JP2009287423A - Cogeneration system - Google Patents

Cogeneration system Download PDF

Info

Publication number
JP2009287423A
JP2009287423A JP2008139108A JP2008139108A JP2009287423A JP 2009287423 A JP2009287423 A JP 2009287423A JP 2008139108 A JP2008139108 A JP 2008139108A JP 2008139108 A JP2008139108 A JP 2008139108A JP 2009287423 A JP2009287423 A JP 2009287423A
Authority
JP
Japan
Prior art keywords
power
power generation
unit
exhaust heat
generation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008139108A
Other languages
Japanese (ja)
Other versions
JP4913095B2 (en
Inventor
Takeshi Tomio
剛至 富尾
Masahiko Yagi
政彦 八木
Ayumi Ogura
歩 小椋
Daiki Tanaka
大樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2008139108A priority Critical patent/JP4913095B2/en
Publication of JP2009287423A publication Critical patent/JP2009287423A/en
Application granted granted Critical
Publication of JP4913095B2 publication Critical patent/JP4913095B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cogeneration system capable of surely preventing overheating of a power generation unit by suitably controlling a switching valve (thermal valve) for switching a circulation piping system. <P>SOLUTION: This cogeneration system is provided with a first circulation piping system for circulating a coolant between a heat exchanger of a first exhaust heat using part for supplying thermal energy to a hot-water supply load and a power generation part, and a second circulation piping system for circulating the coolant between a second exhaust heat using part consisting of a prescribed thermal load and the power generation part. When a control part executes switching from the first circulation piping system to the second circulation piping system in start of self-sustaining, switching from the first circulation piping system to the second circulation piping system is completed before electric power can be supplied from the power generation part, and the power generation part is started after start of circulation of the coolant in the power generation part or in start of circulation, and supply of AC power to an electric power supply target in self-sustaining is started after the electric power can be supplied from the power generation part. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、外部から燃料供給を受けて電力と熱を併給可能な熱電併給システムに関する。   The present invention relates to a combined heat and power system capable of supplying electric power and heat by receiving fuel supply from the outside.

外部から燃料供給を受けて電力と熱を併給可能な熱電併給システムには、例えば、図5に示すように、外部から燃料供給を受けて発電する発電ユニット10と、冷却液の循環により発電ユニット10が発電時に発生する排熱を回収して発電ユニット10を冷却する排熱回収冷却液循環配管22と、貯湯タンク21と、貯湯タンク21の温水を循環させる温水循環配管23と、排熱回収冷却液循環配管22と温水循環配管23の間で熱交換を行う排熱回収熱交換器24と、発電ユニット10の運転と排熱回収冷却液循環配管22と温水循環配管23の循環を制御する制御装置80を備えて構成された熱電併給システム100がある。尚、ここでは、発電ユニット10がガスエンジンと発電機を備え、発電機から出力された電力と商用交流電源と系統連系可能に構成されている場合を想定している。   For example, as shown in FIG. 5, a combined heat and power system that can supply power and heat by receiving fuel supply from the outside includes a power generation unit 10 that generates power by receiving fuel supply from the outside, and a power generation unit by circulating coolant. 10 recovers exhaust heat generated during power generation to cool the power generation unit 10, exhaust heat recovery coolant circulation pipe 22, hot water storage tank 21, hot water circulation pipe 23 for circulating hot water in the hot water storage tank 21, and exhaust heat recovery. The exhaust heat recovery heat exchanger 24 that exchanges heat between the coolant circulation pipe 22 and the hot water circulation pipe 23, the operation of the power generation unit 10, and the circulation of the exhaust heat recovery coolant circulation pipe 22 and the hot water circulation pipe 23 are controlled. There is a combined heat and power system 100 configured with a control device 80. Here, it is assumed that the power generation unit 10 includes a gas engine and a generator, and is configured so that the power output from the generator and the commercial AC power supply can be connected to the grid.

ところで、図5に示す熱電併給システム100において、例えば、商用交流電源の停電時等、発電ユニット10を強制運転させる場合、貯湯タンク21の貯湯量が所定量以上の場合、発電ユニット10を構成するガスエンジンと発電機をオーバーヒートさせずに運転させるためには、発電ユニット10からの排熱を、貯湯タンク21への排熱の供給以外の方法で、消費する必要がある。   By the way, in the combined heat and power system 100 shown in FIG. 5, for example, when the power generation unit 10 is forcibly operated, such as when a commercial AC power supply is interrupted, the power generation unit 10 is configured when the amount of hot water stored in the hot water storage tank 21 is equal to or greater than a predetermined amount. In order to operate the gas engine and the generator without overheating, it is necessary to consume the exhaust heat from the power generation unit 10 by a method other than the supply of the exhaust heat to the hot water storage tank 21.

従来の発電ユニットをオーバーヒートさせずに運転させるための技術としては、例えば、発電ユニットからの排熱を大気に放熱するための放熱器を備えた熱電併給システムがある。しかしながら、熱電併給システムが放熱器を備える構成にすると、製造コストが高騰し、省エネルギ効果が低下するという問題があった。   As a technique for operating a conventional power generation unit without overheating, for example, there is a combined heat and power system including a radiator for radiating exhaust heat from the power generation unit to the atmosphere. However, when the combined heat and power system is provided with a radiator, there is a problem that the manufacturing cost increases and the energy saving effect decreases.

また、発電ユニットをオーバーヒートさせずに運転させるための他の技術としては、例えば、排熱回収冷却液循環配管で回収された排熱を暖房端末に対して供給可能に構成し、発電ユニットの強制運転時において、排熱回収制御装置が貯湯タンクの貯湯量が所定量以上であることを検知した場合に、暖房端末を強制的に運転させる制御を行う熱電併給システムがある(例えば、下記の特許文献1参照)。   Further, as another technique for operating the power generation unit without overheating, for example, the exhaust heat recovered by the exhaust heat recovery coolant circulation pipe can be supplied to the heating terminal, and the power generation unit is forced During operation, there is a combined heat and power system that performs control to force the heating terminal to operate when the exhaust heat recovery control device detects that the amount of hot water stored in the hot water storage tank is greater than or equal to a predetermined amount (for example, the following patents) Reference 1).

ここで、図6は、上記特許文献1に記載の熱電併給システムの概略部分構成例を示している。   Here, FIG. 6 shows a schematic partial configuration example of the combined heat and power system described in Patent Document 1.

上記特許文献1に記載の熱電併給システム200は、図6に示すように、外部から燃料供給を受けて発電する発電ユニット10と、冷却液の循環により発電ユニット10が発電時に発生する排熱を回収して発電ユニット10を冷却する排熱回収冷却液循環配管22と、温水を貯湯する貯湯タンク21と、貯湯タンク21の温水を循環させる温水循環配管23と、発電ユニット10の熱交換器19に接続された排熱回収冷却液循環配管22と温水循環配管23の間で熱交換を行う排熱回収熱交換器24と、給湯負荷70に対して貯湯タンク21の温水を給湯出力する給湯出力配管25と、暖房端末71に接続された排熱回収冷却液循環配管22と温水循環配管23の間で熱交換を行う熱交換器27と、発電ユニット10の運転と排熱回収冷却液循環配管22と温水循環配管23の循環を制御する制御装置80を備えて構成されている。以下、排熱利用給湯暖房ユニット20内に設置された貯湯タンク21、温水循環配管23、給湯出力配管25、排熱回収熱交換器24、及び、暖房熱交換器27を第1排熱利用部とし、排熱利用給湯暖房ユニット20外に設置された浴室暖房乾燥機等の暖房端末71を第2排熱利用部とする。   As shown in FIG. 6, the combined heat and power system 200 described in Patent Document 1 generates power generation units 10 that generate power by receiving fuel supplied from the outside, and exhaust heat generated by the power generation units 10 during power generation due to circulation of coolant. An exhaust heat recovery coolant circulation pipe 22 that recovers and cools the power generation unit 10, a hot water storage tank 21 that stores hot water, a hot water circulation pipe 23 that circulates hot water in the hot water storage tank 21, and a heat exchanger 19 of the power generation unit 10. The exhaust heat recovery heat exchanger 24 for exchanging heat between the exhaust heat recovery coolant circulation pipe 22 and the hot water circulation pipe 23 connected to the hot water supply output and the hot water supply output for supplying hot water from the hot water storage tank 21 to the hot water supply load 70 The heat exchanger 27 for exchanging heat between the pipe 25, the exhaust heat recovery coolant circulation pipe 22 and the hot water circulation pipe 23 connected to the heating terminal 71, the operation of the power generation unit 10, and the exhaust heat recovery coolant It is configured to include a controller 80 for controlling the circulation of the ring pipe 22 and the hot water circulation pipe 23. Hereinafter, the hot water storage tank 21, the hot water circulation pipe 23, the hot water supply output pipe 25, the exhaust heat recovery heat exchanger 24, and the heating heat exchanger 27 installed in the exhaust heat utilization hot water supply / heating unit 20 are connected to the first exhaust heat utilization section. The heating terminal 71 such as a bathroom heater / dryer installed outside the exhaust heat utilization hot water supply / heating unit 20 is defined as a second exhaust heat utilization unit.

尚、ここでは、図5に示す熱電併給システム100と同様に、発電ユニット10がガスエンジンと発電機を備え、発電機から出力された電力と商用交流電源と系統連系可能に構成されている場合を想定している。更に、排熱回収冷却液循環配管22は、発電ユニット10の熱交換器19と温水循環配管23との間で冷却液を循環させる第1循環配管系統PL1と、発電ユニット10の熱交換器19と暖房端末71との間で冷却液を循環させる第2循環配管系統PL2を構成可能となっている。   Here, similarly to the combined heat and power system 100 shown in FIG. 5, the power generation unit 10 includes a gas engine and a generator, and is configured to be capable of system interconnection with the power output from the generator and the commercial AC power supply. Assume the case. Further, the exhaust heat recovery coolant circulation pipe 22 includes a first circulation pipe system PL1 for circulating the coolant between the heat exchanger 19 of the power generation unit 10 and the hot water circulation pipe 23, and the heat exchanger 19 of the power generation unit 10. It is possible to configure a second circulation piping system PL2 that circulates the coolant between the heating terminal 71 and the heating terminal 71.

特開2007−240016号公報JP 2007-240016 A

上述したように、図6に示す熱電併給システム200では、発電ユニット10がオーバーヒートするのを防止するために、貯湯タンク21の貯湯量が所定量以上であり、第1排熱利用部を利用して排熱を回収できない場合には、第2排熱利用部を強制運転させて排熱を回収する制御を行う。このとき、図6に示す熱電併給システム200では、熱動弁36、37及び38を第1循環配管系統PL1から第2循環配管系統PL2に切り替える必要がある。   As described above, in the combined heat and power system 200 shown in FIG. 6, in order to prevent the power generation unit 10 from overheating, the amount of hot water stored in the hot water storage tank 21 is a predetermined amount or more, and the first exhaust heat utilization unit is used. If the exhaust heat cannot be recovered, control is performed to recover the exhaust heat by forcibly operating the second exhaust heat utilization unit. At this time, in the combined heat and power system 200 shown in FIG. 6, it is necessary to switch the thermal valves 36, 37, and 38 from the first circulation piping system PL1 to the second circulation piping system PL2.

ところで、図6に示す熱電併給システム200では、熱動弁36、37及び38は、弁を比較的急激に開閉動作させる時に水圧差により生じるウォーターハンマー現象を防止するため、開閉動作に時間をかける構成となっている。そうすると、例えば、自立運転の開始時に、熱動弁36、37及び38により第1循環配管系統PL1に設定されている状態で、且つ、貯湯タンク21の貯湯量が所定量以上であり、冷却水の循環経路を第1循環配管系統PL1から第2循環配管系統PL2への切り替える必要が生じた場合、冷却液を循環させる循環ポンプ33の動作開始時に、熱動弁36、37及び38の動作を開始すると、熱動弁36、37及び38の開閉動作中は、発電ユニット10を良好に冷却できず、オーバーヒートしてしまう可能性があった。   Incidentally, in the combined heat and power system 200 shown in FIG. 6, the thermal valves 36, 37 and 38 take time to open and close in order to prevent a water hammer phenomenon caused by a water pressure difference when the valves are opened and closed relatively rapidly. It has a configuration. Then, for example, when the self-sustaining operation is started, the hot water valves 36, 37, and 38 are set in the first circulation piping system PL1, and the hot water storage amount of the hot water storage tank 21 is equal to or larger than a predetermined amount. When it is necessary to switch the circulation path from the first circulation piping system PL1 to the second circulation piping system PL2, the operation of the thermal valves 36, 37 and 38 is performed at the start of the operation of the circulation pump 33 for circulating the coolant. When started, the power generation unit 10 could not be cooled well during the opening / closing operation of the thermal valves 36, 37, and 38, and there was a possibility of overheating.

本発明は上記の問題に鑑みてなされたものであり、その目的は、循環配管系統を切り替える切り替え弁(熱動弁)等を適切に制御して、発電ユニットのオーバーヒートをより確実に防止可能な熱電併給システムを提供する点にある。   The present invention has been made in view of the above problems, and an object of the present invention is to appropriately control a switching valve (thermal valve) or the like for switching the circulation piping system, thereby preventing overheating of the power generation unit more reliably. The point is to provide a combined heat and power system.

上記目的を達成するための本発明に係る熱電併給システムは、外部から燃料供給を受けて発電する発電部と、外部の商用交流電源または前記発電部から電力供給を受けて電力貯蔵する電力貯蔵部と、前記商用交流電源または前記電力貯蔵部から電力供給を受けて前記発電部を始動する発電始動部と、前記発電部または前記電力貯蔵部から電力供給を受けて交流電力を出力可能な交流出力部と、冷却液の循環により前記発電部が発電時に発生する排熱を回収して前記発電部を冷却する排熱回収冷却液循環配管と、前記排熱回収冷却液循環配管の前記冷却液を循環させる電動冷却液ポンプと、前記排熱回収冷却液循環配管の前記冷却液と熱交換することで、前記排熱を利用する排熱利用部と、前記発電部が前記商用交流電源から独立して自立運転する場合の制御を行う制御部と、を備えてなる熱電併給システムであって、前記排熱利用部が、給湯負荷に対し熱エネルギを供給する第1排熱利用部と、前記給湯負荷を除く所定の熱負荷で構成される第2排熱利用部と、を備えて構成され、前記排熱回収冷却液循環配管が、前記発電部と前記第1排熱利用部の熱交換器との間で前記冷却液を循環させる第1循環配管系統と、前記発電部と前記第2排熱利用部との間で前記冷却液を循環させる第2循環配管系統と、を備えて構成され、前記排熱利用部が、前記第1循環配管系統と前記第2循環配管系統を切り替える切り替え弁を備え、前記制御部が、前記自立運転の開始時に、前記第1循環配管系統から前記第2循環配管系統への切り替えを行う場合に、前記発電部から前記交流出力部に電力供給可能になる前に、前記第1循環配管系統から前記第2循環配管系統への切り替えが完了するように前記切り替え弁を切り替えるとともに、前記電力貯蔵部から前記交流出力部を介して前記電動冷却液ポンプに電力供給して前記電動冷却液ポンプを作動させ前記発電部の前記排熱回収冷却液循環配管の前記冷却液の循環開始後或いは前記冷却液の循環開始と同時に、前記電力貯蔵部から前記発電始動部に電力供給して前記発電部を始動させ、前記発電部から前記交流出力部に電力供給可能になった後に、前記発電部から前記交流出力部を介して前記電動冷却液ポンプを含む自立運転時の電力供給対象である自立運転時電力負荷に交流電力の供給を開始する制御を行うことを第1の特徴とする。   In order to achieve the above object, a combined heat and power system according to the present invention includes a power generation unit that generates power by receiving fuel supply from the outside, and a power storage unit that stores power by receiving power supply from an external commercial AC power supply or the power generation unit A power generation starting unit that starts power generation by receiving power supply from the commercial AC power source or the power storage unit, and an AC output that can output AC power by receiving power supply from the power generation unit or the power storage unit An exhaust heat recovery coolant circulation pipe for recovering exhaust heat generated by the power generation part during power generation by circulating the coolant and cooling the power generation part; and the coolant in the exhaust heat recovery coolant circulation pipe An electric coolant pump to be circulated, and an exhaust heat utilization unit that uses the exhaust heat by exchanging heat with the coolant of the exhaust heat recovery coolant circulation pipe, and the power generation unit are independent of the commercial AC power source. Autonomous operation A combined heat and power supply system, wherein the exhaust heat utilization unit excludes the first exhaust heat utilization unit that supplies thermal energy to the hot water supply load, and the hot water supply load. A second exhaust heat utilization unit configured with a predetermined heat load, wherein the exhaust heat recovery coolant circulation pipe is disposed between the power generation unit and the heat exchanger of the first exhaust heat utilization unit. And a second circulation piping system that circulates the cooling liquid between the power generation unit and the second exhaust heat utilization unit. The heat utilization unit includes a switching valve that switches between the first circulation piping system and the second circulation piping system, and the control unit starts from the first circulation piping system to the second circulation piping system at the start of the self-sustaining operation. Power to the AC output unit from the power generation unit when switching to Before being able to supply, the switching valve is switched so that the switching from the first circulation piping system to the second circulation piping system is completed, and the electric cooling from the power storage unit via the AC output unit Power is supplied to the liquid pump and the electric coolant pump is operated to start circulation of the coolant in the exhaust heat recovery coolant circulation pipe of the power generation unit or simultaneously with the start of circulation of the coolant from the power storage unit. After supplying power to the power generation start unit to start the power generation unit and enabling power supply from the power generation unit to the AC output unit, the electric coolant pump is supplied from the power generation unit via the AC output unit. The first feature is to perform control for starting the supply of AC power to the power load during the self-sustaining operation that is the target of power supply including the self-sustaining operation.

上記特徴の本発明に係る熱電併給システムは、前記制御部が、前記発電部から前記交流出力部を介して前記自立運転時電力負荷に交流電力の供給を開始した後に、前記自立運転時電力負荷が過負荷状態にあることを検知した場合、前記自立運転時電力負荷の内、少なくとも前記電動冷却液ポンプ及び前記切り替え弁を除く電力負荷に対する電力供給を遮断する制御を行うことを第2の特徴とする。   In the combined heat and power system according to the present invention as described above, the control unit starts supplying AC power from the power generation unit to the power load during independent operation via the AC output unit. When it is detected that the engine is in an overload state, control is performed to cut off power supply to at least the electric load other than the electric coolant pump and the switching valve among the electric loads during the independent operation. And

上記特徴の熱電併給システムによれば、制御部が、自立運転の開始時に、第1循環配管系統PL1から第2循環配管系統PL2への切り替えを行う場合に、発電部から交流出力部に電力供給可能になる前に、第1排熱利用部により排熱を回収するための第1循環配管系統から、第2排熱利用部により排熱を回収するための第2循環配管系統への切り替えが完了するように切り替え弁を切り替えるように構成したので、発電ユニット10の冷却が必要となる前、即ち、発電部から交流出力部に電力供給可能になる前に、第2循環配管系統において冷却液の循環を開始することが可能になる。これにより、上記特徴の熱電併給システムでは、自立運転の開始時に、第1排熱利用部を利用して排熱を回収できない場合であって、冷却液の循環経路を第1循環配管系統PL1から第2循環配管系統PL2に切り替える切り替え弁の開閉動作中に、発電部がオーバーヒートするのを効果的に防止できる。   According to the combined heat and power system having the above characteristics, when the control unit switches from the first circulation piping system PL1 to the second circulation piping system PL2 at the start of the self-sustaining operation, power is supplied from the power generation unit to the AC output unit. Before it becomes possible, switching from the first circulation piping system for recovering exhaust heat by the first exhaust heat utilization unit to the second circulation piping system for recovering exhaust heat by the second exhaust heat utilization unit is possible. Since the switching valve is switched so as to be completed, before the power generation unit 10 needs to be cooled, that is, before the power can be supplied from the power generation unit to the AC output unit, the coolant in the second circulation piping system It becomes possible to start circulation. Thus, in the combined heat and power system having the above characteristics, when the exhaust heat cannot be recovered using the first exhaust heat utilization unit at the start of the self-sustaining operation, the coolant circulation path is routed from the first circulation piping system PL1. During the opening / closing operation of the switching valve that switches to the second circulation piping system PL2, it is possible to effectively prevent the power generation unit from overheating.

以下、本発明に係る熱電併給システム(以下、適宜「本発明システム」と称する)の実施形態を図面に基づいて説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment of a combined heat and power system according to the present invention (hereinafter referred to as “the present invention system” as appropriate) will be described with reference to the drawings.

〈第1実施形態〉
本発明システムの第1実施形態について、図1〜図3を基に説明する。
<First Embodiment>
A first embodiment of the system of the present invention will be described with reference to FIGS.

先ず、本発明システムの構成について、図1及び図2を基に説明する。ここで、図1は、本発明システム1の概略部分構成例を示しており、図2は、本発明システム1の排熱利用部とその周辺装置の概略構成例を示している。   First, the configuration of the system of the present invention will be described with reference to FIGS. Here, FIG. 1 shows a schematic partial configuration example of the system 1 of the present invention, and FIG. 2 shows a schematic configuration example of the exhaust heat utilization unit and its peripheral devices of the system 1 of the present invention.

尚、本発明システム1は、本実施形態では、コージェネレーションシステムを想定しており、図1及び図2に示すように、外部から燃料供給を受けて発電する発電ユニット10と、発電ユニット10の運転時に発生する排熱を回収して給湯負荷70と暖房端末71(所定の熱負荷に相当)に供給する排熱利用給湯暖房ユニット20を備えて構成されている。   In the present embodiment, the present system 1 assumes a cogeneration system. As shown in FIGS. 1 and 2, a power generation unit 10 that generates power by receiving fuel supply from the outside, The exhaust heat generating hot water supply / heating unit 20 is configured to collect exhaust heat generated during operation and supply the exhaust heat to a hot water supply load 70 and a heating terminal 71 (corresponding to a predetermined heat load).

また、本発明システム1は、商用交流電源60と連系せずに電力負荷61、62で消費される電力の少なくとも一部を発電する自立運転と、商用交流電源60と連系して電力負荷61、62で消費される電力の少なくとも一部を発電する系統連系運転とを実行可能に構成されている。以下、本実施形態では、商用交流電源60から正常に電力を受電可能な通常時は系統連系運転を実行し、通常の系統連系運転時では熱需要に応じて発電制御を行う熱主運転を実行し、商用交流電源60の停電時は自立運転を実行し、商用交流電源60の停電時における自立運転では、電力需要に応じて発電制御を行う電主運転を実行する場合を想定して説明する。   Further, the system 1 of the present invention includes a self-sustained operation for generating at least a part of the power consumed by the power loads 61 and 62 without being linked to the commercial AC power supply 60, and the power load linked to the commercial AC power supply 60. The grid interconnection operation for generating at least a part of the electric power consumed by 61 and 62 can be executed. Hereinafter, in the present embodiment, the main grid operation is performed during normal times when power can be normally received from the commercial AC power supply 60, and the main power operation is performed in accordance with the heat demand during normal grid connection operations. In the self-sustained operation at the time of the power failure of the commercial AC power supply 60, the main operation for performing the power generation control according to the power demand is assumed in the self-sustained operation at the time of the power failure of the commercial AC power supply 60. explain.

本発明システム1の発電ユニット10は、図1に示すように、都市ガスを燃料として作動するガスエンジン11aとガスエンジン11aによって駆動される発電機11bで構成される発電部11、発電部11の発電電力を商用交流電源60と同じ電圧及び周波数の交流電力に変換するインバータ13(交流出力部に相当)、外部の商用交流電源60または発電部11から電力供給を受けて電力貯蔵する蓄電池16(電力貯蔵部に相当)、蓄電池16の入出力端末とインバータ13の内部ノードN0の間で双方向に電圧変換を行なうDC/DCコンバータ17、発電ユニット10の運転並びに出力制御を行う発電制御装置18(制御部に相当)、及び、発電部11の排熱との熱交換により冷却水を加熱して排熱利用給湯暖房ユニット20側に供給する排熱回収熱交換器24を備えて構成されている。   As shown in FIG. 1, the power generation unit 10 of the system 1 of the present invention includes a power generation unit 11 including a gas engine 11 a that operates using city gas as a fuel and a generator 11 b that is driven by the gas engine 11 a. An inverter 13 (corresponding to an AC output unit) that converts the generated power into AC power having the same voltage and frequency as the commercial AC power source 60, and a storage battery 16 that stores power by receiving power from the external commercial AC power source 60 or the power generating unit 11 ( A DC / DC converter 17 that performs bidirectional voltage conversion between the input / output terminal of the storage battery 16 and the internal node N0 of the inverter 13, and a power generation control device 18 that performs operation and output control of the power generation unit 10. (Corresponding to the control unit) and heat exchange with the exhaust heat of the power generation unit 11 to heat the cooling water and supply it to the exhaust heat utilization hot water supply / heating unit 20 side. It is configured to include a heat recovery heat exchanger 24 to.

尚、本実施形態では、系統連系運転時は、インバータ13が、商用交流電源60から電力供給を受けて発電部11を始動する発電始動部として機能し、自立運転時(商用交流電源60の停電時)は、DC/DCコンバータ17とインバータ13のAC/DCコンバータ14が、蓄電池16から電力供給を受けて発電ユニット10の発電部11を始動する発電始動部として機能する。   In the present embodiment, during the grid connection operation, the inverter 13 functions as a power generation starting unit that receives power supply from the commercial AC power source 60 and starts the power generation unit 11, and during the independent operation (the commercial AC power source 60 During a power failure), the DC / DC converter 17 and the AC / DC converter 14 of the inverter 13 function as a power generation starting unit that receives power supply from the storage battery 16 and starts the power generation unit 11 of the power generation unit 10.

排熱利用給湯暖房ユニット20は、冷却液の循環により発電機11bが発電時に発生する排熱を回収して発電機11bを冷却する排熱回収冷却液循環配管22、排熱回収冷却液循環配管22内の冷却液を循環させる電動冷却液ポンプ、排熱回収冷却液循環配管22の冷却液と熱交換することで、排熱を利用する排熱利用部20a、及び、排熱利用部20a及び循環ポンプの動作制御を行う排熱回収制御装置32(制御部に相当)を備えて構成されている。   The exhaust heat utilization hot water supply / heating unit 20 recovers exhaust heat generated by the generator 11b during power generation by circulating the coolant to cool the generator 11b, and exhaust heat recovery coolant circulation pipe 22 and exhaust heat recovery coolant circulation pipe. An electric coolant pump that circulates the coolant in 22, and heat exchange with the coolant in the exhaust heat recovery coolant circulation pipe 22, an exhaust heat utilization unit 20 a that utilizes exhaust heat, and an exhaust heat utilization unit 20 a and An exhaust heat recovery control device 32 (corresponding to a control unit) that controls the operation of the circulation pump is provided.

排熱回収冷却液循環配管22は、本実施形態では、図2に示すように、通常の系統連系運転時及び自立運転時(貯湯タンク21の貯湯量が所定量未満の場合)に、発電ユニット10内の熱交換器19と排熱回収熱交換器24(第1排熱利用部)との間を連絡する循環経路を形成し冷却液を循環させる第1循環配管系統PL1と、暖房熱交換器27と暖房端末71との間を連絡する循環経路を形成し冷却液を循環させる配管系統を形成するように構成されている。更に、排熱回収冷却液循環配管22は、自立運転時(貯湯タンク21が所定量以上の場合)に、発電ユニット10内の熱交換器19と暖房端末71(第2排熱利用部)との間を連絡する循環経路を形成し冷却液を循環させる第2循環配管系統PL2を形成可能に構成されている。   In this embodiment, as shown in FIG. 2, the exhaust heat recovery coolant circulation pipe 22 generates power during normal grid connection operation and independent operation (when the amount of hot water stored in the hot water storage tank 21 is less than a predetermined amount). A first circulation piping system PL1 that circulates the coolant by forming a circulation path that connects between the heat exchanger 19 in the unit 10 and the exhaust heat recovery heat exchanger 24 (first exhaust heat utilization unit); and heating heat A circulation path that communicates between the exchanger 27 and the heating terminal 71 is formed to form a piping system that circulates the coolant. Further, the exhaust heat recovery coolant circulation pipe 22 is connected to the heat exchanger 19 and the heating terminal 71 (second exhaust heat utilization unit) in the power generation unit 10 during the self-sustaining operation (when the hot water storage tank 21 is a predetermined amount or more). The second circulation piping system PL2 that forms a circulation path that communicates between them and circulates the coolant is formed.

電動冷却液ポンプは、本実施形態では、複数の循環ポンプで構成されており、排熱回収冷却液循環配管22内の冷却液を循環させるための循環ポンプ33、35を備えて構成されている。本実施形態では、更に、後述する排熱利用部20aの温水循環配管23内の温水を循環させるための循環ポンプ34を備えて構成されている。   In this embodiment, the electric coolant pump is composed of a plurality of circulation pumps, and is provided with circulation pumps 33 and 35 for circulating the coolant in the exhaust heat recovery coolant circulation pipe 22. . In this embodiment, it is further provided with the circulation pump 34 for circulating the hot water in the hot water circulation piping 23 of the exhaust heat utilization part 20a mentioned later.

より詳細には、本実施形態では、循環ポンプ33が、発電ユニット10の熱交換器19と後述する排熱利用部20aの切り替え弁37との間の排熱回収冷却液循環配管22に介装され、循環ポンプ35が、暖房端末71と排熱利用給湯暖房ユニット20との間の排熱回収冷却液循環配管22に介装されている。また、循環ポンプ34が、後述する排熱利用部20aの温水循環配管23に介装されている。   More specifically, in this embodiment, the circulation pump 33 is interposed in the exhaust heat recovery coolant circulation pipe 22 between the heat exchanger 19 of the power generation unit 10 and a switching valve 37 of the exhaust heat utilization unit 20a described later. The circulation pump 35 is interposed in the exhaust heat recovery coolant circulation pipe 22 between the heating terminal 71 and the exhaust heat utilization hot water supply / heating unit 20. A circulation pump 34 is interposed in a hot water circulation pipe 23 of the exhaust heat utilization unit 20a described later.

排熱利用部20aは、給湯負荷70に対し熱エネルギを供給する第1排熱利用部と、給湯負荷70を除く所定の熱負荷で構成される第2排熱利用部と、を備えて構成されており、第1排熱利用部が、排熱利用給湯暖房ユニット20内に設置された貯湯タンク21、温水循環配管23、給湯出力配管25、排熱回収熱交換器24、及び、暖房熱交換器27を備えて構成され、第2排熱利用部が、排熱利用給湯暖房ユニット20外に設置された浴室暖房乾燥機等の暖房端末71で構成されている。尚、温水循環配管23及び給湯出力配管25には、必要に応じて、補助熱源31、逆止弁、圧力調整弁、温度センサ、圧力センサ、流量計等が介装されており、図2中においてその一部に符号を付して示している。   The exhaust heat utilization unit 20 a includes a first exhaust heat utilization unit that supplies thermal energy to the hot water supply load 70, and a second exhaust heat utilization unit that includes a predetermined heat load excluding the hot water supply load 70. The first exhaust heat utilization unit is configured such that the hot water storage tank 21, the hot water circulation pipe 23, the hot water supply output pipe 25, the exhaust heat recovery heat exchanger 24, and the heating heat installed in the exhaust heat utilization hot water supply and heating unit 20 are provided. The second exhaust heat utilization unit is configured by a heating terminal 71 such as a bathroom heating dryer installed outside the exhaust heat utilization hot water supply / heating unit 20. The hot water circulation pipe 23 and the hot water supply output pipe 25 are provided with an auxiliary heat source 31, a check valve, a pressure adjustment valve, a temperature sensor, a pressure sensor, a flow meter, etc., as required. In FIG.

第1排熱利用部の貯湯タンク21は、通常の系統連系運転時及び自立運転時(貯湯タンク21の貯湯量が所定量未満の場合)に、発電ユニット10の排熱回収により加熱された温水を貯湯することで、回収した排熱を蓄熱可能に構成され、更に、内部に介装された温度センサ(図示せず)や水位センサ(図示せず)等の貯湯量検出手段によって貯湯量を検出可能に構成されている。貯湯タンク21の底部には、貯湯タンク21から給湯負荷70に温水が供給された場合に、上水道等の給水源(図示せず)から貯湯タンク21内に給水補充するための給水配管28が接続している。更に、貯湯タンク21には、後述する排熱回収熱交換器24及び暖房熱交換器27と接続する温水循環配管23と、風呂や台所、洗面所等に設置された給湯栓等の給湯負荷70に対して給湯出力する給湯出力配管25が接続されている。   The hot water storage tank 21 of the first exhaust heat utilization unit was heated by the exhaust heat recovery of the power generation unit 10 during normal grid interconnection operation and independent operation (when the amount of hot water stored in the hot water storage tank 21 is less than a predetermined amount). By storing hot water, the recovered exhaust heat can be stored, and the amount of stored hot water is detected by a hot water storage amount detection means such as a temperature sensor (not shown) or a water level sensor (not shown) installed inside. Is configured to be detectable. Connected to the bottom of the hot water storage tank 21 is a water supply pipe 28 for supplying water to the hot water storage tank 21 from a water supply source (not shown) such as a water supply when hot water is supplied from the hot water storage tank 21 to the hot water supply load 70. is doing. Further, the hot water storage tank 21 has a hot water circulation pipe 23 connected to an exhaust heat recovery heat exchanger 24 and a heating heat exchanger 27, which will be described later, and a hot water supply load 70 such as a hot water tap installed in a bath, kitchen, washroom or the like. A hot water supply output pipe 25 for supplying hot water is output.

排熱回収熱交換器24は、第1循環配管系統PL1の排熱回収冷却液循環配管22内を循環する排熱回収冷却液であるジャケット冷却水と温水循環配管23内を循環する温水の間の熱交換を行う熱交換器であり、1次側に第1循環配管系統PL1の排熱回収冷却液循環配管22が接続し、2次側に温水循環配管23が接続する。温水循環配管23は、貯湯タンク21の下部から取り出した温水を、排熱回収熱交換器24で加熱して、貯湯タンク21の上部に戻して循環させる循環回路である。   The exhaust heat recovery heat exchanger 24 is provided between jacket cooling water, which is exhaust heat recovery coolant that circulates in the exhaust heat recovery coolant circulation piping 22 of the first circulation piping system PL1, and hot water that circulates in the hot water circulation piping 23. The heat exchanger for performing the heat exchange is connected to the exhaust heat recovery coolant circulation pipe 22 of the first circulation piping system PL1 on the primary side, and the hot water circulation pipe 23 is connected to the secondary side. The hot water circulation pipe 23 is a circulation circuit in which hot water taken out from the lower part of the hot water storage tank 21 is heated by the exhaust heat recovery heat exchanger 24 and returned to the upper part of the hot water storage tank 21 for circulation.

暖房熱交換器27は、温水循環配管23内を循環する温水と、第2循環配管系統PL2の排熱回収冷却液循環配管22を循環するジャケット冷却水の間の熱交換を行う熱交換器であり、1次側に温水循環配管23が接続し、2次側に第2循環配管系統PL2の排熱回収冷却液循環配管22が接続する。   The heating heat exchanger 27 is a heat exchanger that performs heat exchange between hot water circulating in the hot water circulation pipe 23 and jacket cooling water circulating in the exhaust heat recovery coolant circulation pipe 22 of the second circulation pipe system PL2. Yes, the hot water circulation pipe 23 is connected to the primary side, and the exhaust heat recovery coolant circulation pipe 22 of the second circulation pipe system PL2 is connected to the secondary side.

更に、排熱利用部20aは、第1循環配管系統PL1と第2循環配管系統PL2を切り替える切り替え弁を備えて構成されている。尚、本実施形態の切り替え弁は、通常の系統連系運転の実行時には、第1循環配管系統PL1に切り替えるように構成されているが、系統連系運転において発電ユニット10を強制運転させることがある場合には、系統連系運転時においても第2循環配管系統PL2を利用可能に構成しても良い。切り替え弁は、本実施形態では、三方弁または開閉弁を含む複数の切り替え弁を備えて構成されている。更に、当該切り替え弁は、切り替え動作が開始してから完了するまでに約1分間かかる熱動弁であり、発電機11bに接続する排熱回収冷却液循環配管22、排熱回収熱交換器24に接続する排熱回収冷却液循環配管22、及び、暖房端末71に接続する排熱回収冷却液循環配管22が接続された接続点(分岐点)に介装された三方弁37、38と、排熱利用給湯暖房ユニット20と暖房端末71の間の排熱回収冷却液循環配管22に介装された開閉弁36で構成されている。   Further, the exhaust heat utilization unit 20a includes a switching valve that switches between the first circulation piping system PL1 and the second circulation piping system PL2. In addition, although the switching valve of this embodiment is configured to switch to the first circulation piping system PL1 during the execution of the normal grid connection operation, the power generation unit 10 can be forcibly operated in the grid connection operation. In some cases, the second circulation piping system PL2 may be configured to be usable even during system interconnection operation. In this embodiment, the switching valve includes a plurality of switching valves including a three-way valve or an on-off valve. Further, the switching valve is a thermal valve that takes about one minute from the start of the switching operation to the completion of the switching operation. The exhaust heat recovery coolant circulation pipe 22 and the exhaust heat recovery heat exchanger 24 connected to the generator 11b. Three-way valves 37, 38 interposed at a connection point (branch point) to which the exhaust heat recovery coolant circulation pipe 22 connected to the heating terminal 71 and the exhaust heat recovery coolant circulation pipe 22 connected to the heating terminal 71 are connected; The on / off valve 36 is provided in the exhaust heat recovery coolant circulation pipe 22 between the exhaust heat utilization hot water supply / heating unit 20 and the heating terminal 71.

より具体的には、開閉弁36は、通常の系統連系運転時及び自立運転時(貯湯タンク21が所定量未満の場合)に開弁され、自立運転時(貯湯タンク21が所定量以上の場合)に閉弁される。三方弁37、38は、系統連系運転時及び自立運転時(貯湯タンク21が所定量未満の場合)に、発電ユニット10の熱交換器19と排熱回収熱交換器24の間を連絡する往路と復路を形成する第1配管系統を構成するように切り替えられ、自立運転時(貯湯タンク21が所定量以上の場合)に、発電ユニット10の熱交換器19と暖房端末71の間を連絡する往路と復路を形成する第2配管系統を構成するように切り替えられる。   More specifically, the on-off valve 36 is opened during normal system interconnection operation and during self-sustaining operation (when the hot water storage tank 21 is less than a predetermined amount), and during self-sustained operation (when the hot water storage tank 21 exceeds a predetermined amount). Case). The three-way valves 37 and 38 communicate between the heat exchanger 19 of the power generation unit 10 and the exhaust heat recovery heat exchanger 24 at the time of grid connection operation and independent operation (when the hot water storage tank 21 is less than a predetermined amount). It is switched to constitute the first piping system that forms the forward path and the backward path, and communicates between the heat exchanger 19 of the power generation unit 10 and the heating terminal 71 during self-sustaining operation (when the hot water storage tank 21 exceeds a predetermined amount). Are switched so as to constitute a second piping system that forms an outgoing path and a return path.

以下、本発明システム1の自立運転時の制御動作について、図3を基に説明する。   Hereinafter, the control operation during the independent operation of the system 1 of the present invention will be described with reference to FIG.

本発明システム1の制御部を構成する排熱回収制御装置32は、自立運転の開始時に、切り替え弁36、37及び38が第1循環配管系統PL1に設定されている場合に、貯湯量検出手段を用いて貯湯タンク21の貯湯量を検出し、貯湯量が所定量以上の場合に、第1循環配管系統PL1から第2循環配管系統PL2への切り替えを行う。   The exhaust heat recovery control device 32 constituting the control unit of the system 1 of the present invention has a hot water storage amount detection means when the switching valves 36, 37 and 38 are set in the first circulation piping system PL1 at the start of the self-sustaining operation. Is used to detect the amount of hot water stored in the hot water storage tank 21, and when the amount of hot water stored is greater than or equal to a predetermined amount, switching from the first circulation piping system PL1 to the second circulation piping system PL2 is performed.

尚、所定量は、発電ユニット10の発電部がオーバーヒートしないように、第1排熱利用部で回収可能な排熱量等を考慮し、貯湯量検出手段によって検出された貯湯タンク21の貯湯量に応じて設定する。ここで、図3は、本発明システム1において、自立運転の開始時に、第1循環配管系統PL1から第2循環配管系統PL2への切り替えを行う場合の本発明システム1の処理動作を示している。   The predetermined amount is the amount of hot water stored in the hot water storage tank 21 detected by the hot water storage amount detecting means in consideration of the amount of exhaust heat that can be recovered by the first exhaust heat utilization unit so that the power generation unit of the power generation unit 10 does not overheat. Set accordingly. Here, FIG. 3 shows the processing operation of the system 1 of the present invention when switching from the first circulation piping system PL1 to the second circulation piping system PL2 at the start of the independent operation in the system 1 of the present invention. .

排熱回収制御装置32は、自立運転の開始時に、第1循環配管系統PL1から第2循環配管系統PL2への切り替えを行う場合、図3に示すように、発電部11からインバータ13に電力供給可能になる前に、第1循環配管系統PL1から第2循環配管系統PL2への切り替えが完了するように切り替え弁36、37及び38を切り替える(ステップ#101)。   When the exhaust heat recovery control device 32 switches from the first circulation piping system PL1 to the second circulation piping system PL2 at the start of the self-sustaining operation, the power supply unit 11 supplies power to the inverter 13 as shown in FIG. Before it becomes possible, the switching valves 36, 37 and 38 are switched so that the switching from the first circulation piping system PL1 to the second circulation piping system PL2 is completed (step # 101).

ここで、上述したように、本実施形態の切り替え弁36、37及び38は、切り替え動作に約1分間かかる。従って、排熱回収制御装置32は、発電部11からインバータ13に電力供給可能となる予定時間の1分以上前に、切り替え弁36、37及び38の切り替え動作を開始させるように制御する。   Here, as described above, the switching valves 36, 37, and 38 of the present embodiment take about 1 minute for the switching operation. Therefore, the exhaust heat recovery control device 32 performs control so that the switching operation of the switching valves 36, 37, and 38 is started at least 1 minute before the scheduled time when power can be supplied from the power generation unit 11 to the inverter 13.

更に、本発明システム1の制御部を構成する排熱回収制御装置32は、自立運転の開始時に、第1循環配管系統PL1から第2循環配管系統PL2への切り替えを行う場合、排熱回収制御装置32による切り替え弁36、37及び38の制御と並行して、蓄電池16からインバータ13を介して循環ポンプ33に電力供給して循環ポンプ33を作動させ、発電部11の排熱回収冷却液循環配管22の冷却液の循環を開始させる(ステップ#102)。   Furthermore, the exhaust heat recovery control device 32 constituting the control unit of the system 1 of the present invention performs exhaust heat recovery control when switching from the first circulation piping system PL1 to the second circulation piping system PL2 at the start of the self-sustaining operation. In parallel with the control of the switching valves 36, 37 and 38 by the device 32, power is supplied from the storage battery 16 to the circulation pump 33 via the inverter 13 to operate the circulation pump 33, and the exhaust heat recovery coolant circulation of the power generation unit 11 is performed. Circulation of the coolant in the pipe 22 is started (step # 102).

本発明システム1の制御部を構成する発電制御装置18は、発電部11の排熱回収冷却液循環配管22の冷却液の循環が開始されてから或いは冷却液の循環開始と同時に、蓄電池16からDC/DCコンバータ17とインバータ13のAC/DCコンバータ14(発電始動部)に電力供給して発電部11を始動させる(起動開始、ステップ#103)。   The power generation control device 18 constituting the control unit of the system 1 of the present invention starts from the storage battery 16 after the coolant circulation of the exhaust heat recovery coolant circulation pipe 22 of the power generation unit 11 is started or simultaneously with the start of the coolant circulation. Electric power is supplied to the DC / DC converter 17 and the AC / DC converter 14 (power generation starter) of the inverter 13 to start the power generator 11 (start-up, step # 103).

続いて、本発明システム1の制御部を構成する排熱回収制御装置32は、発電部11からインバータ13に電力供給可能になった後(起動完了後)に、発電部11からインバータ13を介して、循環ポンプ33を含む自立運転時の電力供給対象である自立運転時電力負荷に交流電力の供給を開始する制御を行う(ステップ#105)。ここでは、発電部11と第2排熱利用部としての暖房端末71との間で冷却液を循環させる第2循環配管系統PL2の冷却液を循環させる循環ポンプ35に対し、電力を供給して作動させる。   Subsequently, the exhaust heat recovery control device 32 that constitutes the control unit of the system 1 of the present invention enables the power supply from the power generation unit 11 to the inverter 13 (after the start-up is completed), and then the power generation unit 11 through the inverter 13. Then, the control for starting the supply of the AC power to the power load during the self-sustaining operation that is the power supply target during the self-sustaining operation including the circulation pump 33 is performed (step # 105). Here, electric power is supplied to the circulation pump 35 that circulates the coolant in the second circulation piping system PL2 that circulates the coolant between the power generation unit 11 and the heating terminal 71 as the second exhaust heat utilization unit. Operate.

引き続き、本発明システム1の制御部を構成する排熱回収制御装置32は、暖房端末71の強制動作を開始する(ステップ#106)。これにより、自立運転の開始時に、貯湯タンク21の貯湯量が所定量以上の場合であっても、発電部11がオーバーヒートするのを効果的に防止し、自立運転が停止するのを効果的に防止しながら、本発明システム1を稼働させることが可能になる。   Subsequently, the exhaust heat recovery control device 32 configuring the control unit of the system 1 of the present invention starts the forced operation of the heating terminal 71 (step # 106). Thereby, even when the amount of hot water stored in the hot water storage tank 21 is equal to or greater than a predetermined amount at the start of the independent operation, the power generation unit 11 is effectively prevented from overheating, and the independent operation is effectively stopped. The system 1 of the present invention can be operated while preventing it.

更に、本実施形態では、ステップ#106の実行後、即ち、発電部11からインバータ13を介して自立運転時電力負荷に交流電力の供給を開始した後に、自立運転時電力負荷が過負荷状態にあることを検知した場合(ステップ#111で「YES」分岐)、自立運転時電力負荷の内、少なくとも電動冷却液ポンプ33、35、及び、切り替え弁36、37、38を除く電力負荷に対する電力供給を遮断する制御を行う(ステップ#112)。   Further, in the present embodiment, after the execution of step # 106, that is, after the supply of AC power from the power generation unit 11 to the power load at the time of self-sustaining operation is started via the inverter 13, the power load at the time of self-sustaining operation becomes an overload state When it is detected ("YES" branch in step # 111), power supply to power loads other than at least the electric coolant pumps 33, 35 and the switching valves 36, 37, 38 among the power loads during the independent operation Is controlled to shut off (step # 112).

〈別実施形態〉
上記実施形態では、本発明システム1が、都市ガス等を消費して発電するガスエンジン11a及び発電機11bを備えるコージェネレーションシステムである場合を想定して説明したが、これに限るものではない。例えば、燃料電池を利用したコージェネレーションシステム等、電力負荷に電力を供給可能な発電部11と、発電部11の排熱を回収して利用可能にする排熱利用部20aとを備える熱電併給システムであれば良い。
<Another embodiment>
In the above-described embodiment, the present invention system 1 has been described on the assumption that it is a cogeneration system including a gas engine 11a and a generator 11b that generate electricity by consuming city gas or the like, but is not limited thereto. For example, a cogeneration system that includes a power generation unit 11 that can supply power to a power load and a waste heat utilization unit 20a that recovers and makes available the exhaust heat of the power generation unit 11, such as a cogeneration system that uses a fuel cell If it is good.

本発明に係る熱電併給システムの概略部分構成例を示す概略ブロック図Schematic block diagram showing a schematic partial configuration example of a combined heat and power system according to the present invention 本発明に係る熱電併給システムの排熱利用部とその周辺装置の概略構成例を示す概略ブロック図The schematic block diagram which shows the schematic structural example of the waste heat utilization part of the cogeneration system which concerns on this invention, and its peripheral device 本発明に係る熱電併給システムの処理動作を示すフローチャートFlowchart showing the processing operation of the combined heat and power system according to the present invention. 本発明に係る熱電併給システムの別実施形態における概略部分構成例を示す概略ブロック図Schematic block diagram showing a schematic partial configuration example in another embodiment of the combined heat and power system according to the present invention 従来技術に係る熱電併給システムの概略部分構成例を示す概略ブロック図Schematic block diagram showing a schematic partial configuration example of a combined heat and power system according to the prior art 従来技術に係る熱電併給システムの概略部分構成例を示す概略ブロック図Schematic block diagram showing a schematic partial configuration example of a combined heat and power system according to the prior art

符号の説明Explanation of symbols

1 本発明に係る熱電併給システム
10 発電ユニット(発電部)
10a 電力端子(系統連系運転時)
10b 電力端子(自主運転時)
11 発電部
11a ガスエンジン
11b 発電機
13 インバータ(交流出力部)
14 AC/DCコンバータ
15 双方向DC/ACコンバータ
15a DC/ACコンバータ
15b DC/ACコンバータ
16 蓄電池(電力貯蔵部)
17 DC/DCコンバータ
18 発電制御装置(制御部)
19 熱交換器
20 排熱利用給湯暖房ユニット
20a 排熱利用部
20b 電力入力端子
21 貯湯タンク
22 排熱回収冷却液循環配管
23 温水循環配管
24 排熱回収熱交換器(第1排熱利用部)
25 給湯出力配管
27 暖房熱交換器
28 給水配管
31 補助熱源
32 排熱回収制御装置(制御部)
33 循環ポンプ(電動冷却液ポンプ)
34 循環ポンプ
35 循環ポンプ(電動冷却液ポンプ)
36 開閉弁(切り替え弁)
37 三方弁(切り替え弁)
38 三方弁(切り替え弁)
39 リモコン
40 第1分電盤
41 第2分電盤
42 主幹ブレーカ(MCB)
43 ブレーカ(MCB)
44 分岐ブレーカ
45 電流トランス
46 分岐ブレーカ
49 操作スイッチ
51 オンオフスイッチ
52 2入力切り替えスイッチ
53 オンオフスイッチ
54 2入力切り替えスイッチ
60 商用交流電源
61 電力負荷
62 電力負荷
70 給湯負荷
71 暖房端末(第2排熱利用部)
80 制御装置
100 従来技術に係る熱電併給システム
PL1 第1循環配管系統
PL2 第2循環配管系統
1 Combined Heat and Power System 10 According to the Present Invention 10 Power Generation Unit (Power Generation Unit)
10a Power terminal (at the time of grid connection operation)
10b Power terminal (during independent operation)
11 Power generation section 11a Gas engine 11b Generator 13 Inverter (AC output section)
14 AC / DC converter 15 Bidirectional DC / AC converter 15a DC / AC converter 15b DC / AC converter 16 Storage battery (power storage unit)
17 DC / DC converter 18 Power generation control device (control unit)
19 Heat Exchanger 20 Waste Heat Utilization Hot Water Supply Heating Unit 20a Waste Heat Utilization Unit 20b Power Input Terminal 21 Hot Water Storage Tank 22 Waste Heat Recovery Coolant Circulation Pipe 23 Hot Water Circulation Pipe 24 Waste Heat Recovery Heat Exchanger (First Waste Heat Utilization Section)
25 Hot Water Supply Output Pipe 27 Heating Heat Exchanger 28 Water Supply Pipe 31 Auxiliary Heat Source 32 Waste Heat Recovery Control Device (Control Unit)
33 Circulation pump (electric coolant pump)
34 Circulation pump 35 Circulation pump (electric coolant pump)
36 On-off valve (switching valve)
37 Three-way valve (switching valve)
38 Three-way valve (switching valve)
39 Remote control 40 First distribution board 41 Second distribution board 42 Master breaker (MCB)
43 Breaker (MCB)
44 branch breaker 45 current transformer 46 branch breaker 49 operation switch 51 on / off switch 52 2-input changeover switch 53 on-off switch 54 2-input changeover switch 60 commercial AC power supply 61 power load 62 power load 70 hot water supply load 71 heating terminal (second waste heat utilization) Part)
80 Control device 100 Combined heat and power system PL1 according to prior art First circulation piping system PL2 Second circulation piping system

Claims (2)

外部から燃料供給を受けて発電する発電部と、
外部の商用交流電源または前記発電部から電力供給を受けて電力貯蔵する電力貯蔵部と、
前記商用交流電源または前記電力貯蔵部から電力供給を受けて前記発電部を始動する発電始動部と、
前記発電部または前記電力貯蔵部から電力供給を受けて交流電力を出力可能な交流出力部と、
冷却液の循環により前記発電部が発電時に発生する排熱を回収して前記発電部を冷却する排熱回収冷却液循環配管と、
前記排熱回収冷却液循環配管の前記冷却液を循環させる電動冷却液ポンプと、
前記排熱回収冷却液循環配管の前記冷却液と熱交換することで、前記排熱を利用する排熱利用部と、
前記発電部が前記商用交流電源から独立して自立運転する場合の制御を行う制御部と、を備えてなる熱電併給システムであって、
前記排熱利用部が、給湯負荷に対し熱エネルギを供給する第1排熱利用部と、前記給湯負荷を除く所定の熱負荷で構成される第2排熱利用部と、を備えて構成され、
前記排熱回収冷却液循環配管が、前記発電部と前記第1排熱利用部の熱交換器との間で前記冷却液を循環させる第1循環配管系統と、前記発電部と前記第2排熱利用部との間で前記冷却液を循環させる第2循環配管系統と、を備えて構成され、
前記排熱利用部が、前記第1循環配管系統と前記第2循環配管系統を切り替える切り替え弁を備え、
前記制御部が、前記自立運転の開始時に、前記第1循環配管系統から前記第2循環配管系統への切り替えを行う場合に、前記発電部から前記交流出力部に電力供給可能になる前に、前記第1循環配管系統から前記第2循環配管系統への切り替えが完了するように前記切り替え弁を切り替えるとともに、前記電力貯蔵部から前記交流出力部を介して前記電動冷却液ポンプに電力供給して前記電動冷却液ポンプを作動させ前記発電部の前記排熱回収冷却液循環配管の前記冷却液の循環開始後或いは前記冷却液の循環開始と同時に、前記電力貯蔵部から前記発電始動部に電力供給して前記発電部を始動させ、
前記発電部から前記交流出力部に電力供給可能になった後に、前記発電部から前記交流出力部を介して前記電動冷却液ポンプを含む自立運転時の電力供給対象である自立運転時電力負荷に交流電力の供給を開始する制御を行うことを特徴とする熱電併給システム。
A power generation unit that generates electricity by receiving fuel supply from the outside;
An electric power storage unit for receiving electric power from an external commercial AC power source or the power generation unit and storing electric power;
A power generation starting unit that starts power generation by receiving power supply from the commercial AC power source or the power storage unit;
AC output unit capable of receiving AC power from the power generation unit or the power storage unit and outputting AC power;
An exhaust heat recovery coolant circulation pipe for recovering exhaust heat generated by the power generation unit during power generation by circulating the coolant and cooling the power generation unit;
An electric coolant pump for circulating the coolant in the exhaust heat recovery coolant circulation pipe;
By exchanging heat with the coolant of the exhaust heat recovery coolant circulation pipe, an exhaust heat utilization unit that utilizes the exhaust heat, and
A control unit that performs control when the power generation unit performs independent operation independently from the commercial AC power supply, and a cogeneration system comprising:
The exhaust heat utilization unit includes a first exhaust heat utilization unit that supplies thermal energy to a hot water supply load, and a second exhaust heat utilization unit that includes a predetermined heat load excluding the hot water supply load. ,
The exhaust heat recovery coolant circulation pipe circulates the coolant between the power generation unit and the heat exchanger of the first exhaust heat utilization unit, the power generation unit, and the second exhaust A second circulation piping system that circulates the cooling liquid between the heat utilization unit, and
The exhaust heat utilization unit includes a switching valve that switches between the first circulation piping system and the second circulation piping system,
When the control unit switches from the first circulation piping system to the second circulation piping system at the start of the self-sustaining operation, before the power can be supplied from the power generation unit to the AC output unit, The switching valve is switched so that the switching from the first circulation piping system to the second circulation piping system is completed, and power is supplied from the power storage unit to the electric coolant pump via the AC output unit. Power is supplied from the power storage unit to the power generation starting unit after the electric coolant pump is operated and the cooling liquid circulation pipe of the exhaust heat recovery cooling liquid circulation pipe of the power generation unit is started or simultaneously with the start of circulation of the cooling liquid. And start the power generation unit,
After power can be supplied from the power generation unit to the AC output unit, the power load from the power generation unit via the AC output unit to the power load during self-sustained operation including the electric coolant pump includes the electric coolant pump. A combined heat and power system that performs control to start supply of AC power.
前記制御部が、前記発電部から前記交流出力部を介して前記自立運転時電力負荷に交流電力の供給を開始した後に、前記自立運転時電力負荷が過負荷状態にあることを検知した場合、前記自立運転時電力負荷の内、少なくとも前記電動冷却液ポンプ及び前記切り替え弁を除く電力負荷に対する電力供給を遮断する制御を行うことを特徴とする請求項1に記載の熱電併給システム。   When the control unit detects that the power load during self-sustained operation is in an overload state after starting the supply of AC power from the power generation unit to the power load during self-sustained operation via the AC output unit, 2. The combined heat and power system according to claim 1, wherein control is performed to cut off power supply to power loads other than at least the electric coolant pump and the switching valve among the power loads during the independent operation.
JP2008139108A 2008-05-28 2008-05-28 Combined heat and power system Expired - Fee Related JP4913095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008139108A JP4913095B2 (en) 2008-05-28 2008-05-28 Combined heat and power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008139108A JP4913095B2 (en) 2008-05-28 2008-05-28 Combined heat and power system

Publications (2)

Publication Number Publication Date
JP2009287423A true JP2009287423A (en) 2009-12-10
JP4913095B2 JP4913095B2 (en) 2012-04-11

Family

ID=41456888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008139108A Expired - Fee Related JP4913095B2 (en) 2008-05-28 2008-05-28 Combined heat and power system

Country Status (1)

Country Link
JP (1) JP4913095B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139754A (en) * 2012-01-05 2013-07-18 Osaka Gas Co Ltd Cogeneration system
WO2015019621A1 (en) * 2013-08-08 2015-02-12 パナソニックIpマネジメント株式会社 Power supply system, power conversion device, and distribution board
CN115425254A (en) * 2022-11-07 2022-12-02 北京亿华通科技股份有限公司 Fuel cell cogeneration system based on double engines and control method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2539204B (en) * 2015-06-08 2021-03-24 Ec Power As Starter for a combined heat and power unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291607A (en) * 2004-03-31 2005-10-20 Osaka Gas Co Ltd Heat pump device
JP2006220066A (en) * 2005-02-10 2006-08-24 Honda Motor Co Ltd Cogeneration device
JP2007240016A (en) * 2006-03-06 2007-09-20 Osaka Gas Co Ltd Cogeneration system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291607A (en) * 2004-03-31 2005-10-20 Osaka Gas Co Ltd Heat pump device
JP2006220066A (en) * 2005-02-10 2006-08-24 Honda Motor Co Ltd Cogeneration device
JP2007240016A (en) * 2006-03-06 2007-09-20 Osaka Gas Co Ltd Cogeneration system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139754A (en) * 2012-01-05 2013-07-18 Osaka Gas Co Ltd Cogeneration system
WO2015019621A1 (en) * 2013-08-08 2015-02-12 パナソニックIpマネジメント株式会社 Power supply system, power conversion device, and distribution board
JP2015035893A (en) * 2013-08-08 2015-02-19 パナソニックIpマネジメント株式会社 Power supply system, power conversion unit and power distribution board
EP3032682A4 (en) * 2013-08-08 2016-07-20 Panasonic Ip Man Co Ltd Power supply system, power conversion device, and distribution board
CN115425254A (en) * 2022-11-07 2022-12-02 北京亿华通科技股份有限公司 Fuel cell cogeneration system based on double engines and control method thereof

Also Published As

Publication number Publication date
JP4913095B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4854549B2 (en) Combined heat and power system
JP4884030B2 (en) Combined heat and power system
JP2009284590A (en) Power generation system
WO2006030629A1 (en) Cogeneration apparatus
JP2005061711A (en) Exhaust heat recovering water heater
JP2015065009A (en) Cogeneration apparatus
JP2010007950A (en) Cogeneration system
JP4913095B2 (en) Combined heat and power system
JP2006220066A (en) Cogeneration device
JP2014191949A (en) Cogeneration apparatus
JP6635809B2 (en) Waste heat utilization heat source equipment
US20150221965A1 (en) Cogeneration system and method of operating cogeneration system
JP6569080B2 (en) Fuel cell system
JP2020153613A (en) Energy supply system
JP2004095360A (en) Fuel cell system and operating method therefor
JP4405717B2 (en) Cogeneration system
JP6611649B2 (en) Combined heat and power system
JP2007263388A (en) Exhaust heat recovering device
JP7345338B2 (en) Combined heat and power system
JP2009243736A (en) Power generating system
JP2011190730A (en) Engine cooling device
JP6640002B2 (en) Combined heat and power system
JP2015155780A (en) Cogeneration device
JP5551948B2 (en) Heat supply equipment
JP2015158323A (en) Cogeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees