JP4408269B2 - Waste heat recovery system and cogeneration system - Google Patents

Waste heat recovery system and cogeneration system Download PDF

Info

Publication number
JP4408269B2
JP4408269B2 JP2005105374A JP2005105374A JP4408269B2 JP 4408269 B2 JP4408269 B2 JP 4408269B2 JP 2005105374 A JP2005105374 A JP 2005105374A JP 2005105374 A JP2005105374 A JP 2005105374A JP 4408269 B2 JP4408269 B2 JP 4408269B2
Authority
JP
Japan
Prior art keywords
heat
hot water
heating
flow rate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005105374A
Other languages
Japanese (ja)
Other versions
JP2006284100A (en
Inventor
浩一 三浦
Original Assignee
株式会社長府製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社長府製作所 filed Critical 株式会社長府製作所
Priority to JP2005105374A priority Critical patent/JP4408269B2/en
Publication of JP2006284100A publication Critical patent/JP2006284100A/en
Application granted granted Critical
Publication of JP4408269B2 publication Critical patent/JP4408269B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は熱機関あるいは燃料電池等の排熱装置の排熱で水を加熱して得た湯水を貯湯タンクに貯湯して、前記湯水を前記貯湯タンクから負荷に供給する排熱回収システム、および前記排熱回収システムを備えるコージェネレーションシステムに関する。   The present invention relates to an exhaust heat recovery system for storing hot water obtained by heating water with exhaust heat of a heat exhaust device such as a heat engine or a fuel cell in a hot water storage tank, and supplying the hot water from the hot water storage tank to a load, and The present invention relates to a cogeneration system including the exhaust heat recovery system.

熱機関で駆動される発電機、あるいは燃料電池等を運転して電力を供給するとともに、前記熱機関あるいは燃料電池の排熱を回収して、給湯器や空調機器などの熱負荷に供給するコージェネレーションシステム(電熱併給システム)において、電力の需要と、熱需要の時間的なずれを解消するために、排熱で水を加熱して得た湯水を貯湯タンクに貯湯して、前記湯水を前記貯湯タンクから負荷に供給する貯湯タンク式の排熱回収システムを備えることが知られている(特許文献1)。   A power generator driven by a heat engine or a fuel cell is operated to supply power, and exhaust heat from the heat engine or fuel cell is recovered and supplied to a heat load such as a water heater or an air conditioner. In a generation system (electric and heat combined supply system), in order to eliminate the time lag between the demand for power and the demand for heat, hot water obtained by heating water with exhaust heat is stored in a hot water storage tank, and the hot water is stored in the hot water tank. It is known to include a hot water storage tank type exhaust heat recovery system that supplies a load from a hot water storage tank (Patent Document 1).

図3は、特許文献1に開示されたコージェネレーションシステムの排熱回収システムの概念図である。図3に示す排熱回収システム900は、発電用ガスエンジン901の排熱で水を加熱して得た湯水を貯湯タンク902に貯湯して、前記湯水を図示しない給湯負荷に供給するシステムであり、貯湯熱交換器903、貯湯回路904、循環比例弁905、循環サーミスタ906、循環ポンプ907、バイパス回路908、貯湯弁909を備えている。なお、図中に付した矢印は管路の流れの方向を示している。   FIG. 3 is a conceptual diagram of the exhaust heat recovery system of the cogeneration system disclosed in Patent Document 1. The exhaust heat recovery system 900 shown in FIG. 3 is a system that stores hot water obtained by heating water with the exhaust heat of the power generation gas engine 901 in a hot water storage tank 902 and supplies the hot water to a hot water supply load (not shown). , A hot water storage heat exchanger 903, a hot water storage circuit 904, a circulation proportional valve 905, a circulation thermistor 906, a circulation pump 907, a bypass circuit 908, and a hot water storage valve 909. In addition, the arrow attached | subjected in the figure has shown the direction of the flow of a pipe line.

ガスエンジン901の冷却水は貯湯熱交換器903の1次側903aに流入し、2次側903bを流れる貯湯タンク902の湯水と熱交換して、ガスエンジン901に還流する。   The cooling water of the gas engine 901 flows into the primary side 903a of the hot water storage heat exchanger 903, exchanges heat with hot water in the hot water storage tank 902 flowing through the secondary side 903b, and returns to the gas engine 901.

貯湯タンク902に貯湯された湯水は、貯湯タンク902の下部から流出して、循環比例弁905を通って貯湯熱交換器903の2次側903bに流入して、ガスエンジン901の冷却水と熱交換して加熱される。加熱された前記湯水は循環ポンプ907を通って、貯湯タンク902の上部に還流する。このように貯湯タンク902と貯湯熱交換器903の2次側903bの間を循環する湯水の循環路を貯湯回路904と呼ぶことにする。循環サーミスタ906は、貯湯熱交換器903の2次側903bの下流で前記湯水の温度を検出する温度センサであり、循環ポンプ907は前記湯水を貯湯回路904で循環させるポンプである。なお、貯湯回路904を循環する湯水の一部は図示しない給湯負荷に流出して消費される。   The hot water stored in the hot water storage tank 902 flows out from the lower part of the hot water storage tank 902, passes through the circulation proportional valve 905, flows into the secondary side 903 b of the hot water storage heat exchanger 903, and cools and heats the gas engine 901. Exchange and heat. The heated hot water returns to the upper part of the hot water storage tank 902 through the circulation pump 907. The hot water circulation path circulating between the hot water storage tank 902 and the secondary side 903b of the hot water storage heat exchanger 903 is referred to as a hot water storage circuit 904. The circulation thermistor 906 is a temperature sensor that detects the temperature of the hot water downstream of the secondary side 903 b of the hot water storage heat exchanger 903, and the circulation pump 907 is a pump that circulates the hot water in the hot water storage circuit 904. A part of hot water circulating through the hot water storage circuit 904 flows out to a hot water supply load (not shown) and is consumed.

バイパス回路908は、循環ポンプ907から吐出する湯水の一部をバイパスさせて、貯湯熱交換器903の2次側903bの上流に還流する管路であり、貯湯弁909はバイパス回路908を開閉する弁である。また、循環比例弁905は貯湯回路904を流れる湯水の流量を調整する調整弁であり、循環サーミスタ906が検出する前記湯水の温度に応じて開閉する。すなわち、前記温度が基準より低い場合は、循環比例弁905を閉じて、バイパス回路908を流れる前記湯水の流量を増やし、(貯湯回路904を流れる前記湯水の流量を減らす)、前記温度が基準より高い場合は、循環比例弁905を開いて、バイパス回路908を流れる前記湯水の流量を減らす(貯湯回路904を流れる前記湯水の流量を増やす)。
特開2002−364918号公報
The bypass circuit 908 is a pipe that bypasses a part of hot water discharged from the circulation pump 907 and returns to the upstream side of the secondary side 903 b of the hot water storage heat exchanger 903, and the hot water storage valve 909 opens and closes the bypass circuit 908. It is a valve. The circulation proportional valve 905 is an adjustment valve that adjusts the flow rate of hot water flowing through the hot water storage circuit 904 and opens and closes according to the temperature of the hot water detected by the circulation thermistor 906. That is, when the temperature is lower than the reference, the circulation proportional valve 905 is closed to increase the flow rate of the hot water flowing through the bypass circuit 908 (reducing the flow rate of the hot water flowing through the hot water storage circuit 904), and the temperature is lower than the reference. If it is high, the circulation proportional valve 905 is opened to reduce the flow rate of the hot water flowing through the bypass circuit 908 (increasing the flow rate of the hot water flowing through the hot water storage circuit 904).
JP 2002-364918 A

このように、特許文献1の排熱回収システムは、貯湯弁909を開くことによって、貯湯回路904を循環する湯水の量を減らして、貯湯タンク902に高温の湯水を蓄えることができるが、循環ポンプ907を常に一定速度で運転するので、循環ポンプ907の消費電力が大きいという問題がある。
また、バイパス回路908が放熱源となり省エネ性を損なうという問題がある。
As described above, the exhaust heat recovery system of Patent Document 1 can store hot hot water in the hot water storage tank 902 by reducing the amount of hot water circulating through the hot water storage circuit 904 by opening the hot water storage valve 909. Since the pump 907 is always operated at a constant speed, there is a problem that the power consumption of the circulation pump 907 is large.
Further, there is a problem that the bypass circuit 908 becomes a heat radiation source and impairs energy saving.

本発明はかかる課題を解決するためになされたものであり、貯湯回路循環用のポンプの消費電力を低減するとともに、省エネ性を高めた排熱回収システムおよび、これを使用するコージェネレーションシステムを提供することを目的とする。   The present invention has been made to solve such a problem, and provides an exhaust heat recovery system that reduces the power consumption of a pump for circulating hot water storage circuits and improves energy saving, and a cogeneration system using the exhaust heat recovery system. The purpose is to do.

本発明に係る排熱回収システムの第1の構成は、排熱装置の排熱を運搬する第1の熱媒が流れる1次側流路と第2の熱媒が流れる2次側流路を有する第1の熱交換手段と、前記排熱装置と前記第1の熱交換手段の間を前記第1の熱媒が循環する第1の循環路と、前記第2の熱媒を蓄える蓄熱手段と、前記第1の熱交換手段と前記蓄熱手段の間を前記第2の熱媒が循環する第2の循環路を備える排熱回収システムにおいて、前記第1の循環路の前記熱交換手段の下流で前記第1の熱媒の温度を検出する温度検出手段と、前記第2の循環路に装置されて、前記第2の熱媒を圧送する流量可変な圧送手段と、前記温度検出手段の検出温度に従って、前記圧送手段の流量を調整する制御手段とを備えることを特徴とする。   The first configuration of the exhaust heat recovery system according to the present invention includes a primary side channel through which a first heat medium that transports exhaust heat of the exhaust heat apparatus flows and a secondary side channel through which a second heat medium flows. First heat exchange means, a first circulation path through which the first heat medium circulates between the heat exhaust device and the first heat exchange means, and heat storage means for storing the second heat medium. And an exhaust heat recovery system comprising a second circulation path through which the second heat medium circulates between the first heat exchange means and the heat storage means, in the heat exchange means of the first circulation path A temperature detecting means for detecting the temperature of the first heat medium downstream; a pressure-feeding means that is installed in the second circulation path and that pumps the second heat medium; And control means for adjusting the flow rate of the pressure feeding means according to the detected temperature.

この構成によれば、熱交換手段の下流における第1の熱媒の温度に応じて圧送手段の流量を調整するので、前記圧送手段の消費電力を最小にすることができる。また、第2の熱媒の温度に係わらず、第1の熱媒を所定温度まで冷却でき、排熱装置を十分に冷却することができる。   According to this configuration, since the flow rate of the pressure feeding means is adjusted according to the temperature of the first heat medium downstream of the heat exchange means, the power consumption of the pressure feeding means can be minimized. Moreover, irrespective of the temperature of the second heat medium, the first heat medium can be cooled to a predetermined temperature, and the exhaust heat apparatus can be sufficiently cooled.

なお、ここで排熱装置とは、本来の目的である出力を得るために、副次的かつ必然的に熱を発生する装置であり、ガスエンジン、ディーゼルエンジン、ガスタービンなどの熱機関、特に発電用の熱機関がその代表であるが、燃料電池のように化学反応から直接電力を得て、その過程で熱を排出する装置も、排熱装置に含まれる。   Here, the exhaust heat device is a device that generates a secondary and inevitably heat in order to obtain an output that is the original purpose, and is a heat engine such as a gas engine, a diesel engine, or a gas turbine, in particular. A representative example is a heat engine for power generation, but a device that obtains electric power directly from a chemical reaction and discharges heat in the process, such as a fuel cell, is also included in the exhaust heat device.

また、熱媒とは熱を運搬する流体であり、液体、気体の別を問わない。また熱の移動の過程で、状態変化を伴う物質、伴わない物質のいずれであってもよい。   The heat medium is a fluid that carries heat, regardless of whether it is liquid or gas. In addition, the substance may be either a substance accompanied by a state change or a substance not accompanied during the heat transfer process.

また、流量可変な圧送手段は可変速ポンプに限られるものではない。例えば、能力の異なる複数のポンプを並列に配置して、前記複数のポンプを切り替えて、あるいは組み合わせて運転するなど、種々の手段を選択できる。   Further, the pressure feeding means with variable flow rate is not limited to the variable speed pump. For example, various means such as arranging a plurality of pumps having different capacities in parallel and switching the plurality of pumps or operating them in combination can be selected.

本発明に係る排熱回収システムの第2の構成は、前記第1の構成において、前記第2の循環路に装置されて、前記第2の熱媒の流量を調整する流量調整弁を備えるとともに、前記制御手段は、前記温度検出手段の検出温度に従って、前記流量調整弁の開度を調整することを特徴とする。   A second configuration of the exhaust heat recovery system according to the present invention includes, in the first configuration, a flow rate adjustment valve that is installed in the second circulation path and adjusts the flow rate of the second heat medium. The control means adjusts the opening of the flow rate adjusting valve according to the temperature detected by the temperature detecting means.

この構成によれば、第2の熱媒の流量を調整する流量調整弁を備えるので、前記第2の熱媒の流量を微調整することができる。   According to this configuration, since the flow rate adjustment valve for adjusting the flow rate of the second heat medium is provided, the flow rate of the second heat medium can be finely adjusted.

本発明に係る排熱回収システムの第3の構成は、前記第1又は第2の構成において、前記第1の熱媒が流れる1次側流路と熱負荷に熱を運搬する第3の熱媒が流れる2次側流路を有する第2の熱交換手段を備えることを特徴とする。   According to a third configuration of the exhaust heat recovery system of the present invention, in the first or second configuration, a third heat that conveys heat to a primary flow path and a heat load through which the first heat medium flows. It has the 2nd heat exchange means which has the secondary side flow path through which a medium flows, It is characterized by the above-mentioned.

この構成によれば、第1の熱交換手段に加えて第2の熱交換手段を有するので、排熱の利用先が増える。   According to this configuration, since the second heat exchanging means is provided in addition to the first heat exchanging means, the use destination of the exhaust heat increases.

本発明に係る排熱回収システムの第4の構成は、前記第3の構成において、前記第1の熱交換手段と前記第2の熱交換手段は前記第1の循環路に直列に配列されることを特徴とする。   In a fourth configuration of the exhaust heat recovery system according to the present invention, in the third configuration, the first heat exchange means and the second heat exchange means are arranged in series in the first circulation path. It is characterized by that.

この構成によれば、第1の熱交換手段と第2の熱交換手段を第1の循環路に直列に配列するので、前記熱交換手段から流出する低温の第1の熱媒から更に排熱を回収できる。   According to this configuration, since the first heat exchanging means and the second heat exchanging means are arranged in series in the first circulation path, the heat is further exhausted from the low temperature first heat medium flowing out from the heat exchanging means. Can be recovered.

本発明に係る排熱回収システムの第5の構成は、前記第3の構成において、前記排熱装置と前記第2の熱交換手段の間を前記第1の熱媒が循環する第3の循環路を備えるとともに、前記第3の循環路は前記第1の循環路に対して並列に配列されることを特徴とする。   In a fifth configuration of the exhaust heat recovery system according to the present invention, in the third configuration, a third circulation in which the first heat medium circulates between the exhaust heat device and the second heat exchange means. The third circulation path is arranged in parallel to the first circulation path.

この構成によれば、第3の循環路は第1の循環路に対して並列に配列されるので、第2の熱交換手段は高温の第1の熱媒から効率良く排熱を回収できる。   According to this configuration, since the third circulation path is arranged in parallel to the first circulation path, the second heat exchange means can efficiently recover the exhaust heat from the high-temperature first heat medium.

本発明に係るコージェネレーションシステムの構成は、前記第1乃至第5の何れかの構成に係る排熱回収システムを備えることを特徴とする。   The configuration of the cogeneration system according to the present invention includes the exhaust heat recovery system according to any one of the first to fifth configurations.

この構成によれば、発電手段の排熱を有効に利用しつつ、前記発電用手段を十分に冷却できるので、コージェネレーションシステムの性能が向上する。   According to this configuration, since the power generation means can be sufficiently cooled while effectively using the exhaust heat of the power generation means, the performance of the cogeneration system is improved.

以上のように本発明によれば、バイパス回路が不要になるので、バイパス回路からの放熱がなくなり省エネ性が向上するとともに、蓄熱手段に蓄えられる第2の熱媒の温度を高くできるので、前記蓄熱手段が小型になり、排熱回収システムあるいはコージェネレーションシステムをコンパクトに纏める効果がある。また、圧送手段の消費電力が下がるので、更に省エネ性が向上する。   As described above, according to the present invention, since the bypass circuit is unnecessary, heat dissipation from the bypass circuit is eliminated, energy saving is improved, and the temperature of the second heat medium stored in the heat storage means can be increased. The heat storage means is reduced in size, and the exhaust heat recovery system or the cogeneration system is effectively integrated. Moreover, since the power consumption of the pressure feeding means is reduced, the energy saving performance is further improved.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は、本発明の実施例1に係るコージェネレーションシステムの熱供給系の配管系統図である。図1に示す熱供給系1は、図示しない発電用ガスエンジンの排熱を回収して、前記排熱を、暖房、給湯および風呂水の加熱(追い焚き)に利用するシステムであり、貯湯タンク2、貯湯熱交換器3、暖房低温熱交換器4、補助熱源機5、暖房高温熱交換器6、風呂熱交換器7、および後述するその他の機器から構成される。なお、補助熱源機5はガスを燃料とするが、補助熱源機5に燃料を供給する管系は図示を省略している。また、熱供給系1を含むコージェネレーションシステムは図示しない制御用のコンピュータの支配を受けている。以下の説明においては、前記制御用のコンピュータの指令によって、熱供給系1の構成機器が動作することを、単に「制御される」と表現する。   FIG. 1 is a piping diagram of a heat supply system of a cogeneration system according to Embodiment 1 of the present invention. A heat supply system 1 shown in FIG. 1 is a system that recovers exhaust heat of a power generation gas engine (not shown) and uses the exhaust heat for heating (heating), hot water supply, and bath water. 2, the hot water storage heat exchanger 3, the heating low-temperature heat exchanger 4, the auxiliary heat source machine 5, the heating high-temperature heat exchanger 6, the bath heat exchanger 7, and other devices described later. The auxiliary heat source unit 5 uses gas as a fuel, but a pipe system that supplies fuel to the auxiliary heat source unit 5 is not shown. The cogeneration system including the heat supply system 1 is controlled by a control computer (not shown). In the following description, the operation of the components of the heat supply system 1 in accordance with the command from the control computer is simply expressed as “controlled”.

さて、熱供給系1の配管は、貯湯系10、排熱系20、暖房系30、給湯系40、浴槽系50および給水系60の6系統に大別される。以下、系統毎に構成機器とその機能を説明する。   Now, the piping of the heat supply system 1 is roughly divided into six systems: a hot water storage system 10, an exhaust heat system 20, a heating system 30, a hot water supply system 40, a bathtub system 50, and a water supply system 60. Hereinafter, constituent devices and their functions will be described for each system.

〔貯湯系〕
貯湯系10は、貯湯タンク2の下部から供給される湯水を、貯湯熱交換器3の2次側3bに通水して、排熱系20から供給される排熱で加熱して、貯湯タンク3の上部に帰還させる配管系統である。
[Hot water storage system]
The hot water storage system 10 passes hot water supplied from the lower part of the hot water storage tank 2 to the secondary side 3b of the hot water storage heat exchanger 3 and heats it with the exhaust heat supplied from the exhaust heat system 20, so that the hot water storage tank 3 is a piping system that returns to the top of 3.

貯湯系10は、循環比例弁101、循環ポンプ102、圧力スイッチ103、バキュームブレーカ104、貯湯サーミスタ105,106,107,108および逃し弁109を備えて、貯湯タンク2→循環比例弁101→貯湯熱交換器3の2次側3b→循環ポンプ102→貯湯タンク2の循環路(第2の循環路)を形成している。   The hot water storage system 10 includes a circulation proportional valve 101, a circulation pump 102, a pressure switch 103, a vacuum breaker 104, a hot water storage thermistor 105, 106, 107, 108, and a relief valve 109, and a hot water storage tank 2 → circulation proportional valve 101 → hot water storage heat. The secondary side 3b of the exchanger 3 → the circulation pump 102 → the circulation path (second circulation path) of the hot water storage tank 2 is formed.

循環比例弁101は、貯湯タンク2の下部と給水系60をつなぐ配管と貯湯熱交換器3の2次側3bの入口の間にあって、前記循環路を流れる湯水の流量が適量になるようにその開度を制御される弁である。   The circulation proportional valve 101 is located between the pipe connecting the lower part of the hot water storage tank 2 and the water supply system 60 and the inlet of the secondary side 3b of the hot water storage heat exchanger 3 so that the flow rate of hot water flowing through the circulation path becomes an appropriate amount. A valve whose opening is controlled.

循環ポンプ102は、貯湯熱交換器3の2次側3bの出口から吐出する湯水を給湯タンク2の上部まで揚水して、前記循環路を循環させる圧送手段であり、前記循環路を流れる湯水の流量が適量になるようにその流量を制御される。   The circulation pump 102 is a pumping means for pumping hot water discharged from the outlet of the secondary side 3b of the hot water storage heat exchanger 3 to the upper part of the hot water supply tank 2 and circulating the circulating path, and the hot water flowing through the circulating path. The flow rate is controlled so that the flow rate becomes an appropriate amount.

圧力スイッチ103は、断水検知用のスイッチであり断水時循環ポンプへのエアー噛みを防ぐためシステムダウンさせるスイッチである。   The pressure switch 103 is a switch for detecting water breakage, and is a switch that causes the system to go down to prevent air from being caught in the circulation pump at the time of water breakage.

バキュームブレーカ104は断水等で缶体内が負圧になったときに開き貯湯タンク2が負圧により破損することを防止する。   The vacuum breaker 104 is opened when the inside of the can becomes negative pressure due to water breakage or the like, and prevents the hot water storage tank 2 from being damaged by the negative pressure.

貯湯サーミスタ105〜108は、貯湯タンク2の胴体に取り付けられて、貯湯タンク2内の湯水の温度を検出する温度センサである。   The hot water storage thermistors 105 to 108 are temperature sensors that are attached to the body of the hot water storage tank 2 and detect the temperature of the hot water in the hot water storage tank 2.

逃し弁109は貯湯タンク2の下部に取り付けられて、貯湯タンク2の圧力が異常に上昇した場合に、開放されて貯湯タンク2内部の湯水を排出する安全弁である。   The relief valve 109 is a safety valve that is attached to the lower part of the hot water storage tank 2 and is opened to discharge hot water in the hot water storage tank 2 when the pressure of the hot water storage tank 2 rises abnormally.

なお、貯湯タンク2の下部は、給水系60につながれていて、給水系60の給水圧は、貯湯タンク2の内部の湯水の圧力とバランスしている。つまり、貯湯タンク2内部の水圧が所定の水準にあるときは給水は停止し、貯湯タンク2内部の湯水が消費されて、水圧が低下すると給水が行われる。   In addition, the lower part of the hot water storage tank 2 is connected to the water supply system 60, and the water supply pressure of the water supply system 60 is balanced with the pressure of the hot water in the hot water storage tank 2. That is, when the water pressure inside the hot water storage tank 2 is at a predetermined level, the water supply is stopped, the hot water inside the hot water storage tank 2 is consumed, and the water supply is performed when the water pressure drops.

〔排熱系〕
排熱系20は、前記発電用ガスエンジンから帰還する高温の冷却水を、貯湯熱交換器3の1次側3aに通水し、続いて暖房低温熱交換器4の1次側4aに通水することによって、前記発電用ガスエンジンの排熱を、貯湯系10および暖房系30に供給するとともに、排熱を失って低温になった冷却水を前記発電用ガスエンジンに送給する配管系統である。
[Exhaust heat system]
The exhaust heat system 20 passes high-temperature cooling water returning from the power generation gas engine to the primary side 3 a of the hot water storage heat exchanger 3, and then passes to the primary side 4 a of the heating low-temperature heat exchanger 4. A piping system for supplying exhaust heat of the power generation gas engine to the hot water storage system 10 and the heating system 30 by supplying water to the power generation gas engine while losing the exhaust heat and lowering cooling water to the power generation gas engine It is.

排熱系20は、排熱戻り口201、余剰電力回収ヒーター202、循環サーミスタ203、排熱サーミスタ204、冷却水タンク205、排熱ポンプ206および排熱往き口207を備え、前記発電用ガスエンジン→排熱戻り口201→貯湯熱交換器3の1次側3a→暖房低温熱交換器4の1次側4a→冷却水タンク205→排熱ポンプ206→排熱往き口207→前記発電用ガスエンジンの冷却水循環路(第1の循環路)を形成している。   The exhaust heat system 20 includes an exhaust heat return port 201, a surplus power recovery heater 202, a circulation thermistor 203, an exhaust heat thermistor 204, a cooling water tank 205, an exhaust heat pump 206, and an exhaust heat outlet 207. → Exhaust heat return port 201 → Primary side 3a of the hot water storage heat exchanger 3 → Primary side 4a of the heating / low temperature heat exchanger 4 → Cooling water tank 205 → Exhaust heat pump 206 → Exhaust heat outlet 207 → The power generation gas An engine cooling water circulation path (first circulation path) is formed.

排熱戻り口201は、前記発電用ガスエンジンの冷却ジャケットから帰還する高温の冷却水が流入するポートである。   The exhaust heat return port 201 is a port through which high-temperature cooling water returning from the cooling jacket of the power generation gas engine flows.

余剰電力回収ヒーター202は、前記発電用ガスエンジンの発電能力に余剰が生じた場合に、その余剰電力を熱に変換して冷却水に伝熱して回収するヒーターであり、排熱戻り口201と、貯湯熱交換器3の1次側3aの間に備えられる。   The surplus power recovery heater 202 is a heater that converts the surplus power into heat and transfers it to the cooling water for recovery when there is surplus in the power generation capacity of the power generation gas engine. The hot water storage heat exchanger 3 is provided between the primary sides 3a.

循環サーミスタ203は、貯湯熱交換器3の1次側3aの出口における冷却水の温度を検出する温度センサである。なお、循環サーミスタ203と貯湯熱交換器3の間には適当な距離が必要である。貯湯熱交換器3は熱容量が大きいので、貯湯熱交換器3の温度は、冷却水の温度に遅れて変化するから、循環サーミスタ203を貯湯熱交換器3に近づけすぎると、結局、貯湯熱交換器3の温度を検出してしまい、冷却水の温度を検出できないからである。   The circulation thermistor 203 is a temperature sensor that detects the temperature of the cooling water at the outlet of the primary side 3 a of the hot water storage heat exchanger 3. An appropriate distance is required between the circulation thermistor 203 and the hot water storage heat exchanger 3. Since the hot water storage heat exchanger 3 has a large heat capacity, the temperature of the hot water storage heat exchanger 3 changes behind the temperature of the cooling water. Therefore, if the circulating thermistor 203 is too close to the hot water storage heat exchanger 3, the hot water storage heat exchanger 3 is eventually replaced. This is because the temperature of the vessel 3 is detected and the temperature of the cooling water cannot be detected.

また、循環サーミスタ203が検出する冷却水の温度は、循環ポンプ102の流量および循環比例弁101の開度にフィードバックされる。つまり、循環サーミスタ203が検出する冷却水の温度が基準より高い場合は、循環ポンプ102の流量を上げ、循環比例弁101を開いて、貯湯熱交換器3の2次側3bを流れる貯湯系10の湯水の流量を増やし、逆に前記冷却水の温度が基準より低い場合は、循環ポンプ102の流量を下げ、循環比例弁101を閉じて、貯湯熱交換器3の2次側3bを流れる貯湯系10の湯水の流量を減らす。   Further, the temperature of the cooling water detected by the circulation thermistor 203 is fed back to the flow rate of the circulation pump 102 and the opening degree of the circulation proportional valve 101. That is, when the temperature of the cooling water detected by the circulation thermistor 203 is higher than the reference, the flow rate of the circulation pump 102 is increased, the circulation proportional valve 101 is opened, and the hot water storage system 10 flowing through the secondary side 3b of the hot water storage heat exchanger 3. On the contrary, when the temperature of the cooling water is lower than the reference, the flow rate of the circulation pump 102 is lowered, the circulation proportional valve 101 is closed, and the hot water storage flowing through the secondary side 3b of the hot water storage heat exchanger 3 Reduce the flow rate of hot water in system 10.

なお、前述の貯湯系10の湯水の流量の調整は、主として循環ポンプ102の流量の増減で行い、循環比例弁101の開閉により前記流量の微調整を行う。   The flow rate of the hot water in the hot water storage system 10 is adjusted mainly by increasing or decreasing the flow rate of the circulation pump 102, and the flow rate is finely adjusted by opening and closing the circulation proportional valve 101.

排熱サーミスタ204は、暖房低温熱交換器4の1次側4aの出口における冷却水の温度を検出する温度センサである。   The exhaust heat thermistor 204 is a temperature sensor that detects the temperature of the cooling water at the outlet of the primary side 4 a of the heating low-temperature heat exchanger 4.

排熱サーミスタ204が検出する冷却水の温度は、補助熱源機5の運転にフィードバックされる。つまり、排熱サーミスタ204が検出する冷却水の温度が基準を下回った場合は、暖房低温熱交換器4だけでは暖房系30に十分な熱を供給できないので、補助熱源機5の火力を増勢し、暖房高温熱交換器6による暖房水の加熱量を増やす。   The temperature of the cooling water detected by the exhaust heat thermistor 204 is fed back to the operation of the auxiliary heat source unit 5. That is, when the temperature of the cooling water detected by the exhaust heat thermistor 204 is lower than the reference, the heating / cooling heat exchanger 4 alone cannot supply sufficient heat to the heating system 30, so the heating power of the auxiliary heat source unit 5 is increased. The amount of heating water heated by the heating high-temperature heat exchanger 6 is increased.

冷却水タンク205は、給水系60から給水を受けて、前記冷却水循環路の途中で蒸発した冷却水を補充するとともに、冷却水の温度を一定値以下に保つタンクである。   The cooling water tank 205 is a tank that receives water supplied from the water supply system 60 and replenishes the cooling water evaporated in the middle of the cooling water circulation path and keeps the temperature of the cooling water below a certain value.

排熱ポンプ206は冷却水を前記冷却水循環路で循環させるポンプである。   The exhaust heat pump 206 is a pump for circulating cooling water in the cooling water circulation path.

排熱往き口207は、排熱を放出して低温になった冷却水を前記発電用ガスエンジンの冷却ジャケットに送出するポートである。   The exhaust heat outlet 207 is a port that sends out the exhaust water to the cooling jacket of the power generation gas engine.

〔暖房系〕
暖房系30は、図示しない暖房機(例えば、ファンコイルユニットや床暖房ユニット)から帰還する低温の暖房水(暖房用熱媒)を、暖房低温熱交換器4の2次側4bに通水し、続いて暖房高温熱交換器6の2次側6bに通水することによって、加熱し、高温になった暖房水を前記暖房機に送給する配管系統である。
[Heating system]
The heating system 30 passes low-temperature heating water (heating medium for heating) returning from a heater (not shown) (for example, a fan coil unit or a floor heating unit) to the secondary side 4b of the heating low-temperature heat exchanger 4. Then, it is a piping system for supplying heating water heated to high temperature by passing water through the secondary side 6b of the heating high-temperature heat exchanger 6 to the heater.

暖房系30は、暖房水戻り口301、暖房水タンク302、リターン回路303、暖房ポンプ304、暖房サーミスタ305および暖房往き口306を備え、前記暖房機→暖房水戻り口301→暖房低温熱交換器4の2次側4b→暖房高温熱交換器6の2次側6b→暖房水タンク302→暖房ポンプ304→暖房往き口306→前記暖房機の暖房水循環路を形成する。   The heating system 30 includes a heating water return port 301, a heating water tank 302, a return circuit 303, a heating pump 304, a heating thermistor 305, and a heating outlet 306, and the heating device → the heating water return port 301 → the heating low-temperature heat exchanger. 4 secondary side 4b → secondary side 6b of heating high-temperature heat exchanger 6 → heating water tank 302 → heating pump 304 → heating outlet 306 → the heating water circulation path of the heater is formed.

暖房水戻り口301は、前記暖房機から帰還する低温の冷却水が流入するポートである。   The heating water return port 301 is a port through which low-temperature cooling water returning from the heater flows.

暖房水タンク302は、暖房高温熱交換器6の2次側6bの下流にあって、給水系60から給水を受けて、前記暖房循環路の途中で蒸発した暖房水を補充して、暖房水の水位を一定範囲内に保つタンクである。   The heating water tank 302 is downstream of the secondary side 6b of the heating high temperature heat exchanger 6, receives water from the water supply system 60, replenishes the heating water evaporated in the middle of the heating circuit, This tank keeps the water level within a certain range.

リターン回路303は、暖房機側回路が閉止された場合に、暖房水を暖房往き口306側から暖房高温熱交換器6の2次側6b側に戻す管系である。   The return circuit 303 is a pipe system that returns the heating water from the heating outlet 306 side to the secondary side 6b side of the heating high-temperature heat exchanger 6 when the heater-side circuit is closed.

暖房ポンプ304は暖房水を前記暖房水循環路で循環させるポンプである。   The heating pump 304 is a pump that circulates heating water in the heating water circulation path.

暖房サーミスタ305は暖房ポンプ304の下流又は上流において、暖房水の温度を検出する温度センサである。   The heating thermistor 305 is a temperature sensor that detects the temperature of the heating water downstream or upstream of the heating pump 304.

暖房往き口306は、高温になった暖房水を前記暖房機に送出するポートである。   The heating outlet 306 is a port through which heated water having a high temperature is sent to the heater.

〔給湯系〕
給湯系40は、貯湯系10から供給される湯水を補助熱源機5に通水して加熱し、暖房高温熱交換器6の1次側6a及び風呂熱交換器7の1次側7aに通水して、暖房系30及び浴槽系50に熱を供給するとともに、湯水を浴槽系50及び、図示しない端末(例えば、カランやシャワーヘッド)に供給する配管系統である。
[Hot water system]
The hot water supply system 40 passes hot water supplied from the hot water storage system 10 through the auxiliary heat source unit 5 and heats it, and passes it through the primary side 6 a of the heating high-temperature heat exchanger 6 and the primary side 7 a of the bath heat exchanger 7. This is a piping system that supplies water to the heating system 30 and the bathtub system 50 and supplies hot water to the bathtub system 50 and a terminal (not shown) (for example, a currant or a shower head).

給湯系40は、BU水量センサ401、BU入サーミスタ402、BU出サーミスタ403、暖房弁404、風呂弁405、湯比例弁408、水比例弁409、給湯サーミスタ410、給湯口411を備える。   The hot water supply system 40 includes a BU water amount sensor 401, a BU entry thermistor 402, a BU exit thermistor 403, a heating valve 404, a bath valve 405, a hot water proportional valve 408, a water proportional valve 409, a hot water supply thermistor 410, and a hot water outlet 411.

貯湯系10から給湯系40に供給された湯水は、補助熱源機5に通水され、所定温度に加熱される。加熱されて補助熱源機5を出た湯水は、暖房高温熱交換器6の1次側6aに向かう流れと、風呂熱交換器7、浴槽系50および給湯口411に向かう流れに分かれる。   Hot water supplied from the hot water storage system 10 to the hot water supply system 40 is passed through the auxiliary heat source unit 5 and heated to a predetermined temperature. The hot water that is heated and exits the auxiliary heat source unit 5 is divided into a flow toward the primary side 6 a of the heating high-temperature heat exchanger 6 and a flow toward the bath heat exchanger 7, the bathtub system 50, and the hot water supply port 411.

BU水量センサ401は、貯湯系10から補助熱源機5に流入する湯水の流量を検出するセンサである。   The BU water amount sensor 401 is a sensor that detects the flow rate of hot water flowing into the auxiliary heat source unit 5 from the hot water storage system 10.

BU入サーミスタ402は、補助熱源機5に流入する湯水の温度を検出する温度センサである。   The BU entry thermistor 402 is a temperature sensor that detects the temperature of hot water flowing into the auxiliary heat source unit 5.

BU出サーミスタ403は、補助熱源機5から流出する湯水の温度を検出する温度センサである。   The BU outlet thermistor 403 is a temperature sensor that detects the temperature of hot water flowing out from the auxiliary heat source unit 5.

暖房高温熱交換器6の1次側6aに流入して、暖房系30の暖房水と熱交換して低温になった湯水は暖房弁404を経由して、貯湯熱交換器3の2次側3bと循環ポンプ102の中間の位置で貯湯系10に還流する。   The hot water that has flowed into the primary side 6a of the heating high-temperature heat exchanger 6 and exchanged heat with the heating water of the heating system 30 to become a low temperature passes through the heating valve 404 to the secondary side of the hot water storage heat exchanger 3. 3b and the circulating pump 102 are returned to the hot water storage system 10 at a middle position.

暖房弁404は、暖房高温熱交換器6の1次側6aに流入する湯水の流量を調整するためにその開度を制御される弁である。   The heating valve 404 is a valve whose opening degree is controlled in order to adjust the flow rate of hot water flowing into the primary side 6 a of the heating high-temperature heat exchanger 6.

風呂熱交換器7の1次側7aに流入して、浴槽系50の風呂水と熱交換して低温になった湯水は風呂弁405を経由して、貯湯熱交換器3の2次側3bの入り口で貯湯系10に還流する。   The hot water that has flowed into the primary side 7a of the bath heat exchanger 7 and exchanged heat with the bath water of the bath system 50 and has become low temperature passes through the bath valve 405, and then the secondary side 3b of the hot water storage heat exchanger 3. Reflux to the hot water storage system 10 at the entrance of.

風呂弁405は、風呂熱交換器7の1次側7aに流入する湯水の流量を調整するためにその開度を制御される弁である。   The bath valve 405 is a valve whose opening degree is controlled in order to adjust the flow rate of hot water flowing into the primary side 7 a of the bath heat exchanger 7.

湯比例弁408を経由した湯水は、給水系60から水比例弁409を経由して供給された給水と混合されて混合水となって給湯口411に流れる。また前記混合水は浴槽系50にも流出する。   The hot water passing through the hot water proportional valve 408 is mixed with the water supplied from the water supply system 60 via the water proportional valve 409 and flows into the hot water outlet 411 as mixed water. The mixed water also flows out into the bathtub system 50.

給湯サーミスタ410は前記混合水の温度を検出するセンサである。   The hot water supply thermistor 410 is a sensor that detects the temperature of the mixed water.

給湯口411は、カランやシャワーヘッド等の端末に繋がるポートである。   The hot water supply port 411 is a port connected to a terminal such as a currant or a shower head.

〔浴槽系〕
浴槽系50は、図示しない浴槽に張られた風呂水を、風呂熱交換器7の2次側7bに通水して加熱(追い焚き)するとともに、給湯系40から供給される湯水を前記浴槽に供給(湯はり)する配管系統である。
[Bathtub system]
The bath system 50 heats (batches up) bath water stretched in a bath (not shown) through the secondary side 7b of the bath heat exchanger 7, and also supplies hot water supplied from the hot water supply system 40 to the bathtub. This is a piping system that supplies water (hot water).

浴槽系50は、風呂戻り口501、風呂ポンプ502、風呂往き口503、水位センサ504、風呂サーミスタ505、風呂水流スイッチ506、複合水弁508を備え、前記浴槽→風呂戻り口501→風呂熱交換器7の2次側7b→風呂ポンプ502→風呂往き口503→前記浴槽の風呂水循環路を形成する。   The bathtub system 50 includes a bath return port 501, a bath pump 502, a bath exit port 503, a water level sensor 504, a bath thermistor 505, a bath water flow switch 506, and a composite water valve 508, and the bath → bath return port 501 → bath heat exchange. The secondary side 7b of the vessel 7 → the bath pump 502 → the bath outlet 503 → the bath water circulation path of the bathtub is formed.

風呂戻り口501は前記浴槽から還流する風呂水を受け入れるポートである。   The bath return port 501 is a port for receiving bath water returning from the bathtub.

風呂ポンプ502は、前記風呂水循環路で風呂水を循環させるポンプである。   The bath pump 502 is a pump that circulates bath water in the bath water circulation path.

風呂往き口503は前記浴槽に風呂水を送給するポートである。   A bath outlet 503 is a port for supplying bath water to the bathtub.

水位センサ504は、前記浴槽の水位を検出するセンサである。   The water level sensor 504 is a sensor that detects the water level of the bathtub.

風呂サーミスタ505は前記浴槽の風呂水の温度を検出する温度センサである。   The bath thermistor 505 is a temperature sensor that detects the temperature of the bath water in the bathtub.

風呂水流スイッチ506は、図示しない制御用のコンピュータから風呂ポンプ502に運転指令が出ているにもかかわらず、水流が検出されない場合(浴槽に水がない場合、風呂ポンプのエアー噛み、風呂ポンプの故障)に、警報を発し風呂ポンプ502の運転指令を取り消す。   The bath water flow switch 506 is used when a water flow is not detected even though an operation command is issued from a control computer (not shown) to the bath pump 502 (when there is no water in the bathtub, the air bit of the bath pump, the bath pump In case of failure, an alarm is issued and the operation command of the bath pump 502 is canceled.

なお、複合水弁508は、湯はり弁509と湯はり水量センサ510と逆止弁?を備えている。   The composite water valve 508 is a hot water valve 509, a hot water sensor 510 and a check valve. It has.

湯はり弁509は、給湯系40から浴槽系50に自動湯はりを行う弁である。   The hot water valve 509 is a valve that performs automatic hot water from the hot water supply system 40 to the bathtub system 50.

湯はり水量センサ510は、浴槽に自動湯はりするときの水量を検出するセンサである。   The hot water quantity sensor 510 is a sensor that detects the quantity of water when the hot water is poured into the bathtub.

〔給水系〕
給水系60は、図示しない上水から供給される給水を、貯湯系10、排熱系20、暖房系30および給湯系40に供給する配管系である。
[Water supply system]
The water supply system 60 is a piping system that supplies water supplied from unshown tap water to the hot water storage system 10, the exhaust heat system 20, the heating system 30, and the hot water supply system 40.

給水系60は、給水口601、補給水閉止弁602、減圧弁603、給水サーミスタ604、給水水量センサ605、逆止弁606、607、排熱補給水弁608、暖房補給水弁609を備える。   The water supply system 60 includes a water supply port 601, a supply water closing valve 602, a pressure reducing valve 603, a water supply thermistor 604, a water supply water amount sensor 605, check valves 606 and 607, a waste heat supply water valve 608, and a heating supply water valve 609.

給水口601は、図示しない上水から水道水の供給を受けるポートである。   The water supply port 601 is a port that receives supply of tap water from tap water (not shown).

補給水閉止弁602は、排熱系20および暖房系30への給水、つまり冷却水タンク205の冷却水の補充および暖房水タンク302の暖房水の補充を閉止する弁である。   The makeup water closing valve 602 is a valve that closes water supply to the exhaust heat system 20 and the heating system 30, that is, replenishment of cooling water in the cooling water tank 205 and heating water in the heating water tank 302.

減圧弁603は、給水圧を調整する弁である。   The pressure reducing valve 603 is a valve that adjusts the supply water pressure.

給水サーミスタ604は、給水の温度を検出する温度センサである。   The water supply thermistor 604 is a temperature sensor that detects the temperature of the water supply.

給水水量センサ605は貯湯系10および給湯系40への給水の流量を検出するセンサである。   A water supply amount sensor 605 is a sensor that detects the flow rate of water supplied to the hot water storage system 10 and the hot water supply system 40.

逆止弁606、607は貯湯系10および給湯系40からの給水の逆流を防止する弁である。 The check valves 606 and 607 are valves that prevent the backflow of water supplied from the hot water storage system 10 and the hot water supply system 40.

排熱補給水弁608は、冷却水タンク205に供給する給水の量を調整する弁である。   The exhaust heat replenishment water valve 608 is a valve that adjusts the amount of water supplied to the cooling water tank 205.

暖房補給水弁609は、暖房水タンク302に供給する給水の量を調整する弁である。   The heating replenishing water valve 609 is a valve that adjusts the amount of water supplied to the heating water tank 302.

図2は、本発明の実施例2に係るコージェネレーションシステムの熱供給系の概念図である。図2に示す熱供給系1’は熱供給系1と同様、図示しない発電用ガスエンジンの排熱を回収して、前記排熱を、暖房、給湯および風呂水の加熱(追い焚き)に利用するシステムであり、ほぼ同一の機器で構成され、貯湯系、排熱系、暖房系、給湯系、浴槽系および給水系の6系統の配管系を備えているが、給湯系、浴槽系および給水系については、熱供給系1に対して特筆すべき差異がないので図示を省略している。
以下、熱供給系1との差異に注目しながら、熱供給系1’の構成を説明する。
FIG. 2 is a conceptual diagram of the heat supply system of the cogeneration system according to the second embodiment of the present invention. The heat supply system 1 ′ shown in FIG. 2 collects exhaust heat of a power generation gas engine (not shown) and uses the exhaust heat for heating (heating) and heating of hot water and bath water, similar to the heat supply system 1. This system is composed of almost the same equipment and has six piping systems: hot water storage system, exhaust heat system, heating system, hot water supply system, bathtub system and water supply system. Hot water supply system, bathtub system and water supply system The system is not shown because there is no significant difference from the heat supply system 1.
Hereinafter, the configuration of the heat supply system 1 ′ will be described while paying attention to the difference from the heat supply system 1.

〔貯湯系〕
熱供給系1’の貯湯系10は、湯水の循環路の中に補助熱源機5が含まれる点で、熱供給系1と異なる。すなわち、熱供給系1’の貯湯系10は貯湯タンク2→循環ポンプ102→貯湯熱交換器3の2次側3b→循環比例弁101→補助熱源機5→貯湯タンク2の循環路(第2の循環路)を備えている。なお、補助熱源機5から吐出する湯水の一部は暖房高温熱交換器6の1次側6aに通水されて、暖房系30の暖房水と熱交換して、前記循環路に還流するほか、図示しない給湯系に供給されて、図示しない浴槽系に熱を供給し、また、図示しない端末で消費される。
[Hot water storage system]
The hot water storage system 10 of the heat supply system 1 ′ is different from the heat supply system 1 in that the auxiliary heat source unit 5 is included in the hot water circulation path. That is, the hot water storage system 10 of the heat supply system 1 ′ includes a hot water storage tank 2 → the circulation pump 102 → the secondary side 3b of the hot water storage heat exchanger 3 → the circulation proportional valve 101 → the auxiliary heat source 5 → the circulation path of the hot water storage tank 2 (second Circuit). In addition, a part of the hot water discharged from the auxiliary heat source unit 5 is passed through the primary side 6a of the heating high temperature heat exchanger 6 to exchange heat with the heating water of the heating system 30 and return to the circulation path. It is supplied to a hot water supply system (not shown), supplies heat to a bathtub system (not shown), and is consumed by a terminal (not shown).

〔排熱系〕
熱供給系1’の排熱系20も、図示しない発電用ガスエンジンの排熱で貯湯系10の湯水と、暖房系30の暖房水を加熱する点では、熱供給系1と同じだが、貯湯熱交換器3の1次側3aと、暖房低温熱交換器4の1次側4aが並列に結合されている点で異なる。すなわち、排熱戻り口201から流入した冷却水は、2つの管路に分岐してそれぞれ、貯湯熱交換器3の1次側3aと、暖房低温熱交換器4の1次側4aに流入して、熱交換を終えて、貯湯熱交換器3の1次側3aと、暖房低温熱交換器4の1次側4aから流出した冷却水は再び合流して排熱往き口207から前記発電用ガスエンジンに還流する。つまり、熱供給系1’の排熱系20には、前記発電用ガスエンジンと貯湯熱交換器3の1次側3aの間で冷却水が循環する循環路(第1の循環路)と、前記発電用ガスエンジンと暖房低温熱交換器4の1次側4aの間で冷却水が循環する循環路(第3の循環路)の2系統の循環路が並列に配置されている。また、循環サーミスタ203は貯湯熱交換器3の1次側3aと暖房低温熱交換器4の1次側4aの合流部の下流に取り付けられている。
[Exhaust heat system]
The exhaust heat system 20 of the heat supply system 1 ′ is the same as the heat supply system 1 in that the hot water of the hot water storage system 10 and the heating water of the heating system 30 are heated by the exhaust heat of a power generation gas engine (not shown). The difference is that the primary side 3a of the heat exchanger 3 and the primary side 4a of the heating low-temperature heat exchanger 4 are coupled in parallel. That is, the cooling water flowing in from the exhaust heat return port 201 is branched into two pipes and flows into the primary side 3a of the hot water storage heat exchanger 3 and the primary side 4a of the heating low-temperature heat exchanger 4, respectively. Then, after the heat exchange, the cooling water flowing out from the primary side 3a of the hot water storage heat exchanger 3 and the primary side 4a of the heating low-temperature heat exchanger 4 joins again and is used for the power generation from the exhaust heat outlet 207. Return to gas engine. That is, the exhaust heat system 20 of the heat supply system 1 ′ includes a circulation path (first circulation path) through which cooling water circulates between the gas engine for power generation and the primary side 3a of the hot water storage heat exchanger 3. Between the power generation gas engine and the primary side 4a of the heating low-temperature heat exchanger 4, two circulation paths, ie, a circulation path (third circulation path) through which cooling water circulates, are arranged in parallel. The circulation thermistor 203 is attached downstream of the junction of the primary side 3 a of the hot water storage heat exchanger 3 and the primary side 4 a of the heating low-temperature heat exchanger 4.

なお、208は三方弁である。三方弁208は貯湯熱交換器3に流れる冷却水と、暖房低温熱交換器4に流れる冷却水の流量比率を調整する調整弁である。   Note that 208 is a three-way valve. The three-way valve 208 is an adjustment valve that adjusts the flow rate ratio of the cooling water flowing through the hot water storage heat exchanger 3 and the cooling water flowing through the heating low-temperature heat exchanger 4.

〔暖房系〕
熱供給系1’の暖房系30は、暖房低温熱交換器4の2次側4bと、暖房高温熱交換器6の2次側6bが直列に接続されて、図示しない暖房機の暖房水に熱が供給される。これは熱供給系1と全く同一である。
[Heating system]
In the heating system 30 of the heat supply system 1 ′, the secondary side 4 b of the heating low-temperature heat exchanger 4 and the secondary side 6 b of the heating high-temperature heat exchanger 6 are connected in series to the heating water of a heater (not shown). Heat is supplied. This is exactly the same as the heat supply system 1.

また、熱供給系1と同様に、循環サーミスタ203が検出する冷却水の温度は、循環ポンプ102の流量および循環比例弁101の開度にフィードバックされる。   Similarly to the heat supply system 1, the temperature of the cooling water detected by the circulation thermistor 203 is fed back to the flow rate of the circulation pump 102 and the opening degree of the circulation proportional valve 101.

このように、本発明の排熱回収システムは、貯湯系の循環ポンプを可変速ポンプにしたので、循環ポンプの消費電力が低下する。また、排熱系を流れる冷却水の温度が一定水準以下になるように貯湯系の湯水の量を調整できるので、エンジンを十分に冷却することができ、エンジンを高負荷で運転することができる。   Thus, in the exhaust heat recovery system of the present invention, the hot water storage circulation pump is a variable speed pump, so the power consumption of the circulation pump is reduced. In addition, since the amount of hot water in the hot water storage system can be adjusted so that the temperature of the cooling water flowing through the exhaust heat system is below a certain level, the engine can be sufficiently cooled and the engine can be operated at a high load. .

本発明の実施例1に係るコージェネレーションシステムの熱供給系の配管系統図である。It is a piping distribution diagram of the heat supply system of the cogeneration system concerning Example 1 of the present invention. 本発明の実施例2に係るコージェネレーションシステムの熱供給系の概念図である。It is a conceptual diagram of the heat supply system of the cogeneration system which concerns on Example 2 of this invention. 特許文献1に開示された排熱回収システムの熱供給系の概念図である。It is a conceptual diagram of the heat supply system of the waste heat recovery system disclosed in Patent Document 1.

符号の説明Explanation of symbols

1 熱供給系
2 貯湯タンク
3 貯湯熱交換器
4 暖房低温熱交換器
5 補助熱源機
6 暖房高温熱交換器
7 風呂熱交換器
10 貯湯系
20 排熱系
30 暖房系
40 給湯系
50 浴槽系
60 給水系
101 循環比例弁
102 循環ポンプ
103 圧力スイッチ
104 バキュームブレーカ
105〜108 貯湯サーミスタ
109 逃し弁
201 排熱戻り口
202 余剰電力回収ヒーター
203 循環サーミスタ
204 排熱サーミスタ
205 冷却水タンク
206 排熱ポンプ
207 排熱往き口
208 三方弁
301 暖房水戻り口
302 暖房水タンク
303 リターン回路
304 暖房ポンプ
305 暖房サーミスタ
306 暖房往き口
401 BU水量センサ
402 BU入サーミスタ
403 BU出サーミスタ
404 暖房弁
405 風呂弁
408 湯比例弁
409 水比例弁
410 給湯サーミスタ
411 給湯口
501 風呂戻り口
502 風呂ポンプ
503 風呂往き口
504 水位センサ
505 風呂サーミスタ
506 風呂水流スイッチ
508 複合水弁
509 湯はり弁
510 湯はり水量センサ
601 給水口
602 補給水閉止弁
603 減圧弁
604 給水サーミスタ
605 給水水量センサ
606、607 逆止弁
608 排熱補給水弁
609 暖房補給水弁

DESCRIPTION OF SYMBOLS 1 Heat supply system 2 Hot water storage tank 3 Hot water storage heat exchanger 4 Heating low temperature heat exchanger 5 Auxiliary heat source machine 6 Heating high temperature heat exchanger 7 Bath heat exchanger 10 Hot water storage system 20 Waste heat system 30 Heating system 40 Hot water supply system 50 Bathtub system 60 Water supply system 101 Circulation proportional valve 102 Circulation pump 103 Pressure switch 104 Vacuum breaker 105-108 Hot water storage thermistor 109 Relief valve 201 Exhaust heat return port 202 Excess power recovery heater 203 Circulation thermistor 204 Exhaust heat thermistor 205 Cooling water tank 206 Exhaust heat pump 207 Exhaust Heat outlet 208 Three-way valve 301 Heating water return port 302 Heating water tank 303 Return circuit 304 Heating pump 305 Heating thermistor 306 Heating outlet 401 BU water amount sensor 402 BU entry thermistor 403 BU outlet thermistor 404 Heating valve 405 Bath valve 408 Hot water proportional valve 409 water Proportional valve 410 Hot water supply thermistor 411 Hot water supply port 501 Bath return port 502 Bath pump 503 Bath outlet 504 Water level sensor 505 Bath thermistor 506 Bath water flow switch 508 Combined water valve 509 Hot water valve 510 Hot water level sensor 601 Supply port 602 603 Pressure reducing valve 604 Water supply thermistor 605 Water supply amount sensor 606, 607 Check valve 608 Waste heat supply water valve 609 Heating supply water valve

Claims (5)

排熱装置の排熱を運搬する第1の熱媒が流れる1次側流路と第2の熱媒が流れる2次側流路を有する第1の熱交換手段と、
前記排熱装置と前記第1の熱交換手段の間を前記第1の熱媒が循環する第1の循環路と、
前記第2の熱媒を蓄える蓄熱手段と、
前記第1の熱交換手段と前記蓄熱手段の間を前記第2の熱媒が循環する第2の循環路を備える排熱回収システムにおいて、
前記第1の循環路の前記熱交換手段の下流で前記第1の熱媒の温度を検出する温度検出手段と、
前記第2の循環路に装置されて、前記第2の熱媒を圧送する流量可変な圧送手段と、
前記第2の循環路に装置されて、前記第2の熱媒の流量を調整する流量調整弁と、
前記温度検出手段の検出温度に従って、前記圧送手段の流量及び前記流量調整弁の開度を調整する制御手段とを備え
前記制御手段は、前記圧送手段の流量の増減で前記第2の熱媒の流量の主調整を行うとともに、前記流量調整弁の開度の調整により前記流量の微調整を行うことを特徴とする排熱回収システム。
A first heat exchange means having a primary flow path through which a first heat medium that transports the exhaust heat of the heat exhaust apparatus flows and a secondary flow path through which the second heat medium flows;
A first circulation path through which the first heat medium circulates between the exhaust heat device and the first heat exchange means;
Heat storage means for storing the second heat medium;
In the exhaust heat recovery system comprising a second circulation path through which the second heat medium circulates between the first heat exchange means and the heat storage means,
Temperature detection means for detecting the temperature of the first heat medium downstream of the heat exchange means in the first circulation path;
A flow rate variable pressure feeding means installed in the second circulation path for pumping the second heat medium;
A flow rate adjusting valve which is installed in the second circulation path and adjusts the flow rate of the second heat medium;
Control means for adjusting the flow rate of the pressure feeding means and the opening degree of the flow rate adjusting valve according to the detected temperature of the temperature detecting means ,
The control means performs the main adjustment of the flow rate of the second heat medium by increasing or decreasing the flow rate of the pressure feeding means, and finely adjusting the flow rate by adjusting the opening of the flow rate adjusting valve. Waste heat recovery system.
前記第1の熱媒が流れる1次側流路と熱負荷に熱を運搬する第3の熱媒が流れる2次側流路を有する第2の熱交換手段
を備えることを特徴とする請求項1に記載の排熱回収システム。
Claim, characterized in that it comprises a second heat exchange means having a third secondary flow path heat medium flows in carrying the heat to the first primary channel heat medium flows and heat load exhaust heat recovery system according to 1.
前記第1の熱交換手段と前記第2の熱交換手段は前記第1の循環路に直列に配列されること
を特徴とする請求項2に記載の排熱回収システム。
The exhaust heat recovery system according to claim 2 , wherein the first heat exchange means and the second heat exchange means are arranged in series in the first circulation path.
前記排熱装置と前記第2の熱交換手段の間を前記第1の熱媒が循環する第3の循環路を備えるとともに、
前記第3の循環路は前記第1の循環路に対して並列に配列されること
を特徴とする請求項2に記載の排熱回収システム。
While comprising a third circulation path through which the first heat medium circulates between the exhaust heat device and the second heat exchange means,
The exhaust heat recovery system according to claim 2 , wherein the third circulation path is arranged in parallel to the first circulation path.
請求項1乃至4のいずれか1項に記載の排熱回収システムを備えることを特徴とするコージェネレーションシステム。 A cogeneration system comprising the exhaust heat recovery system according to any one of claims 1 to 4 .
JP2005105374A 2005-03-31 2005-03-31 Waste heat recovery system and cogeneration system Active JP4408269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005105374A JP4408269B2 (en) 2005-03-31 2005-03-31 Waste heat recovery system and cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005105374A JP4408269B2 (en) 2005-03-31 2005-03-31 Waste heat recovery system and cogeneration system

Publications (2)

Publication Number Publication Date
JP2006284100A JP2006284100A (en) 2006-10-19
JP4408269B2 true JP4408269B2 (en) 2010-02-03

Family

ID=37406214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005105374A Active JP4408269B2 (en) 2005-03-31 2005-03-31 Waste heat recovery system and cogeneration system

Country Status (1)

Country Link
JP (1) JP4408269B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4894733B2 (en) * 2007-11-16 2012-03-14 マツダ株式会社 Cogeneration system using hydrogen engine

Also Published As

Publication number Publication date
JP2006284100A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP5704398B2 (en) Heat recovery device, cogeneration system, and pipe misconnection detection method
JP5295257B2 (en) Heat recovery device for fuel cell system
JP5300717B2 (en) Cogeneration system
JP5359057B2 (en) Cogeneration system
JP2007064526A (en) Heat recovery device, and cogeneration system
JP5158745B2 (en) Fuel cell cogeneration system
JP5828219B2 (en) Cogeneration system, waste heat utilization apparatus, cogeneration system control method, and heat pump hot water supply apparatus
JP6153329B2 (en) Cogeneration system and heating equipment
JP2016205751A (en) Cogeneration system and heating equipment
JP4408269B2 (en) Waste heat recovery system and cogeneration system
JP2001248906A (en) Exhaust heat recovering hot water supply system
JP4685553B2 (en) Cogeneration system
JP2006052902A (en) Cogeneration system
JP2924671B2 (en) Water treatment system for fuel cell power plant
JP2017020774A (en) Cogeneration system and heating equipment
JP5921416B2 (en) Cogeneration system and hot water supply equipment
JP4552387B2 (en) Fuel cell cogeneration system
JP5445811B2 (en) Cogeneration system and storage tank side unit
JP4784824B2 (en) Storage heat source device
JP6429850B2 (en) Cogeneration system
JP4118707B2 (en) Water heater
JP2010127585A (en) Heat recovery device, cogeneration device and cogeneration system
TWI385847B (en) Stage fuel cell system for loading system components and methods thereof
JP4727680B2 (en) Water heater
JP2008292028A (en) Heat supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091106

R150 Certificate of patent or registration of utility model

Ref document number: 4408269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250