JP6635809B2 - Waste heat utilization heat source equipment - Google Patents

Waste heat utilization heat source equipment Download PDF

Info

Publication number
JP6635809B2
JP6635809B2 JP2016013296A JP2016013296A JP6635809B2 JP 6635809 B2 JP6635809 B2 JP 6635809B2 JP 2016013296 A JP2016013296 A JP 2016013296A JP 2016013296 A JP2016013296 A JP 2016013296A JP 6635809 B2 JP6635809 B2 JP 6635809B2
Authority
JP
Japan
Prior art keywords
heating
heat
hot water
path
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016013296A
Other languages
Japanese (ja)
Other versions
JP2017133748A (en
Inventor
山本 幸司
山本  幸司
善隆 柴田
善隆 柴田
早川 秀樹
秀樹 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2016013296A priority Critical patent/JP6635809B2/en
Publication of JP2017133748A publication Critical patent/JP2017133748A/en
Application granted granted Critical
Publication of JP6635809B2 publication Critical patent/JP6635809B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、排熱発生装置から発生する排熱により加熱された熱媒が循環供給される排熱回収用熱交換器と、熱消費端末を経由して熱媒が循環供給される加熱用熱交換器と、排熱回収用熱交換器と加熱用熱交換器とを巡る加熱用循環路を通して湯水を循環させる加熱用循環手段とを備え、加熱用循環路に対して、上水を水道圧にて供給する給水路が連通接続され、加熱用循環路に、当該加熱用循環路内の圧力を設定上限圧力以下に維持する安全弁が設けられた排熱利用熱源設備に関する。   The present invention provides an exhaust heat recovery heat exchanger in which a heat medium heated by exhaust heat generated from an exhaust heat generator is circulated and supplied, and a heating heat in which the heat medium is circulated and supplied via a heat consuming terminal. An exchange, and a heating circulating means for circulating hot and cold water through a heating circulation path surrounding the exhaust heat recovery heat exchanger and the heating heat exchanger. The present invention relates to a waste heat utilizing heat source equipment, in which a water supply path is connected and connected, and a safety valve is provided in the heating circulation path to maintain the pressure in the heating circulation path at or below a set upper limit pressure.

かかる排熱利用熱源設備は、排熱発生装置から発生する排熱を回収して、その回収熱を熱消費端末で消費するように構成されたものであり、排熱発生装置としては、例えば、熱と電力を併せて発生する熱電併給装置が設けられる。熱消費端末における回収熱の消費形態としては、熱消費端末の一例が床暖房装置や浴室暖房乾燥装置等の暖房装置の場合は、暖房の熱源として用いられ、熱消費端末の一例が浴槽の場合は、浴槽の湯水を加熱する熱源として用いられる(例えば、特許文献1参照。)。   Such exhaust heat utilizing heat source equipment is configured to recover the exhaust heat generated from the exhaust heat generating device and consume the recovered heat at the heat consuming terminal. As the exhaust heat generating device, for example, A cogeneration system that generates both heat and power is provided. As a form of consumption of the recovered heat in the heat consuming terminal, when an example of the heat consuming terminal is a heating device such as a floor heating device or a bathroom heating and drying device, the heat consuming terminal is used as a heat source for heating, and an example of the heat consuming terminal is a bathtub. Is used as a heat source for heating hot and cold water in a bathtub (for example, see Patent Document 1).

このような排熱利用熱源設備では、加熱用循環路を循環する湯水は排熱回収用熱交換器で加熱されることにより膨張するので、上記特許文献1には記載されていないが、加熱用循環路内の圧力が過度に上昇するのを防止するために、加熱用循環路に安全弁が設けられている。この安全弁は、加熱用循環路内の圧力が設定上限圧力を越えると、自動的に開いて加熱用循環路内の湯水を放出し、その湯水の放出に伴って加熱用循環路内の圧力が設定上限圧力以下になると、自動的に閉じるように作動するものである。
つまり、排熱発生装置を作動させると共に、その排熱発生装置から排熱を回収するように加熱用循環手段を作動させて加熱用循環路を通して湯水を循環させる排熱回収運転中は、加熱用循環路内の湯水が膨張して加熱用循環路内の圧力が上昇するが、安全弁が作動して、加熱用循環路内の湯水が安全弁を通して放出されることにより、加熱用循環路内の圧力が設定上限圧力以下に維持される。
In such a waste heat utilizing heat source equipment, although the hot water circulating in the heating circulation path expands by being heated by the waste heat recovery heat exchanger, it is not described in Patent Document 1 above. In order to prevent the pressure in the circuit from excessively increasing, a safety valve is provided in the heating circuit. When the pressure in the heating circuit exceeds the set upper limit pressure, the safety valve automatically opens to release hot water in the heating circuit, and the pressure in the heating circuit increases with the release of hot water. When the pressure becomes lower than the set upper limit pressure, it operates so as to close automatically.
That is, during the exhaust heat recovery operation in which the exhaust heat generating device is operated and the heating circulating means is operated so as to recover the exhaust heat from the exhaust heat generating device to circulate the hot water through the heating circulation path, The hot water in the circulation path expands and the pressure in the heating circulation path rises, but the safety valve operates and the hot water in the heating circulation path is discharged through the safety valve, and the pressure in the heating circulation path increases. Is maintained at or below the set upper limit pressure.

しかも、加熱用循環路に対しては、上水を水道圧にて供給する給水路が連通接続されているので、排熱回収運転中に安全弁が作動して、加熱用循環路内の湯水が安全弁から放出されたとしても、給水路を通して加熱用循環路に上水が補充される。
又、排熱発生装置を停止させることにより、排熱回収用熱交換器における湯水の加熱源がなくなって、加熱用循環路内の湯水が温度低下により収縮したとしても、給水路を通して加熱用循環路に上水が補充されるので、加熱用循環路内に湯水が満タンに満たされる状態が維持される。
In addition, since the water supply path for supplying tap water with the tap water is connected to the heating circulation path, the safety valve operates during the exhaust heat recovery operation, and the hot water in the heating circulation path is discharged. Even if the water is released from the safety valve, the tap water is supplied to the heating circuit through the water supply path.
In addition, by stopping the exhaust heat generator, the heating source of the hot water in the exhaust heat recovery heat exchanger disappears, and even if the hot water in the heating circulation path shrinks due to the temperature decrease, the heating circulation through the water supply path is performed. Since the water is replenished to the path, the state in which the hot water is completely filled in the heating circulation path is maintained.

特開2014−142116号公報JP 2014-142116 A

ところで、排熱回収運転中に、上水道が断水すると、加熱用循環路への給水路からの上水の補充が停止するので、安全弁が作動して加熱用循環路内の湯水が放出されると、加熱用循環路内の圧力変動が大きくなって、加熱用循環路内が負圧になり易い。
流体の流れを制御する弁類は、陽圧状態で動作させる場合の耐久性については担保されているが、負圧状態で動作させる場合の耐久性については考慮されていないのが一般的である。従って、加熱用循環路内が負圧の状態で排熱回収運転が継続されると、加熱用循環路に設けられた弁類の耐久性が低下する虞があり、延いては、排熱利用熱源設備の耐久性の低下につながる。
By the way, when the water supply is cut off during the exhaust heat recovery operation, the replenishment of the water supply from the water supply path to the heating circulation path is stopped, so that the safety valve is activated and the water in the heating circulation path is discharged. In addition, the pressure fluctuation in the heating circuit becomes large, and the pressure in the heating circuit tends to be negative.
Valves for controlling the flow of fluid are guaranteed for durability when operated in a positive pressure state, but generally do not consider the durability when operated in a negative pressure state. . Therefore, if the exhaust heat recovery operation is continued in a state where the pressure in the heating circulation path is negative, the durability of the valves provided in the heating circulation path may be reduced. This leads to a decrease in the durability of the heat source equipment.

又、排熱回収運転を停止すると、加熱用循環路内の湯水は温度低下に伴って収縮するが、上水道が断水していると、給水路からの上水の補充がないので、加熱用循環路内に空隙部が発生する場合がある。従って、上水道の断水中に排熱回収運転を再開すべく加熱用循環手段を再起動するときに、加熱用循環手段にエアー噛みが発生し易いので、正常に再起動できない虞があり、排熱回収運転を正常に再開することができない虞れがあった。   Also, when the exhaust heat recovery operation is stopped, the hot and cold water in the heating circulation path shrinks as the temperature decreases, but if the water supply is cut off, there is no replenishment of water from the water supply path. A void may be generated in the road. Therefore, when the heating circulating means is restarted in order to restart the exhaust heat recovery operation when the water supply is cut off, the heating circulating means is likely to be clogged with air, and there is a possibility that the heating circulating means cannot be restarted normally. There was a risk that the recovery operation could not be resumed normally.

本発明は、かかる実情に鑑みてなされたものであり、その目的は、排熱回収運転中に上水道が断水しても耐久性の低下を抑制しながら排熱回収運転を継続し得ると共に、上水道の断水中でも排熱回収運転を正常に再開し得る排熱利用熱源設備を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to enable the exhaust heat recovery operation to be continued while suppressing a decrease in durability even if the water supply is cut off during the exhaust heat recovery operation, It is an object of the present invention to provide a waste heat utilizing heat source equipment capable of normally restarting the waste heat recovery operation even when the water supply is stopped.

上記目的を達成するための本発明に係る排熱利用熱源設備は、排熱発生装置から発生する排熱により加熱された熱媒が循環供給される排熱回収用熱交換器と、
熱消費端末を経由して熱媒が循環供給される加熱用熱交換器と、
前記排熱回収用熱交換器と前記加熱用熱交換器とを巡る加熱用循環路を通して湯水を循環させる加熱用循環手段とを備え、
前記加熱用循環路に対して、上水を水道圧にて供給する給水路が連通接続され、
前記加熱用循環路に、当該加熱用循環路内の圧力を設定上限圧力以下に維持する安全弁が設けられた排熱利用熱源設備であって、その特徴構成は、
前記加熱用循環路に、前記設定上限圧力よりも低い圧力で作動する密閉式膨張タンクが接続され
前記加熱用循環路を通流する湯水を通流可能に前記加熱用循環路の途中に設けられた補助加熱用熱交換器、燃料を燃焼させた燃焼ガスを前記補助加熱用熱交換器に送るバーナ、及び、そのバーナに燃焼用空気を送る送風手段を備えた燃焼式の補助加熱手段と、
前記給水路を通しての上水の供給が遮断される断水状態を検出する断水検出手段とが設けられ、
運転を制御する運転制御手段が、前記排熱発生装置から排熱を回収するように前記加熱用循環手段を作動させて前記加熱用循環路を通して湯水を循環させているとき、前記断水検出手段にて前記断水状態が検出されると、前記バーナの燃焼を停止させた状態で前記送風手段を作動させるように構成されている点にある。
The exhaust heat utilizing heat source equipment according to the present invention for achieving the above object, an exhaust heat recovery heat exchanger to which a heat medium heated by exhaust heat generated from the exhaust heat generating device is circulated and supplied,
A heat exchanger for heating in which a heat medium is circulated and supplied via a heat consuming terminal;
Heating circulation means for circulating hot and cold water through a heating circulation path around the exhaust heat recovery heat exchanger and the heating heat exchanger,
A water supply path for supplying tap water at a tap pressure is connected to the heating circulation path,
In the heating circulation path, a waste heat utilizing heat source equipment provided with a safety valve that maintains the pressure in the heating circulation path at or below a set upper limit pressure, the characteristic configuration of which is:
A sealed expansion tank that operates at a pressure lower than the set upper limit pressure is connected to the heating circulation path ,
An auxiliary heating heat exchanger provided in the middle of the heating circulation path so that hot and cold water flowing through the heating circulation path can flow therethrough, and a combustion gas obtained by burning fuel is sent to the auxiliary heating heat exchanger. A burner, and a combustion-type auxiliary heating means having a blowing means for sending combustion air to the burner,
Water cutoff detecting means for detecting a water cutoff state in which supply of clean water is cut off through the water supply channel,
When the operation control means for controlling the operation activates the heating circulation means so as to recover the exhaust heat from the exhaust heat generation device and circulates the hot water through the heating circulation path, the water cutoff detection means When the water-cut state is detected, the blower is operated in a state in which the combustion of the burner is stopped .

上記特徴構成によれば、排熱発生装置を作動させると共に、その排熱発生装置から排熱を回収するように加熱用循環手段を作動させて加熱用循環路を通して湯水を循環させる排熱回収運転中は、加熱用循環路内の湯水が温度上昇に伴って膨張することにより、加熱用循環路内の圧力が上昇するが、加熱用循環路内の圧力が安全弁が作動する設定上限圧力に達するまでに、密閉式膨張タンクが加熱用循環路内の湯水の膨張分をタンク内に流入させるように作動する。そのような排熱回収運転中に、加熱用循環路内の湯水が温度変動に伴って膨張収縮すると、膨張の際は湯水を流入させ、収縮の際は湯水を流出させる形態で、密閉式膨張タンクが作動する。つまり、排熱回収運転中、このように密閉式膨張タンクが作動することにより、安全弁を作動させて加熱用循環路内の湯水を放出することなく、加熱用循環路内の湯水の膨張収縮を吸収することができる。   According to the above characteristic configuration, an exhaust heat recovery operation for operating the exhaust heat generation device and operating the heating circulating means so as to recover the exhaust heat from the exhaust heat generation device to circulate hot water through the heating circulation path. During the heating, the pressure in the heating circuit increases due to the expansion of the water in the heating circuit with the temperature rise, but the pressure in the heating circuit reaches the set upper limit pressure at which the safety valve operates. By the time, the closed expansion tank operates so that the expansion amount of the hot and cold water in the circulation circuit for heating flows into the tank. During such an exhaust heat recovery operation, when the hot and cold water in the heating circulation path expands and contracts due to temperature fluctuation, the hot and cold water flows in at the time of expansion and the hot water flows out at the time of contraction, and the closed expansion is performed. The tank operates. That is, during the exhaust heat recovery operation, the closed expansion tank is operated in this manner, and the expansion and contraction of the hot water in the heating circulation path is performed without operating the safety valve and discharging the hot water in the heating circulation path. Can be absorbed.

そこで、排熱回収運転中に、上水道が断水して加熱用循環路への給水路からの上水の補充が停止しても、安全弁から湯水が放出されることなく、密閉式膨張タンクによって、加熱用循環路内の湯水の膨張収縮を吸収することができるので、加熱用循環路内の圧力変動を小さくすることができて、加熱用循環路内が負圧になるのを抑制することができる。
従って、上水道の断水中に、排熱回収運転が継続されても、加熱用循環路に設けられた弁類の耐久性の低下を十分に抑制することができる。
又、排熱回収運転が停止されて、加熱用循環路内の湯水が温度低下に伴って収縮しても、密閉式膨張タンクがタンク内の湯水を加熱用循環路に流出させるように作動するので、上水道が断水して加熱用循環路への給水路からの上水の補充が停止していても、加熱用循環路内に空隙部が発生するのを回避することができる。
従って、上水道の断水中に排熱回収運転を再開すべく加熱用循環手段を再起動しても、エアー噛みの発生を十分に抑制することができるので、加熱用循環手段を正常に起動することができる。
要するに、排熱回収運転中に上水道が断水しても耐久性の低下を抑制しながら排熱回収運転を継続し得ると共に、上水道の断水中でも排熱回収運転を正常に再開し得る排熱利用熱源設備を提供することができる。
Therefore, even if the water supply is cut off during the exhaust heat recovery operation and the replenishment of the water supply from the water supply path to the heating circulation path is stopped, hot water is not released from the safety valve. Since the expansion and contraction of the hot and cold water in the heating circuit can be absorbed, the pressure fluctuation in the heating circuit can be reduced, and the negative pressure in the heating circuit can be suppressed. it can.
Therefore, even if the exhaust heat recovery operation is continued while the water supply is cut off, it is possible to sufficiently suppress the decrease in the durability of the valves provided in the heating circulation path.
Further, even if the exhaust heat recovery operation is stopped and the hot and cold water in the heating circulation path shrinks due to a decrease in temperature, the sealed expansion tank operates so that the hot and cold water in the tank flows out to the heating circulation path. Therefore, even if the water supply is cut off and the supply of clean water from the water supply path to the heating circulation path is stopped, it is possible to avoid the generation of voids in the heating circulation path.
Therefore, even if the heating circulating means is restarted to restart the exhaust heat recovery operation when the water supply is out of water, the occurrence of air entrapment can be sufficiently suppressed. Can be.
In short, even if the water supply is cut off during the waste heat recovery operation, the waste heat recovery heat source can continue the waste heat recovery operation while suppressing the decrease in durability and can normally restart the waste heat recovery operation even when the water supply is cut off. Equipment can be provided.

又、上記特徴構成によれば、排熱回収運転中に上水道が断水すると、バーナの燃焼が停止した状態で送風手段が作動することから、加熱用循環路を通流する湯水の保有熱が加熱用熱交換器で放熱されるのに加えて、補助加熱用熱交換器でも放熱されることになる。
つまり、上水道の断水中で、給水路から加熱用循環路への上水の補充が停止した状態では、加熱用循環路を通流する湯水から放熱させる能力を増大させる。それによって、加熱用循環路を通流する湯水の温度上昇を一層抑制することができて、加熱用循環路内の湯水の膨張収縮を密閉式膨張タンクの作動によって一層的確に吸収することができるので、加熱用循環路内の圧力変動を一層小さくすることができ、その結果、加熱用循環路内が負圧になるのを一層的確に抑制することができる。
従って、排熱回収運転中に上水道が断水しても、耐久性の低下を一層抑制しながら排熱回収運転を継続することができる。
Further , according to the above-mentioned characteristic configuration, when the water supply is cut off during the exhaust heat recovery operation, the blowing means operates in a state where the combustion of the burner is stopped, so that the retained heat of the hot and cold water flowing through the heating circulation path is heated. In addition to being dissipated by the heat exchanger for heat, the heat is also dissipated by the heat exchanger for auxiliary heating.
In other words, in a state where the supply of clean water from the water supply passage to the heating circulation passage is stopped while the water supply is cut off, the ability to release heat from the hot water flowing through the heating circulation passage is increased. Thereby, the temperature rise of the hot water flowing through the heating circuit can be further suppressed, and the expansion and contraction of the hot water in the heating circuit can be more accurately absorbed by the operation of the closed expansion tank. Therefore, the pressure fluctuation in the heating circuit can be further reduced, and as a result, the negative pressure in the heating circuit can be suppressed more accurately.
Therefore, even if the water supply is cut off during the exhaust heat recovery operation, the exhaust heat recovery operation can be continued while further suppressing the decrease in durability.

又、熱消費端末での熱需要が少ないときや無いときで、加熱用熱交換器での排熱回収用循環路を通流する湯水からの放熱が少ないときや無いときでも、補助加熱用熱交換器において排熱回収用循環路を通流する湯水から放熱させることにより、排熱発生装置から発生する排熱を回収処理することができるので、排熱発生装置を継続して運転することができる。   In addition, when the heat demand at the heat consuming terminal is small or no, and when there is little or no heat radiation from the hot water flowing through the exhaust heat recovery circulation path in the heating heat exchanger, By radiating heat from the hot water flowing through the exhaust heat recovery circuit in the exchanger, the exhaust heat generated from the exhaust heat generator can be recovered, so that the exhaust heat generator can be continuously operated. it can.

本発明に係る排熱利用熱源設備の更なる特徴構成は、前記給水路が槽下部に対して接続され且つ槽内の湯水を送出する出湯路が槽上部に対して接続された貯湯槽と、
槽下部から取り出した湯水を前記排熱回収用熱交換器を通過させて槽上部に戻す形態で、貯湯用循環路を通して前記貯湯槽の湯水を循環させる貯湯用循環手段と、
前記出湯路からの湯水の出湯を停止する出湯停止状態に切り換え可能な出湯停止手段とが設けられ、
前記加熱用循環路と前記貯湯用循環路とが連通接続され、
前記運転制御手段が、前記断水検出手段にて前記断水状態が検出されると、前記出湯停止手段を前記出湯停止状態に切り換えるように構成されている点にある。
A further characteristic configuration of the waste heat utilizing heat source equipment according to the present invention is a hot water storage tank in which the water supply path is connected to a lower part of the tank and a tapping path for sending out hot water in the tank is connected to an upper part of the tank,
Hot water storage circulation means for circulating the hot water in the hot water storage tank through a hot water storage circulation path in a form in which the hot water taken out from the lower part of the tank is passed through the heat exchanger for exhaust heat recovery and returned to the upper part of the tank,
A tapping stop means that can be switched to a tapping stop state for stopping tapping of tap water from the tapping path,
The heating circulation path and the hot water storage circulation path are connected and connected,
The operation control means is configured to switch the tapping stop means to the tapping stop state when the tapout detection state is detected by the tapout detection means.

上記特徴構成によれば、貯湯用循環手段を作動させると、槽下部から取り出された湯水が排熱回収用熱交換器で加熱された後、槽上部に戻される形態で、貯湯槽の湯水が貯湯用循環路を通して循環されるので、貯湯槽には、上部側が高温層となり下部側が低温層となる温度成層が形成される状態で、湯水が貯留される。貯湯槽上部から出湯路を通して湯水が給湯栓や浴槽等の湯水消費箇所に出湯されると、それに伴って、貯湯槽内が満タン状態に維持されるように、給水路を通して上水が貯湯槽の下部に補充される。   According to the above-mentioned characteristic configuration, when the hot-water storage circulating means is operated, the hot-water discharged from the lower part of the tank is heated by the heat exchanger for exhaust heat recovery, and then returned to the upper part of the tank. Since the hot water is circulated through the circulation path for hot water storage, hot water is stored in the hot water storage tank in a state where a temperature stratification in which the upper side is a high-temperature layer and the lower side is a low-temperature layer is formed. When hot water is discharged from the upper part of the hot water tank to the hot water consuming point such as a hot water faucet or bathtub through the hot water path, the water is supplied through the hot water tank so that the inside of the hot water tank is maintained full. Replenished at the bottom.

そして、上水道が断水すると、出湯停止手段が出湯停止状態に切り換えられて、出湯路から貯湯槽の湯水の出湯ができなくなることから、比較的多量の湯水が系(加熱用循環路、貯湯用循環路及び貯湯槽を含む系)外に排出されるのが防止されるので、加熱用循環路内に空隙部が発生するのを回避することができる。
従って、上水道の断水中に排熱回収運転を再開すべく加熱用循環手段を再起動しても、エアー噛みの発生を的確に抑制して、加熱用循環手段を的確に再起動することができるので、上水道の断水中でも、排熱回収運転を的確に再開することができる。
Then, when the water supply is cut off, the tapping stop means is switched to the tapping stop state, and the tapping of the tapping water from the tapping tank becomes impossible, so that a relatively large amount of tapping water is supplied to the system (heating circulation path, tapping circulation). Since it is prevented from being discharged out of the system including the channel and the hot water storage tank, it is possible to avoid the generation of voids in the heating circulation channel.
Therefore, even if the heating circulating means is restarted to restart the exhaust heat recovery operation while the water supply is cut off, it is possible to accurately suppress the occurrence of air entrapment and accurately restart the heating circulating means. Therefore, even when the water supply is cut off, the exhaust heat recovery operation can be properly restarted.

本発明に係る排熱利用熱源設備の更なる特徴構成は、前記加熱用循環路における前記加熱用熱交換器の湯水通流方向下流側と前記排熱回収用熱交換器の湯水通流方向上流側とを接続する部分と、前記貯湯槽の槽下部とが、槽下部接続路により接続され、且つ、前記加熱用循環路における前記排熱回収用熱交換器の湯水通流方向下流側と前記加熱用熱交換器の湯水通流方向上流側とを接続する部分と、前記貯湯槽の槽上部とが、槽上部接続路により接続されて、前記槽下部接続路、及び、前記加熱用循環路における前記槽下部接続路との接続部と前記槽上部接続部との接続部との間で且つ前記排熱回収用熱交換器を備えた部分である受熱用流路部分、及び、前記槽上部接続路により、前記貯湯用循環路が形成され、
前記加熱用循環手段が、前記加熱用循環路における前記受熱用流路部分に設けられることにより、前記貯湯用循環手段に兼用され、
前記加熱用循環路を通して湯水を循環させる放熱用通流状態と、前記貯湯用循環路を通して湯水を循環させる貯湯用通流状態とに湯水通流状態を切り換える通流状態切換手段が設けられ、
前記運転制御手段が、前記断水検出手段にて前記断水状態が検出されると、前記通流状態切換手段を前記放熱用通流状態に切り換えるように構成されている点にある。
A further characteristic configuration of the waste heat utilizing heat source equipment according to the present invention is that the hot water flow direction downstream of the heating heat exchanger and the hot water flow direction upstream of the waste heat recovery heat exchanger in the heating circuit. And a lower part of the hot water storage tank, the lower part of the hot water storage tank is connected by a lower part connection path, and the hot water circulation direction downstream side of the exhaust heat recovery heat exchanger in the heating circulation path, and A portion connecting the upstream side of the hot water tank in the hot water flow direction of the heating heat exchanger and a tank upper part are connected by a tank upper part connection path, the tank lower part connection path, and the heating circulation path And a heat receiving flow path portion between the connection portion with the tank lower connection path and the connection portion with the tank upper connection portion, the heat receiving flow path portion being a portion provided with the exhaust heat recovery heat exchanger, and the tank upper portion. The connection path forms the hot water storage circulation path,
The heating circulating means is provided in the heat receiving flow path portion of the heating circulating path, and is also used as the hot water storage circulating means,
A flow state switching means for switching a flow state of the hot water and a heat flow state for circulating the hot water through the circulation circuit for heating and a flow state for hot water storage to circulate the hot water through the circulation path for hot water storage is provided.
The operation control means is configured to switch the flow state switching means to the heat flow state when the water cut state is detected by the water cut detection means.

上記特徴構成によれば、加熱用循環路の一部(即ち、受熱用流路部分)を利用して、貯湯用循環路を形成すると共に、加熱用循環手段を、加熱用循環路のうちの貯湯用循環路としても利用する部分(即ち、受熱用流路部分)に設けて、貯湯用循環手段に兼用することにより、排熱利用熱源設備の構成の簡略化を図ることができる。
従って、排熱利用熱源設備の価格の低減を図ることができる。
According to the above-described characteristic configuration, a part of the heating circulation path (that is, the heat receiving flow path part) is used to form the hot water storage circulation path, and the heating circulation means is connected to the heating circulation path. By providing it in a portion that is also used as a hot-water storage circulation path (that is, a heat-receiving channel portion) and also serves as a hot-water storage circulation unit, the configuration of the exhaust heat utilization heat source equipment can be simplified.
Therefore, it is possible to reduce the cost of the exhaust heat utilization heat source equipment.

ところで、上水道の断水中で出湯路からの貯湯槽の湯水の送出が禁止された状態で、貯湯用循環路を通して湯水を循環させて、排熱発生装置の排熱を貯湯槽の湯水に回収する運転を継続すると、高温の湯層が貯湯槽の下部にまで達して貯湯槽下部の湯水の温度が高くなって、排熱発生装置の排熱を正常に回収処理できなくなる場合がある。
そこで、上水道が断水すると、湯水通流状態が放熱用通流状態に切り換えられて、加熱用循環路を通して湯水が循環されるようになることにより、継続して排熱発生装置の排熱を正常に回収処理することができるので、排熱発生装置の運転を継続することができる。
例えば、排熱発生装置が熱と電力を併せて発生する熱電併給装置である場合、上水道の断水中も、熱電併給装置を継続して運転することができるので、電力を継続して供給することができる。
By the way, in a state in which the supply of hot water from the hot water supply tank from the hot water supply path is prohibited while the water supply is cut off, the hot water is circulated through the hot water storage circulation path, and the exhaust heat of the exhaust heat generating device is collected in the hot water tank. When the operation is continued, the high-temperature hot water layer reaches the lower part of the hot water tank, and the temperature of the hot water at the lower part of the hot water tank becomes high, so that the exhaust heat of the exhaust heat generator may not be normally recovered.
Therefore, when the water supply is cut off, the hot water flow state is switched to the heat radiation flow state, and the hot water is circulated through the heating circulation path. , The operation of the exhaust heat generation device can be continued.
For example, if the waste heat generator is a cogeneration system that generates both heat and electric power, the cogeneration system can be continuously operated even when the water supply is cut off. Can be.

本発明に係る排熱利用熱源設備の更なる特徴構成は、前記貯湯槽の槽上部と、前記加熱用循環路の前記受熱用流路部分における前記排熱回収用熱交換器及び前記加熱用循環手段よりも湯水通流方向上流側の箇所とが、湯水取り出し路で接続され、並びに、
前記加熱用循環路における前記受熱用流路部分を除いた部分である授熱用流路部分の前記加熱用熱交換器よりも湯水通流方向下流側の部分と前記貯湯槽の槽下部とが、湯水戻し路で接続されて、
槽上部から前記湯水取り出し路を通して取り出した湯水を前記排熱回収用熱交換器、前記加熱用熱交換器を順に通流させて、前記湯水戻し路を通して槽下部に戻す形態で、前記貯湯槽の湯水を循環させる蓄熱暖房用循環路が形成され、
前記通流状態切換手段が、前記蓄熱暖房用循環路を通して湯水を循環させる蓄熱暖房用通流状態に湯水通流状態を切り換え可能に構成されている点にある。
A further characteristic configuration of the exhaust heat utilization heat source equipment according to the present invention is that the exhaust heat recovery heat exchanger and the heating circulation in the upper part of the hot water storage tank and the heat receiving flow path part of the heating circulation path. A point on the upstream side in the hot and cold water flowing direction than the means is connected by a hot and cold water outlet path, and
In the heating circuit, a portion of the heat transfer passage portion, which is a portion excluding the heat receiving passage portion, on the downstream side of the heating heat exchanger in the hot water flow direction and a lower portion of the hot water storage tank are formed. , Connected by hot water return path,
The hot and cold water taken out from the upper part of the tank through the hot and cold water taking-out path is passed through the heat exchanger for exhaust heat recovery and the heat exchanger for heating in order, and returned to the lower part of the tank through the hot and cold return path, and the hot water storage tank A circulation path for heat storage and heating that circulates hot and cold water is formed,
The flow state switching means is configured to be capable of switching a hot water flow state to a heat storage heating flow state in which hot water is circulated through the heat storage heating circulation path.

上記特徴構成によれば、湯水通流状態が蓄熱暖房用通流状態に切り換えられると、槽上部から取り出された湯水が排熱回収用熱交換器、加熱用熱交換器を順に通流して、槽下部に戻される形態で、貯湯槽の湯水が蓄熱暖房用循環路を通して循環されるので、貯湯槽に湯水にて蓄えられている熱が、熱消費端末にて消費される。
つまり、排熱発生装置の排熱を貯湯槽の湯水に回収することによって貯湯槽に蓄えている熱を、熱消費端末での熱需要で消費することができるので、一層の省エネルギー化を図ることができる。
従って、排熱発生装置の排熱を回収して蓄えた貯湯槽の熱を熱消費端末での熱需要で消費するようにして、一層の省エネルギー化が図られた排熱利用熱源装置において、排熱回収運転中に上水道が断水しても、耐久性の低下を抑制しながら排熱回収運転を継続できると共に、上水道の断水中でも排熱回収運転を正常に再開できるようになった。
According to the above-mentioned characteristic configuration, when the hot and cold water flowing state is switched to the heat storage and heating flowing state, the hot and cold water taken out from the upper part of the tank flows through the exhaust heat recovery heat exchanger and the heating heat exchanger in order. Since the hot water in the hot water storage tank is circulated through the heat storage heating circulation circuit in a form returned to the lower part of the tank, the heat stored in the hot water storage in the hot water storage tank is consumed by the heat consuming terminal.
In other words, the heat stored in the hot water storage tank can be consumed by the heat demand at the heat consuming terminal by collecting the exhaust heat of the exhaust heat generation device into the hot water in the hot water storage tank. Can be.
Therefore, in the waste heat utilizing heat source device which further achieves energy saving, the heat of the hot water storage tank which collects and stores the waste heat of the waste heat generating device is consumed by the heat demand at the heat consuming terminal. Even if the water supply is interrupted during the heat recovery operation, the exhaust heat recovery operation can be continued while suppressing the decrease in durability, and the exhaust heat recovery operation can be restarted normally even when the water supply is cut off.

本発明に係る排熱利用熱源設備の更なる特徴構成は、前記排熱発生装置が、熱と電力を併せて発生する熱電併給装置にて構成され、
前記熱電併給装置を冷却する冷却水が、前記熱媒として前記排熱回収用熱交換器に循環供給される点にある。
A further characteristic configuration of the waste heat utilizing heat source equipment according to the present invention is that the waste heat generating device is configured by a combined heat and power supply device that generates both heat and electric power,
The cooling water for cooling the cogeneration unit is circulated and supplied as the heat medium to the exhaust heat recovery heat exchanger.

上記特徴構成によれば、熱電併給装置を冷却する冷却水が熱媒として排熱回収用熱交換器に循環供給されることにより、熱電併給装置から発生した熱が排熱回収用熱交換器において排熱回収用循環路を循環する湯水に回収される。
つまり、排熱発生装置として熱電併給装置を設けることにより、商用電力系統が停電しても、熱電併給装置を運転させて電力と熱を発生させることにより、排熱利用熱源設備を自立運転させることができる。
そのように、商用電力系統の停電時に、排熱利用熱源設備を自立運転させているときに、更に上水道が断水していても、耐久性の低下を抑制しながら排熱回収運転を継続することができるので、停電並びに断水が伴うような災害時の設備としての機能を十分に果たすことができる。
According to the above characteristic configuration, the cooling water for cooling the cogeneration unit is circulated and supplied to the exhaust heat recovery heat exchanger as a heat medium, so that the heat generated from the cogeneration unit is generated in the exhaust heat recovery heat exchanger. It is collected in hot and cold water circulating in the exhaust heat recovery circuit.
In other words, by providing the cogeneration system as a waste heat generator, even if the commercial power system is cut off, the cogeneration system is operated to generate electric power and heat, so that the waste heat utilization heat source equipment can be operated independently. Can be.
In this way, when the commercial power system is out of power, the waste heat recovery heat source equipment is operated independently, and even if the water supply is cut off, the exhaust heat recovery operation should be continued while suppressing the decrease in durability. Therefore, it is possible to sufficiently fulfill the function as a facility in the event of a disaster such as a power outage and water outage.

コージェネレーションシステムの全体構成及び放熱運転での作動状態を示す図Diagram showing the overall configuration of the cogeneration system and the operating state during heat dissipation operation 一部蓄熱式の放熱運転での作動状態を示す図Diagram showing the operating state of the partial heat storage type heat dissipation operation 貯湯運転での作動状態を示す図Diagram showing operating state in hot water storage operation 蓄熱暖房運転での作動状態を示す図Diagram showing the operating state in the heat storage heating operation 給湯運転での作動状態を示す図Diagram showing operating state in hot water supply operation 断水時の放熱運転での作動状態を示す図Diagram showing the operation state in heat dissipation operation when water is cut off 密閉式膨張タンクの構成及び作動形態を示す図The figure which shows the structure and operation form of a closed type expansion tank.

以下、図面に基づいて、本発明の排熱利用熱源設備をコージェネレーションシステムに適用した場合の実施形態を説明する。
図1に示すように、コージェネレーションシステムは、排熱発生装置H、その排熱発生装置Hから発生する排熱により加熱された熱媒が循環供給される排熱回収用熱交換器1、熱消費端末Tを経由して熱媒が循環供給される加熱用熱交換器2、排熱回収用熱交換器1と加熱用熱交換器2とを巡る加熱用循環路L1を通して湯水を循環させる加熱用循環ポンプP1(加熱用循環手段の一例)、及び、このコージェネレーションシステムの運転を制御する運転制御部3(運転制御手段の一例)等を備えて構成されている。
又、加熱用循環路L1に対して、上水を水道圧にて供給する給水路L3が連通接続されている。
この実施形態では、排熱発生装置Hが、熱と電力を併せて発生する熱電併給装置4にて構成され、熱電併給装置4を冷却する冷却水が、熱媒として排熱回収用熱交換器1に循環供給される。
運転制御部3は、熱電併給装置4の動作、コージェネレーションシステムが備える各種ポンプ、弁及びその他の各装置の動作の制御を行う。
Hereinafter, an embodiment in which the waste heat utilizing heat source equipment of the present invention is applied to a cogeneration system will be described with reference to the drawings.
As shown in FIG. 1, a cogeneration system includes an exhaust heat recovery device H, an exhaust heat recovery heat exchanger 1 to which a heat medium heated by exhaust heat generated from the exhaust heat generation device H is circulated and supplied, Heating for circulating hot and cold water through a heating heat exchanger 2 to which a heat medium is circulated and supplied via a consuming terminal T, a heat circulation path L1 around a heat exchanger for exhaust heat recovery 1 and a heat exchanger 2 for heating. A circulation pump P1 (an example of a heating circulation unit), an operation control unit 3 (an example of an operation control unit) that controls the operation of the cogeneration system, and the like.
Further, a water supply passage L3 for supplying tap water at a tap pressure is connected to the heating circulation passage L1.
In this embodiment, the exhaust heat generation device H is configured by the cogeneration device 4 that generates heat and electric power together, and the cooling water that cools the cogeneration device 4 is used as a heat medium as a heat exchanger for exhaust heat recovery. 1 is circulated.
The operation control unit 3 controls the operation of the cogeneration system 4 and the operation of various pumps, valves, and other devices included in the cogeneration system.

更に、コージェネレーションシステムには、給水路L3が槽下部に対して接続され且つ槽内の湯水を送出する出湯路L4が槽上部に対して接続された貯湯槽5と、槽下部から取り出した湯水を排熱回収用熱交換器1を通過させて槽上部に戻す形態で、貯湯用循環路L5を通して貯湯槽5の湯水を循環させる貯湯用循環ポンプP2(貯湯用循環手段の一例)とが設けられている。
又、加熱用循環路L1に、当該加熱用循環路L1内の圧力を設定上限圧力以下に維持する安全弁6が設けられ、給水路L3には、その給水路L3を通しての上水の供給が遮断される断水状態を検出する圧力スイッチ7(断水検出手段の一例)が設けられている。
ちなみに、設定上限圧力は、給水路L3を通して供給される上水の水道圧よりも高い所定の圧力に設定されている。
Further, the cogeneration system includes a hot water storage tank 5 in which a water supply path L3 is connected to a lower part of the tank and a hot water supply path L4 for sending out hot water in the tank is connected to an upper part of the tank, And a hot-water storage circulation pump P2 (an example of a hot-water storage circulating means) that circulates the hot water in the hot-water storage tank 5 through the hot-water storage circulation path L5 in a form in which the hot water is returned to the upper part of the tank through the exhaust heat recovery heat exchanger 1. Have been.
Further, the heating circulation path L1 is provided with a safety valve 6 for maintaining the pressure in the heating circulation path L1 at or below the set upper limit pressure, and the supply of clean water through the water supply path L3 is shut off in the water supply path L3. A pressure switch 7 (an example of a water cutoff detecting unit) for detecting a water cutoff state to be performed is provided.
Incidentally, the set upper limit pressure is set to a predetermined pressure higher than the tap water pressure supplied through the water supply passage L3.

安全弁6は、加熱用循環路L1内の圧力が設定上限圧力よりも高くなると自動的に開いて、加熱用循環路L1内の湯水を放出し、加熱用循環路L1内の圧力が設定上限圧力以下になると自動的に閉じることにより、加熱用循環路L1内の圧力を設定上限圧力以下に維持するものである。
圧力スイッチ7は、給水路L3内の水圧が、断水状態を検出するための断水検知用水圧以下になるとオンするものであり、圧力スイッチ7がオンすることにより断水状態が検出されるように構成されている。
The safety valve 6 automatically opens when the pressure in the heating circulation path L1 becomes higher than a set upper limit pressure, discharges hot water in the heating circulation path L1, and increases the pressure in the heating circulation path L1. The pressure in the heating circulation path L1 is maintained at or below the set upper limit pressure by automatically closing when the pressure falls below.
The pressure switch 7 is turned on when the water pressure in the water supply passage L3 becomes equal to or lower than the water pressure for detecting water cutoff for detecting the water cutoff state. The pressure switch 7 is configured to detect the water cutoff state when the pressure switch 7 is turned on. Have been.

本発明では、加熱用循環路L1に、設定上限圧力よりも低い圧力で作動する密閉式膨張タンク40が接続されている。   In the present invention, the closed type expansion tank 40 that operates at a pressure lower than the set upper limit pressure is connected to the heating circulation path L1.

次に、コージェネレーションシステムの各部について、説明を加える。
熱電併給装置4は、発電機4a、その発電機4aを駆動するエンジン4b、及び、その発電機4aの出力電力を消費するための余剰電力回収ヒーター4c等を備えて構成されている。
図示は省略するが、発電機4aの発電出力側には、発電機4aの発電出力を商用電力系統から供給される電力と同じ電圧及び同じ周波数に変換するインバータ等が設けられている。そして、インバータから出力される電力は、様々な電力負荷装置に供給される。
Next, each part of the cogeneration system will be described.
The cogeneration system 4 includes a generator 4a, an engine 4b for driving the generator 4a, a surplus power recovery heater 4c for consuming the output power of the generator 4a, and the like.
Although not shown, an inverter for converting the power output of the generator 4a into the same voltage and the same frequency as the power supplied from the commercial power system is provided on the power output side of the generator 4a. The power output from the inverter is supplied to various power load devices.

熱電併給装置4のエンジン4bを冷却する冷却水を循環させる冷却水循環路L2が、冷却水を排熱回収用熱交換器1を巡って循環させるように設けられ、その冷却水循環路L2を通して冷却水を循環させる冷却水循環ポンプ8が設けられている。
余剰電力回収ヒーター4cは、コージェネレーションシステムから商用電力系統への逆潮流が発生しないように、発電機4aの余剰電力をコージェネレーションシステム内で消費するための装置である。図示を省略するが、余剰電力回収ヒーター4cが電力を消費することで発生した熱は、熱電併給装置4から発生する熱の一部として、冷却水循環路L2を流れる冷却水によって回収される。余剰電力回収用ヒーター4cの動作(消費電力)は運転制御部3が制御する。
つまり、エンジン4bから発生する熱、及び、余剰電力回収ヒーター4cから発生する熱等が、熱電併給装置4から発生する熱(即ち、排熱)として冷却水に回収され、その冷却水が、冷却水循環路L2を通して排熱回収用熱交換器1を巡って循環されることで、詳細は後述するが、排熱回収用熱交換器1において、熱電併給装置4から発生する排熱により、加熱用循環路L1や貯湯用循環路L5を循環する湯水が加熱されることになる。
A cooling water circulation path L2 for circulating cooling water for cooling the engine 4b of the cogeneration system 4 is provided to circulate the cooling water around the exhaust heat recovery heat exchanger 1, and through the cooling water circulation path L2. A cooling water circulation pump 8 for circulating water is provided.
The surplus power recovery heater 4c is a device for consuming the surplus power of the generator 4a in the cogeneration system so that a reverse power flow from the cogeneration system to the commercial power system does not occur. Although not shown, the heat generated by the surplus power recovery heater 4 c consuming power is recovered by the cooling water flowing through the cooling water circulation path L <b> 2 as a part of the heat generated by the cogeneration device 4. The operation (power consumption) of the surplus power recovery heater 4c is controlled by the operation control unit 3.
That is, heat generated from the engine 4b, heat generated from the surplus power recovery heater 4c, and the like are recovered in the cooling water as heat generated from the cogeneration unit 4 (that is, exhaust heat), and the cooling water is cooled. By being circulated around the heat exchanger for waste heat recovery 1 through the water circulation path L2, the heat for heat recovery in the heat exchanger for waste heat recovery 1 is generated by the waste heat generated from the combined heat and power supply device 4, as will be described later in detail. The hot and cold water circulating in the circulation path L1 and the hot water storage circulation path L5 is heated.

図1中に、加熱用循環路L1において、加熱用循環ポンプP1の通流作用による湯水の通流方向を矢印にて示す。尚、図1、並びに、以下で引用する図2〜図6において、湯水や熱媒が通流する経路を太線で示し、電磁弁や電磁比例弁で構成される各種弁のうち開弁状態のものを黒塗りで示し、並びに、各種三方弁のうち制御対象のものの開き状態のポートを黒塗りで示す。
加熱用循環路L1における加熱用熱交換器2の湯水通流方向下流側と排熱回収用熱交換器1の湯水通流方向上流側とを接続する部分の中間の接続部9と、貯湯槽5の槽下部とが、槽下部接続路L6により接続されている。又、加熱用循環路L1における排熱回収用熱交換器1の湯水通流方向下流側と加熱用熱交換器2の湯水通流方向上流側とを接続する部分の中間の接続部10と、貯湯槽5の槽上部とが、槽上部接続路L7により接続されている。
ここで、加熱用循環路L1において、槽下部接続路L6の接続部9と槽上部接続部L7の接続部10とにより分けられる2つの流路部分のうち、排熱回収用熱交換器1を備えた部分を受熱用流路部分L1tとし、加熱用熱交換器2を備えた部分を授熱用流路部分L1gとする。
In FIG. 1, the flow direction of the hot and cold water caused by the flow action of the heating circulation pump P1 in the heating circulation path L1 is indicated by an arrow. Note that, in FIG. 1 and FIGS. 2 to 6 referred to below, a path through which hot water or a heat medium flows is indicated by a bold line, and the valve in an open state among various valves including an electromagnetic valve and an electromagnetic proportional valve is shown. The ports are shown in black, and the ports of the three-way valves to be controlled, which are to be controlled, are shown in black.
A connecting portion 9 in the middle of a portion connecting the downstream side of the heating heat exchanger 2 in the hot water flow direction and the upstream side of the exhaust heat recovery heat exchanger 1 in the hot water flowing direction in the heating circulation path L1; The tank lower part No. 5 is connected by a tank lower part connection path L6. A connection portion 10 in the middle of a portion connecting the downstream side of the exhaust heat recovery heat exchanger 1 in the hot water flow direction and the upstream side of the heating heat exchanger 2 in the hot water flow direction in the heating circulation path L1; The tank upper part of the hot water storage tank 5 is connected by a tank upper part connection path L7.
Here, in the heating circulation path L1, of the two flow path parts divided by the connection part 9 of the tank lower connection path L6 and the connection part 10 of the tank upper connection L7, the exhaust heat recovery heat exchanger 1 is connected. The provided portion is referred to as a heat receiving passage portion L1t, and the portion including the heating heat exchanger 2 is referred to as a heat transfer passage portion L1g.

そして、槽下部接続路L6、加熱用循環路L1の受熱用流路部分L1t、及び、槽上部接続路L7により、前述の貯湯用循環路L5が形成されている。
加熱用循環ポンプP1が、加熱用循環路L1の受熱用流路部分L1tにおける排熱回収用熱交換器1よりも湯水通流方向上流側に設けられることにより、貯湯用循環ポンプP2に兼用されている。
槽上部接続路L7には、貯湯用循環路L5の一部を構成する加熱用循環路L1の受熱用流路部分L1tを通流する湯水のうち、貯湯槽5へ流入させる湯水の量を調整する槽流入量調整弁11が設けられている。ちなみに、この槽流入量調整弁11は、比例電磁弁にて構成される。
上述のように加熱用循環路L1及び貯湯用循環路L5が構成されることにより、加熱用循環路L1と貯湯用循環路L5とが連通接続されていることになる。
The above-described hot water storage circulation path L5 is formed by the tank lower connection path L6, the heat receiving flow path portion L1t of the heating circulation path L1, and the tank upper connection path L7.
Since the heating circulation pump P1 is provided on the heat receiving flow path portion L1t of the heating circulation path L1 upstream of the exhaust heat recovery heat exchanger 1 in the hot and cold water flowing direction, the heating circulation pump P1 is also used as the hot water storage circulation pump P2. ing.
In the tank upper connection path L7, the amount of hot water flowing into the hot water storage tank 5 among the hot water flowing through the heat receiving flow path portion L1t of the heating circulation path L1 constituting a part of the hot water storage circulation path L5 is adjusted. A tank inflow adjusting valve 11 is provided. Incidentally, the tank inflow control valve 11 is constituted by a proportional solenoid valve.
By configuring the heating circulation path L1 and the hot water storage circulation path L5 as described above, the heating circulation path L1 and the hot water storage circulation path L5 are connected to each other.

貯湯槽5の槽上部と、加熱用循環路L1の受熱用流路部分L1tにおける排熱回収用熱交換器1及び加熱用循環ポンプP1よりも湯水通流方向上流側の箇所とが、湯水取り出し路L8で接続され、並びに、加熱用循環路L1における授熱用流路部分L1gの加熱用熱交換器2よりも湯水通流方向下流側の部分と貯湯槽5の槽下部とが、湯水戻し路L9で接続されて、槽上部から湯水取り出し路L8を通して取り出した湯水を排熱回収用熱交換器1、加熱用熱交換器2を順に通流させて、湯水戻し路L9を通して槽下部に戻す形態で、貯湯槽5の湯水を循環させる蓄熱暖房用循環路L10が形成されている。   The upper portion of the hot water storage tank 5 and the portion of the heat receiving flow path portion L1t of the heating circulation path L1 upstream of the exhaust heat recovery heat exchanger 1 and the heating circulation pump P1 in the direction of hot and cold water flow take out hot and cold water. The portion of the heat transfer passage portion L1g in the heating circulation passage L1 downstream of the heating heat exchanger 2 in the hot and cold water flowing direction and the lower portion of the hot water storage tank 5 are connected to each other by the hot water return line L8. The hot and cold water, which is connected by the path L9 and taken out from the upper part of the tank through the hot and cold water taking out path L8, flows through the exhaust heat recovery heat exchanger 1 and the heating heat exchanger 2 in order, and returns to the lower part of the tank through the hot and cold water return path L9. In this embodiment, a heat storage heating circulation path L10 for circulating the hot water in the hot water storage tank 5 is formed.

この実施形態では、湯水取り出し路L8の上流端が、槽上部接続路L7における槽流入量調整弁11よりも下流側の接続部12に接続され、湯水取り出し路L8の下流端は、蓄熱暖房切換三方弁13を介して、加熱用循環路L1の受熱用流路部分L1tに接続されている。湯水取り出し路L8には、加熱用循環路L1の受熱用流路部分L1tから湯水取り出し路L8への湯水の逆流を防止する逆止弁14が設けられている。
又、槽下部接続路L6が、湯水戻し路L9に兼用されている。
つまり、蓄熱暖房用循環路L10は、槽上部接続路L7における槽側端部から接続部12までの蓄熱暖房共用流路部分L7c、湯水取り出し路L8、加熱用循環路L1の受熱用流路部分L1tにおける蓄熱暖房切換三方弁13から下流側の蓄熱暖房共用流路部分L1c、加熱用循環路L1の授熱用流路部分L1g、及び、湯水戻し路L9に兼用される槽下部接続路L6により形成される。
In this embodiment, the upstream end of the hot and cold water discharge passage L8 is connected to the connection portion 12 downstream of the tank inflow control valve 11 in the upper tank connection passage L7. The three-way valve 13 is connected to the heat receiving flow path portion L1t of the heating circulation path L1. A check valve 14 for preventing backflow of hot water from the heat receiving flow path portion L1t of the heating circulation path L1 to the hot water discharge path L8 is provided in the hot water supply path L8.
The tank lower connection path L6 is also used as the hot and cold water return path L9.
That is, the heat storage and heating circulation path L10 is a heat storage and heating shared flow path part L7c from the tank side end to the connection part 12 in the tank upper connection path L7, a hot and cold water discharge path L8, and a heat reception flow path part of the heating circulation path L1. By the heat storage / heating switching three-way valve 13 at L1t, the heat storage / heating shared flow path portion L1c, the heat transfer flow path portion L1g of the heating circulation path L1, and the tank lower connection path L6 also serving as the hot / water return path L9. It is formed.

加熱用循環路L1の授熱用流路部分L1gの中間において、分岐部15にて暖房用流路部分L1hと風呂用流路部分L1bとに分岐され、それら暖房用流路部分L1hと風呂用流路部分L1bとが合流部16にて合流されている。
そして、暖房用流路部分L1hには、加熱用熱交換器2として暖房用熱交換器2hが設けられると共に、その暖房用熱交換器2hへの湯水の通流を断続可能な暖房切換弁17も設けられている。又、風呂用流路部分L1bには、加熱用熱交換器2としての風呂用熱交換器2bと、その風呂用熱交換器2bへの湯水の通流を断続可能な風呂加熱切換弁18も設けられている。ちなみに、暖房切換弁17や風呂加熱切換弁18は、電磁弁にて構成される。
In the middle of the heat transfer passage portion L1g of the heating circulation passage L1, the branching portion 15 branches into a heating passage portion L1h and a bath passage portion L1b, and the heating passage portion L1h and the bath passage portion L1b. The flow path portion L <b> 1 b is joined at the junction 16.
A heating heat exchanger 2h is provided as the heating heat exchanger 2 in the heating flow path portion L1h, and a heating switching valve 17 capable of interrupting the flow of hot and cold water to the heating heat exchanger 2h. Is also provided. Further, a bath heat exchanger 2b as the heating heat exchanger 2 and a bath heating switching valve 18 capable of intermittently flowing hot and cold water to the bath heat exchanger 2b are provided in the bath flow path portion L1b. Is provided. Incidentally, the heating switching valve 17 and the bath heating switching valve 18 are constituted by solenoid valves.

床暖房装置や浴室暖房装置等の暖房装置19を通して熱媒を循環させる暖房用熱媒循環路L11が、熱媒を暖房用熱交換器2hを通して循環させるように設けられ、その暖房用熱媒循環路L11には、暖房用熱媒循環路L11を通して熱媒を循環させる暖房用循環ポンプP3が設けられている。
又、浴槽20の湯水を循環させる浴槽水循環路L12が、浴槽20の湯水を風呂用熱交換器2bを通して循環させるように設けられ、その浴槽水循環路L12において、浴槽20から湯水を風呂用熱交換器2bに戻す戻し流路部分には、浴槽水循環路L12を通して浴槽20の湯水を循環させる風呂用循環ポンプP4が設けられている。
つまり、この実施形態では、熱消費端末Tとして、暖房装置19及び浴槽20が設けられている。
A heating medium circulation passage L11 for circulating the heating medium through a heating device 19 such as a floor heating device or a bathroom heating device is provided so as to circulate the heating medium through the heating heat exchanger 2h. The path L11 is provided with a heating circulation pump P3 that circulates the heat medium through the heating heat medium circulation path L11.
A bath water circulation path L12 for circulating the water in the bath tub 20 is provided so as to circulate the water in the bath tub 20 through the bath heat exchanger 2b. A bath circulation pump P4 that circulates the hot water in the bathtub 20 through the bathtub water circulation path L12 is provided in the return flow path portion that returns to the vessel 2b.
That is, in this embodiment, the heating device 19 and the bathtub 20 are provided as the heat consuming terminal T.

加熱用循環路L1の受熱用流路部分L1tにおける排熱回収用熱交換器1よりも湯水通流方向下流側が、補助加熱切換三方弁21にて、補助加熱流路部分L1sと通常流路部分L1uとに分岐され、それら補助加熱流路部分L1sと通常流路部分L1uとが、合流部22にて合流されている。
補助加熱流路部分L1sには、燃料を燃焼させて発生させた熱により、補助加熱流路部分L1sを通流する湯水を加熱する燃焼式の補助加熱装置23(補助加熱手段の一例)が設けられている。この補助加熱装置23は、補助加熱流路部分L1s(即ち、加熱用循環路L1)を通流する湯水を通流可能に補助加熱流路部分L1sに設けられた補助加熱用熱交換器23a、燃料を燃焼させた燃焼ガスを補助加熱用熱交換器23aに送るバーナ23b、及び、そのバーナ23bに燃焼用空気を送る送風機23c(送風手段の一例)等を備えて構成されている。運転制御部3は、バーナ23bや送風機23cの作動等、補助加熱装置23の作動の制御を行うように構成されている。
An auxiliary heating switching three-way valve 21 in the heat receiving flow path portion L1t of the heating circulation path L1 downstream of the exhaust heat recovery heat exchanger 1 with the auxiliary heating switching three-way valve 21 connects the auxiliary heating flow path section L1s and the normal flow path section. L1u, and the auxiliary heating flow path portion L1s and the normal flow path portion L1u are joined at the junction 22.
The auxiliary heating flow path portion L1s is provided with a combustion type auxiliary heating device 23 (an example of an auxiliary heating means) that heats hot and cold water flowing through the auxiliary heating flow path portion L1s with heat generated by burning fuel. Have been. The auxiliary heating device 23 includes an auxiliary heating heat exchanger 23a provided in the auxiliary heating channel portion L1s so as to allow hot water flowing through the auxiliary heating channel portion L1s (that is, the heating circulation channel L1) to pass therethrough. It is provided with a burner 23b for sending combustion gas obtained by burning fuel to the auxiliary heating heat exchanger 23a, and a blower 23c (an example of a blowing means) for sending combustion air to the burner 23b. The operation control unit 3 is configured to control the operation of the auxiliary heating device 23, such as the operation of the burner 23b and the blower 23c.

給水路L3は、蓄熱給水切換三方弁24を介して、槽下部接続路L6の途中に接続され、その給水路L3には、逆止弁25が設けられている。
つまり、給水路L3は、槽下部接続路L6の一部(蓄熱給水切換三方弁24よりも槽側の部分)を介して、貯湯槽5の槽下部に接続されている。
又、給水路L3は、槽下部接続路L6における蓄熱給水切換三方弁23よりも貯湯槽5とは反対側の部分を介して、加熱用循環路L1に対して連通接続されている。
又、給水路L3は、貯湯用循環路L5及び蓄熱暖房用循環路L10の夫々に対しては、夫々の一部を構成する槽下部接続路L6に連通接続されている。
出湯路L4は、槽上部接続路L7における槽流入量調整弁11と湯水取り出し路L8の接続部12との間の分岐部26から分岐される形態で設けられて、槽上部接続路L7の一部(分岐部26よりも槽側の部分)を介して、貯湯槽5の槽上部に接続されている。
The water supply passage L3 is connected to the middle of the tank lower connection passage L6 via a heat storage water supply switching three-way valve 24, and the water supply passage L3 is provided with a check valve 25.
That is, the water supply passage L3 is connected to the lower part of the hot water storage tank 5 via a part of the lower tank connection path L6 (the part closer to the tank than the three-way valve 24 for switching between heat storage and water supply).
The water supply passage L3 is connected to the heating circulation passage L1 via a portion of the tank lower connection passage L6 opposite to the hot water storage tank 5 with respect to the heat storage water supply switching three-way valve 23.
Further, the water supply passage L3 is connected to each of the hot water storage circulation passage L5 and the heat storage heating circulation passage L10 to a tank lower connection passage L6 that constitutes a part of each of them.
The hot water supply path L4 is provided in a form that is branched from a branch portion 26 between the tank inflow control valve 11 and the connection section 12 of the hot and cold water discharge path L8 in the tank upper connection path L7, and is connected to the tank upper connection path L7. It is connected to the upper part of the tank of the hot water storage tank 5 through a part (a part closer to the tank than the branch part 26).

出湯路L4には、その出湯路L4を通しての出湯量を調整する出湯量調整弁27が設けられている。ちなみに、この出湯量調整弁27も、比例電磁弁にて構成される。この出湯量調整弁27を閉じると、出湯路L4からの湯水の出湯が停止されることになり、この出湯量調整弁27が、出湯路L4からの湯水の出湯を停止する出湯停止状態に切り換え可能な出湯停止手段に相当する。   The tapping path L4 is provided with a tapping amount adjusting valve 27 for adjusting the tapping amount through the tapping path L4. Incidentally, the tapping amount adjusting valve 27 is also constituted by a proportional solenoid valve. When the tapping amount adjustment valve 27 is closed, tapping of tap water from the tapping path L4 is stopped, and the tapping amount adjustment valve 27 is switched to a tapping stop state in which tapping of tapping water from the tapping path L4 is stopped. This corresponds to a possible hot water stopping means.

更に、その出湯路L4は、出湯量調整弁27よりも下流側の分岐部28にて、栓用給湯路L4vと風呂用給湯路L4bとに分岐され、栓用給湯路L4vは、給湯栓29(シャワーも含まれる)に接続され、風呂用給湯路L4bは、浴槽水循環路L12の戻し流路部分における風呂用循環ポンプP4の吸い込み側の接続部30に接続されている。
風呂用給湯路L4bには、風呂用給湯路L4bから浴槽水循環路L12への湯水の供給を断続する湯張り弁31、及び、浴槽水循環路L12から風呂用給湯路L4bへの浴槽20の湯水の逆流を防止する逆止弁32が設けられている。
給水路L3における逆止弁25よりも上流側の分岐部33から分岐された混合水路L13が、出湯路L4における出湯量調整弁27よりも上流側の部分に、その出湯路L4への上水の混合量を調整可能な混合弁34を介して接続されている。この混合水路L13にも、逆止弁35が設けられている。
Further, the hot water supply path L4 is branched into a hot water supply path L4v for a tap and a hot water supply path L4b for a bath at a branch portion 28 downstream of the hot water supply amount adjustment valve 27. (Including the shower), and the bath hot water supply passage L4b is connected to the connection portion 30 on the suction side of the bath circulation pump P4 in the return passage portion of the bathtub water circulation passage L12.
The hot water supply path L4b for bath includes a hot water filling valve 31 for intermittently supplying hot water from the hot water supply path L4b to the bathtub water circulation path L12, and a hot water supply of the bathtub 20 from the bathwater water circulation path L12 to the hot water supply path L4b for bath. A check valve 32 for preventing backflow is provided.
A mixed water passage L13 branched from a branch portion 33 of the water supply passage L3 upstream of the check valve 25 is provided at a portion of the hot water supply passage L4 upstream of the hot water discharge amount adjustment valve 27 to supply water to the hot water supply passage L4. Is connected via a mixing valve 34 capable of adjusting the mixing amount of the above. A check valve 35 is also provided in the mixing channel L13.

図7にも示すように、密閉式膨張タンク40は、容器状本体41の内部に、ダイヤフラム42にて仕切られた状態で気相室43と液相室44とを備えて構成され、更に、容器状本体41に、液相室44に連通する接続口45と、気相室43に連通する気相室圧調整口46とが設けられている。
そして、この密閉式膨張タンク40が、気相室43が上方に位置して気相室43と液相室44が上下方向に並ぶ姿勢で、接続口45によって、加熱用循環路L1の受熱用流路部分L1tにおける槽下部接続路L6の接続部9と蓄熱暖房切換三方弁13との間の部分に接続されている。このように密閉式膨張タンク40が加熱用循環路L1に接続された状態では、接続口45を通して加熱用循環路L1の受熱用流路部分L1tと密閉式膨張タンク40の液相室44の間で湯水の通流が可能となる。
As shown in FIG. 7, the sealed expansion tank 40 is configured to include a gas phase chamber 43 and a liquid phase chamber 44 in a state partitioned by a diaphragm 42 inside a container-shaped main body 41. The container body 41 is provided with a connection port 45 communicating with the liquid phase chamber 44 and a gas phase chamber pressure adjusting port 46 communicating with the gas phase chamber 43.
The closed expansion tank 40 is connected to the heating port L1 by the connection port 45 so that the gas phase chamber 43 is positioned above and the gas phase chamber 43 and the liquid phase chamber 44 are vertically arranged. The flow path portion L1t is connected to a portion between the connection portion 9 of the tank lower connection path L6 and the heat storage switching three-way valve 13. In the state where the closed expansion tank 40 is connected to the heating circulation path L1 in this manner, the connection between the heat receiving flow path portion L1t of the heating circulation path L1 and the liquid phase chamber 44 of the closed expansion tank 40 through the connection port 45. This allows hot water to flow.

密閉式膨張タンク40が加熱用循環路L1に接続されていない状態で、密閉式膨張タンク40の気相室43には、気相室圧調整口46により、給水路L3を通して供給される上水の水道圧にほぼ等しい圧力で、気体(例えば、空気又は窒素ガス)が充填されている。
又、密閉式膨張タンク40の液相室44の容積は、ダイヤフラム42が気相室43側に変形することにより増大するが、その最大容積は、密閉状態の系内に存在する設定最低給水温度の湯水がコージェネレーションシステムの運転中に最大に膨張したときの膨張分の体積よりも多少大きくなるように設定されている。
ここで、設定最低給水温度は、給水路L3にて供給される上水の最低温度に設定される。又、密閉状態の系とは、加熱用循環路L1、貯湯槽5、槽下部接続路L6、槽上部接続路L7及び湯水取り出し路L8等を含み、排熱回収用熱交換器1で加熱された湯水を密閉状態で存在させ得る系である。
In a state where the closed type expansion tank 40 is not connected to the heating circulation path L1, the water supplied to the gas phase chamber 43 of the closed type expansion tank 40 through the water supply path L3 through the gas phase chamber pressure adjusting port 46. (For example, air or nitrogen gas) at a pressure approximately equal to the tap water pressure of the gas.
The volume of the liquid phase chamber 44 of the closed type expansion tank 40 is increased by the deformation of the diaphragm 42 toward the gas phase chamber 43, but the maximum volume is the set minimum water supply temperature existing in the closed system. The volume of the hot water is set to be slightly larger than the volume of expansion when the water expands to the maximum during operation of the cogeneration system.
Here, the set minimum water supply temperature is set to the minimum temperature of the tap water supplied in the water supply passage L3. The closed system includes the heating circulation path L1, the hot water storage tank 5, the tank lower connection path L6, the tank upper connection path L7, the hot water removal path L8, and the like, and is heated by the exhaust heat recovery heat exchanger 1. It is a system that allows hot water to be present in a closed state.

次に、密閉式膨張タンク40の作動形態ついて、説明する。
加熱用循環路L1内の湯水が加熱されていない常温(例えば、コージェネレーションシステムが設置されている場所の気温)の状態では、図7の「ダイヤフラム非作動状態」に示すように、ダイヤフラム42は、液相室44の内面に沿って近接した状態であり、液相室44内には、ほとんど湯水が入っていない。
加熱用循環路L1内の湯水が加熱され始めるのに伴って、湯水の温度が上昇し始めて湯水の体積が増大し始めると、その湯水の圧力により、図7の「ダイヤフラム中間作動状態」に示すように、ダイヤフラム42が気相室43側に変形しつつ、加熱用循環路L1から接続口45を通して湯水が液相室44に流入し始める。
そして、図7の「ダイヤフラム最大作動状態」に示すように、加熱用循環路L1内の湯水が更に加熱されて膨張したとしても、その体積の増大分に相当する湯水が、接続口45を通して液相室44に流入することにより、加熱用循環路L1内の圧力が設定上限圧力に達することがなくて、安全弁6が作動することがないので、加熱用循環路L1内の湯水が安全弁6を通して外部に放出されることがない。
Next, an operation mode of the closed type expansion tank 40 will be described.
In a state in which the hot and cold water in the heating circulation path L1 is not heated at normal temperature (for example, the temperature of the place where the cogeneration system is installed), as shown in the “diaphragm non-operating state” in FIG. The liquid phase chamber 44 is close to the inner surface of the liquid phase chamber 44, and almost no hot or cold water is contained in the liquid phase chamber 44.
When the temperature of the hot water in the heating circulation path L1 begins to increase and the volume of the hot water starts to increase as the hot water in the heating circulation path L1 starts to be heated, the pressure of the hot water indicates the "diaphragm intermediate operation state" in FIG. As described above, while the diaphragm 42 is deformed toward the gas phase chamber 43, hot and cold water starts flowing into the liquid phase chamber 44 from the heating circulation path L 1 through the connection port 45.
Then, as shown in the “diaphragm maximum operating state” of FIG. 7, even if the hot and cold water in the heating circulation path L1 is further heated and expanded, the hot and cold water corresponding to the increase in the volume is supplied through the connection port 45. By flowing into the phase chamber 44, the pressure in the heating circulation path L1 does not reach the set upper limit pressure and the safety valve 6 does not operate, so that the hot and cold water in the heating circulation path L1 passes through the safety valve 6. It is not released outside.

又、加熱用循環路L1内の湯水が温度変動に伴って膨張収縮すると、膨張の際は湯水を液相室44に流入させ、収縮の際は液相室44から湯水を流出させる形態で、密閉式膨張タンク40が作動することにより、加熱用循環路L1内の圧力が設定上限圧力に達することがなくて、安全弁6が作動することがないので、加熱用循環路L1内の湯水が安全弁6を通して外部に放出されることがない。   Further, when the hot water in the heating circulation path L1 expands and contracts due to the temperature fluctuation, the hot water flows into the liquid phase chamber 44 at the time of expansion, and the hot water flows out of the liquid phase chamber 44 at the time of contraction. By operating the closed type expansion tank 40, the pressure in the heating circulation path L1 does not reach the set upper limit pressure, and the safety valve 6 does not operate. It is not released outside through 6.

コージェネレーションシステムには、更に、加熱用循環路L1を通して湯水を循環させる放熱用通流状態と、貯湯用循環路L5を通して湯水を循環させる貯湯用通流状態とに湯水通流状態を切り換える通流状態切換機構A(通流状態切換手段の一例)が設けられている。
この通流状態切換機構Aは、蓄熱暖房用循環路L10を通して湯水を循環させる蓄熱暖房用通流状態にも切り換え可能に構成されている。
The cogeneration system further includes a flow switch for switching a hot water flow state between a heat release flow state in which hot water is circulated through the heating circulation path L1 and a hot water flow state in which hot water is circulated through the hot water storage circuit L5. A state switching mechanism A (an example of a flow state switching means) is provided.
This conduction state switching mechanism A is also configured to be able to switch to a thermal storage heating flow state in which hot and cold water is circulated through the thermal storage heating circulation path L10.

つまり、図1に示すように、蓄熱暖房切換三方弁13を湯水取り出し路L8が接続されたポートを閉じ且つ他の2つのポートを開く放熱用連通状態とし、蓄熱給水切換三方弁24を3つのポート全てが開かれた蓄熱用連通状態とし、槽流入量調整弁11を閉じ、出湯量調整弁27を閉じ、暖房切換弁17及び風呂加熱切換弁18のうちの少なくとも一方(図1では暖房切換弁17)を開いた状態にすると、湯水を加熱用循環路L1を通して循環させることが可能な放熱用通流状態となる。
この放熱用通流状態では、給水路L3の水道圧が加熱用循環路L1にかかった状態になっている。
In other words, as shown in FIG. 1, the heat storage / heating switching three-way valve 13 is set to the three-way heat storage / water switching valve 24 by closing the port connected to the hot water supply passage L8 and opening the other two ports. All ports are opened to communicate with each other for heat storage, the tank inflow adjusting valve 11 is closed, the hot water adjusting valve 27 is closed, and at least one of the heating switching valve 17 and the bath heating switching valve 18 (heating switching in FIG. 1). When the valve 17) is opened, a heat-dissipating flow state is established in which hot and cold water can be circulated through the heating circulation path L1.
In this heat-dissipating flow state, the tap water pressure in the water supply passage L3 is applied to the heating circulation passage L1.

又、図2に示すように、蓄熱暖房切換三方弁13を放熱用連通状態とし、蓄熱給水切換三方弁24を蓄熱用連通状態とし、槽流入量調整弁11を開き、出湯量調整弁27を閉じ、暖房切換弁17及び風呂加熱切換弁18のうちの少なくとも一方(図2では暖房切換弁17)を開いた状態にすると、湯水を加熱用循環路L1と貯湯用循環路L5との両方を通して循環させることが可能となり、一部蓄熱式の放熱用通流状態となる。
この一部蓄熱式の放熱用通流状態では、給水路L3の水道圧が加熱用循環路L1及び貯湯用循環路L5にかかった状態になっている。
As shown in FIG. 2, the heat storage / heating switching three-way valve 13 is set to the communication state for heat radiation, the heat storage / water supply switching three-way valve 24 is set to the communication state for heat storage, the tank inflow amount adjustment valve 11 is opened, and the hot water amount adjustment valve 27 is set. When the valve is closed and at least one of the heating switching valve 17 and the bath heating switching valve 18 (the heating switching valve 17 in FIG. 2) is opened, hot water flows through both the heating circulation path L1 and the hot water storage circulation path L5. It is possible to circulate, and it becomes a part of heat storage type heat dissipation flow state.
In this partly regenerative heat-dissipating flow state, the tap water pressure in the water supply path L3 is applied to the heating circulation path L1 and the hot-water storage circulation path L5.

図3に示すように、蓄熱給水切換三方弁24を蓄熱用連通状態とし、蓄熱暖房切換三方弁13を放熱用連通状態とし、槽流入量調整弁11を開き、出湯量調整弁27を閉じ、暖房切換弁17及び風呂加熱切換弁18の両方を閉じた状態にすると、湯水を貯湯用循環路L5を通して循環させることが可能な貯湯用通流状態となる。
この貯湯用通流状態では、給水路L3の水道圧が貯湯用循環路L5にかかった状態になっている。
As shown in FIG. 3, the heat storage / feed water switching three-way valve 24 is set to the communication state for heat storage, the heat storage / heating switching three-way valve 13 is set to the communication state for heat radiation, the tank inflow amount adjustment valve 11 is opened, and the hot water amount adjustment valve 27 is closed. When both the heating switching valve 17 and the bath heating switching valve 18 are in a closed state, a hot water storage flow state in which hot water can be circulated through the hot water storage circulation path L5 is established.
In this hot water storage flow state, the tap water pressure in the water supply path L3 is applied to the hot water storage circulation path L5.

図4に示すように、蓄熱給水切換三方弁24を蓄熱用連通状態とし、蓄熱暖房切換三方弁13を加熱用循環路L1の受熱用流路部分L1tの上流側が接続されたポートを閉じ且つ他の2つのポートを開く蓄熱暖房用連通状態とし、槽流入量調整弁11を閉じ、出湯量調整弁27を閉じ、暖房切換弁17及び風呂加熱切換弁18のうちの少なくとも一方(図4では暖房切換弁17)を開いた状態にすると、湯水を蓄熱暖房用循環路L10を通して循環させることが可能な蓄熱暖房用通流状態になる。
この蓄熱暖房用通流状態では、給水路L3の水道圧が蓄熱暖房用循環路L10にかかった状態になっている。
As shown in FIG. 4, the heat storage / feed water switching three-way valve 24 is set to the communication state for heat storage, and the heat storage / heating switching three-way valve 13 closes the port connected to the upstream side of the heat receiving flow path portion L1t of the heating circulation path L1 and the other. The two ports are opened to communicate with each other for heat storage and heating, the tank inflow adjusting valve 11 is closed, the hot water amount adjusting valve 27 is closed, and at least one of the heating switching valve 17 and the bath heating switching valve 18 (heating in FIG. When the switching valve 17) is opened, the state becomes a heat storage heating flow state in which hot and cold water can be circulated through the heat storage heating circulation path L10.
In the heat storage heating flow state, the water pressure of the water supply passage L3 is applied to the heat storage heating circulation passage L10.

更に、図5に示すように、蓄熱給水切換三方弁24を槽下部接続路L6の貯湯槽5とは反対側が接続されたポートを閉じ且つ他の2つのポートを開く給水用連通状態に切り換え、槽流入量調整弁11を閉じ、出湯量調整弁27を開き、暖房切換弁17及び風呂加熱切換弁18の両方を閉じた状態にすると、貯湯槽5の湯水を出湯路L4を通して可能な出湯用通流状態になる。   Further, as shown in FIG. 5, the heat storage water supply switching three-way valve 24 is switched to a water supply communication state in which the port connected to the tank lower connection path L6 on the opposite side to the hot water storage tank 5 is closed and the other two ports are opened. When the tank inflow adjusting valve 11 is closed, the hot water adjusting valve 27 is opened, and both the heating switching valve 17 and the bath heating switching valve 18 are closed, hot water in the hot water storage tank 5 can be supplied through the hot water path L4. It becomes a flowing state.

つまり、通流状態切換機構Aが、蓄熱暖房切換三方弁13、槽流入量調整弁11、暖房切換弁17、風呂加熱切換弁18、蓄熱給水切換三方弁24、及び、出湯量調整弁27を備えて構成されて、放熱用通流状態、貯湯用通流状態、蓄熱暖房用通流状態に択一的に切り換え可能に構成されている。
更に、通流状態切換機構Aが、一部蓄熱式の放熱用通流状態、出湯用通流状態にも択一的に切り換え可能に構成されている。
In other words, the flow state switching mechanism A switches the heat storage / heating switching three-way valve 13, the tank inflow rate adjusting valve 11, the heating switching valve 17, the bath heating switching valve 18, the heat storage / water supply switching three-way valve 24, and the hot water output adjusting valve 27. It is configured so that it can be selectively switched between a heat-dissipating flow state, a hot-water storage flow state, and a heat-storage heating flow state.
Further, the flow-through state switching mechanism A is configured to be able to selectively switch to a heat-release flow-through state and a hot-water flow-through state that are partially regenerative.

運転制御部3は、通流状態切換機構A、加熱用循環ポンプP1、暖房用循環ポンプP3、風呂用循環ポンプP4、補助加熱切換三方弁21、混合弁34及び湯張り弁31等の動作を制御することにより、貯湯運転、放熱運転(排熱回収運転に相当する)、一部蓄熱式の放熱運転、蓄熱暖房運転、給湯運転を択一的に実行可能に構成されている。尚、貯湯運転、放熱運転、一部蓄熱式の放熱運転、蓄熱暖房運転は、いずれも、熱電併給装置4を作動させながら実行する運転であり、給湯運転は、熱電併給装置4を作動させることなく実行する運転である。   The operation control unit 3 performs operations of the flow state switching mechanism A, the circulation pump for heating P1, the circulation pump for heating P3, the circulation pump for bath P4, the auxiliary heating switching three-way valve 21, the mixing valve 34, the filling valve 31, and the like. By controlling, a hot water storage operation, a heat release operation (corresponding to an exhaust heat recovery operation), a partial heat storage type heat release operation, a heat storage heating operation, and a hot water supply operation can be selectively executed. Note that the hot water storage operation, the heat release operation, the partial heat storage type heat release operation, and the heat storage heating operation are all operations performed while operating the combined heat and power supply device 4, and the hot water supply operation is to operate the combined heat and power supply device 4. It is an operation to be performed without.

ちなみに、貯湯運転は、熱電併給装置4から発生する熱を回収して、その回収熱により、貯湯槽5の湯水を加熱して貯湯槽5に蓄熱する運転である。
放熱運転は、熱電併給装置4から発生する熱を回収して、その回収熱により、暖房装置19に循環される熱媒を加熱したり、浴槽20の湯水を加熱する運転である。
一部蓄熱式の放熱運転は、熱電併給装置4から発生する熱を回収して、その回収熱により、暖房装置19に循環される熱媒を加熱したり浴槽20の湯水を加熱すると共に、貯湯槽5の湯水を加熱して貯湯槽5に蓄熱する運転である。
蓄熱暖房運転は、貯湯槽5に湯水によって蓄熱されている熱を利用して、暖房装置19に循環される熱媒を加熱したり、浴槽20の湯水を加熱する運転である。
又、給湯運転は、貯湯槽5の湯水を、給湯栓29、浴槽20等に供給する運転である。
Incidentally, the hot-water storage operation is an operation of recovering heat generated from the combined heat and power supply device 4, heating the hot water in the hot-water storage tank 5 by the recovered heat, and storing the heat in the hot-water storage tank 5.
The heat dissipation operation is an operation of recovering heat generated from the cogeneration device 4 and heating the heat medium circulated to the heating device 19 or heating the hot water in the bathtub 20 by the recovered heat.
In the heat release operation of the partial heat storage type, the heat generated from the combined heat and power supply device 4 is recovered, and the recovered heat heats the heat medium circulated to the heating device 19 or heats the hot and cold water in the bathtub 20. In this operation, the hot water in the bath 5 is heated and stored in the hot water storage tank 5.
The heat storage heating operation is an operation of heating the heat medium circulated through the heating device 19 or heating the hot water of the bathtub 20 by using the heat stored in the hot water storage tank 5 by the hot water.
The hot water supply operation is an operation for supplying hot water from the hot water storage tank 5 to the hot water tap 29, the bathtub 20, and the like.

次に、運転制御部3の制御動作について説明する。
尚、運転制御部3は、熱電併給装置4の運転を制御するが、その制御では、公知の種々の手法を採用することができるので、ここでは説明を省略する。
図3に示すように、運転制御部3は、貯湯運転では、熱電併給装置4及び冷却水循環ポンプ8を作動させ、並びに、通流状態切換機構Aを貯湯用通流状態に切り換えると共に、貯湯用循環ポンプP2に兼用される加熱用循環ポンプP1を作動させる。
図3に示すように、この貯湯運転では、貯湯槽5の下部から取り出された湯水が排熱回収用熱交換器1において冷却水循環路L2を循環する発電機4aの冷却水により加熱されて貯湯槽5の上部に戻される形態で、貯湯槽5の湯水が貯湯用循環路L5を通して循環されるので、貯湯槽5には、上部側が高温層となり下部側が低温層をとなる温度成層を形成する状態で、湯水が貯留される。
この貯湯運転においては、給水路L3の水道圧が貯湯用循環路L5にかかった状態であるので、貯湯用循環路L5に上水が補充可能な状態となっている。
Next, a control operation of the operation control unit 3 will be described.
The operation control unit 3 controls the operation of the combined heat and power supply device 4. In the control, various well-known methods can be employed, and thus the description thereof is omitted here.
As shown in FIG. 3, in the hot water storage operation, the operation control unit 3 activates the co-generation system 4 and the cooling water circulation pump 8, switches the flow state switching mechanism A to the hot water storage flow state, The heating circulation pump P1, which is also used as the circulation pump P2, is operated.
As shown in FIG. 3, in this hot water storage operation, the hot and cold water taken out from the lower part of the hot water storage tank 5 is heated by the cooling water of the generator 4 a circulating in the cooling water circulation path L <b> 2 in the exhaust heat recovery heat exchanger 1 and stored. Since the hot water in the hot water storage tank 5 is circulated through the hot water storage circulation path L5 in the form of being returned to the upper part of the tank 5, the hot water storage tank 5 forms a temperature stratification in which the upper side becomes a high temperature layer and the lower side becomes a low temperature layer. Hot water is stored in the state.
In this hot-water storage operation, since the tap water pressure in the water supply path L3 is applied to the hot-water storage circuit L5, the hot-water storage circuit L5 can be supplied with clean water.

運転制御部3は、リモートコントロール式の操作部(図示省略)等から暖房装置19を運転する暖房運転や、追焚き等、浴槽20の湯水を加熱する風呂加熱運転が指令されると、放熱運転を実行する。
図1に示すように、運転制御部3は、暖房運転が指令された場合での放熱運転では、熱電併給装置4及び冷却水循環ポンプ8を作動させ、並びに、暖房切換弁17を開弁する状態で通流状態切換機構Aを放熱用通流状態に切り換えると共に、加熱用循環ポンプP1及び暖房用循環ポンプP3を作動させる。図示を省略するが、風呂加熱運転が指令された場合での放熱運転では、運転制御部3は、風呂加熱切換弁18を開弁する状態で通流状態切換機構Aを放熱用通流状態に切り換えると共に、風呂用循環ポンプP4を作動させる。
When the operation control unit 3 is instructed from a remote control type operation unit (not shown) or the like to perform a heating operation for operating the heating device 19 or a bath heating operation for heating the water in the bathtub 20 such as additional heating, the heat release operation is performed. Execute
As shown in FIG. 1, in the heat dissipation operation when the heating operation is instructed, the operation control unit 3 operates the cogeneration system 4 and the cooling water circulation pump 8 and opens the heating switching valve 17. To switch the conduction state switching mechanism A to the radiation conduction state, and to activate the heating circulation pump P1 and the heating circulation pump P3. Although illustration is omitted, in the heat dissipation operation in the case where the bath heating operation is commanded, the operation control unit 3 sets the communication state switching mechanism A to the heat dissipation communication state with the bath heating switching valve 18 opened. At the same time, the bath circulation pump P4 is operated.

図1に示すように、暖房運転が指令された場合での放熱運転では、湯水が排熱回収用熱交換器1と暖房用熱交換器2hを通過しながら、加熱用循環路L1を通して循環され、排熱回収用熱交換器1においては、加熱用循環路L1を循環する湯水が冷却水循環路L2を循環する発電機4aの冷却水により加熱され、暖房用熱交換器2hにおいては、加熱用循環路L1を循環する湯水から暖房用循環路L11を循環する熱媒に対して放熱される。
図示を省略するが、風呂加熱運転が指令された場合での暖房運転では、湯水が排熱回収用熱交換器1と風呂用熱交換器2bを通過しながら、加熱用循環路L1を通して循環され、排熱回収用熱交換器1においては、加熱用循環路L1を循環する湯水が冷却水循環路L2を循環する発電機4aの冷却水により加熱され、風呂用熱交換器2bにおいては、加熱用循環路L1を循環する湯水から浴槽水循環路L12を循環する浴槽20の湯水に対して放熱される。
As shown in FIG. 1, in the heat dissipation operation in the case where the heating operation is instructed, the hot and cold water is circulated through the heating circulation passage L1 while passing through the exhaust heat recovery heat exchanger 1 and the heating heat exchanger 2h. In the exhaust heat recovery heat exchanger 1, the hot and cold water circulating in the heating circulation path L1 is heated by the cooling water of the generator 4a circulating in the cooling water circulation path L2, and in the heating heat exchanger 2h, Heat is radiated from the hot and cold water circulating in the circulation path L1 to the heat medium circulating in the heating circulation path L11.
Although not shown, in the heating operation when the bath heating operation is instructed, the hot water is circulated through the heating circulation path L1 while passing through the exhaust heat recovery heat exchanger 1 and the bath heat exchanger 2b. In the heat exchanger for exhaust heat recovery 1, the hot and cold water circulating in the heating circulation path L1 is heated by the cooling water of the generator 4a circulating in the cooling water circulation path L2, and in the bath heat exchanger 2b, Heat is radiated from the hot water circulating in the circulation path L1 to the hot water in the bathtub 20 circulating in the bathtub water circulation path L12.

暖房装置19等の暖房負荷が小さくて、排熱回収用熱交換器1で湯水に回収される熱量よりも暖房負荷の熱量が小さいときは、一部蓄熱式の放熱運転が実行される。
図2に示すように、例えば、暖房運転が指令された場合での一部蓄熱式の放熱運転では、運転制御部3は、熱電併給装置4及び冷却水循環ポンプ8を作動させ、並びに、暖房切換弁17を開弁する状態で通流状態切換機構Aを一部蓄熱式の放熱用通流状態に切り換えると共に、加熱用循環ポンプP1及び暖房用循環ポンプP3を作動させる。
When the heating load of the heating device 19 and the like is small and the amount of heat of the heating load is smaller than the amount of heat recovered by the waste heat recovery heat exchanger 1 into hot water, a partial heat storage type heat dissipation operation is performed.
As shown in FIG. 2, for example, in a partial heat storage type heat dissipation operation when a heating operation is instructed, the operation control unit 3 operates the cogeneration system 4 and the cooling water circulation pump 8, and performs heating switching. When the valve 17 is opened, the flow state switching mechanism A is partially switched to the heat storage type heat release flow state, and the heating circulation pump P1 and the heating circulation pump P3 are operated.

図2に示すように、この暖房運転が指令された場合での一部蓄熱式の放熱運転では、排熱回収用熱交換器1を通過して冷却水循環路L2を循環する発電機4aの冷却水により加熱された湯水の一部が、暖房用熱交換器2hに供給され、残部が、貯湯槽5の上部に供給されると共に、貯湯槽5の上部に供給された湯水と同量の湯水が貯湯槽5の下部から取り出され、その貯湯槽5の下部から取り出された湯水と暖房用熱交換器2hを通過した湯水とが合流して排熱回収用熱交換器1に戻る形態で、湯水が加熱用循環路L1と貯湯用循環路L5とを循環する。
そして、槽流入量調整弁11の開度が調整されることにより、排熱回収用熱交換器1にて加熱された湯水が暖房用熱交換器2hや風呂用熱交換器2bと貯湯槽5とに分配供給される分配比率が調整される。
つまり、一部蓄熱式の放熱運転では、熱電併給装置4で発生する熱量のうち、暖房負荷に見合った分が暖房用熱交換器2hや風呂用熱交換器2bにおいて熱媒に供給され、残部が貯湯槽5に蓄熱される。
As shown in FIG. 2, in the partial heat storage type heat dissipation operation when the heating operation is commanded, the cooling of the generator 4a that circulates through the cooling water circulation path L2 through the exhaust heat recovery heat exchanger 1 is performed. A portion of the hot water heated by the water is supplied to the heating heat exchanger 2h, and the remainder is supplied to the upper portion of the hot water storage tank 5 and the same amount of hot water supplied to the upper portion of the hot water storage tank 5 Is taken out from the lower part of the hot water storage tank 5, and the hot water taken out from the lower part of the hot water storage tank 5 and the hot and cold water passed through the heating heat exchanger 2h merge to return to the exhaust heat recovery heat exchanger 1. Hot water circulates through the heating circulation path L1 and the hot water storage circulation path L5.
The opening degree of the tank inflow adjusting valve 11 is adjusted so that the hot water heated by the exhaust heat recovery heat exchanger 1 is connected to the heating heat exchanger 2 h or the bath heat exchanger 2 b and the hot water storage tank 5. And the distribution ratio to be distributed and supplied is adjusted.
That is, in the heat release operation of the partial heat storage type, of the amount of heat generated by the combined heat and power supply device 4, an amount corresponding to the heating load is supplied to the heat medium in the heating heat exchanger 2h or the bath heat exchanger 2b, and the remaining Is stored in the hot water storage tank 5.

放熱運転及び一部蓄熱式の放熱運転のいずれにおいても、給水路L3の水道圧が加熱用循環路L1にかかった状態であるので、加熱用循環路L1に上水が補充可能な状態となっている。又、一部蓄熱式の放熱運転では、給水路L3の水道圧が貯湯用循環路L5にもかかった状態であるので、貯湯用循環路L5にも上水が補充可能な状態となっている。   In both the heat dissipation operation and the partial heat storage type heat dissipation operation, the tap water pressure in the water supply passage L3 is applied to the heating circulation passage L1, so that the heating circulation passage L1 can be replenished with clean water. ing. In the heat release operation of the partial heat storage type, the tap water pressure in the water supply passage L3 is also applied to the hot water storage circuit L5, so that the hot water can also be replenished to the hot water storage circuit L5. .

図4に示すように、運転制御部3は、例えば暖房運転が指令された場合での蓄熱暖房運転では、熱電併給装置4及び冷却水循環ポンプ8を作動させ、並びに、暖房切換弁17を開弁する状態で通流状態切換機構Aを蓄熱暖房用通流状態に切り換えると共に、加熱用循環ポンプP1及び暖房用循環ポンプP3を作動させる。
図4に示すように、この暖房運転が指令された場合での蓄熱暖房運転では、貯湯槽5の上部から取り出された湯水が排熱回収用熱交換器1と暖房用熱交換器2hを順に通過した後、貯湯槽5の下部に戻される形態で、湯水が蓄熱暖房用循環路L10を通して循環される。排熱回収用熱交換器1においては、貯湯槽5の上部から取り出されて蓄熱暖房用循環路L10を循環する湯水が冷却水循環路L2を循環する発電機4aの冷却水により加熱され、暖房用熱交換器2hにおいては、蓄熱暖房用循環路L10を循環する湯水から暖房用循環路L11を循環する熱媒に対して放熱される。
この蓄熱暖房運転においては、給水路L3の水道圧が蓄熱暖房用循環路L10にかかった状態であるので、蓄熱暖房用循環路L10に上水が補充可能な状態となっている。
As shown in FIG. 4, for example, in the heat storage heating operation when the heating operation is instructed, the operation control unit 3 operates the cogeneration system 4 and the cooling water circulation pump 8 and opens the heating switching valve 17. In this state, the conduction state switching mechanism A is switched to the conduction state for heat storage and heating, and the circulation pump P1 for heating and the circulation pump P3 for heating are operated.
As shown in FIG. 4, in the heat storage heating operation in the case where the heating operation is instructed, the hot and cold water taken out from the upper part of the hot water storage tank 5 passes through the heat exchanger for exhaust heat recovery 1 and the heat exchanger for heating 2h in order. After passing through, the hot water is circulated through the heat storage and heating circulation path L10 in a form returned to the lower portion of the hot water storage tank 5. In the heat exchanger for exhaust heat recovery 1, the hot water taken out from the upper part of the hot water storage tank 5 and circulating in the heat storage and heating circulation path L10 is heated by the cooling water of the generator 4a circulating in the cooling water circulation path L2 and used for heating. In the heat exchanger 2h, heat is radiated from the hot and cold water circulating through the heat storage heating circulation path L10 to the heat medium circulating through the heating circulation path L11.
In this heat storage heating operation, since the tap water pressure in the water supply passage L3 is applied to the heat storage heating circulation circuit L10, the clean water can be replenished to the heat storage heating circulation circuit L10.

尚、熱電併給装置4を作動させる予定の時間帯ではなくて熱電併給装置4を停止させているときに、暖房運転が指令された場合、貯湯槽5に所定の蓄熱暖房許可用設定温度以上の湯水が所定量以上貯えられていると、運転制御部3は、熱電併給装置4を作動させることなく、蓄熱暖房運転を実行する。
図示を省略するが、貯湯槽5には、貯湯温度及び貯湯量を検知するために、複数の温度センサが上下方向に間隔を開けて並べて設けられている。
If the heating operation is instructed when the cogeneration device 4 is stopped, not during the scheduled time period in which the cogeneration device 4 is to be operated, the temperature of the hot water storage tank 5 is higher than the predetermined temperature for permitting heat storage and heating. When a predetermined amount or more of hot and cold water is stored, the operation control unit 3 executes the heat storage heating operation without operating the cogeneration system 4.
Although not shown, a plurality of temperature sensors are arranged in the hot water storage tank 5 at intervals in the vertical direction in order to detect the hot water storage temperature and the hot water storage amount.

図1〜図4に示すように、貯湯運転、放熱運転、一部蓄熱式の放熱運転、蓄熱暖房運転においては、運転制御部3は、補助加熱切換三方弁21を補助加熱流路部分L1sが接続されたポートを閉じ且つ他の2つのポートを開く補助加熱回避用連通状態に切り換え、排熱回収用熱交換器1にて加熱後の湯水の温度を検出する加熱温度センサの検出温度が、予め設定された目標加熱温度になるように、湯水の循環量を調整すべく、加熱用循環ポンプP1を制御する。
つまり、排熱回収用熱交換器1を通過した湯水は、通常流路部分L1uを通ることにより、補助加熱装置23を迂回して通流する。
As shown in FIGS. 1 to 4, in the hot water storage operation, the heat release operation, the partial heat storage type heat release operation, and the heat storage heating operation, the operation control unit 3 sets the auxiliary heating switching three-way valve 21 to the auxiliary heating flow path portion L1s. The connected port is closed and the other two ports are opened to switch to the communication state for avoiding auxiliary heating, and the temperature detected by the heating temperature sensor for detecting the temperature of the hot and cold water after being heated by the heat exchanger for exhaust heat recovery 1 is as follows: The circulation pump for heating P1 is controlled so as to adjust the circulation amount of hot water so as to reach a preset target heating temperature.
That is, the hot and cold water that has passed through the heat exchanger for exhaust heat recovery 1 bypasses the auxiliary heating device 23 and passes through the normal flow path portion L1u.

一方、運転制御部3は、湯水の循環量が予め設定された下限量になるように加熱用循環ポンプP1を制御しても、加熱温度センサの検出温度が目標加熱温度にならない場合は、補助加熱切換三方弁21を通常流路部分L1uが接続されたポートを閉じ且つ他の2つのポートを開く補助加熱用連通状態に切り換え、加熱後の湯水の温度が目標加熱温度になるように、バーナ23bの燃焼量を調整すると共にその燃焼量に見合った風量の燃焼用空気を送るように送風機23cを作動させる状態で、補助加熱装置23を運転する。
つまり、排熱回収用熱交換器1を通過した湯水は、補助加熱流路部分L1sを通って通流して、補助加熱装置23において目標加熱温度に加熱されることになる。
On the other hand, if the detected temperature of the heating temperature sensor does not reach the target heating temperature even when the heating circulating pump P1 is controlled so that the amount of hot water circulates to the preset lower limit amount, the operation control unit 3 The heating switching three-way valve 21 is switched to the auxiliary heating communication state in which the port connected to the normal flow path portion L1u is closed and the other two ports are opened, so that the temperature of the hot and cold water becomes the target heating temperature. The auxiliary heating device 23 is operated in a state in which the blower 23c is operated so as to adjust the combustion amount of the combustion air 23b and to send the combustion air having an air flow amount corresponding to the combustion amount.
That is, the hot and cold water that has passed through the heat exchanger for exhaust heat recovery 1 flows through the auxiliary heating flow path portion L1s, and is heated to the target heating temperature in the auxiliary heating device 23.

図5に示すように、運転制御部3は、給湯運転では、通流状態切換機構Aを出湯用通流状態に切り換える。
そして、リモートコントロール式の操作部(図示省略)等から、浴槽20に湯水を供給する湯張りの指令があると、運転制御部3は、湯張り弁31を開弁する。
この浴槽20に湯張りする給湯運転では、図5に示すように、貯湯槽5内が満タン状態に維持されるように、給水路L3を通して上水が貯湯槽5の下部に補充されながら、貯湯槽5の上部から湯水が槽上部接続路L7を介して取り出され、その湯水が出湯路L4、風呂用給湯路L4bを通流し、浴槽水循環路L12を介して浴槽20に供給される。
As shown in FIG. 5, in hot water supply operation, operation control unit 3 switches flowing state switching mechanism A to a flowing state for tapping.
Then, when there is a command to supply hot water to the bathtub 20 from a remote control type operation unit (not shown) or the like, the operation control unit 3 opens the hot water valve 31.
In the hot water supply operation in which the bathtub 20 is filled with hot water, as shown in FIG. 5, water is supplied to the lower part of the hot water tank 5 through the water supply passage L3 so as to maintain the inside of the hot water tank 5 full. Hot water is taken out from the upper part of the hot water storage tank 5 through the tank upper connection path L7, and the hot water flows through the hot water supply path L4 and the hot water supply path L4b, and is supplied to the bathtub 20 through the bathtub water circulation path L12.

又、図5に示すように、通流状態切換機構Aが出湯用通流状態に切り換えられた状態で、給湯栓29が開かれると、貯湯槽5内が満タン状態に維持されるように、給水路L3を通して上水が貯湯槽5の下部に補充されながら、貯湯槽5の上部から湯水が槽上部接続路L7を介して取り出され、その湯水が出湯路L4、栓用給湯路L4vを通流し、給湯栓29から流出する。
給湯運転では、出湯路L4に設けられている出湯温度センサ(図示省略)の検出温度が操作部にて設定された湯張り温度や栓用給湯温度になるように、貯湯槽5の上部から取り出された湯水に混合水路L13から上水を混合すべく、湯水混合弁34が制御される。
Further, as shown in FIG. 5, when the hot water tap 29 is opened in a state where the flow state switching mechanism A is switched to the hot water flow state, the inside of the hot water storage tank 5 is maintained in a full state. The hot water is taken out from the upper part of the hot water storage tank 5 through the tank upper connection path L7 while the clean water is replenished to the lower part of the hot water storage tank 5 through the water supply path L3, and the hot water is supplied to the hot water supply path L4 and the tap hot water supply path L4v. The water flows and flows out of the hot water tap 29.
In the hot water supply operation, the hot water is taken out from the upper part of the hot water storage tank 5 so that the detection temperature of the hot water temperature sensor (not shown) provided in the hot water path L4 becomes the hot water temperature or the hot water temperature for the tap set by the operation unit. The hot and cold water mixing valve 34 is controlled so as to mix the hot and cold water from the mixing water passage L13.

運転制御部3は、貯湯運転、放熱運転、一部蓄熱式の放熱運転、蓄熱暖房運転及び給湯運転のいずれを実行しているときも、圧力スイッチ7がオンすることにより断水状態が検出されると、出湯量調整弁27を閉じるように構成されている。
又、運転制御部3は、放熱運転の実行中に、圧力スイッチ7がオンすることにより断水状態が検出されると、図6に示すように、熱電併給装置4及び冷却水循環用ポンプ8の作動を継続すると共に、通流状態切換機構Aを放熱用通流状態に維持して、放熱運転を継続した状態で、出湯量調整弁27を閉じ、更に、補助加熱切換三方弁21を補助加熱用連通状態に切り換えると共に、バーナ23bの燃焼を停止させ且つ送風機23cを作動させる形態で補助加熱装置23を作動させるように構成されている。
The operation control unit 3 detects the water cutoff state by turning on the pressure switch 7 in any of the hot water storage operation, the heat release operation, the partial heat storage type heat release operation, the heat storage heating operation, and the hot water supply operation. Is configured to close the hot water amount adjustment valve 27.
When the pressure switch 7 is turned on during the heat dissipation operation to detect a water cutoff state, the operation control unit 3 operates the cogeneration system 4 and the cooling water circulation pump 8 as shown in FIG. Is maintained, the flow state switching mechanism A is maintained in the flow state for heat radiation, the heat discharge operation is continued, the tapping amount adjustment valve 27 is closed, and the auxiliary heating switching three-way valve 21 is turned on for auxiliary heating. In addition to switching to the communication state, the auxiliary heating device 23 is operated in such a manner that the combustion of the burner 23b is stopped and the blower 23c is operated.

又、運転制御部3は、貯湯運転、一部蓄熱式の放熱運転、蓄熱暖房運転のいずれを実行しているときも、圧力スイッチ7がオンすることにより断水状態が検出されると、図6に示すように、熱電併給装置4及び冷却水循環用ポンプ8の作動を継続する状態で、出湯量調整弁27を閉じるのに加えて、通流状態切換機構Aを放熱用通流状態に切り換えて、放熱運転に切り換えると共に、補助加熱切換三方弁21を補助加熱用連通状態に切り換えると共に、バーナ23bの燃焼を停止させ且つ送風機23cを作動させる形態で補助加熱装置23を作動させるように構成されている。   In any of the hot water storage operation, the partial heat storage type heat radiation operation, and the heat storage heating operation, the operation control unit 3 turns on the pressure switch 7 to detect the water cutoff state. As shown in FIG. 7, in addition to closing the hot water supply amount adjustment valve 27, the flow state switching mechanism A is switched to the heat release state in a state where the cogeneration system 4 and the cooling water circulation pump 8 continue to operate. The auxiliary heating switching three-way valve 21 is switched to the auxiliary heating communication state, the combustion of the burner 23b is stopped, and the auxiliary heating device 23 is operated in a mode of operating the blower 23c. I have.

つまり、運転制御部3が、圧力スイッチ7により断水状態が検出されると、出湯量調整弁27を閉じて、出湯路L4からの湯水の出湯を停止する出湯停止状態に切り換えるように構成されている。
又、運転制御部3が、熱電併給装置4から排熱を回収するように加熱用循環ポンプP1を作動させて加熱用循環路L1を通して湯水を循環させているとき、圧力スイッチ7により断水状態が検出されると、バーナ23bの燃焼を停止させた状態で送風機23cを作動させるように構成されていることになる。
又、運転制御部3が、圧力スイッチ7により断水状態が検出されると、通流状態切換機構Aを放熱用通流状態に切り換えるように構成されていることになる。
In other words, the operation control unit 3 is configured to close the tapping amount adjustment valve 27 and switch to a tapping stop state in which tapping of tapping water from the tapping path L4 is stopped when the pressure switch 7 detects a cutoff state. I have.
Further, when the operation control unit 3 operates the heating circulation pump P1 so as to recover the exhaust heat from the combined heat and power supply device 4 and circulates the hot water through the heating circulation passage L1, the pressure switch 7 turns off the water supply state. When detected, the blower 23c is operated with the combustion of the burner 23b stopped.
Further, the operation control section 3 is configured to switch the flow state switching mechanism A to the flow state for heat dissipation when the water break state is detected by the pressure switch 7.

本発明によるコージェネレーションシステムでは、放熱運転(即ち、排熱回収運転)中に上水道が断水すると、放熱運転がそのまま継続され、貯湯運転、一部蓄熱式の放熱運転、蓄熱暖房運転のいずれを実行しているときも、上水道が断水すると、放熱運転に切り換えられる。
そして、上水道の断水中で、加熱用循環路L1への給水路L3からの上水の補充が停止しているときに、放熱運転が実行されても、安全弁6から湯水が放出されることなく、密閉式膨張タンク40によって、加熱用循環路L1内の湯水の膨張収縮を吸収することができるので、加熱用循環路L1内の圧力変動を小さくすることができて、加熱用循環路L1内が負圧になるのを抑制することができる。
従って、上水道の断水中に、排熱回収運転が継続されても、加熱用循環路L1に設けられた弁類の耐久性の低下を十分に抑制することができる。
In the cogeneration system according to the present invention, if the water supply is cut off during the heat radiation operation (that is, the exhaust heat recovery operation), the heat radiation operation is continued as it is, and any of the hot water storage operation, the partially heat storage type heat radiation operation, and the heat storage heating operation is executed. When the water supply is cut off, the operation is switched to the heat dissipation operation.
Then, when the supply of clean water from the water supply passage L3 to the heating circulation passage L1 is stopped while the water supply is shut off, the hot water is not discharged from the safety valve 6 even if the heat radiation operation is performed. Since the expansion and contraction of the hot and cold water in the heating circuit L1 can be absorbed by the closed expansion tank 40, the pressure fluctuation in the heating circuit L1 can be reduced, and the heating circuit L1 Can be suppressed from becoming negative pressure.
Therefore, even if the exhaust heat recovery operation is continued while the water supply is cut off, it is possible to sufficiently suppress the decrease in the durability of the valves provided in the heating circulation path L1.

又、放熱運転が停止されて、加熱用循環路L1内の湯水が温度低下に伴って収縮しても、密閉式膨張タンク40がタンク内の湯水を加熱用循環路L1に流出させるように作動するので、上水道が断水して加熱用循環路L1への給水路L3からの上水の補充が停止していても、加熱用循環路L1内に空隙部が発生するのを回避することができる。
従って、上水道の断水中に放熱運転を再開すべく加熱用循環ポンプP1を再起動しても、エアー噛みの発生を十分に抑制することができて、加熱用循環ポンプP1を正常に起動することができるので、放熱運転を正常に再開することができる。
Further, even if the heat dissipation operation is stopped and the hot and cold water in the heating circulation path L1 shrinks due to a decrease in temperature, the closed expansion tank 40 operates so that the hot and cold water in the tank flows out to the heating circulation path L1. Therefore, even if the water supply is cut off and the replenishment of tap water from the water supply path L3 to the heating circulation path L1 is stopped, it is possible to avoid generation of a void in the heating circulation path L1. .
Therefore, even if the heating circulating pump P1 is restarted in order to restart the heat radiation operation while the water supply is out of water, the occurrence of air entrapment can be sufficiently suppressed, and the heating circulating pump P1 can be started normally. Therefore, the heat dissipation operation can be normally resumed.

そして、断水中に実行される放熱運転では、補助加熱器23のバーナ23bの燃焼が停止した状態で送風機23cが作動するので、加熱用循環路L1を通流する湯水の保有熱が補助加熱用熱交換器23aでも放熱されることになる。
従って、熱消費端末Tでの熱需要が少ないときや無いときで、加熱用熱交換器2での排熱回収用循環路L1を通流する湯水からの放熱が少ないときや無いときでも、補助加熱用熱交換器23aにおいて排熱回収用循環路L1を通流する湯水から放熱させることにより、熱電併給装置4から発生する排熱を適切に回収処理することができるので、熱電併給装置4を継続して運転することができる。
つまり、商用電力系統の停電時に、コージェネレーションシステムを自立運転させているときに、更に上水道が断水していても、耐久性の低下を抑制しながら放熱運転を継続することができるので、停電並びに断水が伴うような災害時の設備としての機能を十分に果たすことができる。
In the heat dissipation operation performed during the interruption of the water supply, the blower 23c operates in a state in which the combustion of the burner 23b of the auxiliary heater 23 is stopped, and the retained heat of the hot and cold water flowing through the heating circulation path L1 is used for the auxiliary heating. The heat is also dissipated by the heat exchanger 23a.
Therefore, even when the heat demand at the heat consuming terminal T is small or absent, and when there is little or no heat radiation from the hot water flowing through the exhaust heat recovery circulation path L1 in the heating heat exchanger 2, the auxiliary By radiating heat from the hot and cold water flowing through the exhaust heat recovery circulation path L1 in the heating heat exchanger 23a, the exhaust heat generated from the heat and power supply device 4 can be appropriately recovered and processed. You can continue driving.
In other words, during a power outage of the commercial power system, when the cogeneration system is operating independently, and even when the water supply is cut off, the heat dissipation operation can be continued while suppressing a decrease in durability. It can sufficiently function as a facility in the event of a disaster such as water interruption.

又、貯湯運転、放熱運転、一部蓄熱式の放熱運転、蓄熱暖房運転及び給湯運転のいずれを実行しているときも、上水道が断水すると、出湯量調整弁27が閉じられて、出湯路L4から貯湯槽5の湯水の出湯ができなくなることから、比較的多量の湯水が密閉状態の系外に排出されるのが防止されるので、加熱用循環路L1内に空隙部が発生するのを回避することができる。
従って、上水道の断水中に放熱運転を再開すべく加熱用循環ポンプP1を再起動しても、エアー噛みの発生を的確に防止して、加熱用循環ポンプP1を正常に起動することができるので、上水道の断水中でも、放熱運転を的確に再開することができる。
Also, in any of the hot water storage operation, the heat release operation, the partial heat storage type heat release operation, the heat storage heating operation, and the hot water supply operation, if the water supply is cut off, the hot water supply amount adjustment valve 27 is closed and the hot water supply path L4 Since it becomes impossible to discharge hot water from the hot water storage tank 5, a relatively large amount of hot water is prevented from being discharged out of the closed system, so that the generation of a void in the heating circulation path L1 is prevented. Can be avoided.
Therefore, even if the heating circulating pump P1 is restarted to restart the heat radiation operation during the water supply cutoff, the occurrence of air biting can be accurately prevented, and the heating circulating pump P1 can be started normally. Even when the water supply is cut off, the heat radiation operation can be restarted accurately.

〔別実施形態〕
(A)加熱用循環路L1における密閉式膨張タンク40の接続箇所は、上記の実施形態で例示した箇所、即ち、加熱用循環路L1の受熱用流路部分L1tにおける槽下部接続路L6の接続部9と蓄熱暖房切換三方弁13との間の部分に限定されるものではなく、適宜変更することができる。
[Another embodiment]
(A) The connection point of the closed type expansion tank 40 in the heating circulation path L1 is the point exemplified in the above embodiment, that is, the connection of the tank lower connection path L6 in the heat receiving flow path portion L1t of the heating circulation path L1. It is not limited to the portion between the section 9 and the heat storage switching three-way valve 13, and can be changed as appropriate.

(B)上記の実施形態では、加熱用循環路L1及び貯湯用循環路L5を、一部の流路(受熱用流路部分L1t)を共用して形成すると共に、その共用流路部分に加熱用循環ポンプP1を設けることにより、加熱用循環ポンプP1を貯湯用循環ポンプP2に兼用するように構成した。これに代えて、加熱用循環路L1及び貯湯用循環路L5夫々を、共用させる部分をなくして別個に形成し、貯湯用循環ポンプP2も専用のものを設けるように構成しても良い。 (B) In the above embodiment, the heating circulation path L1 and the hot water storage circulation path L5 are formed by sharing a part of the flow path (heat receiving flow path part L1t), and the shared flow path part is heated. By providing the circulating pump P1, the circulating pump P1 for heating is also used as the circulating pump P2 for hot water storage. Instead of this, the heating circulation path L1 and the hot water storage circulation path L5 may be separately formed without a shared part, and a dedicated hot water storage circulation pump P2 may be provided.

(C)上記の実施形態では、本発明を、貯湯タンク5を備えたコージェネレーションシステムに適用したが、本発明は、貯湯タンク5を備えないコージェネレーションシステムに適用可能である。 (C) In the above embodiment, the present invention is applied to a cogeneration system including the hot water storage tank 5, but the present invention is applicable to a cogeneration system including no hot water storage tank 5.

(D)排熱発生装置Hの一例としての熱電併給装置4は、上記の実施形態において例示し発電機4bをエンジン4bにて駆動するように構成したものに限定されるものではない。例えば、発電機をガスタービンにて駆動するように構成したものや、燃料電池にて構成したものでも良い。 (D) The combined heat and power supply device 4 as an example of the exhaust heat generation device H is not limited to the configuration illustrated in the above embodiment in which the generator 4b is driven by the engine 4b. For example, a generator configured to be driven by a gas turbine or a fuel cell may be used.

(E)排熱発生装置Hの具体例としては、上記の実施形態において例示した熱電併給装置4に限定されるものではなく、例えば、エンジン駆動式のヒートポンプ、各種燃焼装置、各種燃焼式原動機等、種々の排熱発生装置を適用することができる。 (E) Specific examples of the exhaust heat generator H are not limited to the combined heat and power supply device 4 exemplified in the above embodiment, and include, for example, an engine driven heat pump, various combustion devices, various combustion motors, and the like. Various exhaust heat generating devices can be applied.

尚、上記の実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、又、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。   It should be noted that the configuration disclosed in the above embodiment (including another embodiment, the same applies hereinafter) can be applied in combination with the configuration disclosed in other embodiments, as long as no contradiction occurs. The embodiment disclosed in the present specification is an exemplification, and the embodiment of the present invention is not limited to this, and can be appropriately modified without departing from the object of the present invention.

以上説明したように、排熱回収運転中に上水道が断水しても耐久性の低下を抑制しながら排熱回収運転を継続し得ると共に、上水道の断水中でも排熱回収運転を正常に再開し得る排熱利用熱源設備を提供することができる。   As described above, even if the water supply is cut off during the exhaust heat recovery operation, the exhaust heat recovery operation can be continued while suppressing the decrease in the durability even when the water supply is cut off, and the exhaust heat recovery operation can be restarted normally even when the water supply is cut off. An exhaust heat utilization heat source facility can be provided.

1 排熱回収用熱交換器
2 加熱用熱交換器
3 運転制御部(運転制御手段)
4 熱電併給装置
5 貯湯槽
6 安全弁
7 圧力スイッチ(断水検出手段)
9 接続部
10 接続部
23 補助加熱装置(補助加熱手段)
23a 補助加熱用熱交換器
23b バーナ
23c 送風機(送風手段)
27 出湯量調整弁(出湯停止手段)
40 密閉式膨張タンク
A 通流状態切換機構(通流状態切換手段)
H 排熱発生装置
L1 加熱用循環路
L1g 授熱用流路部分
L1t 受熱用流路部分
L3 給水路
L4 出湯路
L5 貯湯用循環路
L6 槽下部接続路
L7 槽上部接続路
L8 湯水取り出し路
L9 湯水戻し路
L10 蓄熱暖房用循環路
P1 加熱用循環ポンプ(加熱用循環手段)
P2 貯湯用循環ポンプ(貯湯用循環手段)
T 熱消費端末
DESCRIPTION OF SYMBOLS 1 Exhaust heat recovery heat exchanger 2 Heating heat exchanger 3 Operation control part (operation control means)
4 Combined heat and power supply 5 Hot water storage tank 6 Safety valve 7 Pressure switch (water cutoff detection means)
9 connecting part 10 connecting part 23 auxiliary heating device (auxiliary heating means)
23a Auxiliary heating heat exchanger 23b Burner 23c Blower (blower means)
27 Hot water supply adjusting valve (hot water stopping means)
40 Closed expansion tank A Flow state switching mechanism (flow state switching means)
H Exhaust heat generator L1 Heating circulation path L1g Heat transfer flow path section L1t Heat receiving flow path section L3 Water supply path L4 Hot water supply path L5 Hot water storage circulation path L6 Tank lower connection path L7 Tank upper connection path L8 Hot water discharge path L9 Hot water Return path L10 Heat storage circulation path P1 Heating circulation pump (heating circulation means)
P2 Hot water circulation pump (hot water circulation means)
T heat consumption terminal

Claims (5)

排熱発生装置から発生する排熱により加熱された熱媒が循環供給される排熱回収用熱交換器と、
熱消費端末を経由して熱媒が循環供給される加熱用熱交換器と、
前記排熱回収用熱交換器と前記加熱用熱交換器とを巡る加熱用循環路を通して湯水を循環させる加熱用循環手段とを備え、
前記加熱用循環路に対して、上水を水道圧にて供給する給水路が連通接続され、
前記加熱用循環路に、当該加熱用循環路内の圧力を設定上限圧力以下に維持する安全弁が設けられた排熱利用熱源設備であって、
前記加熱用循環路に、前記設定上限圧力よりも低い圧力で作動する密閉式膨張タンクが接続され
前記加熱用循環路を通流する湯水を通流可能に前記加熱用循環路の途中に設けられた補助加熱用熱交換器、燃料を燃焼させた燃焼ガスを前記補助加熱用熱交換器に送るバーナ、及び、そのバーナに燃焼用空気を送る送風手段を備えた燃焼式の補助加熱手段と、
前記給水路を通しての上水の供給が遮断される断水状態を検出する断水検出手段とが設けられ、
運転を制御する運転制御手段が、前記排熱発生装置から排熱を回収するように前記加熱用循環手段を作動させて前記加熱用循環路を通して湯水を循環させているとき、前記断水検出手段にて前記断水状態が検出されると、前記バーナの燃焼を停止させた状態で前記送風手段を作動させるように構成されている排熱利用熱源設備。
An exhaust heat recovery heat exchanger in which a heat medium heated by exhaust heat generated from the exhaust heat generator is circulated and supplied,
A heat exchanger for heating in which a heat medium is circulated and supplied via a heat consuming terminal,
Heating circulation means for circulating hot and cold water through a heating circulation path around the exhaust heat recovery heat exchanger and the heating heat exchanger,
A water supply path for supplying tap water at a tap pressure is connected to the heating circulation path,
The exhaust heat utilization heat source equipment provided with a safety valve for maintaining the pressure in the heating circulation path at or below a set upper limit pressure in the heating circulation path,
A sealed expansion tank that operates at a pressure lower than the set upper limit pressure is connected to the heating circulation path ,
An auxiliary heating heat exchanger provided in the middle of the heating circulation path so that hot and cold water flowing through the heating circulation path can flow therethrough, and a combustion gas obtained by burning fuel is sent to the auxiliary heating heat exchanger. A burner, and a combustion-type auxiliary heating means having a blowing means for sending combustion air to the burner,
Water cutoff detecting means for detecting a water cutoff state in which supply of clean water is cut off through the water supply channel,
When the operation control means for controlling the operation activates the heating circulation means so as to recover the exhaust heat from the exhaust heat generation device and circulates the hot water through the heating circulation path, the water cutoff detection means The exhaust heat utilizing heat source equipment configured to operate the blower in a state in which combustion of the burner is stopped when the water cutoff state is detected .
前記給水路が槽下部に対して接続され且つ槽内の湯水を送出する出湯路が槽上部に対して接続された貯湯槽と、
槽下部から取り出した湯水を前記排熱回収用熱交換器を通過させて槽上部に戻す形態で、貯湯用循環路を通して前記貯湯槽の湯水を循環させる貯湯用循環手段と、
前記出湯路からの湯水の出湯を停止する出湯停止状態に切り換え可能な出湯停止手段とが設けられ、
前記加熱用循環路と前記貯湯用循環路とが連通接続され、
前記運転制御手段が、前記断水検出手段にて前記断水状態が検出されると、前記出湯停止手段を前記出湯停止状態に切り換えるように構成されている請求項1に記載の排熱利用熱源設備。
A hot water storage tank in which the water supply path is connected to the lower part of the tank and a tapping path for sending out hot water in the tank is connected to the upper part of the tank;
Hot water storage circulation means for circulating the hot water in the hot water storage tank through a hot water storage circulation path in a form in which the hot water taken out from the lower part of the tank is passed through the heat exchanger for exhaust heat recovery and returned to the upper part of the tank,
A tapping stop means that can be switched to a tapping stop state for stopping tapping of tap water from the tapping path,
The heating circulation path and the hot water storage circulation path are connected and connected,
The exhaust heat utilizing heat source equipment according to claim 1, wherein the operation control means is configured to switch the tapping stop means to the tapping stop state when the cutoff state is detected by the cutoff detection means .
前記加熱用循環路における前記加熱用熱交換器の湯水通流方向下流側と前記排熱回収用熱交換器の湯水通流方向上流側とを接続する部分と、前記貯湯槽の槽下部とが、槽下部接続路により接続され、且つ、前記加熱用循環路における前記排熱回収用熱交換器の湯水通流方向下流側と前記加熱用熱交換器の湯水通流方向上流側とを接続する部分と、前記貯湯槽の槽上部とが、槽上部接続路により接続されて、前記槽下部接続路、及び、前記加熱用循環路における前記槽下部接続路との接続部と前記槽上部接続部との接続部との間で且つ前記排熱回収用熱交換器を備えた部分である受熱用流路部分、及び、前記槽上部接続路により、前記貯湯用循環路が形成され、
前記加熱用循環手段が、前記加熱用循環路における前記受熱用流路部分に設けられることにより、前記貯湯用循環手段に兼用され、
前記加熱用循環路を通して湯水を循環させる放熱用通流状態と、前記貯湯用循環路を通して湯水を循環させる貯湯用通流状態とに湯水通流状態を切り換える通流状態切換手段が設けられ、
前記運転制御手段が、前記断水検出手段にて前記断水状態が検出されると、前記通流状態切換手段を前記放熱用通流状態に切り換えるように構成されている請求項2に記載の排熱利用熱源設備。
A portion connecting the hot water flow direction downstream of the heating heat exchanger and the hot water flow direction upstream of the exhaust heat recovery heat exchanger in the heating circulation path, and a lower part of the hot water storage tank. , Connected by a tank lower connection path, and connects a downstream side of the exhaust heat recovery heat exchanger in the hot water flow direction and a upstream side of the heating heat exchanger in the hot water flow direction in the heating circulation path. And a tank upper part of the hot water storage tank are connected by a tank upper part connection path, and the tank lower part connection path, and a connection part of the heating circulation circuit with the tank lower part connection path and the tank upper part connection part And a connecting portion with the heat-receiving channel portion, which is a portion provided with the exhaust heat recovery heat exchanger, and the tank upper connecting path, the hot water storage circulation path is formed,
The heating circulating means is provided in the heat receiving flow path portion of the heating circulating path, and is also used as the hot water storage circulating means,
A flow state switching means for switching a flow state of the hot water and a heat flow state for circulating the hot water through the circulation circuit for heating and a flow state for hot water storage to circulate the hot water through the circulation path for hot water storage is provided.
3. The exhaust heat according to claim 2, wherein the operation control unit is configured to switch the conduction state switching unit to the radiation conduction state when the water interruption state is detected by the water interruption detection unit. 4. Use heat source equipment.
前記貯湯槽の槽上部と、前記加熱用循環路の前記受熱用流路部分における前記排熱回収用熱交換器及び前記加熱用循環手段よりも湯水通流方向上流側の箇所とが、湯水取り出し路で接続され、並びに、
前記加熱用循環路における前記受熱用流路部分を除いた部分である授熱用流路部分の前記加熱用熱交換器よりも湯水通流方向下流側の部分と前記貯湯槽の槽下部とが、湯水戻し路で接続されて、
槽上部から前記湯水取り出し路を通して取り出した湯水を前記排熱回収用熱交換器、前記加熱用熱交換器を順に通流させて、前記湯水戻し路を通して槽下部に戻す形態で、前記貯湯槽の湯水を循環させる蓄熱暖房用循環路が形成され、
前記通流状態切換手段が、前記蓄熱暖房用循環路を通して湯水を循環させる蓄熱暖房用通流状態に湯水通流状態を切り換え可能に構成されている請求項3に記載の排熱利用熱源設備。
The upper portion of the hot water storage tank and the portion of the heat receiving flow path portion of the heating circulation path that is upstream of the exhaust heat recovery heat exchanger and the heating circulation means in the direction of hot and cold water flow out of hot water Road, and
In the heating circuit, a portion of the heat transfer passage portion, which is a portion excluding the heat receiving passage portion, on the downstream side of the heating heat exchanger in the hot water flow direction and a lower portion of the hot water storage tank are formed. , Connected by hot water return path,
The hot and cold water taken out from the upper part of the tank through the hot and cold water taking-out path is passed through the heat exchanger for exhaust heat recovery and the heat exchanger for heating in order, and returned to the lower part of the tank through the hot and cold return path, and the hot water storage tank A circulation path for heat storage and heating that circulates hot and cold water is formed,
The exhaust heat utilizing heat source equipment according to claim 3, wherein the flow state switching means is configured to be able to switch the flow state of the hot and cold water to a flow state of the heat storage heating that circulates the hot water through the circulation path for the heat storage heating .
前記排熱発生装置が、熱と電力を併せて発生する熱電併給装置にて構成され、
前記熱電併給装置を冷却する冷却水が、前記熱媒として前記排熱回収用熱交換器に循環供給される請求項1〜4のいずれか1項に記載の排熱利用熱源設備。
The exhaust heat generator is constituted by a cogeneration system that generates heat and electric power together,
The waste heat utilizing heat source equipment according to any one of claims 1 to 4 , wherein cooling water for cooling the cogeneration unit is circulated and supplied to the waste heat recovery heat exchanger as the heat medium .
JP2016013296A 2016-01-27 2016-01-27 Waste heat utilization heat source equipment Expired - Fee Related JP6635809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016013296A JP6635809B2 (en) 2016-01-27 2016-01-27 Waste heat utilization heat source equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016013296A JP6635809B2 (en) 2016-01-27 2016-01-27 Waste heat utilization heat source equipment

Publications (2)

Publication Number Publication Date
JP2017133748A JP2017133748A (en) 2017-08-03
JP6635809B2 true JP6635809B2 (en) 2020-01-29

Family

ID=59502621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016013296A Expired - Fee Related JP6635809B2 (en) 2016-01-27 2016-01-27 Waste heat utilization heat source equipment

Country Status (1)

Country Link
JP (1) JP6635809B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108561939B (en) * 2018-06-26 2023-05-26 克拉玛依市科力节能环保技术有限公司 Waste heat utilization device based on phase change heat exchange technology
JP7262337B2 (en) * 2019-07-26 2023-04-21 大阪瓦斯株式会社 cogeneration system
CA3155778C (en) * 2019-11-05 2024-05-28 Masanori Ukibune Hot water supply device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003214705A (en) * 2002-01-25 2003-07-30 Chofu Seisakusho Co Ltd Cogeneration system
JP5107759B2 (en) * 2008-03-18 2012-12-26 リンナイ株式会社 Hot water storage hot water supply system
JP5224115B2 (en) * 2008-09-30 2013-07-03 株式会社ノーリツ Water heater
KR101155707B1 (en) * 2010-02-25 2012-06-14 주식회사 경동나비엔 Gas boiler having cistern tank combined with opened and closed type
JP6153328B2 (en) * 2013-01-23 2017-06-28 大阪瓦斯株式会社 Cogeneration system and heating equipment
JP6168958B2 (en) * 2013-10-01 2017-07-26 三菱電機株式会社 Hot water apparatus and abnormality notification method in hot water apparatus
JP6208520B2 (en) * 2013-10-07 2017-10-04 ダイニチ工業株式会社 Cogeneration system

Also Published As

Publication number Publication date
JP2017133748A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
JP4884030B2 (en) Combined heat and power system
JP2005061711A (en) Exhaust heat recovering water heater
JP5704398B2 (en) Heat recovery device, cogeneration system, and pipe misconnection detection method
JP6635809B2 (en) Waste heat utilization heat source equipment
JP2007132612A (en) Cogeneration system, its control method, and program
JP2010007950A (en) Cogeneration system
JP2008275182A (en) Exhaust heat recovering system and auxiliary heat storage tank
CA2974322C (en) Heat supply system
JP2003240345A (en) Waste heat recovery hot water supply system
JP5828219B2 (en) Cogeneration system, waste heat utilization apparatus, cogeneration system control method, and heat pump hot water supply apparatus
JP2009204239A (en) Cogeneration system
JP4913095B2 (en) Combined heat and power system
JP5792501B2 (en) Thermal storage device and method for preventing freezing thereof
JP2007132613A (en) Cogeneration system
JP7345338B2 (en) Combined heat and power system
JP4405717B2 (en) Cogeneration system
JP5480679B2 (en) Engine cooling system
JP2007198624A (en) Hot water storage type hot water supply heat source device
JP2007263388A (en) Exhaust heat recovering device
JP5224115B2 (en) Water heater
JP2015155780A (en) Cogeneration device
JP2011185573A (en) Heat supply device
JP2015158323A (en) Cogeneration system
JP2014089009A (en) Hot water storage and hot water supply system
JP2015158322A (en) Hot water storage and supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191217

R150 Certificate of patent or registration of utility model

Ref document number: 6635809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees