JP4266780B2 - Thermal storage heat source equipment - Google Patents

Thermal storage heat source equipment Download PDF

Info

Publication number
JP4266780B2
JP4266780B2 JP2003381212A JP2003381212A JP4266780B2 JP 4266780 B2 JP4266780 B2 JP 4266780B2 JP 2003381212 A JP2003381212 A JP 2003381212A JP 2003381212 A JP2003381212 A JP 2003381212A JP 4266780 B2 JP4266780 B2 JP 4266780B2
Authority
JP
Japan
Prior art keywords
heat
load
return
path
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003381212A
Other languages
Japanese (ja)
Other versions
JP2005147416A (en
Inventor
浩 向井
満 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to JP2003381212A priority Critical patent/JP4266780B2/en
Publication of JP2005147416A publication Critical patent/JP2005147416A/en
Application granted granted Critical
Publication of JP4266780B2 publication Critical patent/JP4266780B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、空調などに用いる蓄熱式熱源設備に関し、詳しくは(図2参照)、放熱用熱交換器2において蓄熱槽1に貯留の一次側熱媒Aと熱交換させて冷却又は加熱した二次側熱媒Bを放熱用往路6を通じ放熱用ポンプP1により往側合流部5へ供給するとともに、これとは並列に、熱源機4で冷却又は加熱した二次側熱媒Bを熱源機用往路7を通じ熱源機用ポンプP2により往側合流部5へ供給し、
これら放熱用熱交換器2及び熱源機4から往側合流部5に供給される二次側熱媒Bを負荷側往路8を通じ負荷側ポンプP3により負荷熱交換器9に供給するとともに、この熱媒供給に並行して負荷熱交換器9から負荷側還路10へ送出される二次側熱媒Bを放熱用還路20′と熱源機用還路21′とに分流して放熱用熱交換器2と熱源機4とに対し並列的に戻す構成にし、
この構成において、放熱用ポンプP1により往側合流部5に供給する二次側熱媒Bの流量、熱源機用ポンプP2により往側合流部5に供給する二次側熱媒Bの流量、並びに、負荷側ポンプP3により負荷熱交換器9へ供給する二次側熱媒Bの流量の夫々を負荷熱交換器9における負荷に応じて調整する流量制御手段19を設けるとともに、
往側合流部5を負荷熱交換器9からの還り側の熱媒路に対し短絡的に接続するバイパス路25′を設ける蓄熱式熱源設備に関する。
The present invention relates to a heat storage type heat source facility used for air conditioning and the like, and in detail (see FIG. 2), in the heat exchanger 2 for heat radiation, the heat storage tank 1 is subjected to heat exchange with the primary heat medium A stored and cooled or heated. The secondary side heat medium B is supplied to the forward side merging section 5 by the heat radiation pump P1 through the heat radiation path 6 and the secondary side heat medium B cooled or heated by the heat source machine 4 is used for the heat source machine in parallel with this. The heat source machine pump P2 supplies the forward side junction 5 through the forward path 7,
The secondary heat medium B supplied from the heat-dissipating heat exchanger 2 and the heat source device 4 to the forward junction 5 is supplied to the load heat exchanger 9 by the load-side pump P3 through the load-side forward path 8, and this heat In parallel with the supply of the medium, the secondary heat medium B sent from the load heat exchanger 9 to the load side return path 10 is divided into a heat return return path 20 'and a heat source machine return path 21' to radiate heat. It is configured to return in parallel to the exchanger 2 and the heat source unit 4,
In this configuration, the flow rate of the secondary side heat medium B supplied to the forward side junction unit 5 by the heat dissipation pump P1, the flow rate of the secondary side heat medium B supplied to the forward side junction unit 5 by the heat source machine pump P2, and The flow control means 19 for adjusting the flow rate of the secondary side heat medium B supplied to the load heat exchanger 9 by the load side pump P3 according to the load in the load heat exchanger 9,
The present invention relates to a heat storage type heat source facility provided with a bypass path 25 ′ that short-circuits the forward-side merging section 5 to the return side heat medium path from the load heat exchanger 9.

この種の蓄熱式熱源設備では、上記流量制御手段19による流量制御上の制御誤差など何らかの原因で、放熱用熱交換器2及び熱源機4から往側合流部5へ送る二次側熱媒Bの流量が往側合流部5から負荷熱交換器9へ送る二次側熱媒Bの流量よりも大きくなったとき、その差分の二次側熱媒Bをバイパス路25′を通じ負荷熱交換器9からの還り側の熱媒路へ短絡的に流動させることで、放熱用熱交換器2及び熱源機4の側の出力(冷熱出力又は温熱出力)と負荷熱交換器9の側の負荷(冷却負荷又は加熱負荷)との円滑な平衡を図りながら安定的な設備運転を保つようにしている。   In this type of heat storage type heat source equipment, the secondary side heat medium B sent from the heat exchanger 2 for heat dissipation and the heat source unit 4 to the forward junction 5 for some reason such as a control error in the flow rate control by the flow rate control means 19. When the flow rate of the secondary side becomes larger than the flow rate of the secondary side heat medium B sent from the forward junction 5 to the load heat exchanger 9, the difference secondary side heat medium B is passed through the bypass 25 'to the load heat exchanger. 9 is made to flow in a short-circuited manner to the return side heat medium path from 9 so that the output (cold power output or heat output) on the side of the heat exchanger 2 for heat radiation and the heat source 4 and the load on the side of the load heat exchanger 9 ( Stable facility operation is maintained while achieving a smooth balance with the cooling load or heating load.

ところで従来、この種の蓄熱式熱源設備では、負荷熱交換器9からの還り側の熱媒路を構成するのに、同図2に示す如く、負荷熱交換器9から負荷側還路10を通じて戻る二次側熱媒Bを還側ヘッダ23′に受け入れ、この還側ヘッダ23′から放熱用還路20′及び熱源機用還路21′の各々を通じて二次側熱媒Bを放熱用熱交換器2と熱源機4とに対し並列的に戻す構成にし、そして、上記バイパス路25′については、負荷熱交換器9からの還り側の熱媒路に対する接続として、還側ヘッダ23′の上流側近傍で負荷側還路10に接続する、又は、還側ヘッダ23′に接続する構造を採っていた(特許文献1参照)。
特開2002−89935公報
Conventionally, in this type of heat storage type heat source equipment, a return side heat medium path from the load heat exchanger 9 is formed, and as shown in FIG. 2, the load heat exchanger 9 passes through the load side return path 10. The returning secondary side heat medium B is received by the return side header 23 ′, and the secondary side heat medium B is radiated from the return side header 23 ′ through the heat release return path 20 ′ and the heat source unit return path 21 ′. It is configured to return in parallel to the exchanger 2 and the heat source unit 4, and the bypass path 25 ′ is connected to the return side heat medium path from the load heat exchanger 9 as a connection of the return side header 23 ′. The structure connected to the load side return path 10 in the vicinity of the upstream side or connected to the return side header 23 'has been adopted (see Patent Document 1).
JP 2002-89935 A

しかし、放熱用熱交換器2及び熱源機4の夫々で二次側熱媒Bを冷却して負荷熱交換器9での冷却負荷に対応する冷熱源設備の場合、上記した従来の設備構成では、バイパス路25′において負荷熱交換器9からの還り側熱媒路へ向かう熱媒流動が生じたとき、放熱用熱交換器2や熱源機4で冷却された二次側熱媒Bの一部がバイパス路25′を通じ負荷側還路10における還り側の二次側熱媒B(すなわち、負荷熱交換器9での冷熱消費で昇温した二次側熱媒)に混入することで、還側ヘッダ23′から放熱用熱交換器2に戻す二次側熱媒Bが低温化してしまい、この為、放熱用熱交換器2での二次側熱媒Bと一次側熱媒Aとの熱交換量(換言すれば、蓄熱槽1からの冷熱取出量)が少量に制限されて、そのときの負荷熱交換器9における冷却負荷の割に蓄熱槽1における貯留冷熱の消費が進まなくなり、これが原因で、例えば一日における設備の運転終了時に大量の冷熱が蓄熱槽1に残ったままとなる状態を招いて、省エネ面などでの蓄熱方式の利点を十分に活かせなくなる問題があった。   However, in the case of the cold source equipment corresponding to the cooling load in the load heat exchanger 9 by cooling the secondary heat medium B by the heat exchanger 2 for heat dissipation and the heat source unit 4 respectively, When the heat medium flow toward the return-side heat medium path from the load heat exchanger 9 occurs in the bypass path 25 ′, one of the secondary-side heat medium B cooled by the heat dissipation heat exchanger 2 and the heat source unit 4. Is mixed into the return side secondary heat medium B in the load side return path 10 through the bypass path 25 '(that is, the secondary side heat medium heated by the cold heat consumption in the load heat exchanger 9). The secondary side heat medium B returned from the return side header 23 ′ to the heat radiating heat exchanger 2 is lowered in temperature, so that the secondary side heat medium B and the primary side heat medium A in the heat radiating heat exchanger 2 are The amount of heat exchange (in other words, the amount of cold heat extracted from the heat storage tank 1) is limited to a small amount, and in the load heat exchanger 9 at that time The consumption of the stored cold heat in the heat storage tank 1 does not progress for the rejection load, and this causes, for example, a state in which a large amount of cold heat remains in the heat storage tank 1 at the end of the operation of the equipment in one day. There is a problem that the advantages of the heat storage method cannot be fully utilized.

そして特に、このバイパス路25′からの低温熱媒混入に原因する蓄熱槽貯留冷熱の消費の遅滞は、負荷熱交換器9における冷却負荷が極小さいとき(すなわち、負荷側ポンプP3により負荷熱交換器9に供給する二次側熱媒Bの流量が前記流量制御手段19により大きく減少側に調整される状況のとき)に生じ易い傾向があった。   In particular, the delay in the consumption of the heat stored in the heat storage tank due to the mixing of the low-temperature heat medium from the bypass 25 'occurs when the cooling load in the load heat exchanger 9 is extremely small (that is, load heat exchange by the load-side pump P3). In the situation where the flow rate of the secondary side heat medium B supplied to the vessel 9 is largely adjusted to the decrease side by the flow rate control means 19).

また、この問題は、放熱用熱交換器2及び熱源機4の夫々で二次側熱媒Bを加熱して負荷熱交換器9での加熱負荷に対応する温熱源設備の場合にも同様に存在し、バイパス路25′からの高温熱媒混入により放熱用熱交換器2に戻す二次側熱媒Bが高温化することで、蓄熱槽1における貯留温熱の消費が進まなくなって、設備の運転終了時に大量の温熱が蓄熱槽1に残ったままとなる状態を招いていた。   This problem also applies to the case of the heat source equipment corresponding to the heating load in the load heat exchanger 9 by heating the secondary heat medium B in each of the heat dissipation heat exchanger 2 and the heat source unit 4. The temperature of the secondary heat medium B that is returned to the heat radiating heat exchanger 2 due to mixing of the high temperature heat medium from the bypass passage 25 ′ is increased, and the consumption of the stored heat in the heat storage tank 1 does not proceed. At the end of the operation, a large amount of heat remained in the heat storage tank 1.

この実情に鑑み、本発明の主たる課題は、合理的な改良により上記問題を効果的に解消する点にある。   In view of this situation, the main problem of the present invention is to effectively solve the above problem by rational improvement.

本発明の第1の特徴構成は、放熱用熱交換器において蓄熱槽に貯留の一次側熱媒と熱交換させて冷却又は加熱した二次側熱媒を放熱用往路を通じ放熱用ポンプにより往側合流部へ供給するとともに、これとは並列に、熱源機で冷却又は加熱した二次側熱媒を熱源機用往路を通じ熱源機用ポンプにより前記往側合流部へ供給し、
これら放熱用熱交換器及び熱源機から前記往側合流部に供給される二次側熱媒を負荷側往路を通じ負荷側ポンプにより負荷熱交換器に供給するとともに、この熱媒供給に並行して前記負荷熱交換器から負荷側還路へ送出される二次側熱媒を放熱用還路と熱源機用還路とに分流して前記放熱用熱交換器と前記熱源機とに対し並列的に戻す構成にし、
この構成において、前記放熱用ポンプにより前記往側合流部に供給する二次側熱媒の流量、前記熱源機用ポンプにより前記往側合流部に供給する二次側熱媒の流量、並びに、前記負荷側ポンプにより前記負荷熱交換器へ供給する二次側熱媒の流量の夫々を前記負荷熱交換器における負荷に応じて調整する流量制御手段を設けるとともに、
前記往側合流部を前記負荷熱交換器からの還り側の熱媒路に対し短絡的に接続するバイパス路を設ける蓄熱式熱源設備につき、
前記負荷熱交換器からの還り側の熱媒路に対する前記バイパス路の接続として前記バイパス路を前記熱源機用還路に接続し、
前記熱源機用還路において前記バイパス路の接続点よりも上流側の箇所で、前記放熱用還路との分岐点の側へ向かう熱媒流動を阻止して前記熱源機の側へ向かう熱媒流動のみを許容する逆止手段を設けるとともに、
前記熱源機を並列的に複数装備するのに対し、前記負荷側還路から前記熱源機用還路を通じて戻る二次側熱媒を前記バイパス路の接続点よりも下流側で受け入れる還側ヘッダを設け、この還側ヘッダから各別の熱源機用分岐還路を通じて複数の前記熱源機へ二次側熱媒を戻す構成にしてあることにある。
The first characteristic configuration of the present invention is that a secondary heat medium cooled or heated by exchanging heat with a primary heat medium stored in a heat storage tank in a heat radiating heat exchanger is forwarded by a heat radiating pump through a heat radiating forward path. In parallel with this, the secondary side heat medium cooled or heated by the heat source unit is supplied to the forward side junction by the heat source unit pump through the forward path for the heat source unit.
While supplying the secondary side heat medium supplied from the heat-dissipating heat exchanger and the heat source unit to the forward side junction to the load heat exchanger by the load side pump through the load side forward path, in parallel with the supply of the heat medium The secondary side heat medium sent from the load heat exchanger to the load side return path is divided into a heat release return path and a heat source machine return path, and is parallel to the heat release heat exchanger and the heat source machine. To the configuration
In this configuration, the flow rate of the secondary heat medium supplied to the forward merging portion by the heat dissipation pump, the flow rate of the secondary heat medium supplied to the forward merging portion by the heat source machine pump, and the While providing a flow rate control means for adjusting the flow rate of the secondary side heat medium supplied to the load heat exchanger by the load side pump according to the load in the load heat exchanger,
For a heat storage heat source facility that provides a bypass path that short-circuits the return side heat transfer path from the load heat exchanger to the forward side merge section,
Connecting the bypass path to the return path for the heat source machine as a connection of the bypass path to the return side heat medium path from the load heat exchanger,
In the return path for the heat source unit, the heat medium that flows toward the side of the heat source unit by blocking the flow of the heat medium toward the branch point with the return path for heat dissipation at a location upstream of the connection point of the bypass path. In addition to providing a check means that allows only flow ,
Whereas a plurality of the heat source devices are installed in parallel, a return header for receiving a secondary side heat medium returning from the load side return passage through the return passage for the heat source device downstream from the connection point of the bypass passage. There is a configuration in which the secondary side heat medium is returned from the return side header to a plurality of the heat source units through the separate return paths for the heat source units .

つまり、この第1特徴構成によれば(図1参照)、バイパス路25において往側合流部5から熱源機用還路21の側へ向かう熱媒流動が無いとき(バイパス路25において往側合流部5の側へ向かう熱媒流動を逆止弁等により強制的に阻止する状態、あるいは、バイパス路25において往側合流部5の側へ向かう熱媒流動がある状態を含む)には、熱源機用還路21においてバイパス路25の接続点よりも上流側の箇所で逆止手段27が熱源機4の側へ向かう熱媒流動を許容することにより、負荷側還路10を通じて負荷熱交換器9から戻る二次側熱媒Bは、放熱用還路20と熱源機用還路21とに分流されて放熱用熱交換器2と熱源機4との夫々に対し、ほぼ負荷熱交換器9からの送出時の温度のままで並列的に戻される。   That is, according to the first characteristic configuration (see FIG. 1), when there is no heat medium flow toward the heat source unit return path 21 side from the forward-side merging section 5 in the bypass path 25 (the forward-side merging in the bypass path 25). (Including a state in which the flow of the heat medium toward the portion 5 is forcibly blocked by a check valve or the like, or a state in which there is a heat medium flow toward the forward junction 5 in the bypass passage 25) In the machine return path 21, the check means 27 allows the flow of the heat medium toward the heat source machine 4 at a location upstream of the connection point of the bypass path 25, whereby the load heat exchanger is passed through the load side return path 10. The secondary-side heat medium B returning from 9 is divided into the heat dissipation return path 20 and the heat source machine return path 21, and is almost loaded heat exchanger 9 with respect to each of the heat dissipation heat exchanger 2 and the heat source apparatus 4. Are returned in parallel with the temperature at the time of delivery from.

これに対し、バイパス路25において往側合流部5から熱源機用還路21の側へ向かう熱媒流動が生じたときには、熱源機用還路21においてバイパス路25の接続点よりも上流側の箇所で逆止手段27が放熱用還路20との分岐点の側へ向かう逆流的な熱媒流動を阻止することにより、バイパス路25を通じて熱源機用還路21に流入する二次側熱媒Bはその全量が熱源機4に戻される状態になり、負荷熱交換器9から負荷側還路20を通じて戻る二次側熱媒Bのうち放熱用還路20への流入熱媒は、バイパス路25からの熱媒混入を伴うことなく、ほぼ負荷熱交換器9からの送出時の温度のままで放熱用熱交換器2に戻される。   On the other hand, when the heat medium flow toward the heat source machine return path 21 side from the forward junction 5 in the bypass path 25 occurs in the heat source machine return path 21 upstream of the connection point of the bypass path 25. The non-return means 27 flows in the heat source unit return path 21 through the bypass path 25 by blocking the reverse flow of the heat transfer medium 27 toward the branching point side with the heat return return path 20 at the location. The entire amount of B is returned to the heat source unit 4, and the inflow heat medium to the heat return return path 20 of the secondary side heat medium B returning from the load heat exchanger 9 through the load side return path 20 is a bypass path. Without being mixed with the heat medium from 25, the temperature is returned to the heat-dissipating heat exchanger 2 almost at the temperature at the time of delivery from the load heat exchanger 9.

すなわち、このことにより、先述した従来の設備構成で生じていたバイパス路からの熱媒混入に原因する蓄熱槽貯留冷熱や蓄熱槽貯留温熱の消費の遅滞、つまり(図2参照)、冷熱源設備の場合では、バイパス路25′からの低温熱媒混入により放熱用熱交換器2に戻す二次側熱媒Bが低温化することで蓄熱槽1における貯留冷熱の消費が進まなくなり、また、温熱源設備の場合では、バイパス路25′からの高温熱媒混入により放熱用熱交換器2に戻す二次側熱媒Bが高温化することで蓄熱槽1における貯留温熱の消費が進まなくなるといった事態)を効果的に回避することができ、これにより、従来設備に比べ、蓄熱槽に蓄熱した冷熱や温熱を負荷熱交換器での負荷処理に一層的確かつ有効に利用することができて、蓄熱方式の利点を十分に活かした状態で省エネ面などにおいて一層有利にすることができる。   That is, due to this, delay in consumption of the heat storage tank storage cold heat and heat storage tank storage heat caused by mixing of the heat medium from the bypass passage which has occurred in the conventional equipment configuration described above, that is, (see FIG. 2), the cold heat source equipment In this case, the consumption of the stored cold heat in the heat storage tank 1 does not proceed because the temperature of the secondary side heat medium B returned to the heat radiating heat exchanger 2 is lowered by mixing of the low temperature heat medium from the bypass passage 25 ′. In the case of the source equipment, a situation in which the consumption of the stored heat in the heat storage tank 1 does not proceed due to the high temperature of the secondary heat medium B that is returned to the heat exchanger 2 for heat radiation due to mixing of the high temperature heat medium from the bypass 25 '. ) Can be effectively avoided, and as a result, compared to conventional equipment, the cold and warm heat stored in the heat storage tank can be used more accurately and effectively for load processing in the load heat exchanger. The advantages of the method It can be made more advantageous in energy saving face in a state of utilizing the.

この第1特徴構成の実施にあたり、本発明の第2特徴構成として、前記負荷側還路をT字状又はY字状の分岐管構造により前記放熱用還路と前記熱源機用還路とに分岐してもよい。 In carrying out this first characteristic configuration, as the second characteristic configuration of the present invention, the load side return path is divided into the heat dissipation return path and the heat source machine return path by a T-shaped or Y-shaped branch pipe structure. It may branch off.

つまり、従来の設備構成では(図2参照)、負荷熱交換器2から負荷側還路10に送出される二次側熱媒Bを分流して放熱用熱交換器2と熱源機4とに対し並列的に戻すのに、先述の如く、負荷熱交換器9から負荷側還路10を通じて戻る二次側熱媒Bを還側ヘッダ23′に受け入れ、この還側ヘッダ23′から放熱用還路20′及び熱源機用還路21′を通じて二次側熱媒Bを放熱用熱交換器2と熱源機4とに対し並列的に戻す構造を採るが、前記の第1特徴構成(図1参照)の如く、放熱用還路20と熱源機用還路21との分岐点よりも上流側でのバイパス路25からの熱媒混入がなく、負荷熱交換器9から負荷側還路10を通じて戻る二次側熱媒Bを単に放熱用還路20と熱源機用還路21とに分流するだけの場合、ヘッダを用いての熱媒分流は、ヘッダの均温化機能(混合により熱媒を均温化する機能)から見てさほどの意味の無いものになる。   That is, in the conventional equipment configuration (see FIG. 2), the secondary side heat medium B sent from the load heat exchanger 2 to the load side return path 10 is diverted into the heat dissipation heat exchanger 2 and the heat source unit 4. On the other hand, in order to return in parallel, as described above, the secondary side heat medium B returning from the load heat exchanger 9 through the load side return path 10 is received by the return side header 23 ′, and the return side header 23 ′ returns for heat dissipation. The secondary side heat medium B is returned in parallel to the heat dissipation heat exchanger 2 and the heat source unit 4 through the path 20 'and the heat source unit return path 21'. The first characteristic configuration (FIG. 1) is adopted. As shown in FIG. 5), there is no mixing of the heat medium from the bypass 25 on the upstream side of the branch point between the heat dissipation return path 20 and the heat source machine return path 21, and the load heat exchanger 9 passes through the load side return path 10. When the returning secondary heat medium B is simply shunted into the return path 20 for heat dissipation and the return path 21 for the heat source machine, the header is used. Medium shunt will having no appreciable sense when viewed from the header of the equalizing Yutakaka function (the heat medium to uniform Yutakaka by mixing).

このことに着目して、上記の如く(図1参照)、負荷側還路10をT字状又はY字状の分岐管構造22により放熱用還路20と熱源機用還路21とに分岐する構造を採って、放熱用還路20と熱源機用還路21とへの熱媒分流のためのヘッダを省略することで、その分、設備コストを安価にし得るとともに、設備全体としての配管抵抗も極力低減することができて必要ポンプ動力も低減することができる。   Focusing on this, as described above (see FIG. 1), the load-side return path 10 is branched into a heat radiation return path 20 and a heat source machine return path 21 by a T-shaped or Y-shaped branch pipe structure 22. By adopting such a structure and omitting the header for the heat medium distribution to the return path 20 for heat dissipation and the return path 21 for the heat source machine, the equipment cost can be reduced correspondingly, and the piping as the whole equipment The resistance can be reduced as much as possible, and the required pump power can also be reduced.

なお、第2特徴構成の実施において、複数の負荷熱交換器を並列的に設ける場合には(図1参照)、それら複数の負荷熱交換器9から送出される二次側熱媒Bを合流させる負荷側還路10(すなわち、還り側主管)において、各負荷熱交換器9からの送出熱媒Bの合流部と上記T字状又はY字状の分岐管構造22による分岐部との間の配管長を極力長くし、そのことで、各負荷熱交換器9から送出される二次側熱媒Bの合流後における混合を十分にして、その合流後熱媒Bの均温化を促進するのが望ましい。   In the implementation of the second characteristic configuration, when a plurality of load heat exchangers are provided in parallel (see FIG. 1), the secondary heat medium B sent from the plurality of load heat exchangers 9 is merged. In the load-side return path 10 (that is, the return-side main pipe) to be made, between the joining portion of the delivery heat medium B from each load heat exchanger 9 and the branch portion by the T-shaped or Y-shaped branch pipe structure 22 The length of the pipe is made as long as possible, so that the mixing of the secondary heat medium B sent from each load heat exchanger 9 after the merging is sufficient, and the temperature equalization of the heat medium B after the merging is promoted. It is desirable to do.

また、本発明の前記第1特徴構成では、前記熱源機を並列的に複数装備するのに対し、前記負荷側還路から前記熱源機用還路を通じて戻る二次側熱媒を前記バイパス路の接続点よりも下流側で受け入れる還側ヘッダを設け、この還側ヘッダから各別の熱源機用分岐還路を通じて複数の前記熱源機へ二次側熱媒を戻す構成にするから、次の機能も得ることができる。 In the first characteristic configuration of the present invention, a plurality of the heat source devices are provided in parallel, whereas a secondary side heat medium returning from the load side return passage through the return passage for the heat source device is supplied to the bypass passage. Since a return side header that is received downstream from the connection point is provided and the secondary side heat medium is returned from the return side header to the plurality of heat source units through the separate return paths for the heat source units , the following functions are provided. Can also be obtained.

つまり、この構成によれば(図1参照)、例えばバイパス路25を上記還側ヘッダ23に対し接続する構成を採るに比べ、バイパス路25において往側合流部5から熱源機用還路21の側へ向かう熱媒流動が生じたとき、熱源機用還路21におけるバイパス路25の接続点から還側ヘッダ23に至るまでの配管内流動過程における熱媒混合と、それに続く還側ヘッダ23内での熱媒混合とにより、バイパス路25から流入する二次側熱媒Bと負荷側還路10から熱源機用還路21の側へ流入する二次側熱媒Bとをより十分に混合して均温化した状態で、その混合熱媒Bを熱源機用分岐還路24を通じて複数の熱源機4夫々に戻すことができる。   That is, according to this structure (refer FIG. 1), compared with taking the structure which connects the bypass path 25 with respect to the said return side header 23, for example, in the bypass path 25, the return path 21 of the heat source machine return path 21 from the outgoing side junction part 5 is provided. When the heat medium flow toward the side occurs, heat medium mixing in the flow process in the pipe from the connection point of the bypass path 25 to the return side header 23 in the return path 21 for the heat source machine, and then in the return side header 23 Mixing the secondary side heat medium B flowing from the bypass path 25 and the secondary side heat medium B flowing from the load side return path 10 to the heat source machine return path 21 side more sufficiently. Then, the mixed heat medium B can be returned to each of the plurality of heat source units 4 through the branch return path 24 for the heat source unit in a temperature-equalized state.

そして、このことにより、複数の熱源機4の並列運転において、それら熱源機4から送出する二次側熱媒Bの温度を一層効果的かつ安定的に均一化することができ、これにより、複数の熱源機4夫々から送出する二次側熱媒Bの温度に差があることに原因する往側合流部5での混合熱損失を抑止して省エネ面で一層有利にし得るとともに、負荷熱交換器9に供給する二次側熱媒Bの温度も一層安定化することができて負荷熱交換器9における負荷処理機能も安定性の面や温度精度面で一層高めることができる。   And by this, in the parallel operation of the plurality of heat source units 4, the temperature of the secondary side heat medium B sent out from these heat source units 4 can be more effectively and stably uniformed. The heat loss of the secondary side heat transfer medium B sent from each of the heat source machines 4 can be made more advantageous in terms of energy saving by suppressing the mixed heat loss in the outgoing side merging section 5 due to the difference in temperature, and the load heat exchange The temperature of the secondary heat medium B supplied to the vessel 9 can be further stabilized, and the load processing function in the load heat exchanger 9 can be further enhanced in terms of stability and temperature accuracy.

なお、この構成では、負荷側還路10から分岐した後の熱源機用還路21に還側ヘッダ23を装備するから、この還側ヘッダ23を設けるにしても、前記第2特徴構成の並行実施において、その第2特徴構成による効果、すなわち、負荷熱交換器9から負荷側還路10を通じて戻る二次側熱媒Bを放熱用還路20と熱源機用還路21とに分流するヘッダを省略することによる効果(特に、設備全体としての配管抵抗を極力低減し得る効果)は十分に活かすことができる。 In addition, in this structure , since the return side header 23 is equipped in the return path 21 for heat source machines after branching from the load side return path 10, even if this return side header 23 is provided, it is parallel to the second characteristic configuration. In implementation, the effect of the second characteristic configuration, that is, the header that diverts the secondary side heat medium B returning from the load heat exchanger 9 through the load side return path 10 into the heat dissipation return path 20 and the heat source machine return path 21. The effect (especially the effect that can reduce the piping resistance of the entire equipment) as much as possible can be fully utilized.

本発明の第3特徴構成は、第1又は第2特徴構成のいずれかの実施において、
前記放熱用熱交換器から送出される二次側熱媒の一部を前記放熱用還路へ短絡的に供給する温度調整用の短絡路を設け、この短絡路を通じて前記放熱用還路へ供給する二次側熱媒の流量調整により、前記放熱用還路から前記放熱用熱交換器に戻す二次側熱媒の温度を設定戻し温度に自動調整する構成にしてあることにある。
The third feature configuration of the present invention is the implementation of either the first or second feature configuration,
A short-circuit for temperature adjustment is provided to supply a part of the secondary side heat medium sent from the heat-dissipating heat exchanger to the heat-dissipating return path, and supplied to the heat-dissipating return path through the short-circuiting path. By adjusting the flow rate of the secondary heat medium to be performed, the temperature of the secondary heat medium returned from the heat dissipation return path to the heat dissipation heat exchanger is automatically adjusted to the set return temperature.

つまり、前記の第1特徴構成では(図1参照)、バイパス路からの熱媒混入に原因する放熱用熱交換器2への戻し二次側熱媒Bの低温化や高温化を防止できるが、負荷熱交換器9から送出される二次側熱媒Bそのものの温度変動や並列配備された複数の負荷熱交換器9から送出される二次側熱媒Bの温度のバラツキなどに原因する放熱用熱交換器2への戻し二次側熱媒Bの温度変動までは防止することができず、この為、放熱用ポンプP1による二次側熱媒Bの送給流量(すなわち、放熱用熱交換器2における二次側熱媒Bの通過流量)が一定の状況下においても、放熱用熱交換器2での熱交換量(すなわち、蓄熱槽1からの冷熱や温熱の取出量)が未だ変動する現象が残る。   That is, in the first characteristic configuration (see FIG. 1), it is possible to prevent the temperature of the return secondary heat medium B from returning to the heat-dissipating heat exchanger 2 due to mixing of the heat medium from the bypass path from being lowered or raised. Caused by temperature fluctuations of the secondary side heat medium B itself sent from the load heat exchanger 9 or variations in temperature of the secondary side heat medium B sent from a plurality of load heat exchangers 9 arranged in parallel. The temperature fluctuation of the secondary side heat medium B returned to the heat radiating heat exchanger 2 cannot be prevented. For this reason, the supply flow rate of the secondary side heat medium B by the heat radiating pump P1 (that is, for heat radiation) Even under a condition where the flow rate of the secondary side heat medium B in the heat exchanger 2 is constant, the heat exchange amount in the heat radiating heat exchanger 2 (that is, the amount of cold and warm heat extracted from the heat storage tank 1) is The phenomenon that still fluctuates remains.

これに対し、第3特徴構成によれば(図1参照)、温度調整用の短絡路28を通じて放熱用還路20へ供給する二次側熱媒Bの流量調整により、放熱用還路20から放熱用熱交換器2に戻す二次側熱媒Bの温度が設定戻し温度に自動調整されるから、負荷熱交換器9における負荷の増減に応じて放熱用ポンプP1による二次側熱媒Bの送給流量を変更するときには、当然、それに伴い放熱用熱交換器2での熱交換量も変化するが、放熱用ポンプP1による二次側熱媒Bの送給流量が一定の状況下(一般的には、負荷熱交換器9における負荷の減少に対し熱源機4は停止して蓄熱槽1における貯留冷熱や貯留温熱だけで負荷に対応するに至るまでの熱源機並行運転の状況下)では、負荷熱交換器9から送出される二次側熱媒Bそのものの温度変動や並列配備された複数の負荷熱交換器9から送出される二次側熱媒Bの温度のバラツキなどにかかわらず、放熱用熱交換器2での熱交換量を一定に保って、蓄熱槽1における貯留冷熱や貯留温熱の単位時間当たりの消費量を一定に保つことができる。
On the other hand, according to the third characteristic configuration (see FIG. 1), the flow rate of the secondary side heating medium B supplied to the heat dissipation return path 20 through the temperature adjusting short circuit 28 is adjusted from the heat dissipation return path 20. Since the temperature of the secondary side heat medium B returned to the heat dissipation heat exchanger 2 is automatically adjusted to the set return temperature, the secondary side heat medium B by the heat dissipation pump P1 according to the increase or decrease of the load in the load heat exchanger 9. Naturally, the amount of heat exchange in the heat-dissipating heat exchanger 2 changes accordingly, but the amount of the secondary-side heat medium B supplied by the heat-dissipating pump P1 is constant ( In general, the heat source unit 4 is stopped with respect to the decrease in the load in the load heat exchanger 9 and the heat source unit is operated in parallel until the load is accommodated only by the stored cold heat or stored heat in the heat storage tank 1). Then, the temperature change of the secondary side heat medium B itself sent from the load heat exchanger 9 is changed. Regardless of variations in the temperature of the secondary side heat transfer medium B sent from the plurality of load heat exchangers 9 arranged in parallel, the heat exchange amount in the heat exchanger 2 for heat radiation is kept constant, and the heat storage tank The consumption per unit time of the stored cold heat and stored hot heat in 1 can be kept constant.

そして、このことにより、前記第1特徴構成による効果(すなわち、バイパス路からの熱媒混入に原因する蓄熱槽貯留冷熱や蓄熱槽貯留温熱の消費の遅滞を防止し得る効果)とも相まって、設備の実際の運転を運転終了時において蓄熱槽1における貯留冷熱や貯留温熱をほぼ丁度使い切る省エネ上の理想的な運転に効果的に近付けることができ、これにより、省エネ面で一層有利にすることができる。   And by this, combined with the effect of the first characteristic configuration (that is, the effect of preventing the delay in the consumption of the heat storage tank storage cold heat and the heat storage tank storage temperature caused by mixing of the heat medium from the bypass passage), The actual operation can be effectively brought close to the ideal operation for energy saving where the stored cold heat and stored heat in the heat storage tank 1 are almost used up at the end of the operation, and this can be made more advantageous in terms of energy saving. .

図1は蓄熱式の冷熱源設備を示し、1は一次側熱媒A(本例では水)を貯留するスタティック型の氷蓄熱槽、2は氷蓄熱槽1との間で一次側循環路3を通じ循環させる一次側熱媒Aと二次側熱媒B(本例では水)とを熱交換させて二次側熱媒Bを冷却する放熱用熱交換器、4は二次側熱媒Bを冷却する複数の冷凍機(すなわち、冷熱発生熱源機)、5は往側合流部としての往側ヘッダであり、放熱用熱交換器2で冷却した二次側熱媒Bを放熱用往路6を通じて放熱用ポンプP1により往側ヘッダ5に送るとともに、これと並列に、各冷凍機4で冷却した二次側熱媒Bを並列の熱源機用往路7を通じて各別の熱源機用ポンプP2により往側ヘッダ5に送るようにしてある。   FIG. 1 shows a heat storage type cold heat source facility, 1 is a static type ice heat storage tank for storing a primary heat medium A (water in this example), 2 is a primary side circulation path 3 between the ice heat storage tank 1 The heat exchanger for heat radiation that cools the secondary side heat medium B by exchanging heat between the primary side heat medium A and the secondary side heat medium B (water in this example) circulated through the secondary side heat medium B A plurality of refrigerators (that is, a cold heat generating heat source machine) 5 for cooling the outer side header 5 as an outgoing side merging portion, and the secondary side heat medium B cooled by the heat radiating heat exchanger 2 is used as the outgoing route 6 for radiating heat. In parallel with this, the secondary side heat medium B cooled by each refrigerator 4 is sent to each other heat source machine pump P2 through the parallel heat source machine forward path 7. It is sent to the outgoing header 5.

そして、放熱用熱交換器2及び各冷凍機4から往側ヘッダ5に供給される低温の二次側熱媒Bは、往側ヘッダ5内での混合及びそれに続く配管内流動過程での混合により均温化しながら、負荷側ポンプP3により負荷側往路8及びそれから分岐した複数の負荷側分岐往路8aを通じて複数の負荷熱交換器9に対し並列に供給し、一方、各負荷熱交換器9から送出される二次側熱媒B(すなわち、負荷熱交換器9での冷熱消費により昇温した二次側熱媒)は、並列の負荷側分岐還路10aを通じ負荷側還路10に合流させて、この負荷側還路10を通じ放熱用熱交換器2及び各冷凍機4に戻すようにしてある。   The low-temperature secondary heat medium B supplied from the heat-dissipating heat exchanger 2 and each refrigerator 4 to the outward header 5 is mixed in the outward header 5 and then mixed in the flow process in the pipe. Is supplied in parallel to the plurality of load heat exchangers 9 through the load-side outward path 8 and the plurality of load-side branch outward paths 8a branched from the load-side pump P3. The secondary side heat medium B sent out (that is, the secondary side heat medium heated by the cold heat consumption in the load heat exchanger 9) is joined to the load side return path 10 through the parallel load side branch return path 10a. Thus, the heat radiation heat exchanger 2 and each refrigerator 4 are returned through the load side return path 10.

負荷側ポンプP3は負荷側往路8のうち負荷側分岐往路8aの分岐部よりも上流側の部分(具体的には往側ヘッダ5からの熱媒取出部)に並列配置で複数装備してあり、また、放熱用ポンプP1は放熱用往路6に並列配置で複数装備してある。   A plurality of load-side pumps P3 are provided in a parallel arrangement in a portion upstream of the branch portion of the load-side branch forward passage 8a (specifically, the heat medium extraction portion from the forward-side header 5) in the load-side forward passage 8. Further, a plurality of heat radiation pumps P1 are provided in parallel with the heat radiation outward path 6.

複数の負荷熱交換器9のうち往側ヘッダ5からの配管長が最も長い最遠の負荷熱交換器9Aについては、それに対する迂回路11を設けるとともに、その最遠負荷熱交換器9Aから送出される二次側熱媒Bの検出温度に基づき、最遠負荷熱交換器9Aに通過させる二次側熱媒Bと迂回路11を通じ最遠負荷熱交換器9Aを迂回させる二次側熱媒Bとの流量比を調整することで、最遠負荷熱交換器9Aから送出される二次側熱媒Bの温度を設定戻し温度trmに自動調整する自動三方弁12を装備してある。   Among the plurality of load heat exchangers 9, the farthest load heat exchanger 9A having the longest pipe length from the forward header 5 is provided with a bypass 11 and sent from the farthest load heat exchanger 9A. The secondary side heat medium that bypasses the farthest load heat exchanger 9A through the secondary side heat medium B that passes through the farthest load heat exchanger 9A and the bypass circuit 11 based on the detected temperature of the secondary side heat medium B An automatic three-way valve 12 that automatically adjusts the temperature of the secondary heat medium B sent from the farthest load heat exchanger 9A to the set return temperature trm by adjusting the flow rate ratio with B is provided.

また、最遠負荷熱交換器9A以外の負荷熱交換器9Bについては、負荷熱交換器9Bから送出される二次側熱媒Bの検出温度に基づき、負荷熱交換器9Bに通過させる二次側熱媒Bの流量を調整することで、負荷熱交換器9Bから送出される二次側熱媒Bの温度を設定戻し温度trmに自動調整する自動二方弁13を装備してある。   Moreover, about the load heat exchangers 9B other than the farthest load heat exchanger 9A, the secondary passed through the load heat exchanger 9B based on the detected temperature of the secondary heat medium B sent from the load heat exchanger 9B. By adjusting the flow rate of the side heat medium B, an automatic two-way valve 13 that automatically adjusts the temperature of the secondary side heat medium B delivered from the load heat exchanger 9B to the set return temperature trm is provided.

つまり、これら自動三方弁12及び自動二方弁13による各負荷熱交換器9についての個別の流量調整により、各負荷熱交換器9の冷却出力をそれら負荷熱交換器9各々の冷却負荷qに応じて自動調整し、また、この個別の流量調整に対し、最遠負荷熱交換器9Aに装備した迂回路11による流路確保をもって負荷側往路8及び負荷側分岐往路8aにおける熱媒供給圧の異常上昇を防止する。   That is, by adjusting the flow rate for each load heat exchanger 9 by the automatic three-way valve 12 and the automatic two-way valve 13, the cooling output of each load heat exchanger 9 is changed to the cooling load q of each load heat exchanger 9. In response to this individual flow rate adjustment, the heat medium supply pressure in the load-side forward path 8 and the load-side branch forward path 8a is secured with a flow path secured by the detour 11 provided in the farthest load heat exchanger 9A. Prevent abnormal rise.

なお、最遠負荷熱交換器9Aについては、場合により上記の如き自動三方弁12の装備に代え、オリフィス等の固定抵抗を設けた迂回路11と上記自動二方弁13とを装備する方式を採ってもよく、また、最遠負荷熱交換器9A以外の負荷熱交換器9Bについては、場合により上記の如き自動二方弁13に代え、それら負荷熱交換器9Bに通過させる二次側熱媒Bの流量を初期設定的に調整するための手動二方弁を装備する方式を採ってもよい。   For the farthest load heat exchanger 9A, in place of the automatic three-way valve 12 as described above, a method in which the bypass circuit 11 provided with a fixed resistance such as an orifice and the automatic two-way valve 13 is provided. Alternatively, the load heat exchanger 9B other than the farthest load heat exchanger 9A may be replaced with the automatic two-way valve 13 as described above, and the secondary side heat passed through the load heat exchanger 9B. A system equipped with a manual two-way valve for adjusting the flow rate of the medium B in an initial setting may be adopted.

各冷凍機4は、熱源機用往路7へ送出する二次側熱媒Bの検出温度に基づき、冷凍機出力をインバータ制御等により調整することで、熱源機用往路7へ送出する二次側熱媒Bの温度(すなわち、冷凍機出口温度)を設定送り温度tsmに自動調整する機能を備えており、また、放熱用熱交換器2については、放熱用熱交換器2から放熱用往路6に送出される二次側熱媒Bの温度toを検出する温度センサ14、及び、この温度センサ14の検出温度toに基づき、一次側循環路3において放熱用熱交換器2に通過させる一次側熱媒Aと迂回路3aを通じ放熱用熱交換器2を迂回させる一次側熱媒Aとの流量比を調整することで、放熱用熱交換器2から放熱用往路6に送出される二次側熱媒Bの温度toを設定送り温度tsmに自動調整する自動三方弁15を設けてあり、これにより、放熱用熱交換器2及び各冷凍機4からは、ともに同温度(設定送り温度tsm)に冷却した二次側熱媒Bを往側ヘッダ5に供給するようにしてある。   Each refrigerator 4 adjusts the output of the refrigerator by inverter control or the like based on the detected temperature of the secondary heat medium B to be sent to the heat source machine forward path 7, thereby sending the secondary side to the heat source machine forward path 7. A function of automatically adjusting the temperature of the heat medium B (that is, the refrigerator outlet temperature) to the set feed temperature tsm is provided, and the heat dissipation heat exchanger 2 is connected with the heat dissipation heat exchanger 2 to the heat dissipation path 6. The temperature sensor 14 for detecting the temperature to of the secondary side heat medium B delivered to the primary side, and the primary side that is passed through the heat dissipation heat exchanger 2 in the primary side circulation path 3 based on the detected temperature to of the temperature sensor 14 By adjusting the flow rate ratio between the heat medium A and the primary side heat medium A that bypasses the heat dissipation heat exchanger 2 through the bypass circuit 3a, the secondary side sent from the heat dissipation heat exchanger 2 to the heat dissipation outbound path 6 Automatic adjustment of the temperature to of the heating medium B to the set feed temperature tsm A three-way valve 15 is provided so that the secondary heat medium B cooled to the same temperature (set feed temperature tsm) is supplied to the forward header 5 from both the heat exchanger 2 for heat dissipation and each refrigerator 4. I have to do it.

16は負荷側往路8において負荷熱交換器9に対し供給する二次側熱媒Bの温度ts(理想的には設定送り温度tsmに等しい温度)を検出する往側温度センサ、17は負荷側還路10において各負荷熱交換器9から戻る二次側熱媒Bの合流後の温度tr(理想的には設定戻し温度trmに等しい温度)を検出する還側温度センサ、18は同じく負荷側還路10において各負荷熱交換器9から戻る二次側熱媒Bの合流後の流量G(換言すれば、負荷側往路8に対する往側ヘッダ5からの熱媒送出流量)を検出する流量センサであり、19はこれら温度センサ16,17及び流量センサ18の検出温度ts,tr及び検出流量Gに基づき冷凍機4並びに各ポンプP1〜P3を制御する制御器である。   Reference numeral 16 denotes an outward temperature sensor for detecting the temperature ts (ideally a temperature equal to the set feed temperature tsm) of the secondary side heat medium B supplied to the load heat exchanger 9 in the load side outward path 8, and 17 denotes the load side. A return-side temperature sensor 18 for detecting a temperature tr (ideally equal to the set return temperature trm) of the secondary-side heat medium B returning from each load heat exchanger 9 in the return path 10, 18 is also the load side A flow rate sensor for detecting a flow rate G after the joining of the secondary side heat medium B returning from each load heat exchanger 9 in the return path 10 (in other words, a flow rate of the heat medium sent from the forward header 5 to the load side forward path 8). 19 is a controller for controlling the refrigerator 4 and the pumps P1 to P3 based on the detected temperatures ts and tr and the detected flow rate G of the temperature sensors 16 and 17 and the flow rate sensor 18.

この制御器19は、還側温度センサ17による検出温度trと往側温度センサ16による検出温度tsとの差温Δt(=tr−ts)に対し流量センサ18による検出流量Qを乗じる形態で、各時点における負荷熱交換器9群全体としての冷却負荷Q(=Σq)を演算し、この演算冷却負荷Qが所定の閾負荷Qs以上のとき(Q≧Qs)、制御器19は、冷凍機4による二次側熱媒Bの冷却と放熱用熱交換器2による二次側熱媒Bの冷却との両方(換言すれば、冷凍機4での発生冷熱と蓄熱槽1から取り出す冷熱との両方)により負荷熱交換器9群の冷却負荷Qを処理する冷凍機並行の冷熱供給運転を実施する。   The controller 19 multiplies the temperature difference Δt (= tr−ts) between the temperature detected by the return temperature sensor 17 and the temperature detected by the forward temperature sensor 16 by the detected flow rate Q by the flow rate sensor 18. The cooling load Q (= Σq) as a whole of the load heat exchanger 9 group at each time point is calculated, and when the calculated cooling load Q is equal to or greater than a predetermined threshold load Qs (Q ≧ Qs), the controller 19 4 and the cooling of the secondary heat medium B by the heat-dissipating heat exchanger 2 (in other words, the generated cold heat in the refrigerator 4 and the cold heat extracted from the heat storage tank 1). Both) carry out a cooling heat supply operation in parallel with a refrigerator that processes the cooling load Q of the group 9 of load heat exchangers.

また、演算冷却負荷Q(=Σq)が所定の閾負荷Qs未満のとき(Q<Qs)、制御器19は、放熱用熱交換器2による二次側熱媒Bの冷却(換言すれば、蓄熱槽1から取り出す冷熱)のみをもって負荷熱交換器9群の冷却負荷Qを処理する蓄熱槽単独の冷熱供給運転を実施し、具体的な運転制御として制御器19は、冷凍機並行の冷熱供給運転のとき次の(イ)〜(ハ)の制御を実行し、また、蓄熱槽単独の冷熱供給運転のとき次の(ニ),(ホ)の制御を実行する。   When the calculated cooling load Q (= Σq) is less than the predetermined threshold load Qs (Q <Qs), the controller 19 cools the secondary heat medium B by the heat exchanger 2 for heat dissipation (in other words, The cooling heat supply operation of the heat storage tank alone that processes the cooling load Q of the load heat exchanger 9 group is carried out only with the cold heat extracted from the heat storage tank 1, and as a specific operation control, the controller 19 supplies the cold heat in parallel with the refrigerator The following controls (a) to (c) are executed at the time of operation, and the following controls (d) and (e) are executed at the time of the cold storage operation of the heat storage tank alone.

(冷凍機並行の冷熱供給運転)
(イ)全ての放熱用ポンプP1を定格出力で運転して、放熱用熱交換器2から往側ヘッダ5に供給する二次側熱媒Bの流量をほぼ計画最大流量に保ち、これに対し、冷凍機4の運転台数を演算冷却負荷Qに応じて変更する。
(Cooling supply operation in parallel with refrigerator)
(B) Operate all the heat radiation pumps P1 at the rated output, and keep the flow rate of the secondary side heat medium B supplied from the heat radiation heat exchanger 2 to the forward header 5 at a substantially maximum planned flow rate. The number of operating refrigerators 4 is changed according to the calculated cooling load Q.

(ロ)運転状態にある冷凍機4の熱源機用ポンプP2を運転する形態で、冷凍機4の運転台数変更に伴い熱源機用ポンプP2の運転台数を変更するとともに、運転状態にある熱源機用ポンプP2の出力を演算冷却負荷Qに応じインバータ制御等により調整し、これにより、運転状態の冷凍機4から往側ヘッダ5に供給する二次側熱媒Bの流量を演算冷却負荷Qに応じて調整する。   (B) In the form of operating the heat source unit pump P2 of the refrigerator 4 in the operating state, the operating unit number of the heat source unit pump P2 is changed in accordance with the change in the operating unit number of the refrigerator 4, and the heat source unit in the operating state The output of the pump P2 is adjusted by inverter control or the like in accordance with the calculated cooling load Q, whereby the flow rate of the secondary heat medium B supplied from the operating refrigerator 4 to the forward header 5 is changed to the calculated cooling load Q. Adjust accordingly.

(ハ)負荷側ポンプP3の運転台数を演算冷却負荷Qに応じ変更するとともに、運転状態にある負荷側ポンプP3の出力を同じく演算冷却負荷Qに応じインバータ制御などにより調整し、これにより、往側ヘッダ5から負荷熱交換機器9に供給する二次側熱媒Bの流量Gを演算冷却負荷Qに応じて調整する。   (C) The number of operating load side pumps P3 is changed according to the calculated cooling load Q, and the output of the load side pump P3 in the operating state is also adjusted by inverter control or the like according to the calculated cooling load Q. The flow rate G of the secondary side heat medium B supplied from the side header 5 to the load heat exchange device 9 is adjusted according to the calculation cooling load Q.

つまり、冷凍機並行の冷熱供給運転では、冷凍機4及び熱源機用ポンプP2の運転台数変更、熱源機用ポンプP2の出力調整、並びに、送出する二次側熱媒Bの温度を設定送り温度tsmに調整する各冷凍機4の出力調整により、冷凍機4群全体としての二次側熱媒Bの冷却量を調整することで、冷凍機4群全体としての二次側熱媒Bの冷却量と放熱用熱交換器2での二次側熱媒Bの冷却量との和(すなわち、冷凍機4群全体としての単位時間当たりの冷熱発生量と蓄熱槽1からの単位時間当たりの冷熱取出量との和)を負荷熱交換器9群全体としての冷却負荷Qと均衡させる。   That is, in the cold supply operation in parallel with the refrigerator, the number of operating units of the refrigerator 4 and the heat source unit pump P2 is changed, the output of the heat source unit pump P2 is adjusted, and the temperature of the secondary heat medium B to be sent is set as the set feed temperature. By adjusting the cooling amount of the secondary side heat medium B as the whole refrigerator group 4 by adjusting the output of each refrigerator 4 adjusted to tsm, the cooling of the secondary side heat medium B as the whole refrigerator group 4 Sum of the amount and the cooling amount of the secondary heat medium B in the heat exchanger 2 for heat dissipation (that is, the amount of cold generated per unit time as a whole of the refrigerator 4 group and the cold heat per unit time from the heat storage tank 1) The sum of the amount taken out) is balanced with the cooling load Q of the entire load heat exchanger 9 group.

また、熱源機用ポンプP2の運転台数変更及び出力調整により往側ヘッダ5に対する二次側熱媒Bの供給流量が変化することに対し、負荷側ポンプP3の運転台数変更及び出力調整により、往側ヘッダ5から負荷側往路8へ送出する二次側熱媒Bの流量Gを冷凍機4及び放熱用熱交換器2から往側ヘッダ5に供給する二次側熱媒Bの流量と均衡させる。   In addition, the supply flow rate of the secondary side heat medium B to the forward header 5 changes due to the change in the number of operating heat pumps P2 and the output adjustment, while the change in the number of operating load pumps P3 and the output adjustment result in the output flow adjustment. The flow rate G of the secondary side heat medium B sent from the side header 5 to the load side outward path 8 is balanced with the flow rate of the secondary side heat medium B supplied to the forward side header 5 from the refrigerator 4 and the heat exchanger 2 for heat radiation. .

(蓄熱槽単独の冷熱供給運転)
(ニ)全ての冷凍機4及び全ての熱源機用ポンプP2を停止した状態で、放熱用ポンプP1の運転台数を演算冷却負荷Qに応じ変更するとともに、運転状態にある放熱用ポンプP1の出力を同じく演算冷却負荷Qに応じインバータ制御などにより調整し、これにより、放熱用熱交換器2から往側ヘッダ5に供給する二次側熱媒Bの流量を演算冷却負荷Qに応じて調整する。
(Cooling supply operation of single heat storage tank)
(D) With all the refrigeration machines 4 and all the heat source machine pumps P2 stopped, the number of operating heat radiation pumps P1 is changed according to the calculation cooling load Q, and the output of the heat radiation pump P1 in the operating state Is also adjusted by inverter control or the like in accordance with the calculated cooling load Q, whereby the flow rate of the secondary side heat medium B supplied from the heat exchanger 2 for heat radiation to the forward header 5 is adjusted in accordance with the calculated cooling load Q. .

(ホ)負荷側ポンプP3の運転台数を演算冷却負荷Qに応じ変更するとともに、運転状態にある負荷側ポンプP3の出力を同じく演算冷却負荷Qに応じインバータ制御などにより調整し、これにより、往側ヘッダ5から負荷熱交換器9に供給する二次側熱媒Bの流量Gを演算冷却負荷Qに応じて調整する。   (E) The number of load-side pumps P3 to be operated is changed according to the calculated cooling load Q, and the output of the load-side pump P3 in the operating state is also adjusted by inverter control or the like according to the calculated cooling load Q. The flow rate G of the secondary side heat medium B supplied from the side header 5 to the load heat exchanger 9 is adjusted according to the calculation cooling load Q.

つまり、蓄熱槽単独の冷熱供給運転では、放熱用熱交換器2における一次側熱媒Aの通過流量を調整して放熱用熱交換器2から送出される二次側熱媒Bの温度toを設定送り温度tsmに調整する自動三方弁15の作用下において、放熱用ポンプP1の運転台数変更及び出力調整により放熱用熱交換器2における二次側熱媒Bの通過流量を調整することで、放熱用熱交換器2での二次側熱媒Bの冷却量を調整して、その放熱用熱交換器2での二次側熱媒Bの冷却量(すなわち、蓄熱槽1からの単位時間当たりの冷熱取出量)を負荷熱交換器9群全体としての冷却負荷Qと均衡させる。   That is, in the cold supply operation of the heat storage tank alone, the flow rate of the primary heat medium A in the heat dissipation heat exchanger 2 is adjusted and the temperature to the secondary heat medium B sent from the heat dissipation heat exchanger 2 is adjusted. Under the action of the automatic three-way valve 15 that adjusts to the set feed temperature tsm, by adjusting the flow rate of the secondary side heat medium B in the heat dissipation heat exchanger 2 by changing the number of operating heat pumps P1 and adjusting the output, The amount of cooling of the secondary side heat medium B in the heat dissipation heat exchanger 2 is adjusted, and the amount of cooling of the secondary side heat medium B in the heat dissipation heat exchanger 2 (that is, the unit time from the heat storage tank 1) The amount of cold heat extracted) is balanced with the cooling load Q of the entire load heat exchanger 9 group.

また、放熱用ポンプP1の運転台数変更及び出力調整により往側ヘッダ5に対する二次側熱媒Bの供給流量が変化することに対し、負荷側ポンプP3の運転台数変更及び出力調整により、往側ヘッダ5から負荷側往路8へ送出する二次側熱媒Bの流量Gを放熱用熱交換器2から往側ヘッダ5に供給する二次側熱媒Bの流量と均衡させる。   In addition, the supply flow rate of the secondary side heat medium B to the forward header 5 changes due to the change in the number of operating heat pumps P1 and the output adjustment, while the change in the number of operation of the load side pumps P3 and the output adjustment The flow rate G of the secondary side heat medium B sent out from the header 5 to the load side outward path 8 is balanced with the flow rate of the secondary side heat medium B supplied from the heat dissipation heat exchanger 2 to the forward side header 5.

負荷側還路10を通じて負荷熱交換器9から戻る二次側熱媒Bを放熱用熱交換器2及び冷凍機4の夫々に戻す配管構造については、還側温度センサ17及び流量センサ18の介装部よりも下流側において負荷側還路10を、放熱用熱交換器2に二次側熱媒Bを戻す放熱用還路20と冷凍機4群に二次側熱媒Bを戻す熱源機用還路21とにT字状(又はY字状)の分岐管構造22により分岐し、そして、放熱用還路20を放熱用熱交換器2の二次側熱媒入口に接続するのに対し、熱源機用還路21については、その熱源機用還路21を通じて戻る二次側熱媒Bを受け入れる還側ヘッダ23を設け、この還側ヘッダ23と各冷凍機4の二次側熱媒入口とを各別の熱源機用分岐還路24により接続してある。   Regarding the piping structure for returning the secondary side heat medium B returning from the load heat exchanger 9 through the load side return path 10 to the heat dissipation heat exchanger 2 and the refrigerator 4, respectively, through the return side temperature sensor 17 and the flow rate sensor 18. Heat source unit for returning the secondary side heat medium B to the refrigeration unit 4 and the heat return unit 20 for returning the secondary side heat medium B to the heat exchanger 2 for heat dissipation, and the heat return unit 20 for refrigeration 4 For branching to the return path 21 by a T-shaped (or Y-shaped) branch tube structure 22 and connecting the heat dissipation return path 20 to the secondary side heat medium inlet of the heat dissipation heat exchanger 2 On the other hand, the return path 21 for the heat source unit is provided with a return side header 23 that receives the secondary side heat medium B returning through the return path 21 for the heat source unit, and the secondary side heat of the return side header 23 and each refrigerator 4 is provided. The inlet of the medium is connected by a separate branch return path 24 for the heat source machine.

また、この配管構造において、往側ヘッダ5と熱源機用還路21の途中箇所とを短絡的に接続するバイパス路25、及び、このバイパス路25において往側ヘッダ5の側へ向かう熱媒流動を阻止して熱源機用還路21の側へ向かう熱媒流動のみを許容するバイパス用逆止弁26を設けるとともに、熱源機用還路21にはバイパス路25の接続点よりも上流側の箇所で放熱用還路20との分岐点の側へ向かう熱媒流動を阻止して冷凍機4の側(すなわち、還側ヘッダ23の側)へ向かう熱媒流動のみを許容する還側逆止弁27を装備してある。   Further, in this piping structure, a bypass path 25 that short-circuits the outgoing header 5 and a midpoint of the return path 21 for the heat source machine, and a heat medium flow toward the outgoing header 5 side in the bypass path 25 And a bypass check valve 26 that allows only the flow of the heat medium toward the heat source machine return path 21 side is provided, and the heat source machine return path 21 is located upstream of the connection point of the bypass path 25. Return side check that allows only the heat medium flow toward the refrigerator 4 side (that is, the return side header 23 side) by preventing the heat medium flow toward the branch point side with the heat return return path 20 at the location. A valve 27 is provided.

つまり、この冷熱源設備では、放熱用ポンプP1により往側ヘッダ5に供給する二次側熱媒Bの流量、熱源機用ポンプP2により往側ヘッダ5に供給する二次側熱媒Bの流量、並びに、負荷側ポンプP3により負荷熱交換器9群に供給する二次側熱媒Bの流量の夫々を演算冷却負荷Qに応じ流量制御手段としての制御器19により調整する流量制御の実施において、その流量制御上の制御誤差など何らかの原因で、放熱用熱交換器2及び冷凍機4から往側ヘッダ5へ送る二次側熱媒Bの流量が往側ヘッダ5から負荷熱交換器9群へ送る二次側熱媒Bの流量よりも大きくなったとき、その差分の二次側熱媒Bをバイパス路25を通じ負荷熱交換器9からの還り側熱媒路である熱源機用還路21へ短絡的に流動させることで、放熱用熱交換器2及び冷凍機4の側の冷熱出力と負荷熱交換器9の側の冷却負荷Qとの円滑な平衡を図りながら安定的な設備運転を保つようにしている。   That is, in this cold heat source facility, the flow rate of the secondary side heat medium B supplied to the forward side header 5 by the heat radiation pump P1, and the flow rate of the secondary side heat medium B supplied to the forward side header 5 by the heat source machine pump P2. In addition, in the flow rate control in which the flow rate of the secondary side heat medium B supplied to the load heat exchanger 9 group by the load side pump P3 is adjusted by the controller 19 as the flow rate control means according to the calculation cooling load Q. The flow rate of the secondary heat medium B sent from the heat-dissipating heat exchanger 2 and the refrigerator 4 to the outward header 5 due to some reason such as a control error in the flow rate control is changed from the outward header 5 to the load heat exchanger 9 group. When the flow rate of the secondary side heat medium B to be sent to the heat source machine becomes larger than the flow rate of the secondary side heat medium B, the return side heat medium B that is the return side heat medium path from the load heat exchanger 9 through the bypass path 25 through the secondary side heat medium B 21 is caused to flow in a short-circuited manner, thereby dissipating heat exchanger 2 And to keep stable equipment operation while achieving a smooth equilibrium with cold output side of the refrigerator 4 and the cooling load Q on the side of the load heat exchanger 9.

また、バイパス路25を熱源機用還路21に接続するとともに、熱源機用還路21においてバイパス路25の接続点よりも上流側に上記の還側逆止弁27を装備することで、バイパス路25において熱源機用還路21の側へ向かう熱媒流動が無いとき(バイパス路25において往側ヘッダ5へ向かう熱媒流動をバイパス用逆止弁26により阻止している状態を含む)には、負荷側還路10を通じて負荷熱交換器9から戻る二次側熱媒Bが放熱用還路20と熱源機用還路21とに分流されて放熱用熱交換器2と冷凍機4との夫々に対し、ほぼ負荷熱交換器9からの送出時の温度のままで並列的に戻されるようにし、これに対し、バイパス路25において熱源機用還路21の側へ向かう熱媒流動が生じたときには、バイパス路25を通じて熱源機用還路21に流入する二次側熱媒Bの全量が冷凍機4の側に戻される状態になり、負荷側還路10を通じて負荷熱交換器9から戻る二次側熱媒Bのうち放熱用還路20への流入熱媒は、バイパス路25からの低温熱媒混入を伴うことなく、ほぼ負荷熱交換器9からの送出時の温度のままで放熱用熱交換器2に戻されるようにしてある。   In addition, the bypass path 25 is connected to the heat source machine return path 21, and the return side check valve 27 is provided upstream of the connection point of the bypass path 25 in the heat source machine return path 21. When there is no heat medium flow toward the heat source machine return path 21 in the path 25 (including a state where the heat medium flow toward the forward header 5 in the bypass path 25 is blocked by the bypass check valve 26). The secondary side heat medium B returning from the load heat exchanger 9 through the load side return path 10 is divided into the heat return return path 20 and the heat source machine return path 21 so that the heat release heat exchanger 2 and the refrigerator 4 For each of the above, the temperature is returned in parallel with the temperature at the time of delivery from the load heat exchanger 9, and in contrast, the flow of the heat medium toward the heat source unit return path 21 side in the bypass path 25 When it occurs, a heat source machine through the bypass 25 The entire amount of the secondary side heat medium B flowing into the return path 21 is returned to the refrigerator 4 side, and the secondary side heat medium B returning from the load heat exchanger 9 through the load side return path 10 is for heat dissipation. The heat medium flowing into the return path 20 is returned to the heat-dissipating heat exchanger 2 with the temperature at the time of delivery from the load heat exchanger 9 almost unchanged without being mixed with the low-temperature heat medium from the bypass path 25. It is.

すなわち、このことにより、バイパス路25からの低温熱媒混入に原因する放熱用熱交換器2への戻し二次側熱媒Bの低温化を防止して、蓄熱槽1における貯留冷熱を負荷熱交換器9での負荷処理に有効に使用できるようにしてある。   In other words, this prevents the temperature of the return secondary heat medium B from returning to the heat-dissipating heat exchanger 2 due to mixing of the low-temperature heat medium from the bypass passage 25 from being lowered, and the stored cold heat in the heat storage tank 1 is used as load heat. It can be effectively used for load processing in the exchanger 9.

放熱用熱交換器2については、放熱用熱交換器2から放熱用往路6に送出される二次側熱媒Bの一部を放熱用還路20へ短絡的に供給する温度調整用の短絡路28を設けるとともに、放熱用還路20から放熱用熱交換器2に戻す二次側熱媒Bの温度tr′を検出する温度センサ29、及び、この温度センサ29の検出温度tr′に基づき、温度調整用の短絡路28を通じて放熱用還路20に供給する二次側熱媒Bの流量を調整することで、放熱用還路20から放熱用熱交換器2に戻す二次側熱媒Bの温度tr′を前記の設定戻し温度trmに自動調整する自動三方弁30を設けてあり、これにより、放熱用熱交換器2から往側ヘッダ5に供給する二次側熱媒Bの流量をほぼ計画最大流量に保つ冷凍機並行の冷熱供給運転の際、負荷熱交換器9から送出される二次側熱媒Bそのものの温度変動や各負荷熱交換器9から送出される二次側熱媒Bの温度のバラツキなどにかかわらず、放熱用熱交換器2での熱交換量(すなわち、蓄熱槽1からの単位時間当たりの冷熱取出量)を極力一定化するようにしてある。   As for the heat exchanger 2 for heat dissipation, a temperature adjusting short circuit that supplies a part of the secondary side heat medium B sent from the heat exchanger 2 for heat dissipation to the heat dissipation outward path 6 to the heat dissipation return path 20 in a short circuit. A temperature sensor 29 that detects the temperature tr ′ of the secondary side heat medium B that is returned from the heat dissipation return path 20 to the heat dissipation heat exchanger 2 and a detection temperature tr ′ of the temperature sensor 29 is provided. By adjusting the flow rate of the secondary side heat medium B supplied to the heat dissipation return path 20 through the temperature adjusting short-circuit path 28, the secondary side heat medium returned from the heat dissipation return path 20 to the heat dissipation heat exchanger 2 is obtained. An automatic three-way valve 30 for automatically adjusting the temperature tr ′ of B to the set return temperature trm is provided, whereby the flow rate of the secondary side heat medium B supplied from the heat exchanger 2 for heat radiation to the forward header 5 When the cooling heat supply operation is performed in parallel with the refrigerator, the load heat exchanger 9 Heat exchange in the heat-dissipating heat exchanger 2 regardless of temperature fluctuations of the secondary-side heat medium B itself sent from the heat exchanger or variations in the temperature of the secondary-side heat medium B sent from each load heat exchanger 9 The amount (that is, the amount of cold heat taken out per unit time from the heat storage tank 1) is made as constant as possible.

なお図中、P4は一次側循環路3において氷蓄熱槽1と放熱用熱交換器2との間で一次側熱媒Aを循環させる一次側循環ポンプ、31は氷蓄熱槽1の槽内に配置した製氷用熱交換器32において氷を生成(すなわち、氷蓄熱槽1に冷熱を蓄熱)する製氷用冷凍機である。   In the figure, P4 is a primary side circulation pump that circulates the primary side heat transfer medium A between the ice heat storage tank 1 and the heat dissipation heat exchanger 2 in the primary side circulation path 3, and 31 is in the tank of the ice heat storage tank 1. This is an ice making refrigerator that generates ice in the arranged ice making heat exchanger 32 (that is, stores cold heat in the ice heat storage tank 1).

〔別実施形態〕
次に本発明の別実施形態を列記する。
[Another embodiment]
Next, other embodiments of the present invention will be listed.

前述の実施形態では、放熱用熱交換器2及び熱源機4(冷凍機)の夫々で二次側熱媒Bを冷却して負荷熱交換器9での冷却負荷に対応する冷熱源設備を示したが、本発明は、放熱用熱交換器2及び熱源機4の夫々で二次側熱媒Bを加熱して負荷熱交換器9での加熱負荷に対応する温熱源設備にも適用することができる。   In the above-described embodiment, the cooling heat source equipment corresponding to the cooling load in the load heat exchanger 9 by cooling the secondary heat medium B in each of the heat exchanger 2 for heat dissipation and the heat source machine 4 (refrigerator) is shown. However, the present invention is also applied to the heat source equipment corresponding to the heating load in the load heat exchanger 9 by heating the secondary heat medium B in each of the heat dissipation heat exchanger 2 and the heat source unit 4. Can do.

前述の実施形態では、往側合流部として往側ヘッダ5を設け、この往側ヘッダ5に放熱用往路6と熱源機用往路7と負荷側往路8との三者を接続する配管構造を示したが、往側合流部は必ずしもヘッダに限られるものではなく、場合によっては、放熱用往路6と熱源機用往路7と負荷側往路8との三者を互いに管路接続する構造を採用してもよい。   In the above-described embodiment, the forward header 5 is provided as the forward merging portion, and a piping structure is shown in which the forward header 5 is connected to the heat radiating forward path 6, the heat source machine forward path 7, and the load side forward path 8. However, the outgoing side merging portion is not necessarily limited to the header. In some cases, a structure is adopted in which the three of the heat radiating forward path 6, the heat source unit forward path 7, and the load side forward path 8 are connected to each other by pipes. May be.

放熱用ポンプP1により往側合流部5に供給する二次側熱媒Bの流量、熱源機用ポンプP2により往側合流部5に供給する二次側熱媒Bの流量、並びに、負荷側ポンプP3により負荷熱交換器9へ供給する二次側熱媒Bの流量の夫々を負荷熱交換器9における負荷Qに応じて自動調整するのに、その具体的な調整形態は、前述の実施形態で示した調整形態に限らず種々の変更が可能であり、例えば、負荷熱交換器9における負荷Qに応じて負荷側ポンプP3の運転台数変更や出力調整を行うのに伴い、その負荷側ポンプP3の運転台数や出力調整状態に基づき放熱用ポンプP1及び熱源機用ポンプP2の運転台数変更や出力調整を行うようにしてもよい。   The flow rate of the secondary side heat medium B supplied to the forward side junction unit 5 by the heat radiation pump P1, the flow rate of the secondary side heat medium B supplied to the forward side junction unit 5 by the heat source unit pump P2, and the load side pump In order to automatically adjust the flow rate of the secondary side heat medium B supplied to the load heat exchanger 9 by P3 according to the load Q in the load heat exchanger 9, the specific adjustment form is the above-described embodiment. Various modifications are possible, for example, as the number of operating pumps of the load-side pump P3 is changed or the output is adjusted in accordance with the load Q in the load heat exchanger 9. The number of operating heat pumps P1 and the heat source unit pump P2 may be changed or the output may be adjusted based on the operating number of P3 and the output adjustment state.

前述の実施形態では、熱源機用還路21においてバイパス路25の接続点よりも上流側の箇所で放熱用還路20との分岐点の側へ向かう熱媒流動を阻止する逆止手段として、逆止弁27を熱源機用還路21に介装する例を示したが、この逆止手段は熱媒流動向きの検出情報や熱媒圧力の検出情報などに基づき流路を開閉する自動弁などで構成してもよい。   In the above-described embodiment, as a check means for preventing the heat medium flow toward the branching point side with the heat radiation return path 20 at a location upstream of the connection point of the bypass path 25 in the heat source machine return path 21, The example in which the check valve 27 is interposed in the return path 21 for the heat source machine has been shown. It may be configured with such as.

前述の実施形態では、バイパス路25において熱源用還路21から往側合流部5(往側ヘッダ)の側へ向かう熱媒流動を阻止するバイパス用逆止弁26を装備する例を示したが、場合によっては、このバイパス用逆止弁26を省略してバイパス路25におけるいずれの向きの熱媒流動も許すようにしてもよく、また、バイパス路25における熱媒流動状態に応じて各ポンプP1〜P3の熱媒送出流量を補正的に調整する構成を採用するなどしてもよい。   In the above-described embodiment, an example in which the bypass check valve 26 that prevents the flow of the heat medium from the heat source return path 21 toward the outbound side merging portion 5 (outbound header) is provided in the bypass path 25 is described. In some cases, the bypass check valve 26 may be omitted to allow the flow of the heat medium in any direction in the bypass path 25, and each pump according to the heat medium flow state in the bypass path 25. You may employ | adopt the structure which adjusts the heat medium delivery flow rate of P1-P3 correctively.

蓄熱槽1は、氷蓄熱槽などの潜熱蓄熱槽に限られるものでなく、単に冷水や温水を貯留する水蓄熱槽などの顕熱蓄熱槽であってもよい。   The heat storage tank 1 is not limited to a latent heat storage tank such as an ice heat storage tank, and may be a sensible heat storage tank such as a water heat storage tank that simply stores cold water or hot water.

本発明による蓄熱式熱源設備は、冷房や暖房などの空調、あるいは、物品の冷却や加熱など、冷熱ないし温熱が要求される各種用途に利用することができる。   The heat storage type heat source equipment according to the present invention can be used for various applications that require cooling or heating, such as air conditioning such as cooling or heating, or cooling or heating of articles.

実施形態を示す設備構成図Facility configuration diagram showing the embodiment 従来例を示す設備構成図Equipment configuration diagram showing a conventional example

符号の説明Explanation of symbols

1 蓄熱槽
2 放熱用熱交換器
4 熱源機
5 往側合流部
6 放熱用往路
7 熱源機用往路
8 負荷側往路
9 負荷熱交換器
10 負荷側還路
19 流量制御手段
20 放熱用還路
21 熱源機用還路
22 分岐管構造
23 還側ヘッダ
24 熱源機用分岐還路
25 バイパス路
27 逆止手段
28 短絡路
A 一次側熱媒
B 二次側熱媒
P1 放熱用ポンプ
P2 熱源機用ポンプ
P3 負荷側ポンプ
Q 負荷

DESCRIPTION OF SYMBOLS 1 Heat storage tank 2 Heat exchanger for heat dissipation 4 Heat source machine 5 Outbound side junction part 6 Outbound path for heat dissipation 7 Outbound path for heat source 8 Load side outbound path 9 Load heat exchanger 10 Load side return path 19 Flow rate control means 20 Heat dissipation return path 21 Return path for heat source machine 22 Branch pipe structure 23 Return side header 24 Branch return path for heat source machine 25 Bypass path 27 Checking means 28 Short circuit A Primary side heat medium B Secondary side heat medium P1 Heat dissipation pump P2 Heat source machine pump P3 Load side pump Q Load

Claims (3)

放熱用熱交換器において蓄熱槽に貯留の一次側熱媒と熱交換させて冷却又は加熱した二次側熱媒を放熱用往路を通じ放熱用ポンプにより往側合流部へ供給するとともに、これとは並列に、熱源機で冷却又は加熱した二次側熱媒を熱源機用往路を通じ熱源機用ポンプにより前記往側合流部へ供給し、
これら放熱用熱交換器及び熱源機から前記往側合流部に供給される二次側熱媒を負荷側往路を通じ負荷側ポンプにより負荷熱交換器に供給するとともに、この熱媒供給に並行して前記負荷熱交換器から負荷側還路へ送出される二次側熱媒を放熱用還路と熱源機用還路とに分流して前記放熱用熱交換器と前記熱源機とに対し並列的に戻す構成にし、
この構成において、前記放熱用ポンプにより前記往側合流部に供給する二次側熱媒の流量、前記熱源機用ポンプにより前記往側合流部に供給する二次側熱媒の流量、並びに、前記負荷側ポンプにより前記負荷熱交換器へ供給する二次側熱媒の流量の夫々を前記負荷熱交換器における負荷に応じて調整する流量制御手段を設けるとともに、
前記往側合流部を前記負荷熱交換器からの還り側の熱媒路に対し短絡的に接続するバイパス路を設ける蓄熱式熱源設備であって、
前記負荷熱交換器からの還り側の熱媒路に対する前記バイパス路の接続として前記バイパス路を前記熱源機用還路に接続し、
前記熱源機用還路において前記バイパス路の接続点よりも上流側の箇所で、前記放熱用還路との分岐点の側へ向かう熱媒流動を阻止して前記熱源機の側へ向かう熱媒流動のみを許容する逆止手段を設けるとともに、
前記熱源機を並列的に複数装備するのに対し、前記負荷側還路から前記熱源機用還路を通じて戻る二次側熱媒を前記バイパス路の接続点よりも下流側で受け入れる還側ヘッダを設け、この還側ヘッダから各別の熱源機用分岐還路を通じて複数の前記熱源機へ二次側熱媒を戻す構成にしてある蓄熱式熱源設備。
In the heat exchanger for radiating heat, the secondary side heat medium cooled and heated by exchanging heat with the primary side heat medium stored in the heat storage tank is supplied to the forward side merging section by the heat radiating pump through the radiating forward path. In parallel, the secondary heat medium cooled or heated by the heat source machine is supplied to the forward junction by the heat source machine pump through the heat source machine forward path,
While supplying the secondary side heat medium supplied from the heat-dissipating heat exchanger and the heat source unit to the forward side junction to the load heat exchanger by the load side pump through the load side forward path, in parallel with the supply of the heat medium The secondary side heat medium sent from the load heat exchanger to the load side return path is divided into a heat release return path and a heat source machine return path, and is parallel to the heat release heat exchanger and the heat source machine. To the configuration
In this configuration, the flow rate of the secondary heat medium supplied to the forward merging portion by the heat dissipation pump, the flow rate of the secondary heat medium supplied to the forward merging portion by the heat source machine pump, and the While providing a flow rate control means for adjusting the flow rate of the secondary side heat medium supplied to the load heat exchanger by the load side pump according to the load in the load heat exchanger,
A heat storage type heat source facility that provides a bypass path that short-circuits the return side heat transfer path from the load heat exchanger to the return side junction,
Connecting the bypass path to the return path for the heat source machine as a connection of the bypass path to the return side heat medium path from the load heat exchanger,
In the return path for the heat source unit, the heat medium that flows toward the side of the heat source unit by blocking the flow of the heat medium toward the branch point with the return path for heat dissipation at a location upstream of the connection point of the bypass path. In addition to providing a check means that allows only flow ,
Whereas a plurality of the heat source devices are installed in parallel, a return header for receiving a secondary side heat medium returning from the load side return passage through the return passage for the heat source device downstream from the connection point of the bypass passage. A heat storage type heat source facility that is configured to return the secondary side heat medium from the return side header to the plurality of heat source units through separate return paths for heat source units .
前記負荷側還路をT字状又はY字状の分岐管構造により前記放熱用還路と前記熱源機用還路とに分岐してある請求項1記載の蓄熱式熱源設備。   The heat storage type heat source facility according to claim 1, wherein the load side return path is branched into the heat dissipation return path and the heat source machine return path by a T-shaped or Y-shaped branch pipe structure. 前記放熱用熱交換器から送出される二次側熱媒の一部を前記放熱用還路へ短絡的に供給する温度調整用の短絡路を設け、この短絡路を通じて前記放熱用還路へ供給する二次側熱媒の流量調整により、前記放熱用還路から前記放熱用熱交換器に戻す二次側熱媒の温度を設定戻し温度に自動調整する構成にしてある請求項1又は2記載の蓄熱式熱源設備。 A short-circuit for temperature adjustment is provided to supply a part of the secondary side heat medium sent from the heat-dissipating heat exchanger to the heat-dissipating return path, and supplied to the heat-dissipating return path through the short-circuiting path. The temperature of the secondary side heat medium returned to the heat dissipation heat exchanger from the heat dissipation return path is automatically adjusted to the set return temperature by adjusting the flow rate of the secondary side heat medium. regenerative heat source equipment.
JP2003381212A 2003-11-11 2003-11-11 Thermal storage heat source equipment Expired - Fee Related JP4266780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003381212A JP4266780B2 (en) 2003-11-11 2003-11-11 Thermal storage heat source equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003381212A JP4266780B2 (en) 2003-11-11 2003-11-11 Thermal storage heat source equipment

Publications (2)

Publication Number Publication Date
JP2005147416A JP2005147416A (en) 2005-06-09
JP4266780B2 true JP4266780B2 (en) 2009-05-20

Family

ID=34690651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003381212A Expired - Fee Related JP4266780B2 (en) 2003-11-11 2003-11-11 Thermal storage heat source equipment

Country Status (1)

Country Link
JP (1) JP4266780B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4503630B2 (en) * 2007-05-08 2010-07-14 株式会社Nttファシリティーズ Air conditioning system and control method thereof
JP2009036422A (en) * 2007-08-01 2009-02-19 Techno Ryowa Ltd Heat source system

Also Published As

Publication number Publication date
JP2005147416A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP5174950B2 (en) Temperature adjusting device, fluid supply system, heating system, temperature adjusting device mounting method, and fluid supply method
JP2012007796A (en) Heat storage system
JP4981530B2 (en) HEAT SOURCE SYSTEM FLOW CONTROL DEVICE AND HEAT SOURCE SYSTEM FLOW CONTROL METHOD
JP2007064526A (en) Heat recovery device, and cogeneration system
KR20020045518A (en) Chilling system
JP5558202B2 (en) Water supply control system and control method thereof
JP2018173261A (en) Heating system and heating method
JP7013944B2 (en) Fuel cell system with cooling mechanism
JP4600139B2 (en) Air conditioner and control method thereof
JP5470520B2 (en) Multi-system cooling device and its water supply setting method
JP2007271120A (en) Heating medium conveyance system
JP4266780B2 (en) Thermal storage heat source equipment
JP2001182971A (en) Air conditioning system and its control method
JP2008134168A (en) Environmental test apparatus
JP2012107793A (en) Hot water supply system
JP2009243718A (en) Heat medium transporting system
JP5472900B2 (en) Heat source system for air conditioning with heat storage tank
JP6663740B2 (en) Heat utilization system
JP2004150664A (en) Cooling device
JP4408269B2 (en) Waste heat recovery system and cogeneration system
JP2015206543A (en) ice thermal storage system
JP3359495B2 (en) Thermal storage air conditioning system
CN214249761U (en) Waste heat recycling system
JP3859359B2 (en) Heat source system using heat storage tank
EP4269148A1 (en) A heat exchange system and a method of operating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090217

R150 Certificate of patent or registration of utility model

Ref document number: 4266780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees