JP2007132613A - Cogeneration system - Google Patents

Cogeneration system Download PDF

Info

Publication number
JP2007132613A
JP2007132613A JP2005326945A JP2005326945A JP2007132613A JP 2007132613 A JP2007132613 A JP 2007132613A JP 2005326945 A JP2005326945 A JP 2005326945A JP 2005326945 A JP2005326945 A JP 2005326945A JP 2007132613 A JP2007132613 A JP 2007132613A
Authority
JP
Japan
Prior art keywords
heat
storage tank
hot water
bypass
cogeneration system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005326945A
Other languages
Japanese (ja)
Inventor
Iwao Azuma
岩男 東
Shinsuke Ide
晋介 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chofu Seisakusho Co Ltd
Original Assignee
Chofu Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chofu Seisakusho Co Ltd filed Critical Chofu Seisakusho Co Ltd
Priority to JP2005326945A priority Critical patent/JP2007132613A/en
Publication of JP2007132613A publication Critical patent/JP2007132613A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cogeneration system which sufficiently cools a cogeneration means even when a control power source is cut off. <P>SOLUTION: The cogeneration system 1 has: a fuel cell 2 generating electric power and heat; a hot water storage tank 6; a heating medium circulation passage circulating a heating medium having absorbed power generation heat of the fuel cell 2 between the hot water storage tank 6 and the fuel cell 2; a bypass passage bypassing the hot water storage tank 6 and returning the heating medium to the fuel cell 2; a hot water storage tank bypass valve 12 and a circulation passage opening and closing valve 13 which carry out changing between a passage sending the heating medium to the hot water storage tank 6, and a passage sending the heating medium to the bypass passage; and a control means. In the hot water storage tank bypass valve 12 and the circulation passage opening and closing valve 13, a passage of the heating medium is mechanically changed to a hot water storage tank 6 side when feeding to the control means is stopped. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はエンジン発電機や燃料電池のような熱電併給手段が発生する電力を負荷に供給すると共に、前記熱電併給手段の運転に伴って発生する熱を給湯・暖房等に利用するコージェネレーションシステムに関する。   The present invention relates to a cogeneration system that supplies electric power generated by a combined heat and power means such as an engine generator and a fuel cell to a load, and uses heat generated by the operation of the combined heat and power means for hot water supply and heating. .

エンジン発電機や燃料電池のような、電力と共に熱を発生する熱電併給手段の排熱を給湯・暖房等に利用するコージェネレーションシステムにおいては、熱の発生と熱需要の時間的なずれを調整するために貯湯槽を備えるのが一般的である。   In cogeneration systems that use waste heat from cogeneration means that generate heat together with power, such as engine generators and fuel cells, for hot water and heating, adjust the time lag between heat generation and heat demand. For this purpose, a hot water storage tank is generally provided.

特許文献1には発電機の排熱を回収して熱媒を加熱する排熱用熱交換手段と、貯湯槽と、前記熱媒で前記貯湯槽内の水を加熱する加熱用熱交換手段と、前記排熱用熱交換手段と前記加熱用熱交換手段の間で前記熱媒を循環させる熱媒循環配管と、前記加熱用熱交換手段をバイパスして前記熱媒を前記排熱用熱交換手段に還流させるバイパス配管と、前記熱媒を前記加熱用熱交換手段に流す流路と前記熱媒を前記バイパス配管に流す流路を切替える切替バルブを具備するコージェネレーションシステムが開示されている。このコージェネレーションシステムは熱媒の温度が貯湯槽内の水の温度より低い場合に、熱媒をバイパス配管に流すので、貯湯槽内の水の熱が熱媒に奪われることがない。そのため、安定した温度の湯を貯湯槽から供給することができる。
特開平11−223385号公報
Patent Document 1 discloses a heat exchange means for exhaust heat that recovers exhaust heat of a generator and heats a heat medium, a hot water storage tank, and a heat exchange means for heating that heats water in the hot water tank with the heat medium. A heat medium circulation pipe for circulating the heat medium between the heat exchange means for exhaust heat and the heat exchange means for heating, and the heat exchange of the heat medium by bypassing the heat exchange means for heating There is disclosed a cogeneration system including a bypass pipe for returning to the means, a flow path for flowing the heat medium to the heat exchange means for heating, and a switching valve for switching a flow path for flowing the heat medium to the bypass pipe. In this cogeneration system, when the temperature of the heat medium is lower than the temperature of the water in the hot water tank, the heat medium flows through the bypass pipe, so that the heat of the water in the hot water tank is not taken away by the heat medium. Therefore, hot water having a stable temperature can be supplied from the hot water storage tank.
JP-A-11-223385

特許文献1に記載のコージェネレーションシステムの制御装置は商用電源で駆動されている。制御装置は発電機の起動停止も制御するので、コージェネレーションシステムとは別系統の電力で駆動される必要があるからである。また、発電機特に燃料電池は一旦停止すると、再起動に時間が掛かる上にエネルギーを消費するので、頻繁な起動停止を行うことは望ましくない。そのため、何らかの原因で制御装置を駆動する電源(以下、「制御電源」と言う。)が一時的にダウンしても、発電機の運転をそのまま継続したいという技術的要請がある。しかしながら、制御電源がダウンすると流路の切り替えができなくなるから、制御電源ダウンの直前に貯湯槽をバイパスする流路を選択していた場合、熱媒が発電機の排熱を吸収して高温になっても貯湯槽に放熱できないという問題がある。そのため、発電機を冷却することができず、発電機を損傷する場合がある。   The control device of the cogeneration system described in Patent Document 1 is driven by a commercial power source. This is because the control device also controls the start and stop of the generator, and therefore it is necessary to be driven by electric power of a different system from the cogeneration system. Further, once the generator, particularly the fuel cell, is stopped, it takes time to restart and consumes energy, so it is not desirable to frequently start and stop. For this reason, there is a technical request to continue the operation of the generator even if the power source (hereinafter referred to as “control power source”) that drives the control device for some reason goes down temporarily. However, if the control power supply goes down, the flow path cannot be switched. Therefore, if a flow path that bypasses the hot water tank is selected immediately before the control power supply down, the heat medium absorbs the exhaust heat of the generator and becomes hot. Even if it becomes, there is a problem that heat cannot be radiated to the hot water tank. Therefore, the generator cannot be cooled, and the generator may be damaged.

本発明はこのような課題を解決するためになされたものであり、制御電源が遮断された場合に、熱電併給手段を十分に冷却できるようなコージェネレーションシステムを提供することを目的とする。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a cogeneration system that can sufficiently cool the combined heat and power means when the control power supply is cut off.

本発明に係るコージェネレーションシステムの第1の構成は、電力と熱を発生する熱電併給手段と、前記熱電併給手段が発生する熱を蓄熱する貯熱槽と、前記貯熱槽と前記熱電併給手段との間で熱媒を循環させる熱媒循環路と、前記貯熱槽をバイパスして前記熱媒を前記熱電併給手段に還流させるバイパス路と、前記熱媒の流路を前記貯熱槽と前記バイパス路との何れかに切替える流路切替手段と、前記流路切替手段の切替え動作を制御する制御手段とを有するコージェネレーションシステムにおいて、前記流路切替手段は、前記制御手段への給電が停止された場合には前記熱媒の流路を前記貯熱槽側に機械的に切替えるものであることを特徴とする。   A first configuration of a cogeneration system according to the present invention includes a thermoelectric supply unit that generates electric power and heat, a heat storage tank that stores heat generated by the cogeneration unit, the heat storage tank, and the cogeneration unit. A heat medium circulation path for circulating the heat medium between, a bypass path for bypassing the heat storage tank and returning the heat medium to the combined heat and power supply means, and a flow path of the heat medium for the heat storage tank In a cogeneration system having a flow path switching means for switching to any one of the bypass paths and a control means for controlling a switching operation of the flow path switching means, the flow path switching means supplies power to the control means. When stopped, the flow path of the heat medium is mechanically switched to the heat storage tank side.

この構成によれば、流路切替手段は制御手段を駆動する電源が遮断した場合に熱媒を貯熱槽に流すから、熱電併給手段が発生した熱を吸収した熱媒は貯熱槽に熱を放出し、熱を失って低温になった熱媒が熱電併給手段に還流する。したがって、制御電源がダウンしても熱電併給手段を冷却することができる。なお、ここで熱電併給手段とは、熱機関等を動力とする発電機のみならず、燃料電池等の電気化学的な発電手段を含む広い概念である。電力を発生させると、その副産物として熱を排出する装置は全て、ここでいう熱電併給手段に含まれる。   According to this configuration, since the flow path switching unit causes the heat medium to flow into the heat storage tank when the power source that drives the control unit is interrupted, the heat medium that has absorbed the heat generated by the combined heat and power supply unit is heated to the heat storage tank. , And the heat medium which has lost its heat and becomes low temperature returns to the combined heat and power supply means. Therefore, even when the control power source is down, the cogeneration means can be cooled. Here, the combined heat and power means is a broad concept including not only a generator powered by a heat engine or the like but also an electrochemical power generation means such as a fuel cell. When generating electric power, all the devices that discharge heat as a by-product are included in the cogeneration means here.

本発明に係るコージェネレーションシステムの第2の構成は、前記第1の構成において、前記流路切替手段は、前記熱媒循環路と前記バイパス路の分岐点又は合流点に配置された三方弁であることを特徴とする。   According to a second configuration of the cogeneration system according to the present invention, in the first configuration, the flow path switching unit is a three-way valve disposed at a branch point or a merge point of the heat medium circulation path and the bypass path. It is characterized by being.

この構成も、制御電源がダウンしても熱電併給手段を冷却することができる。なお、三方弁は非通電時に弁体が特定の位置に保持される弁であれば形式は問わないが、ソレノイドバルブが最適である。   This configuration can also cool the combined heat and power means even if the control power supply goes down. The three-way valve may be of any type as long as the valve body is held at a specific position when not energized, but a solenoid valve is optimal.

本発明に係るコージェネレーションシステムの第3の構成は、前記第1の構成において、前記流路切替手段は、前記熱媒循環路の前記バイパス路と並行する部分に設けられた電磁開閉弁である循環路開閉弁;及び前記バイパス路に設けられた電磁開閉弁であるバイパス路開閉弁;から構成され、前記循環路開閉弁は非通電時に開弁するノーマルオープン型であることを特徴とする。   According to a third configuration of the cogeneration system according to the present invention, in the first configuration, the flow path switching unit is an electromagnetic on-off valve provided in a portion parallel to the bypass path of the heat medium circulation path. A bypass path opening / closing valve that is an electromagnetic opening / closing valve provided in the bypass path, and the circulation path opening / closing valve is of a normally open type that opens when not energized.

この構成によれば、循環路開閉弁を非通電時に開弁するノーマルオープン型の電磁開閉弁としたので、制御電源がダウンすると、熱電併給手段の発電熱を吸収した熱媒は貯熱槽を通って放熱した後、熱電併給手段に還流する。また正常運転時においても、循環路開閉弁を開弁して、貯熱槽の熱媒を熱電併給手段に還流させる時間が長いので、ノーマルオープン型の電磁開閉弁の使用によって消費電力を節減できる。   According to this configuration, since the circuit opening / closing valve is a normally open type electromagnetic opening / closing valve that opens when not energized, when the control power source is down, the heat medium that absorbs the heat generated by the combined heat and power supply means is installed in the heat storage tank. After passing through and releasing heat, it returns to the combined heat and power supply means. In addition, even during normal operation, it takes a long time to open the circulation path on-off valve and return the heat medium in the heat storage tank to the combined heat and power supply means, so power consumption can be saved by using a normally open type electromagnetic on-off valve. .

本発明に係るコージェネレーションシステムの第4の構成は、前記第3の構成において、前記バイパス開閉弁は非通電時に閉弁するノーマルクローズ型であることを特徴とする。   A fourth configuration of the cogeneration system according to the present invention is characterized in that, in the third configuration, the bypass on-off valve is a normally closed type that closes when not energized.

この構成によれば、バイパス開閉弁は非通電時に閉弁するノーマルクローズ型の電磁開閉弁としたので、制御電源がダウンすると、熱電併給手段の発電熱を吸収した熱媒は貯熱槽をバイパスせずに全て貯熱槽に流れる。また正常運転時においても、バイパス開閉弁を閉弁して、熱媒を貯熱槽に流入させる時間が長いので、ノーマルクローズ型の電磁開閉弁の使用によって消費電力を節減できる。   According to this configuration, since the bypass on / off valve is a normally closed electromagnetic on / off valve that closes when not energized, when the control power is down, the heat medium that has absorbed the heat generated by the combined heat and power supply bypasses the heat storage tank. Without flowing, everything flows into the heat storage tank. Even during normal operation, the bypass on-off valve is closed and the time for allowing the heat medium to flow into the heat storage tank is long, so that the power consumption can be saved by using a normally-closed electromagnetic on-off valve.

本発明に係るコージェネレーションシステムの第5の構成は、前記第1乃至第4の何れかの構成において、前記貯熱槽は前記熱媒循環路を流れる熱媒と前記貯熱槽内の熱媒の間で熱交換を行う熱交換器を備えることを特徴とする。   According to a fifth configuration of the cogeneration system of the present invention, in any one of the first to fourth configurations, the heat storage tank includes a heat medium flowing through the heat medium circulation path and a heat medium in the heat storage tank. It is characterized by providing the heat exchanger which performs heat exchange between.

この構成によれば、熱媒は熱媒循環路の中で循環し外部に出ることがないので、貯熱槽内の熱媒を清浄に保つことができる。   According to this configuration, since the heat medium circulates in the heat medium circulation path and does not go outside, the heat medium in the heat storage tank can be kept clean.

本発明に係るコージェネレーションシステムの第6の構成は、前記第1乃至第4の何れかの構成において、前記熱媒は水であり、前記貯熱槽は、前記熱電併給手段が発生する熱を温水として貯湯する成層式貯湯槽であることを特徴とする   In a sixth configuration of the cogeneration system according to the present invention, in any one of the first to fourth configurations, the heating medium is water, and the heat storage tank generates heat generated by the combined heat and power supply means. It is a stratified hot water tank that stores hot water as hot water

この構成によれば、貯熱槽と熱媒循環路の間に熱交換器が介在しないので、熱交換に起因する損失が発生しない。そのため、コージェネレーションシステムの効率が向上する。   According to this configuration, since the heat exchanger is not interposed between the heat storage tank and the heat medium circulation path, loss due to heat exchange does not occur. This improves the efficiency of the cogeneration system.

以上のように本発明によれば、制御電源がダウンした場合でも熱電併給手段で発生した熱を吸収して高温になった熱媒は貯熱槽に流れて、熱を貯熱槽に放熱するから、制御電源がダウンしても、熱電併給手段を十分に冷却することができる。   As described above, according to the present invention, even when the control power source is down, the heat medium that has become a high temperature by absorbing the heat generated by the combined heat and flow means flows into the heat storage tank and dissipates the heat to the heat storage tank. Therefore, even if the control power supply is down, the combined heat and power supply means can be sufficiently cooled.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は、本発明の実施例に係るコージェネレーションシステム1の配管系統図である。コージェネレーションシステム1は、燃料電池2、熱交換器3、暖房用補助ボイラ4、ファンコイルユニット5、貯湯槽6、ラジエータ7及び後述するその他の機器から構成される。なおコージェネレーションシステム1は図示しない制御用のコンピュータによって制御されている。   FIG. 1 is a piping diagram of a cogeneration system 1 according to an embodiment of the present invention. The cogeneration system 1 includes a fuel cell 2, a heat exchanger 3, a heating auxiliary boiler 4, a fan coil unit 5, a hot water tank 6, a radiator 7, and other devices described later. The cogeneration system 1 is controlled by a control computer (not shown).

燃料電池2は、図示しない電力負荷に電力を供給する熱電併給手段であり、電力の副産物として生じる熱を冷却水に吸収させて排出する冷却配管(図示せず)を備えている。また、熱を吸収して高温になった冷却水は、前記冷却配管から流出して熱交換器3の一次側管路3aに流入する。   The fuel cell 2 is a cogeneration unit that supplies electric power to an electric load (not shown), and includes a cooling pipe (not shown) that absorbs and discharges heat generated as a by-product of electric power in cooling water. Further, the cooling water that has become high temperature by absorbing heat flows out of the cooling pipe and flows into the primary side pipe 3 a of the heat exchanger 3.

熱交換器3は、燃料電池2から流出して一次側管路3aに流入する冷却水と、ファンコイルユニット5から流出して二次側管路3bに流入する暖房水(暖房用熱媒)の間で熱交換を行って、前記暖房水を加熱する装置である。   The heat exchanger 3 includes cooling water that flows out from the fuel cell 2 and flows into the primary side pipe line 3a, and heating water that flows out from the fan coil unit 5 and flows into the secondary side pipe line 3b (heating medium for heating). It is an apparatus which heats the heating water by exchanging heat between them.

暖房用補助ボイラ4は、熱交換器3の二次側管路3bから流出する暖房水の温度がファンコイルユニット5の要求温度を下回る場合に運転されて、暖房水を加熱する補助熱源装置である。   The auxiliary heating boiler 4 is an auxiliary heat source device that is operated when the temperature of the heating water flowing out from the secondary side pipe 3b of the heat exchanger 3 is lower than the required temperature of the fan coil unit 5, and heats the heating water. is there.

ファンコイルユニット5は、熱交換器3の二次側管路3b及び暖房用補助ボイラ4を通過して流入する高温の暖房水の熱を暖房対象の空間に放出する暖房機である。なお、8は熱交換器3の二次側管路3bから暖房用補助ボイラ4及びファンコイルユニット5を通って二次側管路3bに戻る暖房水循環路において暖房水を循環させる循環ポンプである。また、9はファンコイルユニット5をバイパスする管路(暖房用熱媒バイパス路)を開閉する暖房用熱媒バイパス路開閉弁である。   The fan coil unit 5 is a heater that discharges heat of high-temperature heating water flowing through the secondary side pipe 3b of the heat exchanger 3 and the auxiliary boiler 4 for heating into the space to be heated. In addition, 8 is a circulation pump which circulates heating water in the heating water circulation path which returns from the secondary side pipe line 3b of the heat exchanger 3 to the secondary side pipe line 3b through the heating auxiliary boiler 4 and the fan coil unit 5. . Reference numeral 9 denotes a heating medium bypass passage opening / closing valve for opening and closing a pipe passage (heating heating medium bypass passage) that bypasses the fan coil unit 5.

貯湯槽6は、冷却水を貯留する容器である。燃料電池2の運転中に燃料電池2から流出する冷却水は熱交換器3で暖房水に熱を与えても十分に高温なので、貯湯槽6の頂部から注入されて、必要に応じて図示しない給湯負荷(例えばカラン、シャワーヘッド等)や熱負荷(例えば、浴槽追い焚き用熱交換器)に供給される。また、貯湯槽6の底部には滞留している間に熱を失って低温になった冷却水が溜まっているので、これを抽出して燃料電池2に還流する。なお、貯湯槽6の下部には給水管、上部には給湯管が接続されるが、ここでは図示を省略している。   The hot water tank 6 is a container for storing cooling water. The cooling water flowing out of the fuel cell 2 during the operation of the fuel cell 2 is sufficiently hot even if heat is applied to the heating water by the heat exchanger 3, so it is injected from the top of the hot water tank 6 and is not shown if necessary. It is supplied to a hot water supply load (for example, a currant, a shower head, etc.) or a heat load (for example, a heat exchanger for reheating a bathtub). In addition, since the cooling water that has lost its heat and stayed at a low temperature is retained at the bottom of the hot water tank 6, it is extracted and returned to the fuel cell 2. In addition, although a hot water supply pipe is connected to the lower part of the hot water storage tank 6 and a hot water supply pipe is connected to the upper part, illustration is abbreviate | omitted here.

ラジエータ7は、燃料電池2に還流する冷却水の温度が所定の温度を超えている場合(十分に冷却されていない場合)に、冷却水を所定の温度まで冷却する放熱器である。   The radiator 7 is a radiator that cools the cooling water to a predetermined temperature when the temperature of the cooling water returning to the fuel cell 2 exceeds a predetermined temperature (when the cooling water is not sufficiently cooled).

このように、燃料電池2で発生する発電熱を吸収して高温になった冷却水は、熱交換器3を通って貯湯槽6の頂部に注がれ、貯湯槽6の底部から抽出された低温の冷却水は必要に応じてラジエータ7で放熱されて燃料電池2に還流する。以下、本明細書では燃料電池2(熱電併給手段)と貯湯槽6(貯熱槽)の間で冷却水(熱媒)が循環する回路を「熱媒循環路」と呼ぶことにする。なお、燃料電池2の内部には図示しない冷却水循環ポンプが備えられて、発電熱を吸収して高温になった冷却水を熱媒循環路に送出している。   In this way, the cooling water that has become high temperature by absorbing the generated heat generated in the fuel cell 2 is poured into the top of the hot water tank 6 through the heat exchanger 3 and extracted from the bottom of the hot water tank 6. The low-temperature cooling water is radiated by the radiator 7 as necessary and is returned to the fuel cell 2. Hereinafter, in this specification, a circuit in which the cooling water (heat medium) circulates between the fuel cell 2 (heat and power co-feeding means) and the hot water tank 6 (heat storage tank) will be referred to as a “heat medium circulation path”. In addition, a cooling water circulation pump (not shown) is provided inside the fuel cell 2, and the cooling water that has become a high temperature by absorbing the generated heat is sent to the heat medium circulation path.

10は三方弁である。三方弁10は熱交換器3の一次側管路3aから貯湯槽6に向かう流路10aと熱交バイパス流路11から貯湯槽6に向かう流路10bを選択する切替弁である。ファンコイルユニット5が運転されている場合は、流路10aを選択し、燃料電池2から流出する高温の冷却水を熱交換器3を通過させて、ファンコイルユニット5に熱を供給する。ファンコイルユニット5が停止している場合は、流路10bを選択し、燃料電池2から流出する高温の冷却水は熱交換器3をバイパスして、直接、貯湯槽6に流れる。   10 is a three-way valve. The three-way valve 10 is a switching valve that selects a flow path 10 a from the primary side pipe 3 a of the heat exchanger 3 to the hot water storage tank 6 and a flow path 10 b from the heat exchanger bypass flow path 11 to the hot water storage tank 6. When the fan coil unit 5 is in operation, the flow path 10 a is selected, and high-temperature cooling water flowing out from the fuel cell 2 is passed through the heat exchanger 3 to supply heat to the fan coil unit 5. When the fan coil unit 5 is stopped, the flow path 10b is selected, and the high-temperature cooling water flowing out from the fuel cell 2 bypasses the heat exchanger 3 and flows directly into the hot water tank 6.

12は貯湯槽バイパス弁、13は循環路開閉弁である。貯湯槽バイパス弁12及び循環路開閉弁13は熱媒循環路において、貯湯槽6をバイパスして冷却水を燃料電池2に還流する流路(貯湯槽バイパス路)と冷却水を貯湯槽6に流し込む流路を切替える流路切替手段を構成している。すなわち、貯湯槽バイパス弁12を開弁して循環路開閉弁13を閉弁すると、冷却水は全て貯湯槽6をバイパスして燃料電池2に還流し、貯湯槽バイパス弁12を閉弁して循環路開閉弁13を開弁すると、冷却水は全て貯湯槽6を経由して燃料電池2に還流する。   12 is a hot water tank bypass valve, and 13 is a circulation path opening / closing valve. The hot water tank bypass valve 12 and the circulation path opening / closing valve 13 are provided in the heat medium circulation path so as to bypass the hot water tank 6 and return the cooling water to the fuel cell 2 (hot water tank bypass path) and the cooling water to the hot water tank 6. A flow path switching means is configured to switch the flow path to be poured. That is, when the hot water tank bypass valve 12 is opened and the circulation path opening / closing valve 13 is closed, all the cooling water bypasses the hot water tank 6 and returns to the fuel cell 2, and the hot water tank bypass valve 12 is closed. When the circulation path opening / closing valve 13 is opened, all the cooling water returns to the fuel cell 2 via the hot water tank 6.

三方弁10を通過する冷却水の温度が所定の温度(例えば40℃)より低い場合は、貯湯槽バイパス弁12を開き、循環路開閉弁13を閉じて、冷却水を直接ラジエータ7に流す。逆に三方弁10を通過する冷却水の温度が所定の温度(例えば45℃)より高い場合は、貯湯槽バイパス弁12を閉じ、循環路開閉弁13を開いて、冷却水を貯湯槽6に流し込むと共に、貯湯槽6の下層の温水をラジエータ7に流す。貯湯槽6に一定温度以上の湯を貯めるためである。なお、貯湯槽バイパス弁12及び循環路開閉弁13はソレノドバルブであり、貯湯槽バイパス弁12はソレノイドが励磁されていない場合に閉弁するノーマルクローズ型であり、循環路開閉弁13はソレノイドが励磁されていない場合に開弁するノーマルオープン型である。つまり、貯湯槽バイパス弁12は駆動用の電源がダウンすると閉弁し、循環路開閉弁13は駆動用の電源がダウンすると開弁する。   When the temperature of the cooling water passing through the three-way valve 10 is lower than a predetermined temperature (for example, 40 ° C.), the hot water tank bypass valve 12 is opened, the circulation path opening / closing valve 13 is closed, and the cooling water is directly supplied to the radiator 7. Conversely, when the temperature of the cooling water passing through the three-way valve 10 is higher than a predetermined temperature (for example, 45 ° C.), the hot water tank bypass valve 12 is closed, the circulation path on / off valve 13 is opened, and the cooling water is supplied to the hot water tank 6. While pouring, warm water in the lower layer of the hot water tank 6 is caused to flow to the radiator 7. This is to store hot water at a certain temperature or higher in the hot water tank 6. The hot water tank bypass valve 12 and the circulation path opening / closing valve 13 are solenoid valves, the hot water tank bypass valve 12 is a normally closed type that closes when the solenoid is not excited, and the circulation path opening / closing valve 13 is excited by the solenoid. It is a normally open type that opens when it is not. That is, the hot water tank bypass valve 12 is closed when the driving power source is down, and the circulation path opening / closing valve 13 is opened when the driving power source is down.

なお14は、燃料電池2から流入する冷却水の温度を検出する冷却水温度検出器である。   Reference numeral 14 denotes a cooling water temperature detector that detects the temperature of the cooling water flowing from the fuel cell 2.

このように構成されているので、コージェネレーションシステム1の制御電源が何らかのトラブルでダウンすると、貯湯槽バイパス弁12が閉弁し、循環路開閉弁13が開弁するので、制御電源がダウンする直前に貯湯槽バイパス弁12と循環路開閉弁13がどのような状態にあったとしても、高温の冷却水は貯湯槽6の頂部に注がれ、貯湯槽2の底部から低温の冷却水が抽出されて燃料電池2に流れるから、燃料電池2の冷却を行うことができる。   Since it is configured in this manner, when the control power supply of the cogeneration system 1 goes down due to some trouble, the hot water tank bypass valve 12 is closed and the circulation path on / off valve 13 is opened, so that the control power supply is just before going down. Whatever the state of the hot water tank bypass valve 12 and the circulation path open / close valve 13, the hot cooling water is poured into the top of the hot water tank 6, and the low temperature cooling water is extracted from the bottom of the hot water tank 2. Thus, the fuel cell 2 can be cooled.

なお、本実施例では流路切替手段の具体例として、貯湯槽バイパス弁12と循環路開閉弁13の組み合わせを示したが、貯湯槽バイパス弁12と循環路開閉弁13の組み合わせに代えて、熱媒循環路と貯湯槽バイパス路の分岐点12aあるいは合流点12bに三方弁を備えてもよい。この場合、前記三方弁はソレノイドが励磁されていない場合に冷却水を貯湯槽6に流す流路を選択するように構成する。   In the present embodiment, as a specific example of the flow path switching means, a combination of the hot water tank bypass valve 12 and the circulation path on / off valve 13 is shown, but instead of the combination of the hot water tank bypass valve 12 and the circulation path on / off valve 13, A three-way valve may be provided at the junction 12a or the junction 12b of the heat medium circulation path and the hot water tank bypass path. In this case, the three-way valve is configured to select a flow path for flowing the cooling water to the hot water tank 6 when the solenoid is not excited.

また、本実施例では貯熱槽の具体例として、燃料電池2で発生する熱を吸収した高温の冷却水そのものを貯留する貯湯槽6を示したが、貯湯槽6内に熱交換器を備えて、高温の冷却水と貯湯槽6内部の湯水の間で熱交換を行い、熱交換をして低温になった冷却水が(貯湯槽6に注がれずに)燃料電池2に還流するように構成してもよい。   In the present embodiment, as a specific example of the heat storage tank, the hot water storage tank 6 that stores the high-temperature cooling water itself that has absorbed the heat generated in the fuel cell 2 is shown. However, the hot water storage tank 6 includes a heat exchanger. Thus, heat exchange is performed between the high-temperature cooling water and the hot water in the hot water storage tank 6 so that the low temperature cooling water is returned to the fuel cell 2 without being poured into the hot water storage tank 6. You may comprise.

本発明の実施例に係るコージェネレーションシステムの配管系統図である。It is a piping system diagram of a cogeneration system concerning an example of the present invention.

符号の説明Explanation of symbols

1 コージェネレーションシステム
2 燃料電池
3 熱交換器
4 暖房用補助ボイラ
5 ファンコイルユニット
6 貯湯槽(貯熱槽)
7 ラジエータ
8 循環ポンプ
9 暖房用熱媒バイパス路開閉弁
10 三方弁
11 熱交バイパス流路
12 貯湯槽バイパス弁
13 循環路開閉弁
14 冷却水温度検出器



1 Cogeneration system 2 Fuel cell 3 Heat exchanger 4 Heating auxiliary boiler 5 Fan coil unit 6 Hot water storage tank (heat storage tank)
7 Radiator 8 Circulation pump
9 Heating medium bypass passage opening / closing valve for heating 10 Three-way valve 11 Heat exchange bypass passage 12 Hot water tank bypass valve 13 Circulation passage opening / closing valve 14 Cooling water temperature detector



Claims (6)

電力と熱を発生する熱電併給手段と、
前記熱電併給手段が発生する熱を蓄熱する貯熱槽と、
前記貯熱槽と前記熱電併給手段との間で熱媒を循環させる熱媒循環路と、
前記貯熱槽をバイパスして前記熱媒を前記熱電併給手段に還流させるバイパス路と、
前記熱媒の流路を前記貯熱槽と前記バイパス路との何れかに切替える流路切替手段と、
前記流路切替手段の切替え動作を制御する制御手段と
を有するコージェネレーションシステムにおいて、
前記流路切替手段は、前記制御手段への給電が停止された場合には前記熱媒の流路を前記貯熱槽側に機械的に切替えるものであること
を特徴とするコージェネレーションシステム。
A cogeneration means for generating electric power and heat;
A heat storage tank for storing heat generated by the cogeneration means; and
A heat medium circulation path for circulating a heat medium between the heat storage tank and the cogeneration means;
A bypass path for bypassing the heat storage tank and returning the heat medium to the combined heat and power means;
A flow path switching means for switching the flow path of the heat medium to either the heat storage tank or the bypass path;
In a cogeneration system having control means for controlling the switching operation of the flow path switching means,
The cogeneration system, wherein the flow path switching means mechanically switches the flow path of the heat medium to the heat storage tank side when power supply to the control means is stopped.
前記流路切替手段は、前記熱媒循環路と前記バイパス路の分岐点又は合流点に配置された三方弁であること
を特徴とする請求項1に記載のコージェネレーションシステム。
2. The cogeneration system according to claim 1, wherein the flow path switching unit is a three-way valve disposed at a branch point or a junction point of the heat medium circulation path and the bypass path.
前記流路切替手段は、
前記熱媒循環路の前記バイパス路と並行する部分に設けられた電磁開閉弁である循環路開閉弁;
及び前記バイパス路に設けられた電磁開閉弁であるバイパス路開閉弁;
から構成され、
前記循環路開閉弁は非通電時に開弁するノーマルオープン型であること
を特徴とする請求項1に記載のコージェネレーションシステム。
The flow path switching means is
A circulation path opening / closing valve, which is an electromagnetic opening / closing valve provided in a portion of the heating medium circulation path parallel to the bypass path;
And a bypass passage opening / closing valve that is an electromagnetic opening / closing valve provided in the bypass passage;
Consisting of
The cogeneration system according to claim 1, wherein the circulation path on-off valve is a normally open type that opens when not energized.
前記バイパス開閉弁は非通電時に閉弁するノーマルクローズ型であること
を特徴とする請求項3に記載のコージェネレーションシステム。
The cogeneration system according to claim 3, wherein the bypass on-off valve is a normally closed type that closes when power is not supplied.
前記貯熱槽は前記熱媒循環路を流れる熱媒と前記貯熱槽内の熱媒の間で熱交換を行う熱交換器を備えること
を特徴とする請求項1乃至請求項4のいずれかに記載のコージェネレーションシステム。
The said heat storage tank is provided with the heat exchanger which performs heat exchange between the heat medium which flows through the said heat-medium circulation path, and the heat medium in the said heat storage tank, The Claim 1 thru | or 4 characterized by the above-mentioned. Cogeneration system described in 1.
前記熱媒は水であり、
前記貯熱槽は、前記熱電併給手段が発生する熱を温水として貯湯する成層式貯湯槽であること
を特徴とする請求項1乃至請求項4のいずれかに記載コージェネレーションシステム。



The heating medium is water;
The cogeneration system according to any one of claims 1 to 4, wherein the heat storage tank is a stratified hot water storage tank that stores hot heat generated by the combined heat and power supply means as hot water.



JP2005326945A 2005-11-11 2005-11-11 Cogeneration system Pending JP2007132613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005326945A JP2007132613A (en) 2005-11-11 2005-11-11 Cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005326945A JP2007132613A (en) 2005-11-11 2005-11-11 Cogeneration system

Publications (1)

Publication Number Publication Date
JP2007132613A true JP2007132613A (en) 2007-05-31

Family

ID=38154421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005326945A Pending JP2007132613A (en) 2005-11-11 2005-11-11 Cogeneration system

Country Status (1)

Country Link
JP (1) JP2007132613A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047203A (en) * 2010-08-24 2012-03-08 Honda Motor Co Ltd Hydraulic control unit of driving device for vehicle
JP2012047202A (en) * 2010-08-24 2012-03-08 Honda Motor Co Ltd Hydraulic control device of driving device for vehicle
JP2013164173A (en) * 2012-02-09 2013-08-22 Tokyo Gas Co Ltd Water supply preheating system
JP2015075256A (en) * 2013-10-07 2015-04-20 Jx日鉱日石エネルギー株式会社 Co-generation system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047203A (en) * 2010-08-24 2012-03-08 Honda Motor Co Ltd Hydraulic control unit of driving device for vehicle
JP2012047202A (en) * 2010-08-24 2012-03-08 Honda Motor Co Ltd Hydraulic control device of driving device for vehicle
JP2013164173A (en) * 2012-02-09 2013-08-22 Tokyo Gas Co Ltd Water supply preheating system
JP2015075256A (en) * 2013-10-07 2015-04-20 Jx日鉱日石エネルギー株式会社 Co-generation system

Similar Documents

Publication Publication Date Title
JP2000335230A (en) Heating device for vehicle
JP2007132612A (en) Cogeneration system, its control method, and program
JP2005061711A (en) Exhaust heat recovering water heater
JP5359057B2 (en) Cogeneration system
KR101173746B1 (en) Compact cogeneration system and controlling method of the compact cogeneration system
JP4934009B2 (en) Heat source water supply system
JP2007132613A (en) Cogeneration system
JP2006266605A (en) Heat storage type heat supply device
JP6635809B2 (en) Waste heat utilization heat source equipment
JP2005287090A (en) Thermoelectric generator
JP2009150612A (en) Heat pump type water heater
JP5891038B2 (en) Hot water heater
JP6526599B2 (en) Thermal equipment
JP2009287423A (en) Cogeneration system
JP2004108173A (en) Cogeneration system
JP2018527699A (en) Fuel cell system
JP2011190730A (en) Engine cooling device
JP2011185573A (en) Heat supply device
JP4953436B2 (en) Thermal storage and heat dissipation system
JP5375119B2 (en) Cogeneration system
JP4133593B2 (en) Hot water storage hot water heater
JP2015155780A (en) Cogeneration device
JP5551948B2 (en) Heat supply equipment
JP4151442B2 (en) Waste heat utilization heating system
JP6191352B2 (en) Hot water storage system