JP2015158323A - Cogeneration system - Google Patents
Cogeneration system Download PDFInfo
- Publication number
- JP2015158323A JP2015158323A JP2014033664A JP2014033664A JP2015158323A JP 2015158323 A JP2015158323 A JP 2015158323A JP 2014033664 A JP2014033664 A JP 2014033664A JP 2014033664 A JP2014033664 A JP 2014033664A JP 2015158323 A JP2015158323 A JP 2015158323A
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- water storage
- power generation
- water supply
- storage tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
Description
本発明はコージェネレーションシステムに関し、特に発電装置の自立発電運転中に貯湯給湯装置の配管凍結を防止可能な機能を備えたものに関する。 The present invention relates to a cogeneration system, and more particularly, to a system having a function capable of preventing pipe freezing of a hot water storage hot water supply device during a self-sustaining power generation operation of the power generation device.
従来から、内部熱源機や外部熱源機等の排熱を回収して再利用することで総合エネルギー効率を高めたコージェネレーションシステムが実用に供されている。このコージェネレーションシステムは、熱源機として燃料電池やガスエンジン等を組み合わせた発電装置の排熱を回収する種々のタイプのものが実用化されている。 Conventionally, a cogeneration system has been put to practical use in which the total energy efficiency is improved by collecting and reusing exhaust heat from an internal heat source machine or an external heat source machine. Various types of cogeneration systems have been put into practical use for recovering exhaust heat from a power generation apparatus that combines a fuel cell, a gas engine, or the like as a heat source.
例えば、燃料電池を備えたコージェネレーションシステムは、空気と改質燃料ガス(水素含有ガス)との酸化還元反応によって化学エネルギーを電気エネルギーに変換することで電力を発生させる燃料電池発電装置、この燃料電池発電装置による発電の際に副次的に発生する排気ガスの排熱を湯水として回収して貯湯する貯湯給湯装置、燃料電池発電装置と貯湯給湯装置とを接続する排熱回収循環回路等から構成されている。 For example, a cogeneration system equipped with a fuel cell is a fuel cell power generation device that generates electric power by converting chemical energy into electrical energy by an oxidation-reduction reaction between air and reformed fuel gas (hydrogen-containing gas), and this fuel. From a hot water storage hot water supply device that recovers and stores the exhaust heat of exhaust gas that is generated secondaryly during power generation by the battery power generation device as hot water, an exhaust heat recovery circulation circuit that connects the fuel cell power generation device and the hot water storage hot water supply device, etc. It is configured.
ところで、災害等を起因として停電が発生すると、電力系統からコージェネレーションシステムに電力が供給されなくなる。昨今では、燃料電池発電装置は、外部から電力の供給がなくなっても発電が継続可能な自立発電運転の機能を備えているので、停電時でも家庭内負荷等に電力を供給し続けることができる。しかし、この自立発電運転中では、発電出力の上限が、例えば、最大出力の半分程度に制限されるので、発電出力を有効に利用(コージェネレーションシステム外の家庭内負荷に優先的に供給)することが求められる。 By the way, when a power failure occurs due to a disaster or the like, power is not supplied from the power system to the cogeneration system. Nowadays, the fuel cell power generation device has a function of a self-sustained power generation operation that can continue power generation even when power supply from the outside is stopped, so that it can continue to supply power to household loads even during a power outage . However, during this self-sustaining power generation operation, the upper limit of the power generation output is limited to, for example, about half of the maximum output, so the power generation output is effectively used (supplied preferentially to the household load outside the cogeneration system). Is required.
そこで、上記の問題を解決する為に、例えば、特許文献1の熱電供給システム(コージェネレーションシステム)においては、貯湯給湯装置の電力が必要な各種負荷(凍結防止用ヒータ、送風ファン、熱媒循環ポンプ、暖房用循環ポンプ、風呂追焚用循環ポンプ等)に予め優先順位を付け、停電時には、発電装置からの各種負荷への電力供給の一部又は全部を発電装置の発電電力以下となるように制限する技術が開示されている。 Therefore, in order to solve the above problem, for example, in the thermoelectric supply system (cogeneration system) of Patent Document 1, various loads (freezing prevention heater, blower fan, heat medium circulation) that require electric power of the hot water storage hot water supply device Prioritize the pumps, heating circulation pumps, bath recirculation pumps, etc.) in the event of a power outage so that part or all of the power supply from the power generator to various loads will be less than or equal to the power generated by the power generator. A technique for restricting to the above is disclosed.
一方、排熱を回収して蓄熱する貯湯給湯装置は、貯湯、給湯、床暖房パネル等の温水暖房端末への温水の供給、風呂への給湯及び追い焚き等の機能を有し、湯水を貯留する貯湯タンクこの貯湯タンクの下部に接続された給水系通路、貯湯タンクの上部に接続された給湯系通路と、貯湯タンクの湯水を浴槽へ供給する注湯通路、温水暖房端末へ温水を供給する温水暖房回路、浴槽の浴槽水を追焚きする風呂追焚回路等を備えている。 On the other hand, hot water storage and hot water storage systems that collect and store waste heat have functions such as hot water storage, hot water supply, hot water supply to hot water heating terminals such as floor heating panels, hot water supply to the bath, and reheating. Hot water storage tank The hot water supply passage connected to the lower part of the hot water storage tank, the hot water supply system passage connected to the upper part of the hot water storage tank, the hot water supply passage for supplying hot water from the hot water storage tank to the bathtub, and hot water to the hot water heating terminal It has a hot water heating circuit, a bath remedy circuit for chasing tub water in the bathtub, and the like.
ところで、寒冷地や冬場等では、外気温度が低下すると、配管が凍結して破損してしまう虞がある。この問題を解決する為に、従来では、特許文献1の熱電供給システムのように凍結の可能性がある配管(給水系通路や給湯系通路等)に凍結防止用ヒータを取り付け、凍結防止をする際には、凍結防止用ヒータを加熱することで配管の凍結を防止している。 By the way, in cold districts, winter seasons, etc., if the outside air temperature decreases, the piping may freeze and break. In order to solve this problem, conventionally, a freeze prevention heater is attached to a pipe (water supply system passage, hot water supply system passage, etc.) that may be frozen like the thermoelectric supply system of Patent Document 1 to prevent freezing. At this time, the freezing of the pipe is prevented by heating the antifreezing heater.
また、例えば、特許文献2の給湯装置においては、外気温度が設定温度以下になり且つ湯張り配管(注湯通路)の配管温度が設定温度以下になった場合に、貯湯タンクの湯水を湯張り配管を介して浴槽に供給する湯張り運転を実行することで配管を加熱して凍結を防止する技術が開示されている。 Further, for example, in the hot water supply apparatus of Patent Document 2, when the outside air temperature is lower than the set temperature and the pipe temperature of the hot water filling pipe (pour passage) is lower than the set temperature, the hot water in the hot water storage tank is filled with hot water. A technique for heating a pipe to prevent freezing by performing a hot water filling operation to supply the bathtub through the pipe is disclosed.
しかし、特許文献1の熱電供給システムにおいて、凍結防止用ヒータは、一般的に送風ファンや各種のポンプ類等の消費電力と比較して大きい消費電力を必要とする。停電が発生している状態下で凍結防止が必要な場合、発電電力は家庭内負荷に優先的に供給したいため、消費電力の大きい凍結防止用ヒータには発電電力を極力供給せずに凍結防止を行うことが望ましい。 However, in the thermoelectric supply system of Patent Document 1, the antifreezing heater generally requires a large amount of power consumption as compared with the power consumption of a blower fan or various pumps. When it is necessary to prevent freezing in the event of a power failure, the generated power needs to be preferentially supplied to the household load. It is desirable to do.
そこで、特許文献2の給湯装置のように、貯湯タンクの湯水を利用することで、凍結防止用ヒータを使用せずに凍結防止を実行可能ではあるが、外気温度が設定温度以下になった場合に、貯湯タンクの湯水を浴槽に供給する凍結防止運転を自動的に行うと、停電時において使用者の意志に反して浴槽に湯水が貯留されたり、浴槽から排水されることになって、使用者が給湯装置の故障と誤認する虞がある。 Therefore, as in the hot water supply device of Patent Document 2, by using the hot water in the hot water storage tank, it is possible to prevent freezing without using the antifreezing heater, but the outside air temperature falls below the set temperature. In addition, if anti-freezing operation that automatically supplies hot water from the hot water storage tank to the bathtub is performed, hot water is stored in the bathtub or drained from the bathtub at the time of a power failure. There is a possibility that a person mistakes it as a malfunction of the hot water supply device.
本発明の目的は、コージェネレーションシステムにおいて、自立発電運転時に凍結防止用ヒータを利用しなくても配管の凍結防止可能なもの、使用者が予め設定することで自立発電運転時に自動的に凍結防止運転が実行されるもの、自立発電運転時に使用者が凍結防止運転を指示実行可能なもの、等を提供することである。 The object of the present invention is to prevent freezing of pipes without using a freeze prevention heater during self-sustained power generation operation in a cogeneration system, and automatically prevent freezing during self-sustained power operation by a user setting in advance. It is to provide a device that can be operated, a device that allows a user to instruct and execute an anti-freezing operation during a self-sustaining power generation operation, and the like.
請求項1のコージェネレーションシステムは、発電装置と、貯湯給湯装置と、この貯湯給湯装置の湯水を利用して前記発電装置の発電に伴う排熱を回収する排熱回収循環回路とを備えたコージェネレーションシステムであって、前記貯湯給湯装置は、貯湯タンクと、この貯湯タンクの下部に接続された給水系通路と、前記貯湯タンクの上部に接続された給湯系通路と、この給湯系通路の途中部から分岐され且つ前記貯湯タンクの湯水を浴槽へ供給する注湯通路と、前記浴槽の浴槽水を追焚きする風呂追焚回路と、外気温度を検出する外気温度検出手段と、前記貯湯給湯装置の各種設定を行う操作手段とを備えたコージェネレーションシステムにおいて、前記発電装置が自立発電運転中に、前記外気温度検出手段が検出した外気温度が設定温度以下となった場合で且つ前記操作手段を介して自立発電運転中における凍結防止運転を許可するように予め設定されている場合には、前記貯湯タンクから前記浴槽への湯水の供給を自動的に行うことで凍結防止を実行する凍結防止制御手段を備えたことを特徴としている。 A cogeneration system according to claim 1 includes a power generation device, a hot water storage and hot water supply device, and a waste heat recovery and circulation circuit that recovers exhaust heat associated with power generation of the power generation device using hot water of the hot water storage and hot water supply device. The hot water storage hot water supply device includes a hot water storage tank, a hot water supply passage connected to a lower portion of the hot water storage tank, a hot water supply passage connected to an upper portion of the hot water storage tank, and a halfway of the hot water supply passage. A hot water supply passage that branches from the hot water supply tank and supplies hot water from the hot water storage tank to the bathtub, a bath tracking circuit that tracks the bathtub water in the bathtub, an outside air temperature detection means that detects the outside air temperature, and the hot water storage water heater In the cogeneration system comprising the operation means for performing various settings, the outside air temperature detected by the outside air temperature detecting means during the self-sustained power generation operation of the power generator is a set temperature. If it is set in advance to permit freezing prevention operation during the self-sustaining power generation operation via the operation means, the hot water supply from the hot water storage tank to the bathtub is automatically performed. It is characterized by having anti-freezing control means for performing anti-freezing by performing.
請求項2のコージェネレーションシステムは、発電装置と、貯湯給湯装置と、この貯湯給湯装置の湯水を利用して前記発電装置の発電に伴う排熱を回収する排熱回収循環回路とを備えたコージェネレーションシステムであって、前記貯湯給湯装置は、貯湯タンクと、この貯湯タンクの下部に接続された給水系通路と、前記貯湯タンクの上部に接続された給湯系通路と、この給湯系通路の途中部から分岐され且つ前記貯湯タンクの湯水を浴槽へ供給する注湯通路と、前記浴槽の浴槽水を追焚きする風呂追焚回路と、外気温度を検出する外気温度検出手段と、前記貯湯給湯装置の各種設定を行う操作手段とを備えたコージェネレーションシステムにおいて、前記発電装置が自立発電運転中に、前記外気温度検出手段が検出した外気温度が設定温度以下となった場合には、前記操作手段を介して凍結懸念状態であること及び前記貯湯タンクから前記浴槽への湯水の供給を行うことを促すことを報知する凍結防止制御手段を備えたことを特徴としている。 A cogeneration system according to claim 2 includes a power generation device, a hot water storage and hot water supply device, and a waste heat recovery and circulation circuit that recovers waste heat associated with power generation of the power generation device using hot water of the hot water storage and hot water supply device. The hot water storage hot water supply device includes a hot water storage tank, a hot water supply passage connected to a lower portion of the hot water storage tank, a hot water supply passage connected to an upper portion of the hot water storage tank, and a halfway of the hot water supply passage. A hot water supply passage that branches from the hot water supply section and supplies hot water from the hot water storage tank to the bathtub, a bath tracking circuit that tracks the bathtub water in the bathtub, an outside air temperature detecting means that detects the outside air temperature, and the hot water storage hot water supply device In the cogeneration system comprising the operation means for performing various settings, the outside air temperature detected by the outside air temperature detecting means during the self-sustained power generation operation of the power generator is a set temperature. In the case where it falls below, it is provided with anti-freezing control means for notifying that there is a freezing concern state through the operation means and prompting to supply hot water from the hot water storage tank to the bathtub. It is a feature.
請求項1の発明によれば、発電装置が自立発電運転中に、外気温度検出手段が検出した外気温度が設定温度以下となった場合で且つ操作手段を介して自立発電運転中における凍結防止運転を許可するように予め設定されている場合には、貯湯タンクから浴槽への湯水の供給を自動的に行うことで凍結防止を実行する凍結防止制御手段を備えたので、自立発電運転中に凍結防止運転が必要となった場合には、使用者の意志を介して、貯湯タンクの湯水を利用して配管を加熱して凍結を防止することができる。 According to the first aspect of the present invention, the freezing prevention operation is performed when the outside air temperature detected by the outside air temperature detecting means is equal to or lower than the set temperature during the self-sustaining power generation operation of the power generator and during the self-sustaining power generation operation via the operation means. If it is set in advance to allow freezing, it is equipped with anti-freezing control means that performs anti-freezing by automatically supplying hot water from the hot water storage tank to the bathtub. When prevention operation becomes necessary, it is possible to prevent freezing by heating the piping using hot water in the hot water storage tank through the will of the user.
従って、自立発電運転中に凍結防止用ヒータに電力を供給する必要がないので、凍結防止の為に余分な電力を消費せず、発電装置から家庭内負荷に優先的に電力を供給することができ、また、使用者が凍結防止運転を予め設定するので、使用者の意志に反して浴槽に湯水が供給されることがなくなり、貯湯給湯装置が故障したという誤認を防止することができる。 Therefore, since it is not necessary to supply power to the anti-freezing heater during the self-sustaining power generation operation, it is possible to preferentially supply power from the power generator to the household load without consuming extra power to prevent freezing. In addition, since the user sets the freeze prevention operation in advance, hot water is not supplied to the bathtub against the user's will, and the misconception that the hot water storage hot water supply device has failed can be prevented.
請求項2の発明によれば、発電装置が自立発電運転中に、外気温度検出手段が検出した外気温度が設定温度以下となった場合には、操作手段を介して凍結懸念状態であること及び貯湯タンクから浴槽への湯水の供給を行うことを促すことを報知する凍結防止制御手段を備えたので、自立発電運転中に凍結防止運転が必要となった場合には、使用者の意志を介して、貯湯タンクの湯水を利用して配管を加熱して凍結を防止することができる。 According to the invention of claim 2, when the outside air temperature detected by the outside air temperature detecting means becomes equal to or lower than the set temperature during the self-sustained power generation operation of the power generator, it is in a state of concern about freezing via the operating means, and Since it is equipped with anti-freezing control means that informs the user that the hot water supply from the hot water storage tank to the bathtub is urged, if the anti-freezing operation is required during the self-sustaining power generation operation, the user's will The piping can be heated using hot water in the hot water storage tank to prevent freezing.
従って、自立発電運転中に凍結防止用ヒータに電力を供給する必要がないので、凍結防止の為に余分な電力を消費せず、発電装置から家庭内負荷に優先的に電力を供給することができ、また、自立発電運転中に使用者の操作によって凍結防止運転を実行するので、使用者の意志に反して浴槽に湯水が供給されることがなくなり、貯湯給湯装置が故障したという誤認を防止することができる。 Therefore, since it is not necessary to supply power to the anti-freezing heater during the self-sustaining power generation operation, it is possible to preferentially supply power from the power generator to the household load without consuming extra power to prevent freezing. In addition, since the freeze prevention operation is performed by the user's operation during the self-sustaining power generation operation, hot water is not supplied to the bathtub against the user's will, preventing the misconception that the hot water storage hot water supply device has failed. can do.
以下、本発明を実施するための形態について実施例に基づいて説明する。 Hereinafter, modes for carrying out the present invention will be described based on examples.
先ずは、本発明のコージェネレーションシステム1の全体構成について説明する。
図1に示すように、コージェネレーションシステム1は、発電を行なう燃料電池発電装置2(発電装置に相当する)と、湯水を貯湯する貯湯給湯装置3と、燃料電池発電装置2と貯湯給湯装置3との間に湯水を循環させて燃料電池発電装置2の排気ガスから排熱を回収する排熱回収循環回路15等から構成されている。
First, the overall configuration of the cogeneration system 1 of the present invention will be described.
As shown in FIG. 1, a cogeneration system 1 includes a fuel cell power generation device 2 (which corresponds to a power generation device) that generates power, a hot water storage hot water supply device 3 that stores hot water, a fuel cell power generation device 2 and a hot water storage hot water supply device 3. The exhaust heat recovery circuit 15 and the like recover the exhaust heat from the exhaust gas of the fuel cell power generation device 2 by circulating hot water between the two.
次に、燃料電池発電装置2について説明する。
図2に示すように、燃料電池発電装置2は、貯湯給湯装置3の外部熱源機であり、燃料電池発電モジュール2a、この燃料電池発電モジュール2aに空気、燃料ガス、純水等を供給する為の各種の供給装置2b〜2e、発電後の排気ガスを排出する為の排気通路2f、排気ガスと湯水との間で熱交換を行う排熱回収熱交換器2g、排熱回収熱交換器2gで生成された凝縮水を回収して純水に浄化する水処理装置2h、燃料電池発電モジュール2aの出力を調整する為のインバータ2i等を備え、これらの各種機器がケース部材2jに一体的に収納されて構成されている。
Next, the fuel cell power generator 2 will be described.
As shown in FIG. 2, the fuel cell power generation device 2 is an external heat source device of the hot water storage hot water supply device 3 for supplying air, fuel gas, pure water and the like to the fuel cell power generation module 2a and the fuel cell power generation module 2a. Various supply devices 2b to 2e, an exhaust passage 2f for discharging exhaust gas after power generation, an exhaust heat recovery heat exchanger 2g for exchanging heat between the exhaust gas and hot water, and an exhaust heat recovery heat exchanger 2g The water treatment device 2h that collects the condensed water generated in step 2 and purifies it into pure water, the inverter 2i for adjusting the output of the fuel cell power generation module 2a, etc., are provided, and these various devices are integrated with the case member 2j. It is housed and configured.
燃料電池発電モジュール2aにて発電された直流電力は、インバータ2iを介して交流電力に変換されて外部に出力される。排気通路2fの途中部には、排熱回収熱交換器2gが設置され、燃料電池発電モジュール2aから排出される排気ガスは、排気通路2fを通り、排熱回収熱交換器2gにて排熱回収循環回路15を循環する湯水との間で熱交換され温度が低下した後に外部に排出される。尚、燃料電池発電装置2は、停電時に電力系統から遮断して発電を継続する自立発電運転機能を備えている。 The DC power generated by the fuel cell power generation module 2a is converted into AC power via the inverter 2i and output to the outside. An exhaust heat recovery heat exchanger 2g is installed in the middle of the exhaust passage 2f, and the exhaust gas discharged from the fuel cell power generation module 2a passes through the exhaust passage 2f and is exhausted by the exhaust heat recovery heat exchanger 2g. Heat is exchanged with hot water circulating in the recovery circuit 15 and the temperature is lowered, and then discharged to the outside. Note that the fuel cell power generation device 2 has a self-sustaining power generation operation function that continues power generation by shutting off from the power system at the time of a power failure.
次に、貯湯給湯装置3について簡単に説明する。
図3に示すように、貯湯給湯装置3は、貯湯、給湯、浴槽への給湯及び浴槽の追焚き、床暖房パネル等の温水暖房端末への温水の供給等の機能を有するものであり、貯湯タンク4、補助熱源機5、風呂熱利用熱交換器6、暖房熱利用熱交換器7、給水系通路8、給湯系通路9、注湯通路11、風呂追焚回路12、温水暖房回路13、熱利用循環回路14、排熱回収循環回路15、制御ユニット45、貯湯給湯装置の各種設定を行う操作リモコン46等を備え、これら大部分は外装ケース16内に一体的に収納されている。外装ケース16には、外気温度を検出可能な外気温度検出センサ16aが設置されている。
Next, the hot water storage hot water supply apparatus 3 will be briefly described.
As shown in FIG. 3, the hot water storage and hot water supply device 3 has functions such as hot water storage, hot water supply, hot water supply to the bathtub and reheating of the bathtub, and supply of hot water to a hot water heating terminal such as a floor heating panel. Tank 4, auxiliary heat source machine 5, bath heat utilization heat exchanger 6, heating heat utilization heat exchanger 7, water supply system passage 8, hot water supply system passage 9, pouring passage 11, bath memory circuit 12, hot water heating circuit 13, The heat utilization circulation circuit 14, the exhaust heat recovery circulation circuit 15, the control unit 45, an operation remote controller 46 for performing various settings of the hot water storage hot water supply device, and the like are provided, and most of them are integrally stored in the exterior case 16. The exterior case 16 is provided with an outside air temperature detection sensor 16a capable of detecting the outside air temperature.
次に、貯湯タンク4について説明する。
貯湯タンク4は、燃料電池発電装置2で加熱された高温の湯水(例えば、65〜90℃)を貯留可能な密閉タンクで構成され、貯留された湯水の放熱を防ぐ為にタンク周囲は断熱材で覆われている。貯湯タンク4の外周部には、下側から上側に向かって等間隔に複数の湯水温度検出センサ4a〜4dが順に設けられ、これら複数の湯水温度検出センサ4a〜4dにより貯湯タンク4内の複数の貯留層の湯水温度が検出される。
Next, the hot water storage tank 4 will be described.
The hot water storage tank 4 is composed of a sealed tank capable of storing high-temperature hot water (for example, 65 to 90 ° C.) heated by the fuel cell power generation device 2, and a heat insulating material is provided around the tank to prevent heat dissipation of the stored hot water. Covered with. A plurality of hot water temperature detection sensors 4 a to 4 d are provided in order at equal intervals from the lower side to the upper side on the outer peripheral portion of the hot water storage tank 4, and a plurality of hot water temperature detection sensors 4 a to 4 d are provided in the hot water storage tank 4. The hot water temperature of the reservoir is detected.
次に、補助熱源機5について説明する。
補助熱源機5は、バーナーや熱交換器等を内蔵した公知のガス給湯器で構成されている。補助熱源機5は、貯湯タンク4内の湯水温度が低下した場合等の特別な場合に限り、制御ユニット45から指令が送信されて燃焼作動され、湯水を加熱するものである。
Next, the auxiliary heat source unit 5 will be described.
The auxiliary heat source unit 5 is composed of a known gas water heater that incorporates a burner, a heat exchanger, and the like. The auxiliary heat source machine 5 is heated only when a command is transmitted from the control unit 45 and is combusted only in a special case such as when the hot water temperature in the hot water storage tank 4 is lowered.
次に、風呂熱利用熱交換器6と暖房熱利用熱交換器7について説明する。
風呂熱利用熱交換器6は、風呂追焚回路12を流れる浴槽水を加熱するものであり、熱利用循環回路14の一部となる1次側熱交換通路部6a、風呂追焚回路12の一部となる2次側熱交換通路部6bを有している。風呂熱利用熱交換器6において、熱利用循環回路14を流れる高温の湯水と風呂追焚回路12を流れる浴槽水との間で熱交換され、浴槽水は加熱される。
Next, the bath heat utilization heat exchanger 6 and the heating heat utilization heat exchanger 7 will be described.
The bath heat utilization heat exchanger 6 heats the bathtub water flowing through the bath remedy circuit 12, and the primary side heat exchange passage portion 6 a that is a part of the heat utilization circulation circuit 14 and the bath remedy circuit 12. It has the secondary side heat exchange passage part 6b which becomes a part. In the bath heat utilization heat exchanger 6, heat is exchanged between the hot water flowing through the heat utilization circulation circuit 14 and the bath water flowing through the bath memorial circuit 12, and the bath water is heated.
暖房熱利用熱交換器7は、温水暖房回路13を流れる暖房水を加熱するものであり、熱利用循環回路14の一部となる1次側熱交換通路部7a、温水暖房回路13の一部となる2次側熱交換通路部7bを有している。暖房熱利用熱交換器7において、熱利用循環回路14を流れる高温の湯水と温水暖房回路13を流れる暖房水との間で熱交換され、暖房水は加熱される。 The heating heat utilization heat exchanger 7 heats the heating water flowing through the hot water heating circuit 13, and forms a part of the primary side heat exchange passage portion 7 a and the hot water heating circuit 13 that are part of the heat utilization circulation circuit 14. The secondary side heat exchange passage portion 7b is formed. In the heating heat utilization heat exchanger 7, heat is exchanged between the hot water flowing through the heat utilization circulation circuit 14 and the heating water flowing through the hot water heating circuit 13, and the heating water is heated.
次に、給水系通路8について説明する。
給水系通路8は、上水源から低温の上水を貯湯タンク4等に供給するものであり、上流給水通路部8a、中間給水通路部8b、下流給水通路部8cを有し、上流端が上水源に接続され、下流端が貯湯タンク4の下部に接続されている。上流給水通路部8aには、減圧弁8dが設置され、中間給水通路部8bには、逆止弁8eが設置されている。
Next, the water supply system passage 8 will be described.
The water supply system passage 8 supplies low temperature clean water from a water supply source to the hot water storage tank 4 and the like, and has an upstream water supply passage portion 8a, an intermediate water supply passage portion 8b, and a downstream water supply passage portion 8c, and the upstream end is at the upper end. Connected to the water source, the downstream end is connected to the lower part of the hot water storage tank 4. A pressure reducing valve 8d is installed in the upstream water supply passage 8a, and a check valve 8e is installed in the intermediate water supply passage 8b.
上流給水通路部8aと中間給水通路部8bとの間から給湯系通路9に接続するバイパス通路部17が分岐されている。バイパス通路部17には、逆止弁17aが設置されている。中間給水通路部8bと下流給水通路部8cとの間から熱利用循環回路14に接続するバイパス通路部18が分岐されている。この分岐部には、蓄熱切換弁19が設置されている。このバイパス通路部18により、低温の上水を熱利用循環回路14に供給することができ、また逆に、熱利用循環回路14から湯水を貯湯タンク4に戻すことができる。 A bypass passage portion 17 connected to the hot water supply passage 9 is branched from between the upstream water supply passage portion 8a and the intermediate water supply passage portion 8b. A check valve 17 a is installed in the bypass passage portion 17. A bypass passage 18 connected to the heat utilization circulation circuit 14 is branched from between the intermediate water supply passage 8b and the downstream water supply passage 8c. A heat storage switching valve 19 is installed at this branch portion. By this bypass passage 18, low temperature clean water can be supplied to the heat utilization circuit 14, and conversely, hot water can be returned from the heat utilization circuit 14 to the hot water storage tank 4.
次に、給湯系通路9について説明する。
給湯系通路9は、貯湯タンク4に貯湯された湯水を風呂等の所望の給湯先に供給するものであり、給湯栓に接続される給湯通路21、貯湯タンク4の上部から給湯通路21に接続されるタンク出湯通路22、このタンク出湯通路22から分岐され燃焼式の補助熱源機5に接続される補助加熱通路23、補助熱源機5から給湯通路21に接続される補助熱源機出湯通路24等を有している。
Next, the hot water supply system passage 9 will be described.
The hot water supply passage 9 supplies hot water stored in the hot water storage tank 4 to a desired hot water supply destination such as a bath, and is connected to the hot water supply passage 21 connected to the hot water tap and the hot water supply passage 21 from the upper part of the hot water storage tank 4. A tank hot water passage 22, an auxiliary heating passage 23 branched from the tank hot water passage 22 and connected to the combustion type auxiliary heat source device 5, an auxiliary heat source machine hot water passage 24 connected from the auxiliary heat source device 5 to the hot water supply passage 21, etc. have.
給湯通路21は、高温の湯水が流れる上流給湯通路部21a、混合湯水が流れる中間給湯通路部21b及び下流給湯通路部21cを有し、上流端がタンク出湯通路22に接続され、下流端が給湯栓に接続されている。 The hot water supply passage 21 includes an upstream hot water supply passage portion 21a through which high-temperature hot water flows, an intermediate hot water supply passage portion 21b through which mixed hot water flows, and a downstream hot water supply passage portion 21c. The upstream end is connected to the tank hot water supply passage 22 and the downstream end is hot water supply. Connected to the stopper.
上流給湯通路部21aと中間給湯通路部21bとの間に混合弁25が設置されている。この混合弁25に給水系通路8から分岐したバイパス通路部17が接続されている。混合弁25は、出湯温度が指令温度になるように低温の上水と高温の湯水の混合比を制御するものである。中間給湯通路部21bには、流量センサ21dと出湯水比例弁26が設置されている。バイパス通路部17から分岐した分岐通路部27が中間給湯通路部21bに接続され、分岐通路部27には、高温出湯回避電磁弁28が設置されている。 A mixing valve 25 is installed between the upstream hot water supply passage portion 21a and the intermediate hot water supply passage portion 21b. A bypass passage portion 17 branched from the water supply passage 8 is connected to the mixing valve 25. The mixing valve 25 controls the mixing ratio of low temperature tap water and high temperature hot water so that the tapping temperature becomes the command temperature. A flow rate sensor 21d and a tapping water proportional valve 26 are installed in the intermediate hot water supply passage 21b. A branch passage portion 27 branched from the bypass passage portion 17 is connected to the intermediate hot water supply passage portion 21b, and a high temperature hot water avoidance electromagnetic valve 28 is installed in the branch passage portion 27.
タンク出湯通路22は、上流出湯通路部22a、下流出湯通路部22bを有し、上流端が貯湯タンク4の上部に接続され、下流端が給湯通路21に接続されている。上流出湯通路部22aと下流出湯通路部22bとの間から補助加熱通路23が分岐されている。 The tank hot water passage 22 has an upper effluent hot water passage portion 22 a and a lower effluent hot water passage portion 22 b, an upstream end connected to the upper portion of the hot water storage tank 4, and a downstream end connected to the hot water supply passage 21. An auxiliary heating passage 23 is branched from between the upper effluent passage portion 22a and the lower effluent passage portion 22b.
補助加熱通路23は、上流加熱通路部23a、下流加熱通路部23bを有し、上流端がタンク出湯通路22に接続され、下流端が補助熱源機5の導入口に接続されている。上流加熱通路部23aには、逆止弁23cが設置され、下流加熱通路部23bには、圧送ポンプ29と流量センサ23dが設置されている。 The auxiliary heating passage 23 has an upstream heating passage portion 23 a and a downstream heating passage portion 23 b, the upstream end is connected to the tank hot water passage 22, and the downstream end is connected to the inlet of the auxiliary heat source unit 5. The upstream heating passage portion 23a is provided with a check valve 23c, and the downstream heating passage portion 23b is provided with a pressure feed pump 29 and a flow rate sensor 23d.
上流加熱通路部23aと下流加熱通路部23bとの間にタンク出湯通路22と補助加熱通路23とを切換え可能な三方弁31が設置されている。三方弁31には、熱利用循環回路14の湯水戻り側通路部14dも接続されている。この三方弁31は、上流加熱通路部23aと下流加熱通路部23bとの間の接続・遮断及び下流加熱通路部23bと湯水戻り側通路部14dとの間の接続・遮断を切換え可能なものであり、上流加熱通路部23aと下流加熱通路部23bと湯水戻り側通路部14dの全ての通路部を接続可能である。 A three-way valve 31 capable of switching between the tank hot water passage 22 and the auxiliary heating passage 23 is installed between the upstream heating passage portion 23a and the downstream heating passage portion 23b. The three-way valve 31 is also connected with a hot water return side passage portion 14 d of the heat utilization circulation circuit 14. The three-way valve 31 can switch connection / disconnection between the upstream heating passage portion 23a and the downstream heating passage portion 23b and connection / disconnection between the downstream heating passage portion 23b and the hot water return side passage portion 14d. Yes, all the passage portions of the upstream heating passage portion 23a, the downstream heating passage portion 23b, and the hot water return side passage portion 14d can be connected.
補助熱源機出湯通路24は、上流補助出湯通路部24a、下流補助出湯通路部24bを有し、上流端が補助熱源機5の導出口に接続され、下流端が給湯通路21の上流端に接続されている。上流補助出湯通路部24aと下流補助出湯通路部24bとの間から熱利用循環回路14の湯水往き側通路部14aが分岐されている。下流補助出湯通路部24bには、タンク水比例弁32が設置されている。 The auxiliary heat source machine outlet hot water passage 24 has an upstream auxiliary hot water outlet passage 24 a and a downstream auxiliary hot water outlet passage 24 b, the upstream end is connected to the outlet of the auxiliary heat source machine 5, and the downstream end is connected to the upstream end of the hot water supply passage 21. Has been. A hot water / outward side passage portion 14a of the heat utilization circulation circuit 14 is branched from between the upstream auxiliary hot water passage portion 24a and the downstream auxiliary hot water passage portion 24b. A tank water proportional valve 32 is provided in the downstream auxiliary hot water passage portion 24b.
次に、注湯通路11について説明する。
注湯通路11は、給湯通路21を流れる湯水を浴槽へ供給するものであり、出湯水比例弁26の下流側であって中間給湯通路部21bと下流給湯通路部21cとの間から分岐されて風呂追焚回路12の途中部に接続されている。注湯通路11には、流量センサ11a、注湯電磁弁33等が設置されている。
Next, the pouring passage 11 will be described.
The hot water supply passage 11 supplies hot water flowing through the hot water supply passage 21 to the bathtub, and is branched from the intermediate hot water supply passage portion 21b and the downstream hot water supply passage portion 21c on the downstream side of the hot water proportional valve 26. It is connected to the middle part of the bath memorial circuit 12. The pouring passage 11 is provided with a flow rate sensor 11a, a pouring electromagnetic valve 33, and the like.
次に、風呂追焚回路12について説明する。
風呂追焚回路12は、浴槽の浴槽水を追焚きする為に浴槽水を循環させる回路であり、風呂戻り側通路部12a、風呂往き側通路部12bを有している。風呂戻り側通路部12aと風呂往き側通路部12bとの間に風呂循環ポンプ36が設置されている。風呂往き側通路部12bには、水流スイッチ12cと風呂熱利用熱交換器6の2次側熱交換通路部6bとが設置されている。
Next, the bath memory circuit 12 will be described.
The bath chase circuit 12 is a circuit that circulates the bath water in order to chase the bathtub water in the bathtub, and has a bath return side passage portion 12a and a bath going side passage portion 12b. A bath circulation pump 36 is installed between the bath return side passage portion 12a and the bath going side passage portion 12b. The water flow switch 12c and the secondary heat exchange passage 6b of the bath heat utilization heat exchanger 6 are installed in the bath going side passage 12b.
次に、温水暖房回路13について説明する。
温水暖房回路13は、床暖房パネルや浴室乾燥機等の温水暖房端末に供給される暖房水を循環させる回路であり、暖房戻り通路部13a、暖房高温往き通路部13b、暖房低温往き通路部13cを有している。暖房戻り通路部13aには、加熱による暖房水の膨張を吸収する為の膨張タンク37と、暖房水を循環させる為の暖房循環ポンプ38とが設置されている。暖房高温往き通路部13bには、暖房熱利用熱交換器7の2次側熱交換通路部7bが設置されている。暖房高温往き通路部13bには、バイパス熱動弁39が設置されている。
Next, the hot water heating circuit 13 will be described.
The hot water heating circuit 13 is a circuit that circulates heating water supplied to a hot water heating terminal such as a floor heating panel or a bathroom dryer, and has a heating return passage portion 13a, a heating high-temperature forward passage portion 13b, and a heating low-temperature forward passage portion 13c. have. The heating return passage 13a is provided with an expansion tank 37 for absorbing the expansion of the heating water due to heating, and a heating circulation pump 38 for circulating the heating water. The secondary heat exchange passage portion 7b of the heating heat utilization heat exchanger 7 is installed in the heating high-temperature going passage portion 13b. A bypass thermal valve 39 is installed in the heating high-temperature going passage portion 13b.
膨張タンク37の上部には、暖房補給水電磁弁37aが設けられ、この暖房補給水電磁弁37aには、給水系通路8の上流給水通路部8aから分岐された補給水通路部37bが接続されている。暖房補給水電磁弁37aが開弁状態に切換った場合には、補給水通路部37bを介して膨張タンク37に補給水が補給される。膨張タンク37の上部には、オーバーフロー通路部37cが接続されている。 A heating replenishing water electromagnetic valve 37a is provided at the upper portion of the expansion tank 37, and a replenishing water passage portion 37b branched from the upstream water supply passage portion 8a of the water supply system passage 8 is connected to the heating replenishing water electromagnetic valve 37a. ing. When the heating replenishing water electromagnetic valve 37a is switched to the open state, the replenishing water is replenished to the expansion tank 37 through the replenishing water passage portion 37b. An overflow passage portion 37 c is connected to the upper portion of the expansion tank 37.
次に、熱利用循環回路14について説明する。
熱利用循環回路14は、湯水を循環させて風呂追焚回路12と温水暖房回路13との間で熱交換を行う閉回路であり、湯水往き側通路部14a、風呂熱利用通路部14b、暖房熱利用通路部14c、湯水戻り側通路部14d、補助加熱通路23の下流加熱通路部23b、補助熱源機出湯通路24の上流補助出湯通路部24aを有している。風呂熱利用通路部14bに、風呂熱利用熱交換器6の1次側熱交換通路部6aと風呂熱利用開閉弁41が設置され、暖房熱利用通路部14cに、暖房熱利用熱交換器7の1次側熱交換通路部7aと暖房熱利用開閉弁42が設置されている。
Next, the heat utilization circulation circuit 14 will be described.
The heat utilization circulation circuit 14 is a closed circuit that circulates hot water and performs heat exchange between the bath chase circuit 12 and the hot water heating circuit 13, and includes a hot water going-side passage portion 14a, a bath heat utilization passage portion 14b, and heating. It has a heat use passage 14c, a hot water return side passage 14d, a downstream heating passage 23b of the auxiliary heating passage 23, and an upstream auxiliary hot water passage 24a of the auxiliary heat source machine hot water passage 24. A primary heat exchange passage portion 6a of the bath heat utilization heat exchanger 6 and a bath heat utilization opening / closing valve 41 are installed in the bath heat utilization passage portion 14b, and the heating heat utilization heat exchanger 7 is disposed in the heating heat utilization passage portion 14c. Primary side heat exchange passage 7a and heating heat utilization opening / closing valve 42 are installed.
熱利用循環回路14に湯水を循環させて浴槽水や暖房水と熱交換を行う場合、圧送ポンプ29を介して湯水が、下流加熱通路部23bから補助熱源機5に流入し、補助熱源機5によって加熱された後の高温の湯水が、上流補助出湯通路部24aと湯水往き側通路部14aとを流れて風呂熱利用通路部14bや暖房熱利用通路部14cに送られ、1次側熱交換通路部6a,7aで浴槽水や暖房水との間で熱交換された湯水は、湯水戻り側通路部14dを通って下流加熱通路部23bに戻される。 When hot water is circulated in the heat utilization circulation circuit 14 to exchange heat with bathtub water or heating water, hot water flows into the auxiliary heat source machine 5 from the downstream heating passage portion 23b via the pressure feed pump 29, and the auxiliary heat source machine 5 The hot hot water after being heated by the air flows through the upstream auxiliary hot water passage portion 24a and the hot water going-out passage portion 14a and is sent to the bath heat utilization passage portion 14b and the heating heat utilization passage portion 14c, and the primary side heat exchange. The hot water exchanged between the bath water and the heating water in the passage portions 6a and 7a is returned to the downstream heating passage portion 23b through the hot water return side passage portion 14d.
次に、排熱回収循環回路15について説明する。
排熱回収循環回路15は、貯湯タンク4と燃料電池発電装置2との間に湯水を循環させて燃料電池発電装置2の排熱を回収する閉回路であり、低温側循環通路部15a、高温側循環通路部15b等を有し、上流端が貯湯タンク4の下部に接続され、下流端が貯湯タンク4の上部に接続されている。
Next, the exhaust heat recovery circuit 15 will be described.
The exhaust heat recovery circuit 15 is a closed circuit that recovers the exhaust heat of the fuel cell power generator 2 by circulating hot water between the hot water storage tank 4 and the fuel cell power generator 2. It has a side circulation passage portion 15 b and the like, the upstream end is connected to the lower part of the hot water storage tank 4, and the downstream end is connected to the upper part of the hot water storage tank 4.
低温側循環通路部15aから高温側循環通路部15bに接続する分岐通路部15cが分岐され、この分岐部には、貯湯タンク4を含めた循環回路と貯湯タンク4をバイパスする循環回路とを択一的に選択可能な三方弁43が設置されている。燃料電池発電装置2の内部において、低温側循環通路部15aには、循環ポンプ44が設置され、低温側循環通路部15aと高温側循環通路部15bとの間には、燃料電池発電装置2の排熱回収熱交換器2gが設置されている。 A branch passage portion 15c connected to the high temperature side circulation passage portion 15b is branched from the low temperature side circulation passage portion 15a, and a circulation circuit including the hot water storage tank 4 and a circulation circuit bypassing the hot water storage tank 4 are selected in this branch portion. A three-way valve 43 that can be selectively selected is provided. Inside the fuel cell power generation device 2, a circulation pump 44 is installed in the low temperature side circulation passage portion 15a, and between the low temperature side circulation passage portion 15a and the high temperature side circulation passage portion 15b, An exhaust heat recovery heat exchanger 2g is installed.
次に、制御ユニット45について説明する。
貯湯給湯装置3は、制御ユニット45によって制御される。各種のセンサの検出信号が制御ユニット45に送信され、この制御ユニット45により、貯湯給湯装置3の動作、各種のポンプの作動・停止、各種の弁の開閉状態の切り換え及び開度調整等を制御し、各種運転(給湯運転、湯張り運転、追焚き運転、高温差し湯運転、暖房運転、通常発電運転時の凍結防止運転、自立発電運転時の凍結防止運転、排熱回収運転等)を実行する。
Next, the control unit 45 will be described.
The hot water storage and hot water supply device 3 is controlled by the control unit 45. Detection signals of various sensors are transmitted to the control unit 45, and the control unit 45 controls the operation of the hot water storage hot water supply device 3, the operation / stop of various pumps, the switching of the open / close states of various valves, and the opening degree adjustment. And various operations (hot water supply operation, hot water operation, reheating operation, high-temperature hot water operation, heating operation, anti-freezing operation during normal power generation operation, anti-freezing operation during independent power generation operation, exhaust heat recovery operation, etc.) To do.
制御ユニット45は、ユーザーが操作可能な操作リモコン46との間でデータ通信可能であり、操作リモコン46のスイッチ操作により各種の運転が設定されると、その指令信号が操作リモコン46から制御ユニット45に送信される。例えば、操作リモコン46のスイッチ操作により目標給湯設定温度が設定されると、その目標給湯設定温度データが操作リモコン46から制御ユニット45に送信される。 The control unit 45 can perform data communication with the operation remote controller 46 that can be operated by the user. When various operations are set by operating the switch of the operation remote controller 46, the command signal is transmitted from the operation remote controller 46 to the control unit 45. Sent to. For example, when the target hot water set temperature is set by operating the switch of the operation remote controller 46, the target hot water set temperature data is transmitted from the operation remote controller 46 to the control unit 45.
次に、複数の凍結防止用ヒータ48a〜48jについて説明する。
図3に示すように、貯湯給湯装置3には、制御ユニット45によって制御可能な発熱抵抗体からなる複数の凍結防止用ヒータ48a〜48jが設置されている。即ち、給水系通路8の上流給水通路部8aと下流給水通路部8cに凍結防止用ヒータ48a,48bが設置され、バイパス通路部17に凍結防止用ヒータ48cが設置され、給湯系通路9の中間給湯通路部21b及び下流給湯通路部21cに凍結防止用ヒータ48d,48eが設置され、風呂往き側通路部12bに凍結防止用ヒータ48fが設置され、補給水通路部37bに凍結防止用ヒータ48gが設置され、排熱回収循環回路15の低温側循環通路部15a及び分岐通路部15cに凍結防止用ヒータ48h〜48jが設置されている。
Next, the plurality of freeze prevention heaters 48a to 48j will be described.
As shown in FIG. 3, the hot water storage and hot water supply device 3 is provided with a plurality of antifreezing heaters 48 a to 48 j made of heat generating resistors that can be controlled by the control unit 45. That is, anti-freezing heaters 48 a and 48 b are installed in the upstream water supply passage portion 8 a and the downstream water supply passage portion 8 c of the water supply system passage 8, and the anti-freezing heater 48 c is installed in the bypass passage portion 17. Freezing prevention heaters 48d and 48e are installed in the hot water supply passage 21b and the downstream hot water supply passage 21c, a freezing prevention heater 48f is installed in the bath-side passage portion 12b, and a freezing prevention heater 48g is installed in the makeup water passage portion 37b. Freezing prevention heaters 48 h to 48 j are installed in the low temperature side circulation passage portion 15 a and the branch passage portion 15 c of the exhaust heat recovery circulation circuit 15.
外気温度検出センサ16aが外気温度の低下を検出した場合には、制御ユニット45は、複数の凍結防止用ヒータ48a〜48jに燃料電池発電装置2から発電電力を供給し、複数の凍結防止用ヒータ48a〜48jが電力を消費することで発生する熱を介して配管を加熱して凍結防止を行う凍結防止運転を自動的に実行する。尚、複数の凍結防止用ヒータ48a〜48jのうちの凍結防止に必要なヒータにのみ選択的に電力を供給可能に構成しても良い。この場合、ヒータによる消費電力を低減することができる。 When the outside air temperature detection sensor 16a detects a decrease in the outside air temperature, the control unit 45 supplies the generated power from the fuel cell power generator 2 to the plurality of freeze prevention heaters 48a to 48j, and the plurality of freeze prevention heaters. The anti-freezing operation in which the pipes are heated to prevent freezing by heat generated by the consumption of electric power by the power generators 48a to 48j is automatically executed. It should be noted that power may be selectively supplied only to the heaters required for freeze prevention among the plurality of freeze prevention heaters 48a to 48j. In this case, power consumption by the heater can be reduced.
次に、本発明に関連する自立発電運転時の凍結防止運転について説明する。
制御ユニット45は、燃料電池発電装置2が自立発電運転中に、外気温度検出センサ16aが検出した外気温度が設定温度以下となった場合で且つ操作リモコン46を介して自立発電運転中における凍結防止運転を許可するように予め設定されている場合には、貯湯タンク4から浴槽への湯水の供給(湯張り)を自動的に行うことで凍結防止を行う凍結防止運転を実行可能である。尚、自立発電運転時に凍結防止運転を行う制御ユニット45が、凍結防止制御手段に相当するものである。
Next, the freeze prevention operation at the time of the independent power generation operation related to the present invention will be described.
The control unit 45 prevents freezing in the case where the outside air temperature detected by the outside temperature detection sensor 16a is equal to or lower than the set temperature during the self-sustaining power generation operation of the fuel cell power generator 2 and during the self-sustaining power generation operation via the operation remote controller 46. When preset to permit the operation, it is possible to execute an anti-freezing operation for preventing freezing by automatically supplying hot water from the hot water storage tank 4 to the bathtub (hot water filling). The control unit 45 that performs the freeze prevention operation during the self-sustaining power generation operation corresponds to the freeze prevention control means.
即ち、制御ユニット45によって自立発電運転時の凍結防止運転が実行されると、注湯電磁弁33が開放され、貯湯タンク4にかかる給水圧によって、貯湯タンク4から給湯系通路9のタンク出湯通路22と上流給湯通路部21aとに高温の湯水が流れ、混合弁25でバイパス通路部17からの低温の上水と混合調整され、この混合調整された湯水が、中間給湯通路部21bと注湯通路11と風呂追焚回路12とを流れて浴槽に供給されることで、これら配管の凍結を防止する(図3の湯水の流れを示す矢印参照)。尚、下流給湯通路部21cが短く構成されている場合、中間給湯通路部21bと注湯通路11とを流れる湯水からの伝熱によって凍結を防止可能である。 That is, when the control unit 45 performs the freeze prevention operation during the self-sustaining power generation operation, the hot water solenoid valve 33 is opened, and the tank hot water discharge passage from the hot water storage tank 4 to the hot water supply system passage 9 by the supply water pressure applied to the hot water storage tank 4. 22 and the upstream hot water supply passage portion 21a flow hot, and the mixing valve 25 mixes and adjusts the low temperature clean water from the bypass passage portion 17, and the mixed hot water is mixed with the intermediate hot water supply passage portion 21b and the pouring water. By flowing through the passage 11 and the bath chase circuit 12 and being supplied to the bathtub, freezing of these pipes is prevented (see the arrow indicating the hot water flow in FIG. 3). In addition, when the downstream hot-water supply channel | path part 21c is comprised short, freezing can be prevented by the heat transfer from the hot water which flows through the intermediate | middle hot-water supply channel | path part 21b and the pouring channel | path 11.
尚、上記の自立発電運転時の凍結防止運転では、貯湯タンク4から浴槽へ絶えず少量の湯水を供給するようにしても良いし、貯湯タンク4から浴槽へ所定の量(例えば10L程度)の湯水を間欠的(例えば1時間に1回毎)に供給するようにしても良く、貯湯タンク4から浴槽へ供給する湯量は特に限定する必要はなく、凍結防止可能であれば適宜変更可能である。 In the freeze prevention operation at the time of the self-sustained power generation operation, a small amount of hot water may be constantly supplied from the hot water storage tank 4 to the bathtub, or a predetermined amount (for example, about 10 L) of hot water may be supplied from the hot water storage tank 4 to the bathtub. May be supplied intermittently (for example, once every hour), and the amount of hot water supplied from the hot water storage tank 4 to the bathtub is not particularly limited, and can be appropriately changed as long as it can be prevented from freezing.
自立発電運転時の凍結防止運転では、貯湯タンク4から浴槽へ湯水を供給することで、給水系通路8、給湯系通路9、注湯通路11、風呂追焚回路12、バイパス通路部17に水や湯水の流れを生じさせて凍結防止しているが、これに加えて、暖房循環ポンプ38を駆動して温水暖房回路13に湯水を循環させること、暖房補給水電磁弁37aを開放して補給水通路部37bに水を流すこと、圧送ポンプ29を駆動して熱利用循環回路14に湯水を循環させること、循環ポンプ44の駆動を介して熱利用循環回路14に湯水を循環させることで、各種の配管の凍結防止運転を実行しても良い。 In the freezing prevention operation during the self-sustaining power generation operation, hot water is supplied from the hot water storage tank 4 to the bathtub so that water is supplied to the water supply system passage 8, the hot water supply system passage 9, the pouring passage 11, the bath memorial circuit 12, and the bypass passage portion 17. In addition to this, freezing is prevented by causing a flow of hot water and hot water. In addition to this, the heating circulation pump 38 is driven to circulate hot water in the hot water heating circuit 13, and the heating replenishing water electromagnetic valve 37a is opened to replenish. By flowing water through the water passage portion 37b, driving the pressure feed pump 29 to circulate hot water in the heat utilization circulation circuit 14, and circulating the hot water in the heat utilization circulation circuit 14 by driving the circulation pump 44, You may perform the freeze prevention driving | operation of various piping.
次に、燃料電池発電装置2の自立発電運転中に制御ユニット45により実行される、凍結防止運転制御について、図4のフローチャートに基づいて説明する。尚、図中の符号Si(i=1,2,・・)は各ステップを示す。この凍結防止運転制御の制御プログラムは、制御ユニット45に予め格納されている。 Next, the antifreezing operation control executed by the control unit 45 during the self-sustaining power generation operation of the fuel cell power generation device 2 will be described based on the flowchart of FIG. In the figure, the symbol Si (i = 1, 2,...) Indicates each step. The control program for the freeze prevention operation control is stored in the control unit 45 in advance.
図4のフローチャートにおいて、この制御が開始されると、最初にS1において、燃料電池発電装置2が自立発電運転中か否かを判定する。即ち、停電時等に燃料電池発電装置2が自立発電運転中の場合、つまり、制御ユニット45が燃料電池発電装置2から自立発電運転に基づく信号を受信している場合は、S1の判定がYesとなり、S2に移行し、S1の判定がNoのうちはS1を繰り返す。 In the flowchart of FIG. 4, when this control is started, first, in S1, it is determined whether or not the fuel cell power generation device 2 is in a self-sustaining power generation operation. That is, when the fuel cell power generation device 2 is in a self-sustaining power generation operation at the time of a power failure or the like, that is, when the control unit 45 receives a signal based on the self power generation operation from the fuel cell power generation device 2, the determination of S1 is Yes. Then, the process proceeds to S2, and S1 is repeated while the determination of S1 is No.
次に、S2において、外装ケース16に設置された外気温度検出センサ16aの検出信号を読み込み、この検出信号に基づいて、外気温度Taを算出して、S3に移行し、外気温度Taが凍結懸念温度T0(設定温度に相当し、例えば5℃)以下か否かを判定し、外気温度Taが凍結懸念温度T0より低い場合、つまり、寒冷地や冬場等において配管が凍結する虞があると判定した場合は、S3の判定がYesとなり、S4に移行し、S3の判定がNoの場合は、S1に戻る。 Next, in S2, the detection signal of the outside air temperature detection sensor 16a installed in the exterior case 16 is read, the outside air temperature Ta is calculated based on this detection signal, and the process proceeds to S3. It is determined whether or not the temperature is T 0 (corresponding to a set temperature, for example, 5 ° C.) or less, and when the outside air temperature Ta is lower than the freezing concern temperature T 0 , that is, there is a possibility that the piping may freeze in a cold region or winter. If the determination is S3, the determination in S3 is Yes, and the process proceeds to S4.
次に、S4において、凍結防止運転の許可設定済か否かを判定する。即ち、使用者が、操作リモコン46を介して自立発電運転中における凍結防止運転を許可するように予め設定している場合は、S4の判定がYesとなり、S5に移行し、S4の判定がNoの場合は、凍結防止運転を行わずに、この一連の制御を終了する。 Next, in S4, it is determined whether or not the permission for the freeze prevention operation has been set. That is, if the user has set in advance to allow the freeze prevention operation during the self-sustaining power generation operation via the operation remote controller 46, the determination of S4 is Yes, the process proceeds to S5, and the determination of S4 is No. In this case, this series of control is terminated without performing the freeze prevention operation.
次に、S5において、制御ユニット45は、凍結防止運転を開始し、S6に移行する。このS5では、注湯電磁弁33の開放に伴い、貯湯タンク4にかかる給水圧によって貯湯タンク4の上部から高温の湯水がタンク出湯通路22に押し出され、この高温の湯水は、タンク出湯通路22を通って給湯通路21に流入し、混合弁25において低温の上水と混合されて温度調整され、この温度調整された湯水が注湯通路11と風呂追焚回路12とを流れて浴槽に供給されることで、配管が加熱されて凍結が防止される。 Next, in S5, the control unit 45 starts the anti-freezing operation and proceeds to S6. In S5, hot water is pushed out from the upper portion of the hot water storage tank 4 to the tank hot water discharge passage 22 by the supply water pressure applied to the hot water storage tank 4 as the hot water solenoid valve 33 is opened. It flows into the hot water supply passage 21 through the mixing valve 25 and is mixed with low-temperature clean water at the mixing valve 25 to adjust the temperature. The temperature-adjusted hot water flows through the pouring passage 11 and the bath chase circuit 12 and is supplied to the bathtub. As a result, the piping is heated and freezing is prevented.
次に、S6において、燃料電池発電装置2が自立発電運転中か否かを判定する。即ち、停電状態が継続されていて燃料電池発電装置2が自立発電運転中の場合は、S6の判定がYesとなり、S7に移行し、S6の判定がNoの場合、燃料電池発電装置2の自立発電運転が終了しているので、S9に移行して、凍結防止運転を終了して一連の制御を終了する。尚、自立発電運転終了後に、外気温度が低い状態が継続する場合は、本発明の凍結防止運転を継続しても良いし、通常時の凍結防止運転に切り換えても良い。 Next, in S6, it is determined whether or not the fuel cell power generator 2 is in a self-sustaining power generation operation. That is, when the power failure state is continued and the fuel cell power generation device 2 is in the self-sustaining power generation operation, the determination of S6 is Yes, the process proceeds to S7, and when the determination of S6 is No, the fuel cell power generation device 2 is independent. Since the power generation operation is finished, the process proceeds to S9, the freeze prevention operation is finished, and the series of control is finished. In addition, when the state where the outside air temperature is low continues after the end of the self-sustaining power generation operation, the freeze prevention operation of the present invention may be continued or may be switched to a normal freeze prevention operation.
次に、S7において、外気温度検出センサ16aの検出信号を読み込み、この検出信号に基づいて、外気温度Taを算出して、S8に移行し、外気温度Taが凍結懸念温度T0以下か否かを判定し、外気温度Taが凍結懸念温度T0より低い場合は、S8の判定がYesとなり、S6に戻りS6〜S8を繰り返し、S8の判定がNoの場合は、凍結防止運転が必要ないので、S9に移行して、凍結防止運転を終了して一連の制御を終了する。 Next, in S7, reads the detection signal of the outside air temperature detection sensor 16a, based on the detection signal, calculates the outside air temperature Ta, the process proceeds to S8, whether the outside air temperature Ta is freezing concerns the temperature T 0 or less determines, when the outside air temperature Ta is lower than the freezing concerns the temperature T 0, the determination is Yes in S8, repeated S6~S8 returns to S6, if the determination at S8 in no, there is no need freeze prevention operation , S9, the freeze prevention operation is finished, and a series of control is finished.
次に、本発明のコージェネレーションシステム1の作用及び効果について説明する。
貯湯給湯装置3が備えた制御手段(凍結防止制御手段)45は、燃料電池発電装置2が自立発電運転中に、外気温度検出センサ16aが検出した外気温度が設定温度以下となった場合で且つ操作リモコン46を介して自立発電運転中における凍結防止運転を許可するように予め設定されている場合には、貯湯タンク4から浴槽への湯水の供給を自動的に行うことで凍結防止を実行するので、自立発電運転中に凍結防止運転が必要となった場合には、使用者の意志を介して、貯湯タンク4の湯水を利用して配管を加熱して凍結を防止することができる。
Next, the operation and effect of the cogeneration system 1 of the present invention will be described.
The control means (freezing prevention control means) 45 provided in the hot water storage hot-water supply device 3 is a case where the outside air temperature detected by the outside air temperature detection sensor 16a is equal to or lower than the set temperature during the self-sustaining power generation operation of the fuel cell power generation device 2. When preset to permit the freeze prevention operation during the self-sustaining power generation operation via the operation remote controller 46, the freeze prevention is executed by automatically supplying the hot water from the hot water storage tank 4 to the bathtub. Therefore, when the freeze prevention operation is necessary during the self-sustained power generation operation, the pipe can be heated using the hot water in the hot water storage tank 4 to prevent the freeze from occurring according to the user's will.
従って、自立発電運転中に凍結防止用ヒータ48a〜48jに電力を供給する必要がないので、凍結防止の為に余分な電力を消費せず、燃料電池発電装置2から家庭内負荷に優先的に電力を供給することができ、また、使用者が凍結防止運転を予め設定するので、使用者の意志に反して浴槽に湯水が供給されることがなくなり、貯湯給湯装置3が故障したという誤認を防止することができる。 Accordingly, since it is not necessary to supply power to the freeze prevention heaters 48a to 48j during the self-sustaining power generation operation, no extra power is consumed to prevent freezing, and the fuel cell power generator 2 gives priority to the household load. Since electric power can be supplied and the user sets the freeze prevention operation in advance, hot water is not supplied to the bathtub against the user's will, and the misconception that the hot water storage hot-water supply device 3 has failed. Can be prevented.
次に、実施例1の凍結防止運転制御を部分的に変更した実施例2について説明する。尚、実施例1では、操作リモコン46を介して自立発電運転中における凍結防止運転を許可するように予め設定されている場合に凍結予防運転が実行されるが、実施例2では、操作リモコン46を介して凍結懸念状態であること及び貯湯タンク4から浴槽への湯水の供給を行うことを促すことを報知する。 Next, a second embodiment in which the freeze prevention operation control of the first embodiment is partially changed will be described. In the first embodiment, the freeze prevention operation is executed when the freeze prevention operation is set in advance so as to allow the freezing prevention operation during the independent power generation operation via the operation remote controller 46. In the second embodiment, however, the operation remote control 46 is operated. It is notified that it is in a state of concern about freezing and that the supply of hot water from the hot water storage tank 4 to the bathtub is encouraged.
ここで、自立発電運転中に制御ユニット45により自動的に実行される、凍結防止運転制御について、図5のフローチャートに基づいて説明する。この凍結防止運転制御の制御プログラムは、制御ユニット45に予め格納されている。尚、S1〜S3,S5〜S9は、実施例1と同様であるので、説明は省略する。 Here, the freeze prevention operation control that is automatically executed by the control unit 45 during the self-sustaining power generation operation will be described based on the flowchart of FIG. The control program for the freeze prevention operation control is stored in the control unit 45 in advance. In addition, since S1-S3, S5-S9 are the same as that of Example 1, description is abbreviate | omitted.
先ずは、S11において、凍結懸念状態であること及び貯湯タンク4から浴槽への湯水の供給(湯張り)を行うことを促すことを、操作リモコン46を介して表示警告や音声警告等で使用者に報知して、S12に移行し、S12において、操作リモコン46の操作が行われたか否かを判定する。即ち、使用者が報知に気づき、使用者が操作リモコン46を介して凍結防止運転開始に基づく操作をし、操作リモコン46から制御ユニット45に凍結防止運転開始指令が送信された場合、S12の判定がYesとなって、S5に移行して、凍結防止運転を実行する。S12がNoの場合は、使用者によって操作リモコン46が操作されるまでS12を繰り返し実行する。 First, in S11, the user is notified by a display warning, a voice warning, or the like via the operation remote controller 46 to be in a state of concern about freezing and to urge the hot water supply from the hot water storage tank 4 to the bathtub. And the process proceeds to S12. In S12, it is determined whether or not the operation remote controller 46 has been operated. That is, when the user notices the notification, the user performs an operation based on the start of the freeze prevention operation via the operation remote controller 46, and the freeze prevention operation start command is transmitted from the operation remote controller 46 to the control unit 45, the determination of S12 Becomes Yes, the process proceeds to S5, and the freeze prevention operation is executed. When S12 is No, S12 is repeatedly executed until the operation remote controller 46 is operated by the user.
このように、貯湯給湯装置3が備えた制御ユニット45は、燃料電池発電装置2が自立発電運転中に、外気温度検出センサ16aが検出した外気温度が設定温度以下となった場合には、操作リモコン46を介して凍結懸念状態であること及び貯湯タンク4から浴槽への湯水の供給を行うことを促すことを報知するので、自立発電運転中に凍結防止運転が必要となった場合には、使用者の意志を介して、貯湯タンク4の湯水を利用して配管を加熱して凍結を防止することができる。 As described above, the control unit 45 provided in the hot water storage hot water supply device 3 is operated when the outside air temperature detected by the outside temperature detection sensor 16a is equal to or lower than the set temperature during the self-sustaining power generation operation of the fuel cell power generation device 2. Since it is informed through the remote control 46 that it is in a state of concern for freezing and that it is urged to supply hot water from the hot water storage tank 4 to the bathtub, when freezing prevention operation is required during the self-sustaining power generation operation, Through the will of the user, the piping can be heated using hot water in the hot water storage tank 4 to prevent freezing.
従って、自立発電運転中に凍結防止用ヒータ48a〜48jに電力を供給する必要がないので、凍結防止の為に余分な電力を消費せず、燃料電池発電装置2から家庭内負荷に優先的に電力を供給することができ、また、自立発電運転中に使用者の操作によって凍結防止運転を実行するので、使用者の意志に反して浴槽に湯水が供給されることがなくなり、貯湯給湯装置3が故障したという誤認を防止することができる。 Accordingly, since it is not necessary to supply power to the freeze prevention heaters 48a to 48j during the self-sustaining power generation operation, no extra power is consumed to prevent freezing, and the fuel cell power generator 2 gives priority to the household load. Since electric power can be supplied and the freeze prevention operation is executed by the user's operation during the self-sustaining power generation operation, hot water is not supplied to the bathtub against the user's will, and the hot water storage hot water supply device 3 Can be prevented from being mistaken.
次に、前記実施例1,2を部分的に変更した形態について説明する。
[1]前記実施例において、発電装置として燃料電池発電装置2について説明したが、これに限定する必要はなく、ガスエンジン等を採用しても良いし、これら以外にも種々の公知なものを採用可能である。
Next, a mode in which the first and second embodiments are partially changed will be described.
[1] In the above embodiment, the fuel cell power generation device 2 has been described as the power generation device. However, the present invention is not limited to this, and a gas engine or the like may be employed. It can be adopted.
[2]その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施例に種々の変更を付加した形態で実施可能であり、本発明はそのような変更形態を包含するものである。 [2] In addition, those skilled in the art can implement the present invention by adding various modifications without departing from the spirit of the present invention, and the present invention includes such modifications. It is.
1 コージェネレーションシステム
2 燃料電池発電装置
3 貯湯給湯装置
4 貯湯タンク
8 給水系通路
9 給湯系通路
11 注湯通路
12 風呂追焚回路
15 排熱回収循環回路
16a 外気温度検出センサ(外気温度検出手段)
45 制御ユニット(凍結防止制御手段)
46 操作リモコン(操作手段)
DESCRIPTION OF SYMBOLS 1 Cogeneration system 2 Fuel cell power generation device 3 Hot water storage hot water supply apparatus 4 Hot water storage tank 8 Water supply system passage 9 Hot water supply system passage 11 Pouring passage 12 Bath memory circuit 15 Waste heat recovery circulation circuit 16a Outside temperature detection sensor (outside temperature detection means)
45 Control unit (freezing prevention control means)
46 Operation remote control (operation means)
Claims (2)
前記発電装置が自立発電運転中に、前記外気温度検出手段が検出した外気温度が設定温度以下となった場合で且つ前記操作手段を介して自立発電運転中における凍結防止運転を許可するように予め設定されている場合には、前記貯湯タンクから前記浴槽への湯水の供給を自動的に行うことで凍結防止を実行する凍結防止制御手段を備えたことを特徴とするコージェネレーションシステム。 A cogeneration system comprising a power generation device, a hot water storage hot water supply device, and an exhaust heat recovery circuit that recovers exhaust heat associated with power generation of the power generation device using hot water of the hot water storage hot water supply device, the hot water storage hot water supply The apparatus includes a hot water storage tank, a water supply system passage connected to a lower portion of the hot water storage tank, a hot water supply system passage connected to an upper portion of the hot water storage tank, a branch from a middle portion of the hot water supply passage, and the hot water storage tank. A pouring passage for supplying hot water to the bathtub, a bath tracking circuit for tracking the bathtub water in the bathtub, an outside air temperature detecting means for detecting the outside air temperature, and an operating means for performing various settings of the hot water storage hot water supply device In the provided cogeneration system,
When the outside power temperature detected by the outside air temperature detecting means is lower than a set temperature during the self-sustaining power generation operation of the power generation device, and in advance, the freeze prevention operation during the self-sustaining power generation operation is permitted via the operation means. A cogeneration system comprising anti-freezing control means for performing anti-freezing by automatically supplying hot water from the hot water storage tank to the bathtub when set.
前記発電装置が自立発電運転中に、前記外気温度検出手段が検出した外気温度が設定温度以下となった場合には、前記操作手段を介して凍結懸念状態であること及び前記貯湯タンクから前記浴槽への湯水の供給を行うことを促すことを報知する凍結防止制御手段を備えたことを特徴とするコージェネレーションシステム。
A cogeneration system comprising a power generation device, a hot water storage hot water supply device, and an exhaust heat recovery circuit that recovers exhaust heat associated with power generation of the power generation device using hot water of the hot water storage hot water supply device, the hot water storage hot water supply The apparatus includes a hot water storage tank, a water supply system passage connected to a lower portion of the hot water storage tank, a hot water supply system passage connected to an upper portion of the hot water storage tank, a branch from a middle portion of the hot water supply passage, and the hot water storage tank. A pouring passage for supplying hot water to the bathtub, a bath tracking circuit for tracking the bathtub water in the bathtub, an outside air temperature detecting means for detecting the outside air temperature, and an operating means for performing various settings of the hot water storage hot water supply device In the provided cogeneration system,
If the outside air temperature detected by the outside air temperature detecting means becomes lower than a preset temperature during the self-sustained power generation operation of the power generation device, it is in a freezing concern state via the operation means and the bathtub is removed from the hot water storage tank. A cogeneration system comprising anti-freezing control means for notifying that the supply of hot water to the water is urged.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014033664A JP2015158323A (en) | 2014-02-25 | 2014-02-25 | Cogeneration system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014033664A JP2015158323A (en) | 2014-02-25 | 2014-02-25 | Cogeneration system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015158323A true JP2015158323A (en) | 2015-09-03 |
Family
ID=54182438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014033664A Pending JP2015158323A (en) | 2014-02-25 | 2014-02-25 | Cogeneration system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015158323A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018159531A (en) * | 2017-03-23 | 2018-10-11 | 大阪瓦斯株式会社 | Hot water supply system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57175291U (en) * | 1981-04-25 | 1982-11-05 | ||
JP2003090621A (en) * | 2001-09-18 | 2003-03-28 | Sekisui Chem Co Ltd | Water heater for bathtub |
JP2013072603A (en) * | 2011-09-28 | 2013-04-22 | Osaka Gas Co Ltd | Cogeneration system |
JP2013155987A (en) * | 2012-01-31 | 2013-08-15 | Toshiba Carrier Corp | Hot water supply device |
-
2014
- 2014-02-25 JP JP2014033664A patent/JP2015158323A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57175291U (en) * | 1981-04-25 | 1982-11-05 | ||
JP2003090621A (en) * | 2001-09-18 | 2003-03-28 | Sekisui Chem Co Ltd | Water heater for bathtub |
JP2013072603A (en) * | 2011-09-28 | 2013-04-22 | Osaka Gas Co Ltd | Cogeneration system |
JP2013155987A (en) * | 2012-01-31 | 2013-08-15 | Toshiba Carrier Corp | Hot water supply device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018159531A (en) * | 2017-03-23 | 2018-10-11 | 大阪瓦斯株式会社 | Hot water supply system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4884030B2 (en) | Combined heat and power system | |
JP2006214619A (en) | Hot-water supply device | |
JP2010236713A (en) | Hot water storage type hot water supply system | |
JP5601465B2 (en) | Hot water system | |
JP2007132612A (en) | Cogeneration system, its control method, and program | |
JP2003254621A (en) | Cogeneration system | |
JP2004053120A (en) | Cogeneration system | |
JP3836761B2 (en) | Cogeneration system | |
JP6635809B2 (en) | Waste heat utilization heat source equipment | |
JP5901920B2 (en) | Solar heat utilization system | |
JP6331461B2 (en) | Hot water heater | |
JP6252762B2 (en) | Hot water storage hot water system | |
JP6551062B2 (en) | Cogeneration system | |
JP2020153613A (en) | Energy supply system | |
JP7345338B2 (en) | Combined heat and power system | |
JP2015158323A (en) | Cogeneration system | |
JP2009287423A (en) | Cogeneration system | |
JP6015924B2 (en) | Hot water storage hot water system | |
JP4304601B2 (en) | Storage water heater and cogeneration system | |
JP6143092B2 (en) | Hot water storage system | |
JP5638480B2 (en) | Heat source equipment | |
JP6191352B2 (en) | Hot water storage system | |
JP2015155780A (en) | Cogeneration device | |
JP2013069598A (en) | Cogeneration system | |
JP2004053151A (en) | Hot water supply device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171206 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20180530 |