JP4552387B2 - Fuel cell cogeneration system - Google Patents

Fuel cell cogeneration system Download PDF

Info

Publication number
JP4552387B2
JP4552387B2 JP2003133071A JP2003133071A JP4552387B2 JP 4552387 B2 JP4552387 B2 JP 4552387B2 JP 2003133071 A JP2003133071 A JP 2003133071A JP 2003133071 A JP2003133071 A JP 2003133071A JP 4552387 B2 JP4552387 B2 JP 4552387B2
Authority
JP
Japan
Prior art keywords
hot water
fuel cell
water storage
temperature
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003133071A
Other languages
Japanese (ja)
Other versions
JP2004335402A (en
Inventor
敬 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003133071A priority Critical patent/JP4552387B2/en
Publication of JP2004335402A publication Critical patent/JP2004335402A/en
Application granted granted Critical
Publication of JP4552387B2 publication Critical patent/JP4552387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池の発電時に発生する熱を回収して給湯および暖房に利用する燃料電池コージェネレーション装置に関するものである。
【0002】
【従来の技術】
従来、この種の燃料電池コージェネレーション装置としては、例えば、図11に示すようなものがある。
【0003】
図11は、従来の燃料電池コージェネレーション装置の構成図であり、1は燃料電池で、酸素極2に空気と燃料極3に水素ガスなどの燃料ガスを供給して発電した電力を電力負荷4に供給する。5は冷却熱回収熱交換器で、冷却回路6の冷却ポンプ7で冷却水を循環して燃料電池1の冷却部8から熱を得て貯湯循環回路9に放熱する。10は貯湯槽で、循環ポンプ11で貯湯槽10の下部の低温水を冷却熱回収熱交換器5に送って加熱し高温になった温水を貯湯槽10の上部に蓄える。12は熱交換器で、冷却回路6に設けた3方切換手段13で分岐した冷却バイパス回路14に設けて燃料電池1の発生熱を放熱する。15は制御器で、貯湯循環回路9の蓄熱槽10の戻り側に設けた温度検出手段16の検知温度に応じて循環ポンプ11の循環量を制御して蓄熱槽10の上部に入る温水の温度を所定の温度になるように制御する(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開2000−340244号公報
【0005】
【発明が解決しようとする課題】
しかしながら、前記従来の構成では、燃料電池を起動させるためには外部から加熱する必要がありエネルギー効率が悪く、起動時間が長くなるなどの課題を有していた。
【0006】
本発明は、前記従来の課題を解決するもので、貯湯循環回路に貯湯バイパス回路を設けて燃料電池の起動時に貯湯槽の温度成層を崩すことなくシステム内で発生する熱で燃料電池を加熱起動してエネルギー効率を高め、起動時間を短縮することを目的とする。
【0007】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の燃料電池コージェネレーション装置は、貯湯槽と循環ポンプと燃料電池の冷却回路に設けた冷却熱回収熱交換器と水素製造装置の排気熱を回収する排気ガス熱回収熱交換器とを順に配管接続して構成する貯湯循環回路と、前記貯湯循環回路内で貯湯槽をバイパスする貯湯バイパス回路と、前記貯湯バイパス回路を切換る回路切換手段と、燃料電池の温度検知手段と、前記温度検出手段の信号に応じて前記燃料電池の温度が所定の温度に達していない場合は前記貯湯循環回路内で貯湯槽をバイパスして前記貯湯バイパス回路に循環水が流れ前記燃料電池の温度が所定の温度以上になると前記貯湯槽に循環水が流れるように前記回路切換手段を切換る制御装置とを設けた構成としたものである。
【0008】
これによって、燃料電池の起動時は貯湯循環回路の温水を貯湯槽を通さずに貯湯バイパス回路に流すことができるので、低温の水を貯湯槽の上部に入れて温度成層を崩すことなく排気ガスなどのシステムで発生する熱をシステム熱回収熱交換器で回収して冷却熱回収熱交換器を介して燃料電池を加熱することができる。
【0009】
【発明の実施の形態】
請求項1に記載した発明は、貯湯槽と循環ポンプと燃料電池の冷却回路に設けた冷却熱回収熱交換器と水素製造装置の排気熱回収する排気ガス熱回収熱交換器とを順に配管接続して構成する貯湯循環回路と、前記貯湯循環回路内で貯湯槽をバイパスする貯湯バイパス回路と、前記貯湯バイパス回路を切換る回路切換手段と、燃料電池の温度検知手段と、前記温度検出手段の信号に応じて前記燃料電池の温度が所定の温度に達していない場合は前記貯湯循環回路内で貯湯槽をバイパスして前記貯湯バイパス回路に循環水が流れ前記燃料電池の温度が所定の温度以上になると前記貯湯槽に循環水が流れるように前記回路切換手段を切換る制御装置とを設けた構成とすることにより、燃料電池の温度検知手段が所定の値に達していない場合は、制御器で回路切換手段を貯湯バイパス回路に切換て、貯湯槽を通さずに貯湯循環回路の温水を循環することにより、貯湯槽の上部に低温の水がはいるのを防止して温度成層が崩れるのを防ぐことができ、システム熱回収熱交換器で得た熱を冷却熱回収熱交換器を介して燃料電池を加熱して燃料電池の温度を上げることができるので燃料電池の起動時間を短縮することができる。
【0010】
請求項2に記載の発明は、特に、請求項1に記載の燃料電池コージェネレーション装置における回路切換手段を、貯湯槽出口に設けた逆止弁と、貯湯循環回路のバイパス分岐部に設けた3方切換手段と構成することにより、回路切換のための制御電力を低減して確実に回路を切換ることができるので、高効率で信頼性の高い燃料電池コージェネレーション装置を実現することができる。
【0011】
請求項3に記載の発明は、特に、請求項1又は2に記載の燃料電池コージェネレーション装置に加えて、貯湯バイパス回路に設けた補助熱源と、貯湯循環回路の貯湯槽入口に設けた貯湯温度検知手段とを有し、制御手段は、燃料電池の温度が所定の温度に達するまでは前記貯湯バイパス回路を流れる循環水を前記補助熱源により加熱し、前記燃料電池の温度が所定の温度以上になり前記回路切換手段により貯湯槽に循環水が流れるようにした後は、前記貯湯温度検知手段の信号に応じて貯湯槽入口の温度が所定の温度になるように前記回路切換手段により前記貯湯バイパス回路を流れる流量と前記補助熱源の加熱量を制御する構成とすることにより、貯湯槽に所定の温水が蓄えられていないときは貯湯バイパス回路に設けた補助熱源で加熱して貯湯槽に蓄えて給湯し、燃料電池の起動時は貯湯バイパス回路の補助熱源で加熱した循環水を冷却熱回収熱交換器に流して燃料電池を加熱することができるので、補助熱源によって安定した給湯を行うことができるとともに燃料電池の起動時間を大幅に短縮することができる。
【0012】
請求項4に記載の発明は、特に、請求項3に記載の燃料電池コージェネレーション装置に加えて、貯湯バイパス回路の補助熱源の出口に設けた第2貯湯槽を有する構成とすることにより、燃料電池の動作温度より高い温度の温水を第2貯湯槽に蓄えることができるので、燃料電池の起動時に第2貯湯槽から大量の熱を取り出して冷却熱回収熱交換器を介して燃料電池を加熱することができるので燃料電池の起動時間を大幅に短縮することができる。さらに、第2貯湯槽には常に高温の温水をためておくことができるので貯湯槽内の温水が不足した場合でも安定して給湯することができる。
【0013】
請求項5に記載の発明は、特に、請求項4に記載の燃料電池コージェネレーション装置に加えて、貯湯バイパス回路の補助熱源の出口から分岐して給湯配管を設けた構成とすることにより、補助熱源で温水を任意の温度に加熱して給湯することができる。
【0014】
請求項6に記載の発明は、特に、請求項1から5に記載の燃料電池コージェネレーション装置に加えて、貯湯バイパス回路の補助熱源の下流に暖房用および乾燥用の放熱器を有する熱利用熱交換器を設けた構成とすることにより、燃料電池で発生する熱を暖房および乾燥などに使用することができる。また、燃料電池で発生する熱が不足する場合は補助熱源で補うことができるので経済的で安定した暖房運転ができる。
【0015】
請求項7に記載の発明は、特に、請求項1に記載の燃料電池コージェネレーション装置に加えて、貯湯循環回路の貯湯槽入口に設けた補助熱源と、貯湯槽に設けた貯湯量検知手段とを有し、制御手段は、前記貯湯量検知手段により前記貯湯槽に所定量の湯水が貯まったことを検知するまで前記貯湯循環回路を循環する循環水を補助熱源で加熱する構成としたもので、貯湯槽に設けた貯湯量検知手段が所定の値を検知するまで貯湯循環回路を循環する温水を補助熱源で加熱するように制御装置で制御することにより、燃料電池の運転状態に拘わらず常に一定の温水を貯湯槽に蓄えることができるので、湯切れの無い安定した給湯運転ができる。
【0016】
請求項8に記載の発明は、特に、請求項7に記載の燃料電池コージェネレーション装置に加えて、貯湯循環回路の貯湯槽入口に設けた温度検知手段と、前記貯湯循環回路の補助熱源の下流で前記貯湯槽入口に設けた温度検知手段の上流に設けた暖房用および乾燥用の放熱器を有する熱利用熱交換器とを有し、制御手段は、前記温度検出手段の検出値が所定の値になるように前記補助熱源の加熱量を制御する構成としたもので、貯湯循環回路に設けた冷却熱回収熱交換器と排気ガス熱回収熱交換器で得た熱を熱利用熱交換器で放熱して暖房および乾燥用の放熱器で利用することができる。また燃料電池が停止している場合や熱利用熱交換器の出口温度が所定の値より低くなる場合は、貯湯温度検出手段の検出値が所定の値になるように制御装置で補助熱源を制御することにより、暖房および乾燥運転に安定して対応できるとともに、貯湯槽内の温度を所定の値に保つことができる。
【0017】
請求項9に記載の発明は、貯湯槽と循環ポンプと燃料電池の冷却回路に設けた冷却熱回収熱交換器と水素製造装置の排気熱などを回収する排気ガス熱回収熱交換器とを順に配管接続して構成する貯湯循環回路と、一方を貯湯槽の下部出口と循環ポンプの吸入側と接続し他方を循環ポンプの吐出側と貯湯槽の上部入口を接続し、切換時には、一方を貯湯槽の下部出口と貯湯槽の上部入口を接続し他方を循環ポンプ吐出側と循環ポンプの吸入側とを接続する4方切換手段と、燃料電池の温度検出手段と、前記温度検出手段の検出値に応じて前記燃料電池の温度が所定の温度に達していない場合は一方を前記貯湯槽の下部出口と前記貯湯槽の上部入口を接続し他方を前記循環ポンプ吸入側と前記循環ポンプの吐出側とを接続し前記燃料電池の温度が所定の温度以上になると一方を前記貯湯槽の下部出口と前記循環ポンプの吸入側と接続し他方を前記循環ポンプの吐出側と前記貯湯槽の上部入口を接続するように前記4方切換手段を切換制御する制御装置とを設けた構成としたもので、燃料電池の温度検出手段の検出値が所定の値より低い場合は、4方切換手段で循環ポンプ吐出側と循環ポンプの吸入側とを接続して、貯湯槽の上部入口に低温の水が入らないようにするとともにシステム熱回収熱交換器で得た熱を冷却熱交換器を介して燃料電池に放熱するように制御器で制御することにより、簡単な構造で、貯湯槽の温度成層を崩さずに起動時に燃料電池を加熱することができる。
【0018】
請求項10に記載の発明は、貯湯槽と循環ポンプと燃料電池の冷却回路に設けた冷却熱回収熱交換器と水素製造装置の排気熱などを回収する排気ガス熱回収熱交換器とを順に配管接続して構成する貯湯循環回路と、一方を貯湯槽の下部出口と循環ポンプの吸入側と接続し他方を循環ポンプの吐出側と貯湯槽の上部入口を接続し、切換時には、一方を貯湯槽の下部出口と循環ポンプ吐出側を接続し他方を貯湯槽の上部入口と循環ポンプの吸入側とを接続する4方切換手段と、燃料電池の温度検出手段と、前記温度検出手段の検出値に応じて前記燃料電池の温度が所定の温度に達していない場合は一方を前記貯湯槽の下部出口と前記循環ポンプ吐出側を接続し他方を前記貯湯槽の上部入口と前記循環ポンプの吸入側とを接続し前記燃料電池の温度が所定の温度以上になると一方を前記貯湯槽の下部出口と前記循環ポンプの吸入側と接続し他方を前記循環ポンプの吐出側と前記貯湯槽の上部入口を接続するように前記4方切換手段を切換制御する制御装置とを設けた構成としたもので、燃料電池の温度検出手段の検出値が所定の値より低い場合は、4方切換手段で一方を貯湯槽の下部出口と循環ポンプ吐出側を接続し他方を貯湯槽の上部入口と循環ポンプの吸入側とを接続して、貯湯槽上部の高温の温水を冷却熱交換器におくって燃料電池を加熱するように制御器で制御することにより、簡単な構造で、貯湯槽の熱を利用して燃料電池を加熱することができる。
【0019】
【実施例】
以下、本発明の実施例について、図面を参照しながら説明する。
【0020】
(実施例1)
図1は本実施例の第1の実施例における燃料電池コージェネレーション装置の構成図を示すものである。
【0021】
図1において、1は固体高分子膜を用いた燃料電池で、酸素極2に空気と燃料極3に水素製造機17で生成した水素を供給して発電した電力を電力負荷4に供給する。5は冷却熱回収熱交換器で、冷却回路6の冷却ポンプ7で冷却水を循環して燃料電池1の冷却部8から熱を得て貯湯循環回路9に放熱する。18は水素製造機17から排出する排気ガスから熱を得て貯湯循環回路9に放熱する排ガス熱回収熱交換器で、貯湯循環回路9に設けた循環ポンプ11で貯湯槽10の上部に高温にした温水を蓄える。19は貯湯槽10の上部入り口部と循環ポンプ11の吸入側を接続して貯湯槽10をバイパスする貯湯バイパス回路で、貯湯槽10の上部入り口部に設けた開閉弁20aと貯湯バイパス回路19に設けた開閉弁20bとを制御器15で開閉制御して管路を切換る構成としている。
【0022】
以上のように構成された燃料電池コージェネレーション装置について、以下その動作、作用を説明する。
【0023】
まず、燃料電池1が発電するためには所定の温度以上に達している必要があるが、起動時には燃料電池1の温度は低く温度検出手段16aの検出値は低い値を検出している。制御装置15で開閉弁20aを閉じて開閉弁20bを開放することにより、貯湯循環回路9の循環水を循環ポンプ11によって冷却熱回収熱交換器5と排気ガス熱回収熱交換器18に送り、貯湯槽10をバイパスして貯湯バイパス回路19に流して循環することができる。このとき燃料電池1は発電していないので冷却部8からは熱が発生しないが、水素製造装置17は都市ガスなどの燃料を燃焼させて水素を製造し高温の排気ガスを排気ガス熱回収熱交換器におくるため、排気ガス熱回収熱交換器18で得た熱で貯湯循環回路9の循環水を加熱して循環ポンプ11によって冷却熱回収熱交換器9に運び、冷却ポンプ7で冷却回路6の冷却水を循環させて燃料電池1の冷却部8で放熱して燃料電池1を加熱することとなる。一方、貯湯槽10の上部には循環水が入らないので、貯湯槽10内の温度成層は保たれた状態を継続する。燃料電池1は加熱されて温度が充分高くなると、発電を開始して熱を発生し、温度検出手段16aの検出値も高い値を検出するので、制御器15は開閉弁20aを開放して開閉弁20bを閉じるように制御する。このとき貯湯バイパス回路19は閉塞された状態なので、貯湯槽10の下部の水を循環ポンプ11によって冷却熱回収熱交換器9と排気ガス熱回収熱交換器18に送り、高温にして貯湯槽10の上部に送り込み、貯湯槽10の上部に高温水を蓄えることができる。
【0024】
以上のように、本実施例においては、貯湯槽10内の温度成層を崩すことなくシステム内で発生する水素製造装置17の排気ガスの熱を利用して燃料電池を加熱して起動させることができる。
【0025】
(実施例2)
図2は、本発明の第2の実施例の燃料電池コージェネレーション装置の構成図である。
【0026】
図2において、21は貯湯槽10の下部出口に設けた逆止弁で、22は貯湯循環回路9の貯湯バイパス回路19の分岐部に設けた3方弁で、15は燃料電池1の温度検出手段16aの検出値に応じて3方弁22を切換制御する制御装置で、実施例1の構成と異なるところは、貯湯バイパス回路19の回路切換手段として逆止弁21と3方弁22とを設けた点である。
【0027】
以上のように構成された燃料電池コージェネレーション装置について、以下その動作、作用を説明する。
【0028】
まず、起動時のように燃料電池1の温度が低い場合は、温度検出手段16aは低い値を検出し、制御装置15は3方弁22が貯湯バイパス回路19に回路を接続するように制御するので、貯湯循環回路9を流れる低温の循環水は貯湯槽10をバイパスして貯湯バイパス回路19を流れる。このとき貯湯槽10の下部出口に逆止弁21を設けているので循環ポンプ11が発停を繰り返しても貯湯槽10に循環水が逆流するのを防止することができるので、温度成層を崩すことがない。
【0029】
一方、燃料電池1の温度が充分高くなった場合は、温度検出手段16aは高い値を検出し、制御装置15は3方弁22が貯湯槽10に流すように回路を接続して制御するので、貯湯循環回路9を流れる高温の循環水を貯湯槽10の上部に蓄えることができる。
【0030】
以上のように、本実施例においては、貯湯バイパス回路19の回路切換手段として逆止弁21と3方弁22とを設けたことにより、簡単な構成で制御のための電力消費も少ない信頼性の高い回路切換手段を実現することができる。
【0031】
(実施例3)
図3は、本発明の第3の実施例の燃料電池コージェネレーション装置の構成図である。
【0032】
図3において、23はガスまたは電気などを熱源とする補助熱源で、実施例1と2の構成と異なるところは、貯湯温度検知手段16bを貯湯槽10の上部入口に設けて、補助熱源23を貯湯バイパス回路19に設けた点である。
【0033】
以上のように構成された燃料電池コージェネレーション装置について、以下その動作、作用を説明する。
【0034】
まず、起動時は燃料電池1の温度検出手段16aの検出値は低い値を検出しているので、制御装置15で開閉弁20aを閉じて開閉弁20bを開放することにより、貯湯循環回路9の循環水を循環ポンプ11によって冷却熱回収熱交換器9と排気ガス熱回収熱交換器18に送り、貯湯槽10をバイパスして貯湯バイパス回路19に流して循環することができる。
【0035】
このとき排気ガス熱回収熱交換器18で得た熱を冷却熱回収熱交換器9に送って燃料電池1の冷却部8で放熱して燃料電池1を加熱するが、さらに補助熱源23を運転して循環水を加熱することにより燃料電池1の加熱量を増加することができる。
【0036】
一方、燃料電池1が発電を開始して温度が上昇して温度検出手段16aの検出値が所定の値より高い値を検出した場合は、開閉弁20aを開放して貯湯槽10の上部に循環水を流すように制御器15で制御する。燃料電池1の運転状態に応じて排気ガス熱回収熱交換器18と冷却熱回収熱交換器9の加熱量は変わるが、貯湯温度検出手段16bの値が所定の値になるように制御器15で開閉弁20aの開度を調節して貯湯バイパス回路19を流れる流量を制御するとともに補助熱源23の加熱量を制御する。
【0037】
以上のように、本実施例においては、貯湯槽10の上部入口に貯湯温度検知手段16bを設け、貯湯バイパス回路19に補助熱源23を設けて制御器15で制御することにより、燃料電池1の起動時には、補助熱源23で燃料電池1を加熱することができるので起動時間を大幅に短縮することができる。さらに、貯湯循環回路9を流す循環水の一部を貯湯バイパス回路19に流して補助熱源23で加熱することにより燃料電池1の運転状態にかかわらず貯湯槽10の上部に安定して高温の温水を蓄えることができる。
【0038】
(実施例4)
図4は、本発明の第4の実施例の燃料電池コージェネレーション装置の構成図である。
【0039】
図4において、24は第2貯湯槽で、実施例3の構成と異なるところは、第2貯湯槽24を貯湯バイパス回路19の補助熱源23の出口に設けた点と第2貯湯槽の入口に温度検出手段16cを設けた点である。
【0040】
以上のように構成された燃料電池コージェネレーション装置について、以下その動作、作用を説明する。
【0041】
まず、燃料電池1が発電状態のときは、燃料電池1の温度検出手段16aの検出値は高い値を検出しているので、制御装置15で開閉弁20aを開放して開閉弁20bを閉じて運転することにより、冷却熱回収熱交換器9と排気ガス熱回収熱交換器18で加熱された温水を貯湯槽10の上部に蓄えることができる。このとき、制御器15で開閉弁20bを開放し、温度検出手段16cの検出値に応じて補助熱源23で温水を加熱して第2貯湯槽24に蓄えることにより、燃料電池1の再起動時には開閉弁20bを開放して循環ポンプ11で第2貯湯槽24内の高温水を冷却熱回収熱交換器9に送って燃料電池1を加熱することができる。
【0042】
以上のように、本実施例においては、第2貯湯槽24を貯湯バイパス回路19の補助熱源23の出口に設けたことにより、小能力の小型の補助熱源で燃料電池1の起動時間を大幅に短縮することができ、給湯などの熱負荷に対しても迅速に対応ができる。
【0043】
(実施例5)
図5は、本発明の第5の実施例の燃料電池コージェネレーション装置の構成図である。
【0044】
図5において、25は給湯配管で、実施例4の構成と異なるところは、貯湯バイパス回路19の補助熱源23の出口から分岐して給湯配管25を設けた点である。
【0045】
以上のように構成された燃料電池コージェネレーション装置について、以下その動作、作用を説明する。
【0046】
まず、燃料電池1の定常運転時は、制御装置15が開閉弁20aを開放して開閉弁20bを閉じて運転して貯湯循環回路9の循環水を循環ポンプ11で貯湯槽10の上部に送る。給湯負荷が発生して時は、給湯開閉弁20cが開放されると冷却熱回収熱交換器9と排気ガス熱回収熱交換器18で加熱した循環水は貯湯バイパス回路19を通って給湯配管25から給湯水として供給し、循環回路の循環水量が少ない場合は貯湯槽10の上部の温水を市水の圧力で押し出して貯湯バイパス回路19で合流させて給湯配管25から必要な給湯水量を供給する。
【0047】
以上のように、本実施例においては、貯湯バイパス回路19の補助熱源23の出口で開閉弁20bの手前から分岐して給湯配管25を設けることにより、燃料電池1で発生する熱を蓄熱することなく直接給湯に利用することができ、給湯量が不足する場合は貯湯槽10から自動的に温水を補うことができるので、簡単な配管構成で効率の良い給湯運転ができる。
【0048】
(実施例6)
図6は、本発明の第6の実施例の燃料電池コージェネレーション装置の構成図である。
【0049】
図6において、26は暖房および乾燥用の放熱器27に接続する熱利用熱交換器で、実施例1から5の構成と異なるところは、貯湯バイパス回路19の補助熱源23の下流に熱利用熱交換器26を設けた点である。
【0050】
以上のように構成された燃料電池コージェネレーション装置について、以下その動作、作用を説明する。
【0051】
まず、燃料電池1の定常運転時は、制御装置15が開閉弁20aを開放して開閉弁20bを閉じて運転するので貯湯循環回路9の循環水を循環ポンプ11で貯湯槽10の上部に送る。暖房などの負荷が発生して放熱器27を運転する場合は、制御器15で開閉弁20bを開放し、貯湯循環回路9の冷却熱回収熱交換器5と排気ガス熱回収熱交換器18で加熱した循環水を貯湯バイパス回路19に流して熱利用熱交換器26で暖房に利用する。放熱器27の負荷が大きい場合は補助熱源23で不足分を加熱して負荷に対応する。一方、燃料電池1が停止しているときも同様に、開閉弁20bを開放して循環ポンプ11を運転し、貯湯バイパス回路19に循環水を流して補助熱源23で加熱して熱利用熱交換器26に熱を与えて暖房する。
【0052】
以上のように、本実施例においては貯湯バイパス回路19の補助熱源23の下流に熱利用熱交換器26を設けることにより、燃料電池1で発生する熱を直接暖房などに利用することができ、負荷の大きい場合は補助熱源23で加熱することにより、効率の良い安定した暖房運転が実現できる。
【0053】
(実施例7)
図7は、本発明の第7の実施例の燃料電池コージェネレーション装置の構成図である。
【0054】
図7において、23は補助熱源で、28は貯湯量検知手段で、実施例1から6の構成と異なるところは、貯湯量検知手段28の検出値に応じて制御装置15で制御する補助熱源23を貯湯循環回路9の貯湯槽10の入口に設けた点である。
【0055】
以上のように構成された燃料電池コージェネレーション装置について、以下その動作、作用を説明する。
【0056】
まず、燃料電池1の定常運転時は、貯湯槽10の下部の低温水を循環ポンプ11で冷却熱回収熱交換器5と排気ガス熱回収熱交換器18に送って加熱し貯湯槽10の上部に蓄えるが、電力負荷4が少なくて燃料電池1の発熱が少ない場合は、冷却熱回収熱交換器5と排気ガス熱回収熱交換器18の加熱量も少なく循環水の温度も低くなるので、制御器15で貯湯量検知手段28の検出値が所定の値になるまで補助熱源23で加熱して貯湯槽10の上部に蓄える。
【0057】
以上のように、本実施例においては、補助熱源23を貯湯循環回路9の貯湯槽10の入口に設けることにより、燃料電池1の運転状態に拘わらずに一定の給湯負荷に対応する温水量を貯湯槽10に蓄えることができる。さらに、貯湯槽10にためる温水の温度を高くすることにより貯湯槽10を小型にすることができる。
【0058】
(実施例8)
図8は、本発明の第8の実施例の燃料電池コージェネレーション装置の構成図である。
【0059】
図8において、26は暖房および乾燥用の放熱器27に接続する熱利用熱交換器で、実施例7の構成と異なるところは、貯湯循環回路9の補助熱源23の下流で貯湯槽10の入口に設けた温度検出器16bの上流に熱利用熱交換器26を設けた点である。
【0060】
以上のように構成された燃料電池コージェネレーション装置について、以下その動作、作用を説明する。
【0061】
まず、暖房などの負荷が発生して放熱器27を運転する場合は、制御器15で開閉弁20aを開放して、貯湯循環回路9の循環ポンプ11を運転して循環水を循環するが、燃料電池1が運転しているときは、冷却熱回収熱交換器5と排気ガス熱回収熱交換器18で加熱した循環水を熱利用熱交換器27に流して暖房運転ができる。一方、燃料電池1の電力負荷4の値が小さいか運転を停止しているときは補助熱源23を運転して不足分を加熱するがこのとき貯湯槽10の入口に設けた温度検出手段16bの検出値が所定の値になるように制御器15で補助熱源15の加熱量を制御する。
【0062】
以上のように、本実施例においては、貯湯循環回路9の補助熱源23の下流で貯湯槽10の入口に設けた温度検出手段16bの上流に熱利用熱交換器26を設けたことにより、燃料電池1で発生する熱を直接暖房などの熱として利用することができ、燃料電池1で発生する熱が不足する場合は自動的に補助熱源23で補うことができる。さらに貯湯槽10の上部に入る温水を任意の温度に設定することができるので、貯湯槽10の温度成層を崩すこともなく安定して給湯負荷に対応できる。
【0063】
(実施例9)
図9は、本発明の第9の実施例の燃料電池コージェネレーション装置の構成図である。
【0064】
図9において、29は4方弁で、実施例1の構成と異なるところは、一方を貯湯槽10の下部出口と循環ポンプ11の吸入側と接続し他方を循環ポンプ11の吐出側と貯湯槽10の上部入口を接続し、切換時には、一方を貯湯槽10の下部出口と貯湯槽10の上部入口を接続し他方を循環ポンプ11の吸入側と循環ポンプ11の吐出側とを接続する4方弁29を貯湯循環回路9の回路切換手段として設けた点である。
【0065】
以上のように構成された燃料電池コージェネレーション装置について、以下その動作、作用を説明する。
【0066】
まず、定常運転時のように燃料電池1の温度が高い場合は、温度検出手段16aは高い値を検出し、制御装置15は4方弁29を、一方を貯湯槽10の下部出口と循環ポンプ11の吸入側と接続し他方を循環ポンプ11の吐出側と貯湯槽10の上部入口を接続するように制御して高温の温水を貯湯槽10の上部に蓄える。起動時のように燃料電池1の温度が低い場合は、温度検出手段16aは低い値を検出し、制御装置15は4方弁29を一方を貯湯槽10の下部出口と貯湯槽10の上部入口を接続し他方を循環ポンプ11の吐出側と循環ポンプ11の吸入側とを接続するように制御して排気ガス熱回収熱交換器18で得た熱を冷却熱回収熱交換器5に送って燃料電池1を加熱して起動させることができる。
【0067】
以上のように、本実施例においては、4方弁29を回路切換手段として用いることにより、簡単な構成でシステム内で発生する熱を排気ガス熱回収熱交換器18で回収して燃料電池1を加熱して起動することができる。
【0068】
(実施例10)
図10は、本発明の第10の実施例の燃料電池コージェネレーション装置の構成図である。
【0069】
図10において、29は4方弁で、実施例9の構成と異なるところは、一方を貯湯槽10の下部出口と循環ポンプ11の吸入側と接続し他方を循環ポンプ11の吐出側と貯湯槽10の上部入口を接続し、切換時には、一方を貯湯槽10の下部出口と循環ポンプ11の吐出側を接続し他方を貯湯槽10の上部入口と循環ポンプ11の吸入側とを接続する4方弁29を貯湯循環回路9の回路切換手段として設けた点である。
【0070】
以上のように構成された燃料電池コージェネレーション装置について、以下その動作、作用を説明する。
【0071】
まず、定常運転時のように燃料電池1の温度が高い場合は、温度検出手段16aは高い値を検出し、制御装置15は4方弁29を、一方を貯湯槽10の下部出口と循環ポンプ11の吸入側と接続し他方を循環ポンプ11の吐出側と貯湯槽10の上部入口を接続するように制御して高温の温水を貯湯槽10の上部に蓄える。起動時のように燃料電池1の温度が低い場合は、温度検出手段16aは低い値を検出し、制御装置15は4方弁29の一方を貯湯槽10の下部出口と循環ポンプ11の吐出側を接続し他方を貯湯槽10の上部入口と循環ポンプ11の吸入側とを接続するように制御して貯湯槽10の上部に蓄えた高温の温水を4方弁29を介して循環ポンプ11で冷却熱回収熱交換器5に送って燃料電池1を加熱して起動させることができる。
【0072】
以上のように、本実施例においては、4方弁29を貯湯循環回路9の回路切換手段として用いることにより、簡単な構成で貯湯槽10に蓄えた温水で燃料電池1を起動させることができる。
【0073】
【発明の効果】
以上のように、本発明によれば、簡単な構成でシステム内部で発生する熱を回収して燃料電池を短時間で起動し、貯湯槽に温度成層を形成して温水を蓄ることができる高効率な燃料電池コージェネレーション装置を実現することができる。
【図面の簡単な説明】
【図1】本発明の実施例1における燃料電池コージェネレーション装置の構成図
【図2】本発明の実施例2における燃料電池コージェネレーション装置の構成図
【図3】本発明の実施例3における燃料電池コージェネレーション装置の構成図
【図4】本発明の実施例4における燃料電池コージェネレーション装置の構成図
【図5】本発明の実施例5における燃料電池コージェネレーション装置の構成図
【図6】本発明の実施例6における燃料電池コージェネレーション装置の構成図
【図7】本発明の実施例7における燃料電池コージェネレーション装置の構成図
【図8】本発明の実施例8における燃料電池コージェネレーション装置の構成図
【図9】本発明の実施例9における燃料電池コージェネレーション装置の構成図
【図10】本発明の実施例10における燃料電池コージェネレーション装置の構成図
【図11】従来の燃料電池コージェネレーション装置の構成図
【符号の説明】
1 燃料電池
5 冷却熱回収熱交換器
6 冷却回路
9 貯湯循環回路
10 貯湯槽
11 循環ポンプ
15 制御器(制御装置)
16a 温度検出手段
16b 温度検出手段
16c 温度検出手段
17 水素製造装置
18 排気ガス熱回収熱交換器
19 貯湯バイパス回路
20a 開閉弁(回路切換手段)
20b 開閉弁(回路切換手段)
21 逆止弁
22 3方弁(3方切換手段)
23 補助熱源
24 第2貯湯槽
25 給湯配管
26 熱利用熱交換器
27 放熱器
28 貯湯量検出手段
29 4方弁(4方切換手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel cell cogeneration apparatus that recovers heat generated during power generation of a fuel cell and uses it for hot water supply and heating.
[0002]
[Prior art]
Conventionally, as this type of fuel cell cogeneration apparatus, there is one as shown in FIG.
[0003]
FIG. 11 is a configuration diagram of a conventional fuel cell cogeneration apparatus. Reference numeral 1 denotes a fuel cell. Electric power is generated by supplying electric power generated by supplying air to the oxygen electrode 2 and fuel gas such as hydrogen gas to the fuel electrode 3. To supply. A cooling heat recovery heat exchanger 5 circulates cooling water by the cooling pump 7 of the cooling circuit 6, obtains heat from the cooling unit 8 of the fuel cell 1, and dissipates heat to the hot water storage circulation circuit 9. Reference numeral 10 denotes a hot water tank. The low-temperature water at the lower part of the hot water tank 10 is sent to the cooling heat recovery heat exchanger 5 by the circulation pump 11 and heated to store hot water at a high temperature in the upper part of the hot water tank 10. A heat exchanger 12 is provided in the cooling bypass circuit 14 branched by the three-way switching means 13 provided in the cooling circuit 6 and dissipates heat generated by the fuel cell 1. Reference numeral 15 denotes a controller, which controls the amount of circulation of the circulation pump 11 according to the temperature detected by the temperature detection means 16 provided on the return side of the heat storage tank 10 of the hot water storage circuit 9 and the temperature of the hot water entering the upper part of the heat storage tank 10. Is controlled to a predetermined temperature (see, for example, Patent Document 1).
[0004]
[Patent Document 1]
JP 2000-340244 A
[0005]
[Problems to be solved by the invention]
However, in the conventional configuration, in order to start the fuel cell, it is necessary to heat from the outside, which has problems such as low energy efficiency and long start-up time.
[0006]
The present invention solves the above-described conventional problems, and a hot water storage bypass circuit is provided in the hot water circulation circuit to heat and start the fuel cell with heat generated in the system without destroying the temperature stratification of the hot water tank when starting the fuel cell. The goal is to increase energy efficiency and reduce startup time.
[0007]
[Means for Solving the Problems]
In order to solve the conventional problem, a fuel cell cogeneration apparatus according to the present invention includes: A hot water storage circulation circuit comprising a hot water storage tank, a circulation pump, a cooling heat recovery heat exchanger provided in the cooling circuit of the fuel cell, and an exhaust gas heat recovery heat exchanger for recovering the exhaust heat of the hydrogen production device in order by piping connection; A hot water storage bypass circuit for bypassing the hot water storage tank in the hot water storage circulation circuit, a circuit switching means for switching the hot water storage bypass circuit, a temperature detection means for the fuel cell, and a signal of the temperature detection means according to the signal of the temperature detection means. When the temperature does not reach the predetermined temperature, the hot water tank is bypassed in the hot water circulation circuit, and the circulating water flows into the hot water bypass circuit, and when the temperature of the fuel cell exceeds the predetermined temperature, the circulating water is supplied to the hot water tank. Said to flow And a control device for switching the circuit switching means.
[0008]
This allows hot water in the hot water circulation circuit to flow through the hot water bypass circuit without passing through the hot water tank when the fuel cell is started, so that exhaust gas can be discharged without putting low temperature water into the upper part of the hot water tank and destroying the temperature stratification. The heat generated in the system can be recovered by the system heat recovery heat exchanger and the fuel cell can be heated via the cooling heat recovery heat exchanger.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The invention described in claim 1 is a heat recovery heat exchanger provided in a hot water tank, a circulation pump, and a fuel cell cooling circuit, and exhaust heat of a hydrogen production apparatus. The A hot-water storage circulation circuit configured by pipe-connecting exhaust gas heat recovery heat exchanger to be recovered in order, Said A hot water storage bypass circuit for bypassing the hot water tank in the hot water circulation circuit, Said Circuit switching means for switching the hot water storage bypass circuit, temperature detection means for the fuel cell, Said Depending on the temperature detection means signal When the temperature of the fuel cell does not reach a predetermined temperature, the hot water storage tank is bypassed in the hot water storage circulation circuit, and the circulating water flows into the hot water storage bypass circuit, and when the temperature of the fuel cell exceeds a predetermined temperature, the hot water storage The circulating water flows through the tank By providing a control device for switching the circuit switching means, when the temperature detection means of the fuel cell does not reach a predetermined value, the circuit switching means is switched to the hot water storage bypass circuit by the controller. By circulating the hot water in the hot water circulation circuit without passing through the tank, it is possible to prevent the low temperature water from entering the upper part of the hot water tank and prevent the temperature stratification from collapsing, and the system heat recovery heat exchanger The obtained heat can be heated through the cooling heat recovery heat exchanger to raise the temperature of the fuel cell, so that the startup time of the fuel cell can be shortened.
[0010]
The invention described in claim 2 particularly relates to the fuel cell cogeneration apparatus according to claim 1. Circuit switching means in A check valve provided at the outlet of the hot water tank, and a three-way switching means provided at the bypass branch of the hot water circulation circuit so By configuring, it is possible to reduce the control power for switching the circuit and switch the circuit reliably, so that a highly efficient and reliable fuel cell cogeneration apparatus can be realized.
[0011]
The invention according to claim 3 is particularly the fuel cell cogeneration apparatus according to claim 1 or 2. In addition to, Auxiliary heat source provided in the hot water storage bypass circuit, hot water storage temperature detection means provided at the hot water tank inlet of the hot water circulation circuit, The control means heats the circulating water flowing through the hot water storage bypass circuit by the auxiliary heat source until the temperature of the fuel cell reaches a predetermined temperature, and the temperature of the fuel cell becomes equal to or higher than the predetermined temperature. After circulating water flows through the hot water storage tank by the switching means, the circuit switching means flows through the hot water bypass circuit so that the temperature of the hot water tank inlet becomes a predetermined temperature in accordance with a signal from the hot water temperature detection means. Control the flow rate and heating amount of the auxiliary heat source With this configuration, when the specified hot water is not stored in the hot water storage tank, it is heated by the auxiliary heat source provided in the hot water storage bypass circuit and stored in the hot water storage tank to supply hot water. Since the circulating water heated by the heat source can be passed through the cooling heat recovery heat exchanger to heat the fuel cell, stable hot water can be supplied by the auxiliary heat source and the start-up time of the fuel cell can be greatly shortened. it can.
[0012]
The invention according to claim 4 is particularly the fuel cell cogeneration apparatus according to claim 3. In addition to, Second hot water tank installed at the outlet of the auxiliary heat source of the hot water storage bypass circuit Have By adopting the configuration, warm water having a temperature higher than the operating temperature of the fuel cell can be stored in the second hot water tank, so that a large amount of heat is taken out from the second hot water tank when the fuel cell is started, and a cooling heat recovery heat exchanger Since the fuel cell can be heated via the fuel cell, the start-up time of the fuel cell can be greatly shortened. Furthermore, since hot hot water can always be stored in the second hot water tank, hot water can be stably supplied even when the hot water in the hot water tank is insufficient.
[0013]
The invention according to claim 5 is particularly the fuel cell cogeneration apparatus according to claim 4. In addition to, By providing a hot water supply pipe branched from the auxiliary heat source outlet of the hot water storage bypass circuit, hot water can be heated to an arbitrary temperature and supplied with the auxiliary heat source.
[0014]
The invention according to claim 6 is the fuel cell cogeneration apparatus according to any one of claims 1 to 5. In addition to, By adopting a configuration in which a heat-utilizing heat exchanger having heating and drying radiators is provided downstream of the auxiliary heat source of the hot water storage bypass circuit, the heat generated in the fuel cell can be used for heating and drying. . Further, when the heat generated by the fuel cell is insufficient, it can be supplemented by an auxiliary heat source, so that an economical and stable heating operation can be performed.
[0015]
The invention described in claim 7 is, in particular, claimed in claim 1 Fuel cell cogeneration system as described in In addition to, An auxiliary heat source provided at the hot water tank inlet of the hot water circulation circuit, and a hot water storage amount detecting means provided in the hot water tank; And the control means heats the circulating water circulating through the hot water circulation circuit with an auxiliary heat source until the hot water quantity detecting means detects that a predetermined amount of hot water has been stored in the hot water storage tank. The fuel cell is operated by controlling the hot water circulating in the hot water circulation circuit with the auxiliary heat source until the hot water amount detecting means provided in the hot water tank detects a predetermined value. Regardless of the state, a constant amount of hot water can be stored in the hot water storage tank, so that stable hot water supply operation without running out of hot water can be performed.
[0016]
The invention according to claim 8 is the fuel cell cogeneration apparatus according to claim 7 in particular. In addition to the temperature detection means provided at the hot water tank inlet of the hot water circulation circuit, Downstream of auxiliary heat source in hot water circulation circuit Upstream of the temperature detection means provided at the hot water tank inlet A heat-use heat exchanger having a radiator for heating and drying provided in And the control means Detection value of temperature detection means So that the value becomes a predetermined value. Heat source Heating amount Heating and drying radiators that dissipate the heat obtained in the cooling heat recovery heat exchanger and exhaust gas heat recovery heat exchanger provided in the hot water circulation circuit with a heat-use heat exchanger. Can be used. In addition, when the fuel cell is stopped or the outlet temperature of the heat-utilizing heat exchanger becomes lower than a predetermined value, the auxiliary heat source is controlled by the control device so that the detected value of the hot water storage temperature detecting means becomes a predetermined value. By doing so, it is possible to stably cope with heating and drying operation, and it is possible to keep the temperature in the hot water tank at a predetermined value.
[0017]
The invention according to claim 9 includes a hot water storage tank, a circulation pump, a cooling heat recovery heat exchanger provided in the fuel cell cooling circuit, and an exhaust gas heat recovery heat exchanger for recovering exhaust heat of the hydrogen production device in order. Connected to the hot water circulation circuit constructed by piping, one connected to the lower outlet of the hot water tank and the suction side of the circulation pump, the other connected to the discharge side of the circulation pump and the upper inlet of the hot water tank, and when switching, one of the hot water storage circuits Four-way switching means for connecting the lower outlet of the tank and the upper inlet of the hot water tank and connecting the other to the discharge side of the circulation pump and the suction side of the circulation pump; and temperature detection means for the fuel cell; Said Depending on the detection value of the temperature detection means When the temperature of the fuel cell does not reach a predetermined temperature, one is connected to the lower outlet of the hot water tank and the upper inlet of the hot water tank, and the other is connected to the circulation pump suction side and the discharge side of the circulation pump When the temperature of the fuel cell exceeds a predetermined temperature, one is connected to the lower outlet of the hot water tank and the suction side of the circulation pump, and the other is connected to the discharge side of the circulation pump and the upper inlet of the hot water tank. To the above And a control device for switching and controlling the four-way switching means. When the detected value of the temperature detecting means of the fuel cell is lower than a predetermined value, the four-way switching means uses the circulation pump discharge side and the circulation pump. So that low-temperature water does not enter the upper inlet of the hot water tank, and the heat obtained by the system heat recovery heat exchanger is dissipated to the fuel cell via the cooling heat exchanger. By controlling with the controller, the fuel cell can be heated at the start-up without losing the temperature stratification of the hot water tank with a simple structure.
[0018]
The invention according to claim 10 is: A hot water storage circuit comprising a hot water storage tank, a circulation pump, a cooling heat recovery heat exchanger provided in a cooling circuit of the fuel cell, and an exhaust gas heat recovery heat exchanger for recovering exhaust heat of the hydrogen production device in order. When, One is connected to the lower outlet of the hot water tank and the suction side of the circulation pump, and the other is connected to the discharge side of the circulation pump and the upper inlet of the hot water tank. When switching, one is connected to the lower outlet of the hot water tank and the discharge side of the circulation pump A four-way switching means for connecting the upper inlet of the hot water tank and the suction side of the circulation pump, a temperature detecting means for the fuel cell, Said Depending on the detection value of the temperature detection means When the temperature of the fuel cell does not reach a predetermined temperature, one is connected to the lower outlet of the hot water tank and the discharge side of the circulation pump, and the other is connected to the upper inlet of the hot water tank and the suction side of the circulation pump When the temperature of the fuel cell exceeds a predetermined temperature, one is connected to the lower outlet of the hot water tank and the suction side of the circulation pump, and the other is connected to the discharge side of the circulation pump and the upper inlet of the hot water tank. To the above And a control device for switching control of the four-way switching means, and when the detected value of the temperature detection means of the fuel cell is lower than a predetermined value, one of the four-way switching means is connected to the lower outlet of the hot water tank. Connected to the discharge side of the circulation pump and the other side to the upper inlet of the hot water tank and the suction side of the circulation pump, and the hot water at the upper part of the hot water tank is placed in the cooling heat exchanger to control the fuel cell. By controlling with a vessel, the fuel cell can be heated with a simple structure using the heat of the hot water tank.
[0019]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0020]
Example 1
FIG. 1 shows a configuration diagram of a fuel cell cogeneration apparatus according to a first embodiment of the present embodiment.
[0021]
In FIG. 1, reference numeral 1 denotes a fuel cell using a solid polymer membrane, which supplies air to the oxygen electrode 2 and hydrogen generated by the hydrogen production machine 17 to the fuel electrode 3 to supply electric power to the electric power load 4. A cooling heat recovery heat exchanger 5 circulates cooling water by the cooling pump 7 of the cooling circuit 6, obtains heat from the cooling unit 8 of the fuel cell 1, and dissipates heat to the hot water storage circulation circuit 9. An exhaust gas heat recovery heat exchanger 18 obtains heat from the exhaust gas discharged from the hydrogen production machine 17 and dissipates heat to the hot water circulation circuit 9. The circulation pump 11 provided in the hot water circulation circuit 9 raises the temperature of the hot water tank 10 to a high temperature. Store warm water. A hot water storage bypass circuit 19 bypasses the hot water tank 10 by connecting the upper inlet portion of the hot water tank 10 and the suction side of the circulation pump 11, and is connected to the on-off valve 20 a and the hot water storage bypass circuit 19 provided at the upper inlet portion of the hot water tank 10. The provided on-off valve 20b is controlled to be opened and closed by the controller 15 to switch the pipeline.
[0022]
The operation and action of the fuel cell cogeneration apparatus configured as described above will be described below.
[0023]
First, in order for the fuel cell 1 to generate electric power, it is necessary to reach a predetermined temperature or more, but at the time of startup, the temperature of the fuel cell 1 is low and the detection value of the temperature detecting means 16a is detected to be low. By closing the on-off valve 20a and opening the on-off valve 20b with the control device 15, the circulating water of the hot water storage circuit 9 is sent to the cooling heat recovery heat exchanger 5 and the exhaust gas heat recovery heat exchanger 18 by the circulation pump 11, The hot water storage tank 10 can be bypassed and flowed to the hot water storage bypass circuit 19 for circulation. At this time, since the fuel cell 1 is not generating power, heat is not generated from the cooling unit 8, but the hydrogen production device 17 combusts fuel such as city gas to produce hydrogen, and heat exhaust gas heat recovery heat from the high-temperature exhaust gas. In order to put it in the exchanger, the circulating water in the hot water storage circuit 9 is heated by the heat obtained in the exhaust gas heat recovery heat exchanger 18 and is carried to the cooling heat recovery heat exchanger 9 by the circulation pump 11, and the cooling circuit by the cooling pump 7. The cooling water 6 is circulated and radiated by the cooling unit 8 of the fuel cell 1 to heat the fuel cell 1. On the other hand, since circulating water does not enter the upper part of the hot water tank 10, the temperature stratification in the hot water tank 10 is maintained. When the fuel cell 1 is heated to a sufficiently high temperature, power generation is started to generate heat, and the detected value of the temperature detecting means 16a is also detected as a high value, so the controller 15 opens and closes the on-off valve 20a. The valve 20b is controlled to be closed. At this time, since the hot water storage bypass circuit 19 is closed, the water in the lower part of the hot water storage tank 10 is sent to the cooling heat recovery heat exchanger 9 and the exhaust gas heat recovery heat exchanger 18 by the circulation pump 11 and is heated to a high temperature. The hot water can be stored in the upper part of the hot water tank 10.
[0024]
As described above, in this embodiment, the fuel cell is heated and started up using the heat of the exhaust gas of the hydrogen production device 17 generated in the system without destroying the temperature stratification in the hot water tank 10. it can.
[0025]
(Example 2)
FIG. 2 is a configuration diagram of a fuel cell cogeneration apparatus according to a second embodiment of the present invention.
[0026]
In FIG. 2, 21 is a check valve provided at the lower outlet of the hot water tank 10, 22 is a three-way valve provided at a branch portion of the hot water storage bypass circuit 19 of the hot water circulation circuit 9, and 15 is a temperature detection of the fuel cell 1. The control device for switching and controlling the three-way valve 22 according to the detection value of the means 16a differs from the configuration of the first embodiment in that a check valve 21 and a three-way valve 22 are used as circuit switching means for the hot water storage bypass circuit 19. It is a point provided.
[0027]
The operation and action of the fuel cell cogeneration apparatus configured as described above will be described below.
[0028]
First, when the temperature of the fuel cell 1 is low as at the time of startup, the temperature detecting means 16a detects a low value, and the control device 15 controls the three-way valve 22 to connect the circuit to the hot water storage bypass circuit 19. Therefore, the low-temperature circulating water flowing through the hot water storage circuit 9 bypasses the hot water tank 10 and flows through the hot water storage bypass circuit 19. At this time, since the check valve 21 is provided at the lower outlet of the hot water tank 10, the circulating water can be prevented from flowing back into the hot water tank 10 even if the circulation pump 11 repeatedly starts and stops, so that the temperature stratification is destroyed. There is nothing.
[0029]
On the other hand, when the temperature of the fuel cell 1 becomes sufficiently high, the temperature detection means 16a detects a high value, and the control device 15 controls the three-way valve 22 to flow into the hot water tank 10 by connecting a circuit. The hot circulating water flowing through the hot water storage circuit 9 can be stored in the upper part of the hot water tank 10.
[0030]
As described above, in the present embodiment, the check valve 21 and the three-way valve 22 are provided as the circuit switching means of the hot water storage bypass circuit 19, so that the power consumption for control is reduced with a simple configuration. High circuit switching means can be realized.
[0031]
(Example 3)
FIG. 3 is a configuration diagram of a fuel cell cogeneration apparatus according to a third embodiment of the present invention.
[0032]
In FIG. 3, reference numeral 23 denotes an auxiliary heat source using gas or electricity as a heat source. The difference from the configurations of the first and second embodiments is that a hot water storage temperature detection means 16b is provided at the upper inlet of the hot water tank 10 and the auxiliary heat source 23 is provided. This is a point provided in the hot water storage bypass circuit 19.
[0033]
The operation and action of the fuel cell cogeneration apparatus configured as described above will be described below.
[0034]
First, since the detected value of the temperature detecting means 16a of the fuel cell 1 is low at the time of startup, the control device 15 closes the on-off valve 20a and opens the on-off valve 20b, so that the hot water storage circuit 9 Circulating water can be sent to the cooling heat recovery heat exchanger 9 and the exhaust gas heat recovery heat exchanger 18 by the circulation pump 11, bypassing the hot water tank 10 and flowing to the hot water bypass circuit 19 for circulation.
[0035]
At this time, the heat obtained by the exhaust gas heat recovery heat exchanger 18 is sent to the cooling heat recovery heat exchanger 9 to dissipate heat in the cooling unit 8 of the fuel cell 1 to heat the fuel cell 1, but the auxiliary heat source 23 is further operated. Then, the heating amount of the fuel cell 1 can be increased by heating the circulating water.
[0036]
On the other hand, when the fuel cell 1 starts power generation and the temperature rises and the detected value of the temperature detecting means 16a detects a value higher than a predetermined value, the on-off valve 20a is opened to circulate in the upper part of the hot water tank 10. Control is performed by the controller 15 so that water flows. Although the heating amounts of the exhaust gas heat recovery heat exchanger 18 and the cooling heat recovery heat exchanger 9 change according to the operating state of the fuel cell 1, the controller 15 adjusts the value of the hot water storage temperature detection means 16b to a predetermined value. Then, the opening degree of the on-off valve 20a is adjusted to control the flow rate through the hot water storage bypass circuit 19 and the heating amount of the auxiliary heat source 23.
[0037]
As described above, in this embodiment, the hot water storage temperature detection means 16b is provided at the upper inlet of the hot water tank 10, the auxiliary heat source 23 is provided in the hot water storage bypass circuit 19, and the controller 15 controls the fuel cell 1. At the time of start-up, since the fuel cell 1 can be heated by the auxiliary heat source 23, the start-up time can be greatly shortened. Further, a part of the circulating water flowing through the hot water storage circulation circuit 9 flows into the hot water storage bypass circuit 19 and is heated by the auxiliary heat source 23, so that the hot water is stably heated at the upper part of the hot water tank 10 regardless of the operation state of the fuel cell 1. Can be stored.
[0038]
Example 4
FIG. 4 is a configuration diagram of a fuel cell cogeneration apparatus according to a fourth embodiment of the present invention.
[0039]
In FIG. 4, reference numeral 24 denotes a second hot water tank, which differs from the configuration of the third embodiment in that the second hot water tank 24 is provided at the outlet of the auxiliary heat source 23 of the hot water bypass circuit 19 and at the inlet of the second hot water tank. The temperature detecting means 16c is provided.
[0040]
The operation and action of the fuel cell cogeneration apparatus configured as described above will be described below.
[0041]
First, when the fuel cell 1 is in the power generation state, the detected value of the temperature detection means 16a of the fuel cell 1 is detected as a high value, so the control device 15 opens the on-off valve 20a and closes the on-off valve 20b. By operating, hot water heated by the cooling heat recovery heat exchanger 9 and the exhaust gas heat recovery heat exchanger 18 can be stored in the upper part of the hot water tank 10. At this time, when the fuel cell 1 is restarted, the controller 15 opens the on-off valve 20b, heats the hot water by the auxiliary heat source 23 according to the detected value of the temperature detecting means 16c, and stores it in the second hot water tank 24. The fuel cell 1 can be heated by opening the on-off valve 20 b and sending the high-temperature water in the second hot water storage tank 24 to the cooling heat recovery heat exchanger 9 by the circulation pump 11.
[0042]
As described above, in this embodiment, the second hot water storage tank 24 is provided at the outlet of the auxiliary heat source 23 of the hot water storage bypass circuit 19, so that the start-up time of the fuel cell 1 is greatly reduced with a small capacity small auxiliary heat source. It can be shortened and can respond quickly to heat loads such as hot water supply.
[0043]
(Example 5)
FIG. 5 is a block diagram of a fuel cell cogeneration apparatus according to a fifth embodiment of the present invention.
[0044]
In FIG. 5, reference numeral 25 denotes a hot water supply pipe, which is different from the configuration of the fourth embodiment in that a hot water supply pipe 25 is branched from the outlet of the auxiliary heat source 23 of the hot water storage bypass circuit 19.
[0045]
The operation and action of the fuel cell cogeneration apparatus configured as described above will be described below.
[0046]
First, during steady operation of the fuel cell 1, the control device 15 opens and opens the on-off valve 20 a and closes the on-off valve 20 b to send the circulating water of the hot water storage circuit 9 to the upper part of the hot water tank 10 by the circulation pump 11. . When a hot water supply load is generated, when the hot water on / off valve 20c is opened, the circulating water heated by the cooling heat recovery heat exchanger 9 and the exhaust gas heat recovery heat exchanger 18 passes through the hot water storage bypass circuit 19 and the hot water supply pipe 25. When the amount of circulating water in the circulation circuit is small, the hot water in the upper part of the hot water storage tank 10 is pushed out by the pressure of the city water and merged in the hot water storage bypass circuit 19 to supply the necessary amount of hot water from the hot water supply pipe 25. .
[0047]
As described above, in the present embodiment, the heat generated in the fuel cell 1 is stored by branching from the front of the on-off valve 20b at the outlet of the auxiliary heat source 23 of the hot water storage bypass circuit 19 to provide the hot water supply pipe 25. The hot water supply can be automatically supplemented from the hot water storage tank 10 when the amount of hot water supply is insufficient, so that an efficient hot water supply operation can be performed with a simple piping configuration.
[0048]
(Example 6)
FIG. 6 is a configuration diagram of a fuel cell cogeneration apparatus according to a sixth embodiment of the present invention.
[0049]
In FIG. 6, reference numeral 26 denotes a heat-use heat exchanger connected to a radiator 27 for heating and drying. The difference from the configurations of the first to fifth embodiments is that heat-use heat is provided downstream of the auxiliary heat source 23 of the hot water storage bypass circuit 19. This is the point where the exchanger 26 is provided.
[0050]
The operation and action of the fuel cell cogeneration apparatus configured as described above will be described below.
[0051]
First, during the steady operation of the fuel cell 1, the control device 15 operates by opening the on-off valve 20a and closing the on-off valve 20b, so that the circulating water in the hot water circulation circuit 9 is sent to the upper part of the hot water tank 10 by the circulation pump 11. . When a load such as heating is generated and the radiator 27 is operated, the controller 15 opens the on-off valve 20b, and the cooling heat recovery heat exchanger 5 and the exhaust gas heat recovery heat exchanger 18 of the hot water circulation circuit 9 are opened. The heated circulating water flows into the hot water storage bypass circuit 19 and is used for heating by the heat-use heat exchanger 26. When the load of the radiator 27 is large, the shortage is heated by the auxiliary heat source 23 to cope with the load. On the other hand, when the fuel cell 1 is stopped, similarly, the on-off valve 20b is opened to operate the circulation pump 11, and the circulating water is supplied to the hot water storage bypass circuit 19 and heated by the auxiliary heat source 23 to exchange heat using heat. Heat the unit 26 by heating it.
[0052]
As described above, in the present embodiment, by providing the heat utilization heat exchanger 26 downstream of the auxiliary heat source 23 of the hot water storage bypass circuit 19, the heat generated in the fuel cell 1 can be directly used for heating, etc. When the load is large, efficient and stable heating operation can be realized by heating with the auxiliary heat source 23.
[0053]
(Example 7)
FIG. 7 is a configuration diagram of a fuel cell cogeneration apparatus according to a seventh embodiment of the present invention.
[0054]
In FIG. 7, reference numeral 23 denotes an auxiliary heat source, reference numeral 28 denotes hot water storage amount detection means, and the difference from the configurations of the first to sixth embodiments is the auxiliary heat source 23 controlled by the control device 15 in accordance with the detection value of the hot water storage amount detection means 28. Is provided at the inlet of the hot water storage tank 10 of the hot water storage circuit 9.
[0055]
The operation and action of the fuel cell cogeneration apparatus configured as described above will be described below.
[0056]
First, during steady operation of the fuel cell 1, the low-temperature water at the bottom of the hot water tank 10 is sent to the cooling heat recovery heat exchanger 5 and the exhaust gas heat recovery heat exchanger 18 by the circulation pump 11 and heated to heat the upper part of the hot water tank 10. However, when the power load 4 is small and the fuel cell 1 generates little heat, the heating amount of the cooling heat recovery heat exchanger 5 and the exhaust gas heat recovery heat exchanger 18 is small and the temperature of the circulating water is also low. The controller 15 is heated by the auxiliary heat source 23 and stored in the upper part of the hot water tank 10 until the detection value of the hot water storage amount detection means 28 reaches a predetermined value.
[0057]
As described above, in the present embodiment, by providing the auxiliary heat source 23 at the inlet of the hot water storage tank 10 of the hot water storage circuit 9, the amount of hot water corresponding to a constant hot water supply load can be obtained regardless of the operating state of the fuel cell 1. It can be stored in the hot water tank 10. Furthermore, the hot water storage tank 10 can be reduced in size by increasing the temperature of the hot water accumulated in the hot water storage tank 10.
[0058]
(Example 8)
FIG. 8 is a configuration diagram of a fuel cell cogeneration apparatus according to an eighth embodiment of the present invention.
[0059]
In FIG. 8, reference numeral 26 denotes a heat-use heat exchanger connected to a radiator 27 for heating and drying. The difference from the configuration of the seventh embodiment is that the inlet of the hot water tank 10 is downstream of the auxiliary heat source 23 of the hot water circulation circuit 9. The heat utilization heat exchanger 26 is provided upstream of the temperature detector 16b provided in FIG.
[0060]
The operation and action of the fuel cell cogeneration apparatus configured as described above will be described below.
[0061]
First, when a load such as heating is generated and the radiator 27 is operated, the controller 15 opens the on-off valve 20a and operates the circulation pump 11 of the hot water circulation circuit 9 to circulate the circulating water. When the fuel cell 1 is in operation, the circulating water heated by the cooling heat recovery heat exchanger 5 and the exhaust gas heat recovery heat exchanger 18 is allowed to flow to the heat utilization heat exchanger 27 to perform heating operation. On the other hand, when the value of the power load 4 of the fuel cell 1 is small or the operation is stopped, the auxiliary heat source 23 is operated to heat the shortage, but at this time, the temperature detection means 16b provided at the inlet of the hot water tank 10 The controller 15 controls the heating amount of the auxiliary heat source 15 so that the detected value becomes a predetermined value.
[0062]
As described above, in this embodiment, the heat utilization heat exchanger 26 is provided downstream of the auxiliary heat source 23 of the hot water circulation circuit 9 and upstream of the temperature detection means 16b provided at the inlet of the hot water storage tank 10, thereby The heat generated in the battery 1 can be directly used as heat for heating or the like, and when the heat generated in the fuel cell 1 is insufficient, it can be automatically compensated by the auxiliary heat source 23. Furthermore, since the hot water entering the upper part of the hot water tank 10 can be set to an arbitrary temperature, the hot water tank 10 can stably cope with the hot water supply load without destroying the temperature stratification.
[0063]
Example 9
FIG. 9 is a configuration diagram of a fuel cell cogeneration apparatus according to a ninth embodiment of the present invention.
[0064]
In FIG. 9, reference numeral 29 denotes a four-way valve, which differs from the configuration of the first embodiment in that one is connected to the lower outlet of the hot water tank 10 and the suction side of the circulation pump 11 and the other is the discharge side of the circulation pump 11 and the hot water tank. 10 is connected to the upper inlet of the hot water tank 10 and one of the upper inlet of the hot water tank 10 is connected, and the other is connected to the suction side of the circulation pump 11 and the discharge side of the circulation pump 11. The valve 29 is provided as a circuit switching means of the hot water storage circuit 9.
[0065]
The operation and action of the fuel cell cogeneration apparatus configured as described above will be described below.
[0066]
First, when the temperature of the fuel cell 1 is high as in steady operation, the temperature detection means 16a detects a high value, and the control device 15 causes the four-way valve 29, one of which is the lower outlet of the hot water tank 10 and the circulation pump. 11 is connected to the suction side, and the other is connected to the discharge side of the circulation pump 11 and the upper inlet of the hot water tank 10 to store hot hot water in the upper part of the hot water tank 10. When the temperature of the fuel cell 1 is low as at the time of start-up, the temperature detecting means 16a detects a low value, and the control device 15 uses one of the four-way valve 29 as the lower outlet of the hot water tank 10 and the upper inlet of the hot water tank 10. And the other side is controlled so as to connect the discharge side of the circulation pump 11 and the suction side of the circulation pump 11, and the heat obtained by the exhaust gas heat recovery heat exchanger 18 is sent to the cooling heat recovery heat exchanger 5. The fuel cell 1 can be heated and started.
[0067]
As described above, in this embodiment, by using the four-way valve 29 as the circuit switching means, the heat generated in the system is recovered by the exhaust gas heat recovery heat exchanger 18 with a simple configuration, and the fuel cell 1 Can be started by heating.
[0068]
(Example 10)
FIG. 10 is a configuration diagram of a fuel cell cogeneration apparatus according to a tenth embodiment of the present invention.
[0069]
In FIG. 10, reference numeral 29 denotes a four-way valve, which differs from the configuration of the ninth embodiment in that one is connected to the lower outlet of the hot water tank 10 and the suction side of the circulation pump 11 and the other is the discharge side of the circulation pump 11 and the hot water tank. The upper inlet of the hot water tank 10 is connected to the lower outlet of the hot water tank 10 and the discharge side of the circulation pump 11, and the other is connected to the upper inlet of the hot water tank 10 and the suction side of the circulation pump 11 when switching. The valve 29 is provided as a circuit switching means of the hot water storage circuit 9.
[0070]
The operation and action of the fuel cell cogeneration apparatus configured as described above will be described below.
[0071]
First, when the temperature of the fuel cell 1 is high as in steady operation, the temperature detection means 16a detects a high value, and the control device 15 causes the four-way valve 29, one of which is the lower outlet of the hot water tank 10 and the circulation pump. 11 is connected to the suction side, and the other is connected to the discharge side of the circulation pump 11 and the upper inlet of the hot water tank 10 to store hot hot water in the upper part of the hot water tank 10. When the temperature of the fuel cell 1 is low as at the time of startup, the temperature detection means 16a detects a low value, and the control device 15 connects one of the four-way valves 29 to the lower outlet of the hot water tank 10 and the discharge side of the circulation pump 11 Is connected to the upper inlet of the hot water storage tank 10 and the suction side of the circulation pump 11, and hot water stored in the upper part of the hot water storage tank 10 is connected to the hot water tank 10 via the four-way valve 29. The fuel cell 1 can be heated and started by sending it to the cooling heat recovery heat exchanger 5.
[0072]
As described above, in this embodiment, by using the four-way valve 29 as the circuit switching means of the hot water storage circuit 9, the fuel cell 1 can be started up with hot water stored in the hot water tank 10 with a simple configuration. .
[0073]
【The invention's effect】
As described above, according to the present invention, it is possible to recover heat generated in the system with a simple configuration, start the fuel cell in a short time, form a temperature stratification in the hot water storage tank, and store hot water. A highly efficient fuel cell cogeneration system can be realized.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a fuel cell cogeneration apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a configuration diagram of a fuel cell cogeneration apparatus according to a second embodiment of the present invention.
FIG. 3 is a configuration diagram of a fuel cell cogeneration apparatus according to a third embodiment of the present invention.
FIG. 4 is a configuration diagram of a fuel cell cogeneration apparatus according to Embodiment 4 of the present invention.
FIG. 5 is a configuration diagram of a fuel cell cogeneration apparatus according to a fifth embodiment of the present invention.
FIG. 6 is a configuration diagram of a fuel cell cogeneration apparatus according to a sixth embodiment of the present invention.
FIG. 7 is a configuration diagram of a fuel cell cogeneration apparatus according to a seventh embodiment of the present invention.
FIG. 8 is a configuration diagram of a fuel cell cogeneration apparatus according to an eighth embodiment of the present invention.
FIG. 9 is a configuration diagram of a fuel cell cogeneration apparatus according to Embodiment 9 of the present invention.
FIG. 10 is a configuration diagram of a fuel cell cogeneration apparatus according to a tenth embodiment of the present invention.
FIG. 11 is a configuration diagram of a conventional fuel cell cogeneration apparatus.
[Explanation of symbols]
1 Fuel cell
5 Cooling heat recovery heat exchanger
6 Cooling circuit
9 Hot water circulation circuit
10 Hot water tank
11 Circulation pump
15 Controller (Control device)
16a Temperature detection means
16b Temperature detection means
16c Temperature detection means
17 Hydrogen production equipment
18 Exhaust gas heat recovery heat exchanger
19 Hot water storage bypass circuit
20a On-off valve (circuit switching means)
20b On-off valve (circuit switching means)
21 Check valve
22 3-way valve (3-way switching means)
23 Auxiliary heat source
24 2nd hot water tank
25 Hot water supply piping
26 Heat-use heat exchanger
27 Heatsink
28 Hot water storage amount detection means
29 4-way valve (4-way switching means)

Claims (10)

貯湯槽と循環ポンプと燃料電池の冷却回路に設けた冷却熱回収熱交換器と水素製造装置の排気熱回収する排気ガス熱回収熱交換器とを順に配管接続して構成する貯湯循環回路と、前記貯湯循環回路内で貯湯槽をバイパスする貯湯バイパス回路と、前記貯湯バイパス回路を切換る回路切換手段と、燃料電池の温度検知手段と、前記温度検出手段の信号に応じて前記燃料電池の温度が所定の温度に達していない場合は前記貯湯循環回路内で貯湯槽をバイパスして前記貯湯バイパス回路に循環水が流れ前記燃料電池の温度が所定の温度以上になると前記貯湯槽に循環水が流れるように前記回路切換手段を切換る制御装置とを設けた燃料電池コージェネレーション装置。A hot water storage circulation circuit comprising a hot water storage tank, a circulation pump, a cooling heat recovery heat exchanger provided in the cooling circuit of the fuel cell, and an exhaust gas heat recovery heat exchanger for recovering the exhaust heat of the hydrogen production device in order by piping connection; A hot water storage bypass circuit for bypassing the hot water storage tank in the hot water storage circulation circuit, a circuit switching means for switching the hot water storage bypass circuit, a temperature detection means for the fuel cell, and a signal of the temperature detection means according to the signal of the temperature detection means . When the temperature does not reach the predetermined temperature, the hot water tank is bypassed in the hot water circulation circuit, and the circulating water flows into the hot water bypass circuit, and when the temperature of the fuel cell exceeds the predetermined temperature, the circulating water is supplied to the hot water tank. And a control device for switching the circuit switching means so as to flow . 貯湯槽出口に設けた逆止弁と、貯湯循環回路のバイパス分岐部に設けた3方切換手段とで貯湯バイパス回路の回路切換手段を構成する請求項1に記載の燃料電池コージェネレーション装置。  The fuel cell cogeneration apparatus according to claim 1, wherein a circuit switching means of the hot water storage bypass circuit is constituted by a check valve provided at the outlet of the hot water storage tank and a three-way switching means provided at a bypass branching portion of the hot water circulation circuit. 貯湯バイパス回路に設けた補助熱源と、貯湯循環回路の貯湯槽入口に設けた貯湯温度検知手段とを有し、制御手段は、燃料電池の温度が所定の温度に達するまでは前記貯湯バイパス回路を流れる循環水を前記補助熱源により加熱し、前記燃料電池の温度が所定の温度以上になり前記回路切換手段により貯湯槽に循環水が流れるようにした後は、前記貯湯温度検知手段の信号に応じて貯湯槽入口の温度が所定の温度になるように前記回路切換手段により前記貯湯バイパス回路を流れる流量と前記補助熱源の加熱量を制御する請求項1又は2に記載の燃料電池コージェネレーション装置。An auxiliary heat source provided in the hot water storage bypass circuit, and hot water storage temperature detection means provided at the hot water tank inlet of the hot water circulation circuit, and the control means is configured to connect the hot water storage bypass circuit until the temperature of the fuel cell reaches a predetermined temperature. After the circulating water flowing is heated by the auxiliary heat source and the temperature of the fuel cell becomes equal to or higher than a predetermined temperature and the circulating water flows to the hot water storage tank by the circuit switching means, according to the signal of the hot water storage temperature detection means The fuel cell cogeneration apparatus according to claim 1 or 2, wherein the flow rate flowing through the hot water storage bypass circuit and the heating amount of the auxiliary heat source are controlled by the circuit switching means so that the temperature of the hot water tank inlet becomes a predetermined temperature . 貯湯バイパス回路の補助熱源の出口に設けた第2貯湯槽有する請求項3に記載の燃料電池コージェネレーション装置。The fuel cell cogeneration apparatus according to claim 3, further comprising a second hot water storage tank provided at an outlet of an auxiliary heat source of the hot water storage bypass circuit. 貯湯バイパス回路の補助熱源出口から分岐して給湯配管を設けた請求項4に記載の燃料電池コージェネレーション装置。  The fuel cell cogeneration device according to claim 4, wherein a hot water supply pipe is provided by branching from an auxiliary heat source outlet of the hot water storage bypass circuit. 貯湯バイパス回路の補助熱源の下流に暖房および乾燥用の放熱器を有する熱利用熱交換器を設けた請求項1〜5のいずれか1項に記載の燃料電池コージェネレーション装置。  The fuel cell cogeneration apparatus according to any one of claims 1 to 5, wherein a heat-utilizing heat exchanger having a radiator for heating and drying is provided downstream of an auxiliary heat source of the hot water storage bypass circuit. 貯湯循環回路の貯湯槽入口に設けた補助熱源と、貯湯槽に設けた貯湯量検知手段とを有し、制御手段は、前記貯湯量検知手段により前記貯湯槽に所定量の湯水が貯まったことを検知するまで前記貯湯循環回路を循環する循環水を補助熱源で加熱する請求項1に記載の燃料電池コージェネレーション装置。An auxiliary heat source provided at the hot water tank inlet of the hot water circulation circuit and hot water storage amount detection means provided in the hot water storage tank, and the control means has stored a predetermined amount of hot water in the hot water storage tank by the hot water storage amount detection means. The fuel cell cogeneration apparatus according to claim 1, wherein the circulating water circulating in the hot water storage circuit is heated by an auxiliary heat source until detection is made . 貯湯循環回路の貯湯槽入口に設けた温度検知手段と、前記貯湯循環回路の補助熱源の下流で前記貯湯槽入口に設けた温度検知手段の上流に設けた暖房用および乾燥用の放熱器を有する熱利用熱交換器とを有し、制御手段は、前記温度検出手段の検出値が所定の値になるように前記補助熱源の加熱量を制御する請求項7に記載の燃料電池コージェネレーション装置。 A temperature detecting means provided at the hot water tank inlet of the hot water circulation circuit, and a heating and drying radiator provided downstream of the auxiliary heat source of the hot water circulation circuit and upstream of the temperature detecting means provided at the hot water tank inlet. The fuel cell cogeneration apparatus according to claim 7 , further comprising a heat-use heat exchanger, wherein the control unit controls a heating amount of the auxiliary heat source so that a detection value of the temperature detection unit becomes a predetermined value . 貯湯槽と循環ポンプと燃料電池の冷却回路に設けた冷却熱回収熱交換器と水素製造装置の排気熱などを回収する排気ガス熱回収熱交換器とを順に配管接続して構成する貯湯循環回路と、一方を貯湯槽の下部出口と循環ポンプの吸入側と接続し他方を循環ポンプの吐出側と貯湯槽の上部入口を接続し、切換時には、一方を貯湯槽の下部出口と貯湯槽の上部入口を接続し他方を循環ポンプ吸入側と循環ポンプの吐出側とを接続する4方切換手段と、燃料電池の温度検出手段と、前記温度検出手段の検出値に応じて前記燃料電池の温度が所定の温度に達していない場合は一方を前記貯湯槽の下部出口と前記貯湯槽の上部入口を接続し他方を前記循環ポンプ吸入側と前記循環ポンプの吐出側とを接続し前記燃料電池の温度が所定の温度以上になると一方を前記貯湯槽の下部出口と前記循環ポンプの吸入側と接続し他方を前記循環ポンプの吐出側と前記貯湯槽の上部入口を接続するように前記4方切換手段を切換制御する制御装置とを設けた燃料電池コージェネレーション装置。A hot water storage circuit comprising a hot water storage tank, a circulation pump, a cooling heat recovery heat exchanger provided in a cooling circuit of the fuel cell, and an exhaust gas heat recovery heat exchanger for recovering exhaust heat of the hydrogen production device in order. One is connected to the lower outlet of the hot water tank and the suction side of the circulation pump, and the other is connected to the discharge side of the circulation pump and the upper inlet of the hot water tank. When switching, one is connected to the lower outlet of the hot water tank and the upper part of the hot water tank. The four-way switching means for connecting the inlet and connecting the other to the circulation pump suction side and the discharge side of the circulation pump, the temperature detection means for the fuel cell, and the temperature of the fuel cell according to the detected value of the temperature detection means If the temperature does not reach the predetermined temperature, one is connected to the lower outlet of the hot water tank and the upper inlet of the hot water tank, and the other is connected to the circulation pump suction side and the discharge side of the circulation pump. When the temperature exceeds the specified temperature The a control device for switching control of the four-way switching means to connect the upper inlet of the hot water storage tank and the discharge side of the circulating pump and the other is connected to the lower outlet and the suction side of the circulation pump of the hot water storage tank Fuel cell cogeneration system provided. 貯湯槽と循環ポンプと燃料電池の冷却回路に設けた冷却熱回収熱交換器と水素製造装置の排気熱などを回収する排気ガス熱回収熱交換器とを順に配管接続して構成する貯湯循環回路と、一方を貯湯槽の下部出口と循環ポンプの吸入側と接続し他方を循環ポンプの吐出側と貯湯槽の上部入口を接続し、切換時には、一方を貯湯槽の下部出口と循環ポンプ吐出側を接続し他方を貯湯槽の上部入口と循環ポンプの吸入側とを接続する4方切換手段と、燃料電池の温度検出手段と、前記温度検出手段の検出値に応じて前記燃料電池の温度が所定の温度に達していない場合は一方を前記貯湯槽の下部出口と前記循環ポンプ吐出側を接続し他方を前記貯湯槽の上部入口と前記循環ポンプの吸入側とを接続し前記燃料電池の温度が所定の温度以上になると一方を前記貯湯槽の下部出口と前記循環ポンプの吸入側と接続し他方を前記循環ポンプの吐出側と前記貯湯槽の上部入口を接続するように前記4方切換手段を切換制御する制御装置とを設け燃料電池コージェネレーション装置。 A hot water storage circuit comprising a hot water storage tank, a circulation pump, a cooling heat recovery heat exchanger provided in a cooling circuit of the fuel cell, and an exhaust gas heat recovery heat exchanger for recovering exhaust heat of the hydrogen production device in order. When the plug one the lower outlet of the hot water storage tank and the suction side of the circulation pump the other connects the upper inlet of the discharge side and the hot water tank of the circulation pump, the switching, one a lower outlet of the hot water storage tank circulation pump discharge side And the other is connected to the upper inlet of the hot water tank and the suction side of the circulation pump, the temperature detecting means of the fuel cell, and the temperature of the fuel cell according to the detected value of the temperature detecting means When the predetermined temperature is not reached, one is connected to the lower outlet of the hot water tank and the discharge side of the circulation pump, and the other is connected to the upper inlet of the hot water tank and the suction side of the circulation pump. When the temperature exceeds the specified temperature The a control device for switching control of the four-way switching means to connect the upper inlet of the hot water storage tank and the discharge side of the circulating pump and the other is connected to the lower outlet and the suction side of the circulation pump of the hot water storage tank providing a fuel cell cogeneration system.
JP2003133071A 2003-05-12 2003-05-12 Fuel cell cogeneration system Expired - Fee Related JP4552387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003133071A JP4552387B2 (en) 2003-05-12 2003-05-12 Fuel cell cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003133071A JP4552387B2 (en) 2003-05-12 2003-05-12 Fuel cell cogeneration system

Publications (2)

Publication Number Publication Date
JP2004335402A JP2004335402A (en) 2004-11-25
JP4552387B2 true JP4552387B2 (en) 2010-09-29

Family

ID=33507718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003133071A Expired - Fee Related JP4552387B2 (en) 2003-05-12 2003-05-12 Fuel cell cogeneration system

Country Status (1)

Country Link
JP (1) JP4552387B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003270B2 (en) 2005-08-17 2011-08-23 Idatech, Llc Fuel cell stacks and systems with fluid-responsive temperature regulation
JP5361125B2 (en) * 2006-11-16 2013-12-04 京セラ株式会社 Fuel cell device
JP5158745B2 (en) * 2006-12-22 2013-03-06 株式会社長府製作所 Fuel cell cogeneration system
RU2011142983A (en) * 2009-03-25 2013-04-27 Панасоник Корпорэйшн FUEL ELEMENT SYSTEM AND METHOD OF OPERATION FUEL ELEMENT SYSTEM
JP5689228B2 (en) * 2009-04-27 2015-03-25 アイシン精機株式会社 Solid oxide fuel cell system
KR101362445B1 (en) * 2012-04-16 2014-02-12 지에스칼텍스 주식회사 Fuel cell system for using waste heat of fuel reformer and operating method of the same
CN113540501A (en) * 2021-07-06 2021-10-22 天津大学 Thermal management system and control method of high-temperature proton exchange membrane fuel cell

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198058A (en) * 1986-02-25 1987-09-01 Fuji Electric Co Ltd Electric heat supply system of liquid cooling type fuel cell
JP2000340244A (en) * 1999-05-25 2000-12-08 Matsushita Electric Ind Co Ltd Solid polymer fuel cell cogeneration system
JP2001185167A (en) * 1999-12-27 2001-07-06 Daikin Ind Ltd Fuel cell cogeneration system
JP2001210343A (en) * 2000-01-31 2001-08-03 Sanyo Electric Co Ltd Hot water storage/hot water supply system
JP2002025591A (en) * 2000-07-13 2002-01-25 Matsushita Electric Ind Co Ltd Fuel cell power generating system
JP2002042841A (en) * 2000-07-24 2002-02-08 Matsushita Electric Ind Co Ltd Polymer electrolyte type fuel cell cogeneration system
JP2002151121A (en) * 2000-11-09 2002-05-24 Matsushita Electric Ind Co Ltd Fuel cell power generating system
JP2003051316A (en) * 2001-08-08 2003-02-21 Kansai Electric Power Co Inc:The Fuel cell power generation system
JP2003068315A (en) * 2001-08-29 2003-03-07 Toshiba Corp Solid polymer fuel cell system
WO2004027914A1 (en) * 2002-09-20 2004-04-01 Matsushita Electric Industrial Co., Ltd. Fuel cell cogeneration system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198058A (en) * 1986-02-25 1987-09-01 Fuji Electric Co Ltd Electric heat supply system of liquid cooling type fuel cell
JP2000340244A (en) * 1999-05-25 2000-12-08 Matsushita Electric Ind Co Ltd Solid polymer fuel cell cogeneration system
JP2001185167A (en) * 1999-12-27 2001-07-06 Daikin Ind Ltd Fuel cell cogeneration system
JP2001210343A (en) * 2000-01-31 2001-08-03 Sanyo Electric Co Ltd Hot water storage/hot water supply system
JP2002025591A (en) * 2000-07-13 2002-01-25 Matsushita Electric Ind Co Ltd Fuel cell power generating system
JP2002042841A (en) * 2000-07-24 2002-02-08 Matsushita Electric Ind Co Ltd Polymer electrolyte type fuel cell cogeneration system
JP2002151121A (en) * 2000-11-09 2002-05-24 Matsushita Electric Ind Co Ltd Fuel cell power generating system
JP2003051316A (en) * 2001-08-08 2003-02-21 Kansai Electric Power Co Inc:The Fuel cell power generation system
JP2003068315A (en) * 2001-08-29 2003-03-07 Toshiba Corp Solid polymer fuel cell system
WO2004027914A1 (en) * 2002-09-20 2004-04-01 Matsushita Electric Industrial Co., Ltd. Fuel cell cogeneration system

Also Published As

Publication number Publication date
JP2004335402A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
CN108615916B (en) Fuel cell and control method thereof
JP6199977B2 (en) Hot water temperature control structure of exhaust heat recovery system using three-way valve or mixing valve, and hot water temperature control structure of exhaust heat recovery system using hot water tank heat exchanger
JP5300717B2 (en) Cogeneration system
JP2005061711A (en) Exhaust heat recovering water heater
JP5359057B2 (en) Cogeneration system
JP5074669B2 (en) Fuel cell system
JP4552387B2 (en) Fuel cell cogeneration system
JP5799766B2 (en) Fuel cell system
JP2003240345A (en) Waste heat recovery hot water supply system
JP2003249251A (en) Fuel cell system
JP2006139998A (en) Fuel cell system and low-temperature start-up method of fuel cell system
JP2004103457A (en) Fuel cell system
JP2005116256A (en) Fuel cell cogeneration system
JP2009287423A (en) Cogeneration system
JP7345338B2 (en) Combined heat and power system
JP6015924B2 (en) Hot water storage hot water system
JP2010140678A (en) Fuel cell cooling system
JP4077419B2 (en) Cogeneration system
JP2004053151A (en) Hot water supply device
JP4030470B2 (en) Waste heat recovery system
JP7435875B2 (en) fuel cell system
JP2010127585A (en) Heat recovery device, cogeneration device and cogeneration system
JP4408269B2 (en) Waste heat recovery system and cogeneration system
JP5625683B2 (en) Control device for hot water system
JP2016207581A (en) Fuel cell cogeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060412

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140723

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees