be supplied, and is configured to be variable in temperature so that the set temperature can be changed by the control unit 4. The chilled water supplied from the plurality of refrigerators 5 is concentrated on the forward and backward headers 1a, sent from the forward header connecting pipe 1c to the forward and secondary headers 1b, and distributed to the multiple loads 6 from the forward and secondary headers 1b. Delivery is paid.

負荷6は空調機等であって、送給されてきた冷水と空気との間で熱交換を行って冷房用送風空気を冷却する。複数の負荷6において熱交換により温度上昇した冷水は還流水として還一次ヘッダー2aに集束され、還ヘッダー間接続管路2cから還二次ヘッダー2bに送られ、還二次ヘッダー2bにより分配され、それぞれ冷水ポンプ(熱源ポンプ)3から複数の冷凍機5にそれぞれ還流する。前記冷水ポンプ3による運転流量は一定であるが、そのうち第1の冷凍機5−1に送水する第1の冷水ポンプ3−1については、制御部4により運転流量が調整される流量可変に構成されている。   The load 6 is an air conditioner or the like, and performs heat exchange between the supplied cold water and air to cool the cooling air. The chilled water whose temperature has risen due to heat exchange in the plurality of loads 6 is concentrated as reflux water on the return primary header 2a, sent from the return header connecting pipe 2c to the return secondary header 2b, and distributed by the return secondary header 2b. Each is recirculated from the cold water pump (heat source pump) 3 to the plurality of refrigerators 5. The operation flow rate by the cold water pump 3 is constant, but the first cold water pump 3-1 that supplies water to the first refrigerator 5-1 is configured to have a variable flow rate that is adjusted by the control unit 4. Has been.

また、往ヘッダー間接続管路1cと還ヘッダー間接続管路2cとの間にバランス管7が接続されており、一次側と二次側との間の流量に差が生じたとき、往ヘッダー間接続管路1cから還ヘッダー間接続管路2cに、あるいは還ヘッダー間接続管路2cから往ヘッダー間接続管路1cにバランス水流が流れる。   Further, when the balance pipe 7 is connected between the connection line 1c between the forward headers and the connection line 2c between the return headers, and there is a difference in the flow rate between the primary side and the secondary side, the forward header A balanced water flow flows from the inter-connection pipe line 1c to the return header connection pipe line 2c, or from the return header connection pipe line 2c to the forward header connection pipe line 1c.

上記冷水の循環経路の要所における水温を検出するために、往ヘッダー間接続管路1c内の水温T1を検出するに冷水温度センサ(熱源水温度検出手段)11、還一次ヘッダー2aの出口における水温T2を検出する還流水一次温度センサ(還流水一次温度検出手段)12、還二次ヘッダー2bの入口における水温T3を検出する還流水二次温度センサ(還流水二次温度検出手段)13、バランス管7内の水温T4を検出するバランス水温センサ(バランス管内水温検出手段)14がそれぞれ配設され、各温度センサによる検出温度は制御部4に入力される。負荷の冷水入口温度をSPとする。   In order to detect the water temperature at the key points of the chilled water circulation path, the chilled water temperature sensor (heat source water temperature detecting means) 11 and the outlet of the return primary header 2a are used to detect the water temperature T1 in the connecting line 1c between the forward headers. A reflux water primary temperature sensor (reflux water primary temperature detection means) 12 for detecting the water temperature T2, a reflux water secondary temperature sensor (reflux water secondary temperature detection means) 13 for detecting the water temperature T3 at the inlet of the return secondary header 2b, Balance water temperature sensors (balance pipe water temperature detecting means) 14 for detecting the water temperature T4 in the balance pipe 7 are provided, and the detected temperatures by the respective temperature sensors are input to the control unit 4. Let the cold water inlet temperature of the load be SP.

前記制御部4は、冷水温度センサ11から入力された往ヘッダー間接続管路1c内の水温T1とSPが一致するように冷凍機5の出口温度を制御すると共に、還流水一次温度センサ12から入力される還一次ヘッダー2aの出口水温T2と還流水二次温度センサ13から入力される還二次ヘッダー2bの入口水温T3とが一致するように第1の冷水ポンプ3−1の運転を制御する。以下、図2に示すフローチャートを参照して制御部4による本空調装置の運転制御手順について説明する。尚、図2に示すS1,S2…は制御手順を示すステップ番号であって、本文中に添記する番号と一致する。   The control unit 4 controls the outlet temperature of the refrigerator 5 so that the water temperature T1 in the forward header connecting pipe 1c input from the cold water temperature sensor 11 coincides with the SP, and from the reflux water primary temperature sensor 12. The operation of the first cold water pump 3-1 is controlled such that the input outlet water temperature T2 of the return primary header 2a matches the inlet water temperature T3 of the return secondary header 2b input from the reflux water secondary temperature sensor 13. To do. Hereinafter, the operation control procedure of the air conditioner by the control unit 4 will be described with reference to the flowchart shown in FIG. 2, S1, S2,... Are step numbers indicating control procedures, and coincide with numbers appended in the text.

まず、各冷凍機5から送出される冷水の出口温度がSP(例えば、9℃)になるように温度設定し(S1)、空調装置の運転を開始する。運転開始により冷水は負荷6に供給され、還流水として冷凍機5に戻され、冷却して再び送給する冷水の循環がなされるので、各温度センサは検出した温度を制御部4に入力する(S2)。   First, the temperature is set so that the outlet temperature of the cold water delivered from each refrigerator 5 becomes SP (for example, 9 ° C.) (S1), and the operation of the air conditioner is started. When the operation is started, the cold water is supplied to the load 6, returned to the refrigerator 5 as the reflux water, and chilled water to be cooled and fed again is circulated, so that each temperature sensor inputs the detected temperature to the control unit 4. (S2).

制御部4は、還流水一次温度センサ12から入力される還一次ヘッダー2aの出口水温T2と、還流水二次温度センサ13から入力される還二次ヘッダー2bの入口水温T3とを比較し、T2>T3であるか否かを判断し(S3)、T2>T3である場合には、第1の冷水ポンプ3−1の運転流量を減少させて第1の冷凍機5−1に対する還流水の流量を減少させる(S4)。減少し続けてよいかは、バランス管7内の水温T4の急変により判断し(S6)、急変の場合、S3に戻りT2=T3となっていると判断して、第1の冷水ポンプ3−1の運転流量を増加させて第1の冷凍機5−1に対する還流水の流量を増加させる(S5)。バランス管7内の水温T4が急変していない場合(S6)は、再度T2とT3を比較し(S7)、T2=T3になるまで、第1の冷水ポンプ3−1の運転流量を減少し続ける(S3→S4→S6→S7→S3の繰返し)。   The control unit 4 compares the outlet water temperature T2 of the return primary header 2a input from the reflux water primary temperature sensor 12 with the inlet water temperature T3 of the return secondary header 2b input from the reflux water secondary temperature sensor 13, It is determined whether or not T2> T3 (S3). If T2> T3, the operation flow rate of the first chilled water pump 3-1 is decreased to return water to the first refrigerator 5-1. Is decreased (S4). Whether or not it can continue to be decreased is determined by a sudden change in the water temperature T4 in the balance pipe 7 (S6), and in the case of a sudden change, it returns to S3 and determines that T2 = T3, and the first cold water pump 3- 1 is increased to increase the flow rate of the reflux water to the first refrigerator 5-1 (S5). If the water temperature T4 in the balance pipe 7 has not changed suddenly (S6), T2 and T3 are compared again (S7), and the operating flow rate of the first cold water pump 3-1 is decreased until T2 = T3. Continue (repeat of S3-> S4-> S6-> S7-> S3).

還流水一次温度センサ12と還流水二次温度センサ13とは、還ヘッダー間接続管路2cの両端での水温を検出しているので、還ヘッダー間接続管路2cにバランス管7から冷水の流入があったときには還流水に冷水が混合するので、還流水二次温度センサ13の検出温度T3は低下してT2>T3となる。即ち、バランス管7から還ヘッダー間接続管路2cに冷水が流れ込む状態は、負荷6が減少した状態と判断できるので、制御部4は制御ステップS4のように第1の冷水ポンプ3−1の運転流量を減少させて第1の冷凍機5−1に対する還流水の流量を減少させる制御を実行する。その結果、還ヘッダー間接続管路2cに流入する冷水の流量が減少してバランス管7に流れる冷水がなくなり、T2=T3となる。この時、バランス管7内の水温T4の急変を監視することにより、流量の減少の停止及び増加を早めに行い、T2=T3の安定した状態が実現可能となる。また、T2>T3の状態は、冷凍機5の入口温度は低くなり、冷凍機5の出入り口温度差が小さく負荷率も低くなる。すなわち、上記の早めの流量変化により、T2=T3を実現することが、冷凍機5の負荷率も高く維持し、消費電力を抑えることになる(負荷率と消費電力の関係は後述)。   Since the reflux water primary temperature sensor 12 and the reflux water secondary temperature sensor 13 detect the water temperature at both ends of the return header connecting pipe line 2c, the cooling water is supplied from the balance pipe 7 to the return header connecting pipe 2c. Since cold water is mixed with the reflux water when there is an inflow, the detected temperature T3 of the reflux water secondary temperature sensor 13 decreases and T2> T3. That is, the state in which the chilled water flows from the balance pipe 7 to the return header connecting pipe line 2c can be determined to be a state in which the load 6 has decreased, so that the control unit 4 controls the first chilled water pump 3-1 as in the control step S4. Control which reduces the flow volume of the recirculation | reflux water with respect to the 1st refrigerator 5-1 by reducing an operation flow volume is performed. As a result, the flow rate of the cold water flowing into the return header connecting pipe line 2c decreases, and there is no cold water flowing into the balance pipe 7, and T2 = T3. At this time, by monitoring a sudden change in the water temperature T4 in the balance pipe 7, the flow rate can be stopped and increased quickly, and a stable state of T2 = T3 can be realized. In the state of T2> T3, the inlet temperature of the refrigerator 5 is low, the temperature difference between the inlet and outlet of the refrigerator 5 is small, and the load factor is also low. That is, realizing T2 = T3 by the earlier flow rate change maintains the load factor of the refrigerator 5 high and suppresses power consumption (the relationship between the load factor and power consumption will be described later).

また、バランス管7内を流れる水の温度T4はバランス水温センサ14によって検出されて制御部4に入力されるので、バランス管内水温T4が急変したことが検出されたとき(S6)、負荷状態が変動したと判断できる。即ち、負荷6が増加すると、還ヘッダー間接続管路2cからバランス管7を通じて往ヘッダー間接続管路1cに還流水が流れるので、バランス水温センサ14は温度上昇した還流水の温度(例えば、17℃)を検出する。   Further, since the temperature T4 of the water flowing in the balance pipe 7 is detected by the balance water temperature sensor 14 and inputted to the control unit 4, when it is detected that the water temperature T4 in the balance pipe has suddenly changed (S6), the load state is changed. It can be judged that it has fluctuated. That is, when the load 6 increases, the reflux water flows from the return header connecting pipe 2c through the balance pipe 7 to the forward header connecting pipe 1c, so that the balance water temperature sensor 14 detects the temperature of the reflux water (for example, 17 ° C) is detected.

逆に、負荷6が減少すると、往ヘッダー間接続管路1cからバランス管7を通じて還ヘッダー間接続管路2cに冷水が流れるので、バランス水温センサ14は冷水の温度(例えば、9℃)を検出する。即ち、バランス管7内を流れる水の温度は流れ方向によって急変する。制御部4はバランス水温センサ14の検出温度を監視することにより、前述した制御ステップS3〜S5の制御動作により第1の冷水ポンプ3−1による流量制御が正常になされたか否かを判断することもでき、制御の修正動作を実行することができる。   Conversely, when the load 6 decreases, cold water flows from the forward header connecting pipe 1c to the return header connecting pipe 2c through the balance pipe 7, so that the balance water temperature sensor 14 detects the temperature of the cold water (for example, 9 ° C.). To do. That is, the temperature of the water flowing in the balance pipe 7 changes suddenly depending on the flow direction. The control unit 4 monitors the temperature detected by the balance water temperature sensor 14 to determine whether or not the flow control by the first cold water pump 3-1 has been normally performed by the control operations of the control steps S3 to S5 described above. The control correction operation can be executed.

第1の冷水ポンプ3−1による流量調整が実行されることにより、バランス管7を通じた冷水又は還流水の流通はなくなるのでT2=T3となり、負荷6に所定温度の冷水が所定量送給される(S7)。   By executing the flow rate adjustment by the first cold water pump 3-1, there is no circulation of cold water or reflux water through the balance pipe 7, so that T2 = T3 and a predetermined amount of cold water of a predetermined temperature is supplied to the load 6. (S7).

また、制御部4は入力された検出温度を監視して、往ヘッダー間接続管路1c内の水温T1とSPとの間に差が生じたとき(S8)、T1>SPである場合には、冷凍機5の設定温度を低い側に変更して冷凍機5から送出される冷水の出口温度SPが低くなるように制御する(S9)。逆に、T1<SPである場合には、冷凍機5の設定温度を高い側に変更して冷凍機5から送出される冷水の出口温度が高くなるように制御する(S10)。   Further, the control unit 4 monitors the input detected temperature, and when a difference occurs between the water temperature T1 and SP in the connecting line 1c between the forward headers (S8), when T1> SP. Then, the set temperature of the refrigerator 5 is changed to the lower side, and the outlet temperature SP of the cold water sent from the refrigerator 5 is controlled to be lowered (S9). On the other hand, when T1 <SP, the set temperature of the refrigerator 5 is changed to a higher side, and control is performed so that the outlet temperature of the cold water sent from the refrigerator 5 becomes higher (S10).

負荷6の変動があると、往二次ヘッダー1bから負荷に送給される冷水の流量が変動するため、バランス管7に水流が発生する。負荷6が増加した場合には、往二次ヘッダー1bから負荷に送給される冷水の流量が増加するため、還ヘッダー間接続管路2cからバランス管7を通って往ヘッダー間接続管路1cに向かう水流が発生し、温度の高い還流水が冷凍機5から送出されてきた冷水に混合される。   When the load 6 varies, the flow rate of the cold water supplied from the forward / secondary header 1b to the load varies, so that a water flow is generated in the balance pipe 7. When the load 6 increases, the flow rate of the cold water supplied from the forward / secondary header 1b to the load increases, so that the forward header connecting pipe 1c passes from the return header connecting pipe 2c through the balance pipe 7. The water flow toward the water is generated, and the reflux water having a high temperature is mixed with the cold water sent from the refrigerator 5.

従って、往ヘッダー間接続管路1c内の冷水温度T1は上昇してT1>SPとなる、すなわち負荷6に送給する冷水の温度がSP(例えば、9℃)より高くなるので、制御部4は制御ステップS9のように冷凍機5の設定温度を低い側に変更して冷凍機5から送出される冷水の出口温度が低くなるように制御する(S9)。この制御により往一次ヘッダー1aに送給されてくる冷水の温度は低下し、バランス管7から往ヘッダー間接続管路1cに流入する温度の高い還流水と混合するので、往二次ヘッダー1bを流れる冷水温度T1はT1=SPとなる。例えば冷凍機5の出口温度を7℃に下げた場合、バランス管7からの約16℃の還流水が流入しても、冷凍機5からの流量が多いため、T1=9℃は可能である。   Therefore, the chilled water temperature T1 in the connecting line 1c between the forward headers rises to satisfy T1> SP, that is, the temperature of the chilled water supplied to the load 6 becomes higher than SP (for example, 9 ° C.). As shown in the control step S9, the set temperature of the refrigerator 5 is changed to a lower side to control the outlet temperature of the cold water sent from the refrigerator 5 to be lower (S9). By this control, the temperature of the cold water supplied to the forward / first header 1a is lowered and mixed with the high-temperature reflux water flowing from the balance pipe 7 into the forward header connecting pipe 1c. The flowing cold water temperature T1 is T1 = SP. For example, when the outlet temperature of the refrigerator 5 is lowered to 7 ° C., even if reflux water of about 16 ° C. from the balance pipe 7 flows in, T1 = 9 ° C. is possible because the flow rate from the refrigerator 5 is large. .

制御部4は、引き続き各センサからの検出温度入力を監視して、T2=T3及びT1=SPの条件が崩れたとき、制御ステップS3以降の制御動作を実行する。   The control unit 4 continuously monitors the detected temperature input from each sensor, and executes the control operation after the control step S3 when the conditions of T2 = T3 and T1 = SP are broken.

以上説明した空調装置の構成及び制御方法により、各冷凍機5の入口側温度(還流水温度)と出口側温度(冷水温度)との差が大きく、各冷凍機5を高い負荷率で運転させることができる。冷凍機5の特性は、図3のグラフに示すように、冷却能力が高い状態で運転する方が消費電力に対する比率がよくなるので、各冷凍機5を高い負荷率で運転することが望ましく、負荷6の増加で冷凍機5の冷却能力が100%を越えるような状態にならない限り冷凍機5を増段せず、少ない冷凍機を高い負荷率で運転させることにより消費電力を抑えた空調装置の運転が可能となる。図3の縦軸の消費電力比、横軸の冷却能力比は、それぞれ定格値に対する割合で%表示している。   Due to the configuration and control method of the air conditioner described above, the difference between the inlet side temperature (reflux water temperature) and the outlet side temperature (cold water temperature) of each refrigerator 5 is large, and each refrigerator 5 is operated at a high load factor. be able to. As shown in the graph of FIG. 3, the characteristics of the refrigerator 5 are preferably operated at a high load factor because each of the refrigerators 5 is operated at a high load factor because the ratio to the power consumption is improved when the cooling capacity is high. As long as the cooling capacity of the refrigerator 5 does not exceed 100% due to an increase of 6, the refrigerator 5 is not increased in stage, and the air conditioner that suppresses power consumption by operating a small number of refrigerators at a high load factor. Driving is possible. The power consumption ratio on the vertical axis and the cooling capacity ratio on the horizontal axis in FIG. 3 are each expressed as a percentage of the rated value.

尚、上記実施形態は熱源として冷凍機を用いた冷房運転時の構成及び制御方法を示したが、熱源として加熱機を用いることにより暖房運転の構成及び制御方法を同様に実施することができる。   In addition, although the said embodiment showed the structure and control method at the time of air_conditionaing | cooling operation which used the refrigerator as a heat source, the structure and control method of heating operation can be implemented similarly by using a heater as a heat source.

また、本実施形態では、バランス管7を往ヘッダー間接続管路1cと還ヘッダー間接続管路2cとの間に設けたが、少なくとも一方に往二次ヘッダー1bまたは還二次ヘッダー2bを接続しなければ、往ヘッダーと還ヘッダーの接続位置は問わない。各二次ヘッダーへの接続は、バランス管7からの流入水が十分に混合されないまま、負荷や熱源に供給されるからである。   Further, in this embodiment, the balance pipe 7 is provided between the outgoing header connecting pipe 1c and the returning header connecting pipe 2c, but the outgoing secondary header 1b or the returning secondary header 2b is connected to at least one of them. Otherwise, the connection position of the forward header and the return header is not limited. This is because the connection to each secondary header is supplied to a load or a heat source without the inflow water from the balance pipe 7 being sufficiently mixed.

また、二次側冷水送水温度の補償のみを行ないたい場合は、還流水一次温度センサ(還流水一次温度検出手段)12、還流水二次温度センサ(還流水二次温度検出手段)13、バランス水温センサ(バランス管内水温検出手段)14、第1の冷水ポンプ3−1についての流量可変の構成および図2におけるS3〜S7の制御手順も不要となり、簡単な構成、制御で、送水温度が上昇した冷水を負荷に送ることを防止できる。   Further, when it is desired to only compensate the secondary side cold water supply temperature, the reflux water primary temperature sensor (reflux water primary temperature detection means) 12, the reflux water secondary temperature sensor (reflux water secondary temperature detection means) 13, balance The structure of variable flow rate for the water temperature sensor (balance pipe water temperature detecting means) 14, the first chilled water pump 3-1 and the control procedure of S3 to S7 in FIG. 2 are not required, and the water supply temperature rises with a simple structure and control. It is possible to prevent the chilled water from being sent to the load.

以上の説明の通り本発明によれば、配管接続構造と要所への温度検出手段の配設とにより、負荷変動に伴う一次側と二次側との間の流量バランスの崩れを速やかに検出し、制御手段により熱源の温度制御と流量制御とを実行し、熱源の負荷率を高い状態に維持する制御がなされる。従って、比較的規模が大きい空調装置を設置する設備や工事のコストを削減し、消費電力の削減によるランニングコストの減少を図ることができる。   As described above, according to the present invention, the flow rate balance between the primary side and the secondary side due to load fluctuations can be quickly detected by the pipe connection structure and the arrangement of the temperature detection means at the important points. Then, the temperature control and flow rate control of the heat source are executed by the control means, and control is performed to maintain the load factor of the heat source at a high state. Accordingly, it is possible to reduce the cost of facilities and construction for installing a relatively large air conditioner, and to reduce the running cost by reducing the power consumption.

本発明の空調装置及びその制御方法は、熱源で生成された熱源水を往ヘッダーを介して負荷に供給し、負荷で熱交換がなされた還流水を環ヘッダーを介して熱源に戻し、熱回復させて再び負荷に供給する空調装置に利用することが可能である。   The air conditioner of the present invention and the control method thereof supply heat source water generated by the heat source to the load via the forward header, and return the reflux water that has been heat exchanged by the load to the heat source via the ring header to recover the heat. It can be used for an air conditioner that supplies the load again.

実施形態に係る空調装置の構成を示すブロック図The block diagram which shows the structure of the air conditioner which concerns on embodiment 同上空調装置の制御手順を示すフローチャートThe flowchart which shows the control procedure of an air conditioner same as the above 冷凍機の冷却能力と消費電力との関係を示すグラフGraph showing the relationship between cooling capacity and power consumption of refrigerators 従来技術に係る空調装置の構成を示すブロック図The block diagram which shows the structure of the air conditioner which concerns on a prior art

符号の説明Explanation of symbols

1a 往一次ヘッダー
1b 往二次ヘッダー
1c 往ヘッダー間接続管路
2a 還一次ヘッダー
2b 還二次ヘッダー
2c 還ヘッダー間接続管路
3−1 第1の冷水ポンプ(第1の熱源ポンプ)
3 冷水ポンプ(熱源ポンプ)
4 制御部(制御手段)
5 冷凍機(熱源)
6 負荷
7 バランス管
11 冷水温度センサ(熱源水温度検出手段)
12 還流水一次温度センサ(還流水一次温度検出手段)
13 還流水二次温度センサ(還流水二次温度検出手段)
14 バランス水温センサ(バランス管内水温検出手段)

DESCRIPTION OF SYMBOLS 1a Outgoing primary header 1b Outgoing secondary header 1c Outgoing header connection line 2a Returning primary header 2b Returning secondary header 2c Returning header connection line 3-1 1st cold water pump (1st heat source pump)
3 Cold water pump (heat source pump)
4 Control unit (control means)
5 Refrigerator (heat source)
6 Load 7 Balance tube 11 Chilled water temperature sensor (heat source water temperature detection means)
12 Reflux water primary temperature sensor (Reflux water primary temperature detection means)
13 Reflux water secondary temperature sensor (Reflux water secondary temperature detection means)
14 Balance water temperature sensor (balance pipe water temperature detection means)

Claims (9)

往ヘッダー及び還ヘッダーを介して一次側を熱源とし、二次側を負荷とする空調装置であって、
熱源ポンプにより複数の熱源から送出された熱源水を前記往ヘッダーに集束し、複数の負荷それぞれに前記熱源水を送給し、各負荷からの還流水を前記還ヘッダーに集束し、各熱源に還流水を戻すように配管接続すると共に、前記往ヘッダーと前記還ヘッダーとの間にバランス管を接続し、
前記往ヘッダー内の熱源水の温度を検出する熱源水温度検出手段を設け、
前記熱源水温度検出手段によって検出された温度に基づいて前記熱源の温度制御を行う制御手段が設けられてなることを特徴とする空調装置。
An air conditioner having a primary side as a heat source and a secondary side as a load via a forward header and a return header,
Heat source water sent from a plurality of heat sources by a heat source pump is concentrated on the forward header, the heat source water is supplied to each of a plurality of loads, and the reflux water from each load is concentrated on the return header to each heat source. Connect the pipe so as to return the reflux water, and connect a balance pipe between the forward header and the return header,
A heat source water temperature detecting means for detecting the temperature of the heat source water in the forward header is provided,
An air conditioner comprising control means for controlling the temperature of the heat source based on the temperature detected by the heat source water temperature detection means.
前記還ヘッダーの入口における還流水の温度を検出する還流水一次温度検出手段と、前記還ヘッダーの出口における還流水の温度を検出する還流水二次温度検出手段と、前記バランス管内の水温を検出するバランス管内水温検出手段とを設け、
前記熱源水温度検出手段、還流水一次温度検出手段、還流水二次温度検出手段及びバランス管内水温検出手段によって検出された温度に基づいて前記熱源の温度制御及び前記熱源ポンプによる流量制御を行う制御手段が設けられたことを特徴とする請求項1に記載の空調装置。
Reflux water primary temperature detecting means for detecting the temperature of the reflux water at the return header inlet, reflux water secondary temperature detecting means for detecting the temperature of the reflux water at the return header outlet, and detecting the water temperature in the balance pipe Providing a water temperature detecting means in the balance pipe,
Control for performing temperature control of the heat source and flow rate control by the heat source pump based on the temperatures detected by the heat source water temperature detection means, reflux water primary temperature detection means, reflux water secondary temperature detection means and balance pipe water temperature detection means. The air conditioner according to claim 1, further comprising means.
前記複数の熱源のうち特定の熱源に対応する熱源ポンプを流量可変構造とし、その熱源ポンプの流量を制御手段による制御対象とする請求項2に記載の空調装置。 The air conditioner according to claim 2, wherein a heat source pump corresponding to a specific heat source among the plurality of heat sources has a variable flow rate structure, and a flow rate of the heat source pump is controlled by a control unit. 前記往ヘッダーは、前記熱源ポンプにより複数の熱源から送出された熱源水を集束する往一次ヘッダーと、前記複数の負荷それぞれに熱源水を供給する往二次ヘッダーとから構成され、前記還ヘッダーは、各負荷からの還流水を集束する還一次ヘッダーと、各熱源に還流水を戻す還二次ヘッダーとから構成された請求項1に記載の空調装置。 The forward header is composed of a forward primary header that focuses heat source water sent from a plurality of heat sources by the heat source pump, and a forward secondary header that supplies the heat source water to each of the plurality of loads, and the return header is The air conditioner according to claim 1, comprising a return primary header for converging the reflux water from each load and a return secondary header for returning the reflux water to each heat source. 少なくとも往一次ヘッダーと往二次ヘッダーからなる往ヘッダー及び少なくとも還一次ヘッダーと還二次ヘッダーからなる還ヘッダーを介して一次側を熱源とし、二次側を負荷とする空調装置の制御方法であって、
前記空調装置は、熱源ポンプにより複数の熱源から送出された熱源水を前記往一次ヘッダーに集束し、前記往二次ヘッダーから複数の負荷それぞれに熱源水を供給し、各負荷からの還流水を前記還一次ヘッダーに集束し、前記還二次ヘッダーから各熱源に還流水を戻すように配管接続すると共に、前記往一次ヘッダーと前記還一次ヘッダーの出口から前記還二次ヘッダーの入口に至る管路との間にバランス管を接続して構成され、
前記往一次ヘッダーから前記往二次ヘッダーに至る管路内の熱源水温度を検出して、この熱源水温度に基づいて熱源を温度制御することを特徴とする空調装置の制御方法。
It is an air conditioner control method in which the primary side is a heat source and the secondary side is a load via at least a forward header consisting of a forward primary header and a secondary secondary header and a return header consisting of at least a primary return header and a secondary return header. And
The air conditioner focuses heat source water sent from a plurality of heat sources by a heat source pump on the forward and primary headers, supplies heat source water to each of a plurality of loads from the forward and secondary headers, and supplies reflux water from each load. A pipe that converges on the return primary header and pipes the return water from the return secondary header to each heat source and connects the return primary header and the return primary header to the return secondary header inlet. Constructed by connecting a balance pipe to the road,
A method for controlling an air conditioner, comprising: detecting a temperature of a heat source water in a pipe line from the forward primary header to the forward secondary header, and controlling the temperature of the heat source based on the heat source water temperature.
前記還一次ヘッダーの出口における還流水一次温度と、前記還二次ヘッダーの入口における還流水二次温度とを検出して、前記還流水一次温度と前記還流水二次温度との温度差に基づいて熱源ポンプを流量制御し、前記バランス管内の水温検出に基づいて熱源ポンプを流量制御することを特徴とする請求項5に記載の空調装置の制御方法。 Based on the temperature difference between the reflux water primary temperature and the reflux water secondary temperature by detecting the reflux water primary temperature at the return primary header outlet and the reflux water secondary temperature at the return secondary header inlet. 6. The method for controlling an air conditioner according to claim 5, wherein the flow rate of the heat source pump is controlled, and the flow rate of the heat source pump is controlled based on detection of a water temperature in the balance pipe. 前記往ヘッダー内の熱源水温度と、前記熱源から送出された熱源水の温度とが一致するように、熱源を温度制御する請求項5に記載の空調装置の制御方法。 The method of controlling an air conditioner according to claim 5, wherein the temperature of the heat source is controlled so that the temperature of the heat source water in the forward header matches the temperature of the heat source water sent from the heat source. 前記還流水一次温度と前記還流水二次温度との温度差に基づいて複数の熱源のうち特定の熱源に対応する前記熱源ポンプを流量制御する請求項6に記載の空調装置の制御方法。 The method of controlling an air conditioner according to claim 6, wherein the flow rate of the heat source pump corresponding to a specific heat source among a plurality of heat sources is controlled based on a temperature difference between the primary temperature of the reflux water and the secondary temperature of the reflux water. 前記バランス管内の水温検出に基づいて複数の熱源のうち特定の熱源に対応する前記熱源ポンプを流量制御する請求項6に記載の空調装置の制御方法。


The method of controlling an air conditioner according to claim 6, wherein the flow rate of the heat source pump corresponding to a specific heat source among a plurality of heat sources is controlled based on detection of a water temperature in the balance pipe.


JP2005131999A 2004-10-06 2005-04-28 Air conditioner and control method thereof Expired - Fee Related JP4600139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005131999A JP4600139B2 (en) 2004-10-06 2005-04-28 Air conditioner and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004293400 2004-10-06
JP2005131999A JP4600139B2 (en) 2004-10-06 2005-04-28 Air conditioner and control method thereof

Publications (2)

Publication Number Publication Date
JP2006132918A true JP2006132918A (en) 2006-05-25
JP4600139B2 JP4600139B2 (en) 2010-12-15

Family

ID=36726608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005131999A Expired - Fee Related JP4600139B2 (en) 2004-10-06 2005-04-28 Air conditioner and control method thereof

Country Status (1)

Country Link
JP (1) JP4600139B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092916A1 (en) * 2009-02-13 2010-08-19 東芝キヤリア株式会社 Secondary pump type heat source system and secondary pump type heat source control method
JP2011231955A (en) * 2010-04-26 2011-11-17 Hitachi Appliances Inc Refrigeration system
JP2012247113A (en) * 2011-05-26 2012-12-13 Sanki Eng Co Ltd Air-conditioning piping system
JP2014185814A (en) * 2013-03-25 2014-10-02 Tokyo Gas Co Ltd Operation control method for cold/hot water supply system
JP2018128211A (en) * 2017-02-10 2018-08-16 日立ジョンソンコントロールズ空調株式会社 Refrigeration system
CN112665270A (en) * 2019-10-16 2021-04-16 东元电机股份有限公司 Load grade judging system for freezing and refrigerating device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299697A (en) * 1985-10-25 1987-05-09 Meiden Eng Kk Pumping device
JPH10213339A (en) * 1997-01-30 1998-08-11 Mitsubishi Electric Corp Air conditioner
JP2000018683A (en) * 1998-06-24 2000-01-18 Yamatake Corp Controller for heat source machine
JP2001241735A (en) * 2000-02-24 2001-09-07 Matsushita Electric Works Ltd Air conditioning system and its controlling method
JP2003269774A (en) * 2002-03-18 2003-09-25 Dai-Dan Co Ltd Flow control piping system and its construction method
JP2003294290A (en) * 2002-04-02 2003-10-15 Yamatake Corp Unit number control device of heat source and unit number control method
JP2004257707A (en) * 2003-02-27 2004-09-16 Hitachi Plant Eng & Constr Co Ltd Method and device for controlling proper capacity of heat source apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299697A (en) * 1985-10-25 1987-05-09 Meiden Eng Kk Pumping device
JPH10213339A (en) * 1997-01-30 1998-08-11 Mitsubishi Electric Corp Air conditioner
JP2000018683A (en) * 1998-06-24 2000-01-18 Yamatake Corp Controller for heat source machine
JP2001241735A (en) * 2000-02-24 2001-09-07 Matsushita Electric Works Ltd Air conditioning system and its controlling method
JP2003269774A (en) * 2002-03-18 2003-09-25 Dai-Dan Co Ltd Flow control piping system and its construction method
JP2003294290A (en) * 2002-04-02 2003-10-15 Yamatake Corp Unit number control device of heat source and unit number control method
JP2004257707A (en) * 2003-02-27 2004-09-16 Hitachi Plant Eng & Constr Co Ltd Method and device for controlling proper capacity of heat source apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092916A1 (en) * 2009-02-13 2010-08-19 東芝キヤリア株式会社 Secondary pump type heat source system and secondary pump type heat source control method
JP4975168B2 (en) * 2009-02-13 2012-07-11 東芝キヤリア株式会社 Secondary pump type heat source system and secondary pump type heat source control method
US8939196B2 (en) 2009-02-13 2015-01-27 Toshiba Carrier Corporation Secondary pump type heat source and secondary pump type heat source control method
JP2011231955A (en) * 2010-04-26 2011-11-17 Hitachi Appliances Inc Refrigeration system
JP2012247113A (en) * 2011-05-26 2012-12-13 Sanki Eng Co Ltd Air-conditioning piping system
JP2014185814A (en) * 2013-03-25 2014-10-02 Tokyo Gas Co Ltd Operation control method for cold/hot water supply system
JP2018128211A (en) * 2017-02-10 2018-08-16 日立ジョンソンコントロールズ空調株式会社 Refrigeration system
CN112665270A (en) * 2019-10-16 2021-04-16 东元电机股份有限公司 Load grade judging system for freezing and refrigerating device
CN112665270B (en) * 2019-10-16 2022-04-01 东元电机股份有限公司 Load grade judging system for freezing and refrigerating device

Also Published As

Publication number Publication date
JP4600139B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
US9664415B2 (en) Hot-water heat pump and method of controlling the same
JP5905077B2 (en) Air conditioning system
JP4600139B2 (en) Air conditioner and control method thereof
JP5537253B2 (en) Water supply control system and control method thereof
JP6644559B2 (en) Heat source control system, control method and control device
JP2015108461A (en) Number-of-active-heat-source-machines control device, heat source system, control method, and program
JP4981530B2 (en) HEAT SOURCE SYSTEM FLOW CONTROL DEVICE AND HEAT SOURCE SYSTEM FLOW CONTROL METHOD
JP5227247B2 (en) Heat source system operating method and heat source system
JP2010255985A (en) Method of operating heat source system and heat source system
JP6434848B2 (en) Heat source control system
JP5284295B2 (en) Heat source control system and heat source control method
JP5558202B2 (en) Water supply control system and control method thereof
JP2005127586A (en) Primary pump type heat source variable flow rate control system and primary pump minimum flow rate securing method
JP5379650B2 (en) Primary pump type heat source variable flow rate control system and method
JP6603627B2 (en) Air conditioning system and operation control method
JP2007271120A (en) Heating medium conveyance system
JP2006250445A (en) Operation control method in two pump-type heat source equipment
JP2001241735A (en) Air conditioning system and its controlling method
JP6832732B2 (en) Refrigeration system
JP2008226810A (en) Fuel cell power generation system
JP2009243718A (en) Heat medium transporting system
JP5038641B2 (en) Heat source device, control method and control program for flow rate of heat medium
JP2009121722A (en) Water supply pressure control system and method
EP3722697B1 (en) Hot water supply system
JP4266780B2 (en) Thermal storage heat source equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees