JP4953436B2 - Thermal storage and heat dissipation system - Google Patents

Thermal storage and heat dissipation system Download PDF

Info

Publication number
JP4953436B2
JP4953436B2 JP2007065444A JP2007065444A JP4953436B2 JP 4953436 B2 JP4953436 B2 JP 4953436B2 JP 2007065444 A JP2007065444 A JP 2007065444A JP 2007065444 A JP2007065444 A JP 2007065444A JP 4953436 B2 JP4953436 B2 JP 4953436B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
storage water
heat exchanger
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007065444A
Other languages
Japanese (ja)
Other versions
JP2008224158A (en
Inventor
喜徳 久角
義通 木内
秀樹 山口
明志 毛笠
寛之 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2007065444A priority Critical patent/JP4953436B2/en
Publication of JP2008224158A publication Critical patent/JP2008224158A/en
Application granted granted Critical
Publication of JP4953436B2 publication Critical patent/JP4953436B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、蓄熱水を貯留する蓄熱槽と、その蓄熱槽から取り出した蓄熱水を循環路にて循環させて前記蓄熱槽に戻す蓄熱水循環手段とが設けられ、前記循環路には、熱供給装置の排熱を搬送する排熱搬送流体にて前記循環路を通流する蓄熱水を加熱する排熱熱交換器、及び、その排熱熱交換器を通過した後の蓄熱水を放熱させる放熱用熱交換器が設けられている蓄熱放熱システムに関する。   The present invention is provided with a heat storage tank for storing the heat storage water, and a heat storage water circulation means for circulating the heat storage water taken out from the heat storage tank in the circulation path and returning it to the heat storage tank, and supplying heat to the circulation path Waste heat heat exchanger that heats the heat storage water flowing through the circulation path with the exhaust heat transfer fluid that transfers the exhaust heat of the apparatus, and heat dissipation that dissipates the heat storage water after passing through the exhaust heat heat exchanger The present invention relates to a heat storage and heat dissipation system provided with a heat exchanger for use.

上記のような蓄熱放熱システムでは、排熱熱交換器にて蓄熱水と排熱搬送流体との熱交換により蓄熱水を加熱し、その加熱された蓄熱水を放熱用熱交換器にて放熱して給湯や暖房等に利用することにより、蓄熱槽に蓄熱された熱及び熱供給装置の排熱を用いながら給湯や暖房等を行うようにしている。   In the heat storage and heat dissipation system as described above, the heat storage water is heated by heat exchange between the heat storage water and the heat transfer fluid in the exhaust heat exchanger, and the heated heat storage water is radiated by the heat exchanger for heat dissipation. By using it for hot water supply, heating, etc., hot water supply, heating, etc. are performed using the heat stored in the heat storage tank and the exhaust heat of the heat supply device.

従来の蓄熱放熱システムでは、循環路に、排熱搬送流体としての冷却水にて蓄熱水を過熱する排熱熱交換器、その排熱熱交換器を通過した後の蓄熱水を加熱する加熱作動を実行可能な補助加熱手段、及び、補助加熱手段を通過した後の蓄熱水を熱消費端末との間で循環される熱媒に放熱させる放熱用熱交換器が設けられ、蓄熱水循環手段は、蓄熱槽の下部から取り出した蓄熱水の全量を排熱熱交換器に通流させる形態で蓄熱水を循環させるように構成されている(例えば、特許文献1参照。)。   In a conventional heat storage and heat dissipation system, a waste heat heat exchanger that superheats the heat storage water with cooling water as a waste heat carrier fluid in the circulation path, and a heating operation that heats the heat storage water after passing through the heat recovery heat exchanger A heat-dissipating heat exchanger that dissipates heat from the heat storage water after passing through the auxiliary heating means to the heat medium that is circulated between the heat consuming terminals is provided. The heat storage water is circulated in a form in which the entire amount of the heat storage water taken out from the lower part of the heat storage tank is passed through the exhaust heat exchanger (see, for example, Patent Document 1).

特開2004−264011号公報JP 2004-264011 A

上記従来の蓄熱放熱システムでは、排熱熱交換器において蓄熱槽から取り出した蓄熱水の全量と排熱搬送流体とが熱交換されるので、蓄熱水の温度及び流量と排熱搬送流体の温度及び流量とが互いに影響を及ぼし合いながら熱交換される。例えば、排熱熱交換器を通過した後の蓄熱水及び流量を熱供給装置での排熱回収に適した範囲内とする場合には、排熱搬送流体の温度及び流量の状況に応じて排熱熱交換器に通流させる蓄熱水の温度又は流量を制限しなければならず、放熱用熱交換器にて要求されている放熱量を有する蓄熱水を供給できない虞がある。ちなみに、放熱用熱交換器に蓄熱水を供給する場合、放熱用熱交換器にて要求されている流量よりも温度を優先するので、排熱搬送流体の温度及び流量の状況に応じて排熱熱交換器に通流させる蓄熱水の流量を制限することになり、放熱用熱交換器にて要求されている流量の蓄熱水を供給できない虞がある。   In the above conventional heat storage and heat dissipation system, the heat storage water taken out of the heat storage tank and the exhaust heat transport fluid are heat exchanged in the exhaust heat exchanger, so the temperature and flow rate of the heat storage water and the temperature of the exhaust heat transport fluid and Heat exchange is performed while the flow rate affects each other. For example, when the heat storage water and flow rate after passing through the exhaust heat exchanger are within a range suitable for exhaust heat recovery in the heat supply device, the exhaust water is discharged according to the temperature and flow rate of the exhaust heat transfer fluid. There is a possibility that the temperature or flow rate of the heat storage water to be passed through the heat heat exchanger must be limited, and there is a possibility that the heat storage water having the heat radiation amount required by the heat dissipation heat exchanger cannot be supplied. By the way, when heat storage water is supplied to the heat-dissipating heat exchanger, the temperature is given priority over the flow rate required by the heat-dissipating heat exchanger. The flow rate of the heat storage water to be passed through the heat exchanger is limited, and there is a possibility that the heat storage water having a flow rate required by the heat dissipation heat exchanger cannot be supplied.

放熱用熱交換器にて要求されている放熱量とは、放熱用熱交換器における放熱を適正に行う為のものであり、放熱用熱交換器に供給する蓄熱水の温度と蓄熱水の流量とが求められる。例えば、放熱用熱交換器での放熱対象を給湯用の給水とすると、給湯設定温度の湯水を十分な流量で給湯できるように、放熱用熱交換器に供給する蓄熱水の温度と蓄熱水の流量とが求められる。したがって、放熱用熱交換器にて要求されている放熱量を有する蓄熱水を供給できなくなると、放熱用熱交換器での放熱を適正に行えない虞がある。   The amount of heat required by the heat-dissipating heat exchanger is for proper heat dissipation in the heat-dissipating heat exchanger, and the temperature of the heat storage water supplied to the heat-dissipating heat exchanger and the flow rate of the heat storage water. Is required. For example, if the heat dissipation target in the heat dissipation heat exchanger is water supply for hot water supply, the temperature of the heat storage water to be supplied to the heat dissipation heat exchanger and the heat storage water so that hot water at the hot water supply set temperature can be supplied at a sufficient flow rate. The flow rate is required. Therefore, if it becomes impossible to supply the heat storage water having the heat radiation amount required by the heat radiating heat exchanger, there is a possibility that the heat radiation by the heat radiating heat exchanger cannot be performed properly.

本発明は、かかる点に着目してなされたものであり、その目的は、放熱用熱交換器にて要求されている放熱量を有する蓄熱水を放熱用熱交換器に供給できる蓄熱放熱システムを提供する点にある。   The present invention has been made paying attention to such points, and its purpose is to provide a heat storage and heat dissipation system capable of supplying heat storage water having a heat release amount required for a heat dissipation heat exchanger to the heat dissipation heat exchanger. The point is to provide.

この目的を達成するために、本発明に係る蓄熱放熱システムの第1特徴構成は、蓄熱水を貯留する蓄熱槽と、その蓄熱槽から取り出した蓄熱水を循環路にて循環させて前記蓄熱槽に戻す蓄熱水循環手段とが設けられ、前記循環路には、熱供給装置の排熱を搬送する排熱搬送流体にて前記循環路を通流する蓄熱水を加熱する排熱熱交換器、及び、その排熱熱交換器を通過した後の蓄熱水を放熱させる放熱用熱交換器が設けられている蓄熱放熱システムであって、
前記蓄熱槽から前記循環路に取り出した蓄熱水を前記排熱熱交換器をバイパスさせて前記放熱用熱交換器に通流させる排熱熱交換器バイパス路が設けられ、前記蓄熱水循環手段が、前記蓄熱槽から取り出した蓄熱水の全量を前記排熱熱交換器に通流させる形態で蓄熱水を循環させる全通流状態と、前記蓄熱槽から取り出した蓄熱水の一部を前記排熱熱交換器バイパス路に通流させる形態で蓄熱水を循環させる一部通流状態とに切換自在に構成されている点にある。
In order to achieve this object, the first characteristic configuration of the heat storage and radiating system according to the present invention includes a heat storage tank for storing the heat storage water, and the heat storage tank that circulates the heat storage water extracted from the heat storage tank in the circulation path. And a waste heat heat exchanger that heats the heat storage water flowing through the circulation path with an exhaust heat carrier fluid that conveys the exhaust heat of the heat supply device; and , A heat storage and heat dissipation system provided with a heat exchanger for heat dissipation to dissipate the heat storage water after passing through the exhaust heat exchanger,
An exhaust heat exchanger bypass path is provided for bypassing the exhaust heat exchanger and passing the heat storage water taken out from the heat storage tank to the circulation path to the heat dissipation heat exchanger, and the heat storage water circulation means is A total flow state in which the heat storage water is circulated in a form in which the entire amount of the heat storage water taken out from the heat storage tank is passed through the exhaust heat exchanger, and a part of the heat storage water taken out from the heat storage tank is the exhaust heat heat. It exists in the point comprised so that switching to the partial flow state which circulates thermal storage water with the form made to flow through an exchanger bypass is possible.

すなわち、蓄熱水循環手段を全通流状態に切り換えた場合には、蓄熱槽から取り出した蓄熱水の全量を排熱熱交換器にて加熱して放熱用熱交換器に供給できる。この場合に、排熱搬送流体の温度及び流量の状況に応じて排熱熱交換器に通流させる蓄熱水の流量を制限することにより、放熱用熱交換器にて要求されている放熱量を有する蓄熱水を放熱用熱交換器に供給できなくなると、蓄熱水循環手段を一部通流状態に切り換えることができる。蓄熱水循環手段を一部通流状態に切り換えた場合には、蓄熱槽から取り出した蓄熱水を排熱熱交換器に通流させるだけでなく排熱熱交換器バイパス路にも通流させ、排熱熱交換器バイパス路に通流させる蓄熱水にて放熱用熱交換器にて要求されている流量の不足分を補うことができる。そして、放熱用熱交換器には、排熱熱交換器にて加熱された蓄熱水と排熱熱交換器バイパス路を通流した蓄熱水とが混合されて供給されるので、放熱用熱交換器にて要求されている放熱量を有する蓄熱水を放熱用熱交換器に供給できる。
したがって、排熱搬送流体の温度及び流量の状況に応じて排熱熱交換器に通流させる蓄熱水の流量を制限しなければならない場合でも、放熱用熱交換器にて要求されている放熱量を有する蓄熱水を放熱用熱交換器に供給できる蓄熱放熱システムを提供できるに至った。
That is, when the heat storage water circulation means is switched to the full flow state, the entire amount of the heat storage water taken out from the heat storage tank can be heated by the exhaust heat exchanger and supplied to the heat dissipation heat exchanger. In this case, by limiting the flow rate of the heat storage water that is passed through the exhaust heat exchanger according to the temperature and flow rate of the exhaust heat transfer fluid, the amount of heat radiation required in the heat exchanger for heat dissipation can be reduced. When the stored heat storage water cannot be supplied to the heat-dissipating heat exchanger, the heat storage water circulation means can be partially switched to the flow-through state. When the heat storage water circulation means is switched to a partial flow state, the heat storage water taken out from the heat storage tank is not only passed through the exhaust heat exchanger but also passed through the exhaust heat exchanger bypass path, The shortage of the flow rate required by the heat-dissipating heat exchanger can be compensated by the heat storage water flowing through the heat-heat exchanger bypass path. Since the heat storage water heated by the exhaust heat exchanger and the heat storage water flowing through the exhaust heat exchanger bypass are mixed and supplied to the heat dissipation heat exchanger, It is possible to supply the heat storage water having the heat radiation amount required by the heat exchanger to the heat exchanger for heat radiation.
Therefore, even if it is necessary to limit the flow rate of the heat storage water that flows through the exhaust heat exchanger according to the temperature and flow rate of the exhaust heat transfer fluid, the amount of heat dissipation required by the heat exchanger for heat dissipation It has come to be able to provide a heat storage and heat dissipation system that can supply heat storage water having a heat dissipation heat exchanger.

本発明に係る蓄熱放熱システムの第2特徴構成は、前記排熱熱交換器バイパス路には、通流する蓄熱水を加熱する加熱作動を実行可能な補助加熱手段が設けられている点にある。   The 2nd characteristic structure of the thermal storage heat dissipation system which concerns on this invention exists in the point by which the auxiliary | assistant heating means which can perform the heating operation | movement which heats the thermal storage water to flow through is provided in the said exhaust heat exchanger bypass path. .

すなわち、蓄熱水循環手段を一部通流状態に切り換えた場合に、補助加熱手段が加熱作動を実行することにより、排熱熱交換器にて加熱された蓄熱水と排熱熱交換器バイパス路を通流して補助加熱手段にて加熱された蓄熱水とを混合させて放熱用熱交換器に高い温度の蓄熱水を供給することができる。したがって、放熱用熱交換器に供給する蓄熱水の温度が高い温度を要求されている場合でも、蓄熱水循環手段を一部通流状態に切り換え且つ補助加熱手段が加熱作動を実行することにより、その要求されている高い温度の蓄熱水を供給できる。   That is, when the heat storage water circulation means is partially switched to the flow-through state, the auxiliary heating means executes the heating operation so that the heat storage water heated by the exhaust heat exchanger and the exhaust heat exchanger bypass are Heat storage water having a high temperature can be supplied to the heat-dissipating heat exchanger by mixing the heat storage water that has been passed through and heated by the auxiliary heating means. Therefore, even when the temperature of the heat storage water supplied to the heat-dissipating heat exchanger is required to be high, the heat storage water circulation means is partially switched to the flow-through state and the auxiliary heating means performs the heating operation. It can supply the required high-temperature heat storage water.

本発明に係る蓄熱放熱システムの第3特徴構成は、前記蓄熱水循環手段が、前記蓄熱槽の上部から蓄熱水を取り出して前記蓄熱槽の下部に蓄熱水を戻すように構成され、前記蓄熱水循環手段を前記全通流状態に切り換えて前記熱供給装置の排熱を前記蓄熱槽に蓄熱する蓄熱運転、及び、前記蓄熱水循環手段を前記全通流状態又は前記一部通流状態に切り換え且つ前記補助加熱手段を加熱作動させるか否かを制御して前記放熱用熱交換器にて前記蓄熱水を放熱させる放熱運転を実行可能な運転制御手段が設けられている点にある。   3rd characteristic structure of the thermal storage thermal radiation system which concerns on this invention is comprised so that the said thermal storage water circulation means may take out thermal storage water from the upper part of the said thermal storage tank, and return thermal storage water to the lower part of the said thermal storage tank, The said thermal storage water circulation means Is switched to the full flow state to store the exhaust heat of the heat supply device in the heat storage tank, and the heat storage water circulation means is switched to the full flow state or the partial flow state and the auxiliary There exists an operation control means capable of performing a heat radiation operation for controlling whether or not to heat the heating means and radiating the heat storage water in the heat radiating heat exchanger.

すなわち、運転制御手段が、蓄熱水循環手段を全通流状態又は一部通流状態に切り換え且つ補助加熱手段を加熱作動させるか否かを制御する放熱運転を行うことにより、放熱用熱交換器に対して要求されている温度及び流量の蓄熱水を供給することができ、放熱用熱交換器での放熱を適正に行うことができる。
運転制御手段が、蓄熱水循環手段を全通流状態に切り換える蓄熱運転を行うことにより、蓄熱槽の上部から取り出した蓄熱水の全量を排熱熱交換器にて加熱し、加熱された高温の蓄熱水を蓄熱槽の下部に戻すことができる。したがって、蓄熱槽の下部に戻される高温の蓄熱水によって、蓄熱槽に貯留している蓄熱水を全体的に温度上昇させて蓄熱できる。このように、あらたな構成を追加するのではなく、単に、蓄熱水循環手段を全通流状態に切り換えるだけの簡素な構成によって、熱供給装置の排熱を蓄熱槽に蓄熱できる。
したがって、放熱用熱交換器での放熱を適正に行うことができることに加えて、構成の簡素化を図りながら、熱供給装置の排熱を蓄熱槽に蓄熱できる。
That is, the operation control means switches the heat storage water circulation means to a full flow state or a partial flow state, and performs a heat radiation operation for controlling whether or not the auxiliary heating means is heated, thereby providing a heat exchanger for heat radiation. Heat storage water having the required temperature and flow rate can be supplied, and heat dissipation in the heat exchanger for heat dissipation can be performed appropriately.
When the operation control means performs the heat storage operation to switch the heat storage water circulation means to the full flow state, the entire amount of the heat storage water taken out from the upper part of the heat storage tank is heated by the exhaust heat exchanger, and the heated high-temperature heat storage Water can be returned to the bottom of the heat storage tank. Therefore, the temperature of the heat storage water stored in the heat storage tank can be entirely increased and stored by the high-temperature heat storage water returned to the lower part of the heat storage tank. In this way, the exhaust heat of the heat supply device can be stored in the heat storage tank by a simple structure that does not add a new structure but simply switches the heat storage water circulation means to the full flow state.
Therefore, in addition to being able to appropriately perform heat radiation in the heat exchanger for heat radiation, the exhaust heat of the heat supply device can be stored in the heat storage tank while simplifying the configuration.

本発明に係る蓄熱放熱システムの第4特徴構成は、前記排熱搬送流体としての冷却水を前記排熱熱交換器と前記熱供給装置との間で循環させる冷却水循環手段と、前記循環路にて前記排熱熱交換器に通流する蓄熱水の流量を調整自在な蓄熱水流量調整手段とが設けられ、前記運転制御手段が、前記冷却水循環手段にて前記排熱熱交換器から前記熱供給装置に戻す冷却水の温度が設定温度範囲内になるように、前記蓄熱水流量調整手段にて前記排熱熱交換器に通流する蓄熱水の流量を調整する蓄熱水流量調整制御を行うように構成されている点にある。   A fourth characteristic configuration of the heat storage and heat dissipation system according to the present invention includes a cooling water circulation means for circulating cooling water as the waste heat transfer fluid between the waste heat heat exchanger and the heat supply device, and a circulation path. Heat storage water flow rate adjusting means capable of adjusting the flow rate of the heat storage water flowing through the waste heat heat exchanger, and the operation control means is provided with the heat from the waste heat heat exchanger in the cooling water circulation means. Heat storage water flow rate adjustment control is performed to adjust the flow rate of the heat storage water flowing to the exhaust heat exchanger in the heat storage water flow rate adjusting means so that the temperature of the cooling water returned to the supply device is within a set temperature range. It is in the point comprised as follows.

すなわち、排熱搬送流体が、エンジンや燃料電池等の熱供給装置における冷却水であるので、排熱熱交換器から熱供給装置に戻す冷却水の温度及び流量が当該熱供給装置の冷却に適した範囲内とすることが求められる。排熱熱交換器から熱供給装置に戻す冷却水の水量については、例えば、冷却水循環手段が排熱熱交換器と熱供給装置との間で循環する冷却水の水量を当該熱供給装置の冷却に適した一定量とする等により、排熱熱交換器から熱供給装置に戻す冷却水の水量を当該熱供給装置の冷却に適した範囲内とできる。そこで、運転制御手段が、蓄熱運転や放熱運転を実行するときに、蓄熱水流量調整制御を行うことにより、蓄熱運転や放熱運転を行いながら、排熱熱交換器から熱供給装置に戻す冷却水の温度を設定温度範囲内とすることにより、排熱熱交換器から熱供給装置に戻す冷却水の温度についても当該熱供給装置の冷却に適した範囲内とできる。このように、排熱熱交換器から熱供給装置に戻す冷却水の温度及び流量の条件を当該熱供給装置の冷却に適したものとしながらも、蓄熱槽の蓄熱及び放熱用熱交換器での放熱を適正に行うことができる。   That is, since the exhaust heat transfer fluid is cooling water in a heat supply device such as an engine or a fuel cell, the temperature and flow rate of the cooling water returned from the exhaust heat exchanger to the heat supply device are suitable for cooling the heat supply device. Within the specified range. As for the amount of cooling water returned from the exhaust heat exchanger to the heat supply device, for example, the amount of cooling water circulated between the exhaust heat exchanger and the heat supply device by the cooling water circulation means is used to cool the heat supply device. The amount of cooling water returned from the exhaust heat exchanger to the heat supply device can be within a range suitable for cooling the heat supply device. Therefore, when the operation control means performs the heat storage operation or the heat radiation operation, the cooling water returned from the exhaust heat exchanger to the heat supply device while performing the heat storage operation or the heat radiation operation by performing the heat storage water flow rate adjustment control. By setting the temperature within the set temperature range, the temperature of the cooling water returned from the exhaust heat exchanger to the heat supply device can also be set within a range suitable for cooling the heat supply device. Thus, while making the temperature and flow rate conditions of the cooling water returned from the exhaust heat exchanger to the heat supply device suitable for cooling the heat supply device, the heat storage tank heat storage and heat dissipation heat exchanger Heat dissipation can be performed properly.

本発明に係る蓄熱放熱システムの第5特徴構成は、前記運転制御手段が、前記放熱運転において前記蓄熱水流量調整制御を行った場合に、前記放熱用熱交換器に対して要求されている流量の蓄熱水を供給できるときには、前記蓄熱水循環手段を前記全通流状態に切り換え、且つ、前記放熱用熱交換器に対して要求されている流量の蓄熱水を供給できないときには、前記蓄熱水循環手段を前記一部通流状態に切り換えるように構成されている点にある。   The fifth characteristic configuration of the heat storage and heat dissipation system according to the present invention is the flow rate required for the heat exchanger for heat dissipation when the operation control means performs the heat storage water flow rate adjustment control in the heat dissipation operation. When the heat storage water can be supplied, the heat storage water circulation means is switched to the full flow state, and when the heat storage water at the required flow rate cannot be supplied to the heat radiating heat exchanger, the heat storage water circulation means is It is the point which is comprised so that it may switch to the said partial flow-through state.

すなわち、運転制御手段が、放熱運転において蓄熱水流量調整制御を行うと、排熱熱交換器に通流させる蓄熱水の流量を制限することにより、要求されている流量の蓄熱水を放熱用熱交換器に供給できなくなる場合がある。そこで、放熱用熱交換器に対して要求されている流量の蓄熱水を供給できるときには、運転制御手段が蓄熱水循環手段を全通流状態に切り換えて、蓄熱槽から取り出した蓄熱水の全量を排熱熱交換器に通流させながら、放熱用熱交換器に対して蓄熱水を供給できる。放熱用熱交換器に対して要求されている流量の蓄熱水を供給できないときには、運転制御手段が蓄熱水循環手段を一部通流状態に切り換えて、排熱熱交換器バイパス路に通流させる蓄熱水にて要求されている流量の不足分を補いながら、放熱用熱交換器に対して蓄熱水を供給できる。
このようにして、運転制御手段が、蓄熱水循環手段を全通流状態と一部通流状態とに的確に切り換えながら放熱運転を実行できるので、放熱用熱交換器に対して要求されている流量の蓄熱水を確実に供給できる。
That is, when the operation control means performs the heat storage water flow rate adjustment control in the heat radiation operation, the heat storage water having the required flow rate is reduced by restricting the flow rate of the heat storage water passed through the exhaust heat exchanger. It may become impossible to supply the exchanger. Therefore, when the heat storage water at the required flow rate can be supplied to the heat dissipation heat exchanger, the operation control means switches the heat storage water circulation means to the full flow state and exhausts the entire amount of the heat storage water taken out from the heat storage tank. The stored water can be supplied to the heat-dissipating heat exchanger while flowing through the heat-heat exchanger. When the heat storage water at the required flow rate cannot be supplied to the heat-dissipating heat exchanger, the operation control means switches the heat-storage water circulation means to a partial flow state and passes it through the exhaust heat exchanger bypass path. The heat storage water can be supplied to the heat exchanger for heat dissipation while compensating for the shortage of the flow rate required for water.
In this way, since the operation control means can perform the heat radiation operation while switching the heat storage water circulation means between the full flow state and the partial flow state, the flow rate required for the heat exchanger for heat radiation. The heat storage water can be reliably supplied.

本発明に係る蓄熱放熱システムの第6特徴構成は、前記運転制御手段が、前記放熱運転において前記蓄熱水循環手段を前記一部通流状態に切り換えた場合に、前記放熱用熱交換器に対して要求されている温度の蓄熱水を供給できるときには前記補助加熱手段を加熱作動させず、且つ、前記放熱用熱交換器に対して要求されている温度の蓄熱水を供給できないときには前記補助加熱手段を加熱作動させるように構成されている点にある。   A sixth characteristic configuration of the heat storage and heat dissipation system according to the present invention is that, when the operation control unit switches the heat storage water circulation unit to the partial flow state in the heat dissipation operation, the heat dissipation heat exchanger is configured. When the heat storage water at the required temperature can be supplied, the auxiliary heating means is not heated and when the heat storage water at the required temperature cannot be supplied to the heat radiating heat exchanger, the auxiliary heating means is It is in the point comprised so that a heating operation may be carried out.

すなわち、運転制御手段が、放熱運転において蓄熱水循環手段を一部通流状態に切り換えた場合に、排熱熱交換器にて蓄熱水を加熱するだけで要求されている温度の蓄熱水を放熱用熱交換器に供給できるときには補助加熱手段を加熱作動させず、排熱熱交換器にて蓄熱水を加熱するだけでは要求されている温度の蓄熱水を放熱用熱交換器に供給できないときにだけ補助加熱手段を加熱作動させる。したがって、熱供給装置の排熱を有効に活用して蓄熱水を加熱しながら補助加熱手段にて補助的に蓄熱水を加熱して、省エネルギー化を図りながら、放熱用熱交換器に対して要求されている温度の蓄熱水を確実に供給できる。   That is, when the operation control means switches the heat storage water circulation means to a part of the flow state in the heat radiation operation, the heat storage water at the required temperature is used for heat dissipation simply by heating the heat storage water in the exhaust heat exchanger. Only when the heat storage water at the required temperature cannot be supplied to the heat exchanger for heat dissipation without heating the auxiliary heating means when it can be supplied to the heat exchanger. The auxiliary heating means is heated. Therefore, it is required for the heat exchanger for heat dissipation while effectively using the exhaust heat of the heat supply device to heat the heat storage water while heating the heat storage water by the auxiliary heating means to save energy. Heat storage water at the specified temperature can be supplied reliably.

本発明に係る蓄熱放熱システムの第7特徴構成は、前記循環路において前記蓄熱槽の下部に蓄熱水を戻す戻し部分と前記蓄熱槽の上部から蓄熱水を取り出す取り出し部分とを接続する蓄熱槽バイパス路と、前記放熱用熱交換器を通過した後の蓄熱水の少なくとも一部を前記蓄熱槽バイパス路に通流させる通流作動を実行可能な蓄熱槽バイパス路通流手段とが設けられ、前記運転制御手段が、前記放熱運転において、前記蓄熱槽バイパス路通流手段を通流作動させるか否かを制御するように構成されている点にある。   A seventh characteristic configuration of the heat storage and heat dissipation system according to the present invention is a heat storage tank bypass that connects a return portion that returns the heat storage water to the lower portion of the heat storage tank and a takeout portion that extracts the heat storage water from the upper portion of the heat storage tank in the circulation path. A heat storage tank bypass passage flow means capable of performing a flow operation for passing at least a part of the heat storage water after passing through the heat dissipation heat exchanger to the heat storage tank bypass passage, The operation control means is configured to control whether or not the heat storage tank bypass passage flow means is operated to flow in the heat radiation operation.

すなわち、蓄熱槽から取り出した蓄熱水の温度が低い場合には、運転制御手段が蓄熱槽バイパス路通流手段を通流作動させることにより、蓄熱槽から取り出した蓄熱水に蓄熱槽バイパス路からの蓄熱水を混合させて、排熱熱交換器に通流する蓄熱水の温度を上昇させることができる。したがって、蓄熱槽に蓄熱された熱の消費を抑えながら、放熱用熱交換器を通過した後の蓄熱水が有する熱を有効に活用して、放熱用熱交換器に対して要求されている温度の蓄熱水を供給できる。
また、蓄熱槽から取り出した蓄熱水の温度が高い場合には、排熱搬送流体の温度及び流体の状況に応じて排熱熱交換器に通流させる蓄熱水の流量を制限して、蓄熱水循環手段を全通流状態に切り換えていると、放熱用熱交換器に対して要求されている流量の蓄熱水を供給できない虞がある。そこで、このような場合でも、運転制御手段が蓄熱槽バイパス路通流手段を通流作動させることにより、蓄熱槽から取り出した蓄熱水に蓄熱槽バイパス路からの蓄熱水を混合させて、排熱熱交換器に通流する蓄熱水の温度を低下させることができる。その蓄熱水の温度低下により、排熱熱交換器に通流させる蓄熱水の流量を制限してしまうのを抑制でき、蓄熱水循環手段を全通流状態に切り換えたまま、放熱用熱交換器に対して要求されている流量の蓄熱水を供給できることになる。
That is, when the temperature of the heat storage water taken out from the heat storage tank is low, the operation control means activates the heat storage tank bypass passage through means so that the heat storage water taken out from the heat storage tank is supplied from the heat storage tank bypass passage. The temperature of the heat storage water flowing through the exhaust heat exchanger can be increased by mixing the heat storage water. Therefore, while suppressing the consumption of heat stored in the heat storage tank, the temperature required for the heat exchanger for heat dissipation is effectively utilized by utilizing the heat of the heat storage water after passing through the heat exchanger for heat dissipation. Can be supplied.
In addition, when the temperature of the heat storage water taken out from the heat storage tank is high, the flow rate of the heat storage water is limited by limiting the flow rate of the heat storage water to be passed to the exhaust heat exchanger according to the temperature of the exhaust heat transfer fluid and the state of the fluid. If the means is switched to the full flow state, there is a possibility that the heat storage water having a flow rate required for the heat-dissipating heat exchanger cannot be supplied. Therefore, even in such a case, the operation control means operates the heat storage tank bypass passage passage means to mix the heat storage water extracted from the heat storage tank with the heat storage water from the heat storage tank bypass passage, thereby The temperature of the heat storage water flowing through the heat exchanger can be lowered. Due to the temperature drop of the heat storage water, it is possible to suppress the restriction of the flow rate of the heat storage water to be passed to the exhaust heat exchanger, and the heat storage water circulation means is switched to the all-flow state while the heat storage water circulation means is switched to the heat dissipation heat exchanger. On the other hand, the required amount of heat storage water can be supplied.

本発明に係る蓄熱放熱システムの第8特徴構成は、前記放熱用熱交換器として、給湯路に供給される給湯用の給水を蓄熱水の放熱対象とする給湯用熱交換器、浴槽との間で循環される浴槽水を蓄熱水の放熱対象とする追焚き用熱交換器、及び、暖房対象空間の室内空気を放熱対象とする暖房用放熱器の少なくとも一つが設けられている点にある。   The eighth characteristic configuration of the heat storage and heat dissipation system according to the present invention is a heat exchanger for hot water supply that uses hot water supplied to a hot water supply channel as a heat dissipation target as a heat exchanger for heat dissipation, and a bathtub. There is provided at least one of a heat exchanger for reheating that uses the bathtub water circulated in the heat storage water as a heat dissipation object and a heat radiator that heats the indoor air in the space to be heated as a heat dissipation object.

すなわち、給湯用熱交換器では、蓄熱水にて給湯用の給水を加熱することができ、その加熱された給水を給湯路にて給湯して給湯を行うことができる。追焚き用熱交換器では、蓄熱水にて浴槽水を加熱することができ、その加熱された浴槽水を浴槽に供給することにより追焚きを行うことができる。暖房用放熱器では、蓄熱水にて暖房対象空間の室内空気を加熱することができ、暖房対象空間の暖房を行うことができる。
このように、熱供給装置の排熱にて加熱した蓄熱水を用いて、熱供給装置の排熱を有効に活用しながら、給湯、追焚きや暖房を行うことができる。
That is, in the hot water supply heat exchanger, the hot water supply water can be heated with the heat storage water, and the heated water supply can be supplied with hot water in the hot water supply path to supply hot water. In the reheating heat exchanger, the bathtub water can be heated with the heat storage water, and the reheating can be performed by supplying the heated bathtub water to the bathtub. In the radiator for heating, the indoor air in the space to be heated can be heated with the heat storage water, and the space to be heated can be heated.
Thus, hot water supply, reheating, and heating can be performed using the heat storage water heated by the exhaust heat of the heat supply device while effectively utilizing the exhaust heat of the heat supply device.

本発明に係る蓄熱放熱システムの第9特徴構成は、前記給湯用熱交換器と前記追焚き用熱交換器とが、前記追焚き用熱交換器を通過した後の蓄熱水が前記給湯用熱交換器に通流するように直列状態で設けられ、前記給湯用熱交換器及び前記追焚き用熱交換器の何れか一方又は両方と前記暖房用放熱器とが並列状態で設けられている点にある。   A ninth characteristic configuration of the heat storage and heat dissipation system according to the present invention is that the stored water after the hot water supply heat exchanger and the reheating heat exchanger have passed through the reheating heat exchanger is the hot water supply heat. It is provided in series so as to flow through the exchanger, and one or both of the hot water supply heat exchanger and the reheating heat exchanger and the heating radiator are provided in parallel. It is in.

すなわち、追焚き用熱交換器を通過した後の蓄熱水が給湯用熱交換器に通流するので、給湯用熱交換器よりも追焚き用熱交換器に高温の蓄熱水を供給することができる。追焚き用熱交換器では、給湯用熱交換器よりも高温の蓄熱水が要求されているので、その要求に応えながら、追焚き用熱交換器及び給湯用熱交換器の夫々に蓄熱水を供給できる。
また、暖房用放熱器は、給湯用熱交換器及び追焚き用熱交換器とは並列状態で設けられているので、暖房用放熱器に供給する蓄熱水は、給湯用熱交換器及び追焚き用熱交換器の夫々における放熱とは無関係に暖房用放熱器に蓄熱水を供給できる。したがって、暖房用放熱器に対しては要求されている温度の蓄熱水を確実に供給することができ、暖房対象空間の暖房を的確に行うことができる。
That is, since the heat storage water after passing through the reheating heat exchanger flows to the hot water supply heat exchanger, it is possible to supply hot storage water at a higher temperature to the reheating heat exchanger than to the hot water supply heat exchanger. it can. In the heat exchanger for reheating, heat storage water having a temperature higher than that of the heat exchanger for hot water supply is required, so that the heat storage water is supplied to each of the heat exchanger for reheating and the heat exchanger for hot water supply while responding to the request. Can supply.
In addition, since the heat radiator for heating is provided in parallel with the heat exchanger for hot water supply and the heat exchanger for heating, the heat storage water supplied to the heat radiator for heating is the heat exchanger for hot water supply and the heat exchanger for heating. Regardless of the heat dissipation in each of the heat exchangers, the heat storage water can be supplied to the heating radiator. Therefore, the heat storage water having the required temperature can be reliably supplied to the heating radiator, and the heating target space can be accurately heated.

本発明に係る蓄熱放熱システムの第10特徴構成は、前記給湯用熱交換器と前記追焚き用熱交換器とが、並列状態で設けられている点にある。   A tenth characteristic configuration of the heat storage and heat dissipation system according to the present invention is that the hot water supply heat exchanger and the reheating heat exchanger are provided in parallel.

すなわち、給湯用熱交換器と追焚き用熱交換器とを直列状態で設けるものと比べて、給湯用熱交換器において蓄熱水から給湯用の給水に放熱するときには、蓄熱水を給湯用熱交換器に通流させるだけでよい。追焚き用熱交換器において蓄熱水から浴槽水に放熱するときにも、蓄熱水を追焚き用熱交換器に通流させるだけでよい。したがって、給湯用熱交換器及び追焚き用熱交換器において蓄熱水の放熱を行うときに、蓄熱水を循環させる際の圧力損失を極力小さくできる。   That is, when heat is dissipated from the heat storage water to the hot water supply water in the hot water supply heat exchanger, compared with the case where the hot water supply heat exchanger and the reheating heat exchanger are provided in series, the heat storage water is exchanged for hot water supply. All you need to do is pass through the vessel. Even when heat is radiated from the heat storage water to the bathtub water in the heat exchanger for reheating, it is only necessary to pass the heat storage water through the heat exchanger for reheating. Therefore, when the heat storage water is radiated in the hot water supply heat exchanger and the reheating heat exchanger, the pressure loss when circulating the heat storage water can be minimized.

本発明に係る蓄熱放熱システムの実施形態を図面に基づいて説明する。
この蓄熱放熱システムは、図1〜図8に示すように、蓄熱水A1としての水を貯留する蓄熱槽1と、その蓄熱槽1から取り出した蓄熱水A1を循環路2にて循環させて蓄熱槽1に戻す蓄熱水循環手段3とを設けている。循環路2には、熱供給装置4の排熱を搬送する排熱搬送流体にて循環路2を通流する蓄熱水A1を加熱する排熱熱交換器5、及び、その排熱熱交換器5を通過した後の蓄熱水A1を放熱させる放熱用熱交換器6が設けられている。
図1〜図8では、流体が通流する部分を太線にて示している。そして、図1〜図8は、流体が通流する部分が異なるだけでその他の構成については同様の構成を示している。
An embodiment of a heat storage and heat dissipation system according to the present invention will be described with reference to the drawings.
As shown in FIGS. 1 to 8, this heat storage and heat dissipation system circulates in a heat storage tank 1 for storing water as the heat storage water A1 and the heat storage water A1 taken out from the heat storage tank 1 through a circulation path 2 to store heat. Heat storage water circulation means 3 for returning to the tank 1 is provided. In the circulation path 2, an exhaust heat exchanger 5 that heats the heat storage water A <b> 1 that flows through the circulation path 2 using an exhaust heat transport fluid that transports the exhaust heat of the heat supply device 4, and the exhaust heat exchanger thereof A heat-dissipating heat exchanger 6 that dissipates the heat storage water A <b> 1 after passing through 5 is provided.
In FIGS. 1-8, the part through which the fluid flows is shown by the thick line. 1 to 8 show the same configuration with respect to other configurations except that the portion through which the fluid flows is different.

熱供給装置4は、例えば、都市ガスを燃料とするガスエンジンや燃料電池を備えた熱電併給装置であり、排熱搬送流体としての冷却水A2がガスエンジンや燃料電池での排熱を回収するように構成されている。排熱熱交換器5と熱供給装置4との間で冷却水A2を循環する冷却水循環路7が設けられ、この冷却水循環路7に冷却水循環手段としての冷却水循環ポンプ8が設けられている。
冷却水循環路7には、熱供給装置4から排熱熱交換器5に供給する冷却水A2の温度を検出する冷却水往き温度センサ9、熱供給装置4から排熱熱交換器6に供給する冷却水A2の流量を検出する冷却水流量センサ10、及び、排熱熱交換器6から熱供給装置4に戻す冷却水A2の温度を検出する冷却水戻り温度センサ11が設けられている。
The heat supply device 4 is, for example, a combined heat and power supply device including a gas engine that uses city gas as fuel and a fuel cell, and the cooling water A2 as the exhaust heat carrier fluid recovers exhaust heat from the gas engine and fuel cell. It is configured as follows. A cooling water circulation path 7 for circulating the cooling water A2 is provided between the exhaust heat exchanger 5 and the heat supply device 4, and a cooling water circulation pump 8 as a cooling water circulation means is provided in the cooling water circulation path 7.
In the cooling water circulation path 7, a cooling water going-out temperature sensor 9 that detects the temperature of the cooling water A 2 supplied from the heat supply device 4 to the exhaust heat exchanger 5, and supplied from the heat supply device 4 to the exhaust heat exchanger 6. A cooling water flow rate sensor 10 that detects the flow rate of the cooling water A2 and a cooling water return temperature sensor 11 that detects the temperature of the cooling water A2 returned from the exhaust heat exchanger 6 to the heat supply device 4 are provided.

蓄熱槽1は、貯留する蓄熱水A1の上面よりも高い位置に大気に通じる開口を有する大気開放型に構成されている。図示は省略するが、蓄熱槽1に蓄熱水A1を補給するために補給路及び補給弁が設けられ、下限水位センサにて蓄熱水A1の水位が下限水位未満になったことを検出すると、補給弁を開弁して補給路にて蓄熱槽1に蓄熱水A1を補給する。そして、上限水位センサにて蓄熱水A1の水位が上限水位になったことを検出すると、補給弁を閉弁して補給路にて蓄熱槽1への蓄熱水A1の補給を停止する。   The heat storage tank 1 is configured as an open air type having an opening leading to the atmosphere at a position higher than the upper surface of the stored heat storage water A1. Although illustration is omitted, a replenishment path and a replenishment valve are provided for replenishing the heat storage water A1 to the heat storage tank 1, and replenishment is detected when the lower limit water level sensor detects that the water level of the heat storage water A1 is less than the lower limit water level. The valve is opened, and the heat storage water A1 is supplied to the heat storage tank 1 through the supply path. When the upper limit water level sensor detects that the water level of the heat storage water A1 has reached the upper limit water level, the replenishment valve is closed and the replenishment of the heat storage water A1 to the heat storage tank 1 is stopped in the replenishment path.

循環路2は、蓄熱槽1の上部及び下部に接続されており、蓄熱水循環手段3は、蓄熱槽1の上部から蓄熱水A1を取り出して蓄熱槽1の下部に蓄熱水A1を戻すように構成されている。
蓄熱槽1から循環路2に取り出した蓄熱水A1を排熱熱交換器5をバイパスさせて放熱用熱交換器6に通流させる排熱熱交換器バイパス路13が設けられている。この排熱熱交換器バイパス路13には、蓄熱水A1を通流させるか否か及びその流量を調整可能なバイパス路調整弁18が設けられている。
The circulation path 2 is connected to the upper part and the lower part of the heat storage tank 1, and the heat storage water circulation means 3 is configured to take out the heat storage water A1 from the upper part of the heat storage tank 1 and return the heat storage water A1 to the lower part of the heat storage tank 1. Has been.
An exhaust heat exchanger bypass path 13 is provided for allowing the heat storage water A1 taken out from the heat storage tank 1 to the circulation path 2 to bypass the exhaust heat exchanger 5 and to flow to the heat dissipation heat exchanger 6. This exhaust heat exchanger bypass passage 13 is provided with a bypass passage adjustment valve 18 capable of adjusting whether or not the heat storage water A1 is allowed to flow and its flow rate.

蓄熱水循環手段3は、蓄熱水循環ポンプ12及びバイパス路調整弁18を備えて構成されている。蓄熱水循環手段3は、蓄熱槽1から取り出した蓄熱水A1の全量を排熱熱交換器5に通流させる形態で蓄熱水A1を循環させる全通流状態(例えば図2の太線部)と、蓄熱槽1から取り出した蓄熱水A1の一部を排熱熱交換器バイパス路13に通流させる形態で蓄熱水A1を循環させる一部通流状態(例えば図3の太線部)とに切換自在に構成されている。つまり、蓄熱水循環手段3は、バイパス路調整弁18を閉弁した状態で蓄熱水循環ポンプ12を作動させることにより、全通流状態に切り換える。また、蓄熱水循環手段3は、バイパス路調整弁18を開弁した状態で蓄熱水循環ポンプ12を作動させることにより、一部通流状態に切り換える。   The heat storage water circulation means 3 includes a heat storage water circulation pump 12 and a bypass passage adjustment valve 18. The heat storage water circulation means 3 has a whole flow state (for example, a thick line portion in FIG. 2) in which the heat storage water A1 is circulated in a form in which the entire amount of the heat storage water A1 taken out from the heat storage tank 1 is passed through the exhaust heat exchanger 5. The heat storage water A1 taken out from the heat storage tank 1 can be switched to a partially flowing state (for example, a thick line portion in FIG. 3) in which the heat storage water A1 is circulated in a form in which the heat storage water A1 is passed through the exhaust heat exchanger bypass passage 13. It is configured. That is, the heat storage water circulation means 3 switches to the full flow state by operating the heat storage water circulation pump 12 with the bypass passage adjustment valve 18 closed. Further, the heat storage water circulation means 3 is switched to a partially flowing state by operating the heat storage water circulation pump 12 with the bypass passage adjustment valve 18 opened.

排熱熱交換器バイパス路13には、通流する蓄熱水A1を加熱する加熱作動を実行可能な補助加熱手段14が設けられている。補助加熱手段14は、ガスバーナ15を燃焼させて蓄熱水A1を加熱するように構成されている。ガスバーナ15に都市ガス等の燃料ガスを供給する燃料ガス供給路16には、ガスバーナ15に燃料ガスを供給するか否か及びその燃料ガス供給量を調整自在な燃料ガス調整弁17が設けられている。補助加熱手段14は、燃料ガス調整弁17を開弁してガスバーナ15を燃焼させることにより加熱作動を実行可能に構成されている。   The exhaust heat exchanger bypass passage 13 is provided with auxiliary heating means 14 capable of performing a heating operation for heating the stored heat storage water A1. The auxiliary heating means 14 is configured to heat the heat storage water A1 by burning the gas burner 15. The fuel gas supply passage 16 for supplying a fuel gas such as city gas to the gas burner 15 is provided with a fuel gas regulating valve 17 capable of adjusting whether or not the fuel gas is supplied to the gas burner 15 and the fuel gas supply amount. Yes. The auxiliary heating means 14 is configured to be able to perform a heating operation by opening the fuel gas regulating valve 17 and burning the gas burner 15.

循環路2には、蓄熱水A1の通流方向の上流側から、蓄熱槽1から取り出す蓄熱水A1の温度を検出する第1蓄熱水温度センサ25、排熱熱交換器バイパス路13との接続箇所に通流する蓄熱水A1の温度を検出する第2蓄熱水温度センサ26、蓄熱水循環ポンプ12、排熱熱交換器5に通流する蓄熱水A1の流量を調整自在な蓄熱水流量調整手段としての第1蓄熱水流量調整弁27、排熱熱交換器5、放熱用熱交換器6としての追焚き用熱交換器23、追焚き用熱交換器23を通過した後の蓄熱水A1の温度を検出する第3蓄熱水温度センサ28、放熱用熱交換器6としての給湯用熱交換器21、給湯用熱交換器21を通過する蓄熱水A1の流量を検出する蓄熱水流量センサ29、給湯用熱交換器21を通過する蓄熱水A1の流量を調整自在な第2蓄熱水流量調整弁30が設けられている。   The circulation path 2 is connected to the first heat storage water temperature sensor 25 for detecting the temperature of the heat storage water A1 taken out from the heat storage tank 1 and the exhaust heat exchanger bypass path 13 from the upstream side in the flow direction of the heat storage water A1. The second heat storage water temperature sensor 26 for detecting the temperature of the heat storage water A1 flowing to the location, the heat storage water circulation pump 12, and the heat storage water flow rate adjusting means capable of adjusting the flow rate of the heat storage water A1 flowing to the exhaust heat exchanger 5. Of the heat storage water A1 after passing through the first heat storage water flow rate adjusting valve 27, the exhaust heat exchanger 5, the reheating heat exchanger 23 as the heat dissipation heat exchanger 6, and the reheating heat exchanger 23. A third heat storage water temperature sensor 28 for detecting the temperature, a hot water supply heat exchanger 21 as the heat dissipation heat exchanger 6, a heat storage water flow rate sensor 29 for detecting the flow rate of the heat storage water A1 passing through the hot water supply heat exchanger 21, Adjust the flow rate of the heat storage water A1 passing through the hot water supply heat exchanger 21 The second heat storage water flow regulating valve 30 is provided such.

給湯用熱交換器21は、給水路19から供給されて給湯路20に供給する給湯用の給水A3を蓄熱水A1の放熱対象とするように構成されている。給水路19には、給湯用熱交換器21に供給する給水温度を検出する給水温度センサ31が設けられている。給湯路20には、給湯用の給水A3の通流方向において上流側から、給湯用熱交換器21を通過する給湯用の給水A3の流量を調整自在な給湯流量調整弁32、給湯用熱交換器21を通過した後の給湯用の給水A3の温度を検出する出口温度センサ33、給湯路20にて給湯する給湯量を検出する給湯量センサ34、及び、給湯路20にて給湯する給湯温度を検出する給湯温度センサ35が設けられている。
また、給水路19からの給湯用の給水A3を給湯用熱交換器21をバイパスして給湯路20に供給する給湯用バイパス路36が設けられ、その給湯用バイパス路36を通流する給水A3の流量を調整自在なバイパス流量調整弁37が設けられている。
このようにして、給湯用熱交換器21にて加熱された給湯用の給水A3と給湯用バイパス路26からの給湯用の給水A3とを混合させて給湯路20にて給湯するように構成されている。
The hot water supply heat exchanger 21 is configured so that the hot water supply water A3 supplied from the water supply path 19 and supplied to the hot water supply path 20 is a heat dissipation target of the heat storage water A1. The water supply path 19 is provided with a water supply temperature sensor 31 that detects the temperature of the water supplied to the hot water supply heat exchanger 21. In the hot water supply path 20, from the upstream side in the flow direction of the hot water supply water A3, the flow rate of the hot water supply water A3 passing through the hot water supply heat exchanger 21 can be adjusted, the hot water supply flow rate adjustment valve 32, and the hot water supply heat exchange. An outlet temperature sensor 33 that detects the temperature of the hot water supply water A3 after passing through the water heater 21, a hot water supply sensor 34 that detects the amount of hot water supplied through the hot water supply channel 20, and a hot water supply temperature that supplies hot water through the hot water supply channel 20 A hot water supply temperature sensor 35 is provided.
Further, a hot water supply bypass path 36 for supplying hot water supply water A3 from the water supply path 19 to the hot water supply path 20 by bypassing the hot water supply heat exchanger 21 is provided, and the water supply A3 flowing through the hot water supply bypass path 36 is provided. A bypass flow rate adjustment valve 37 is provided which can adjust the flow rate.
In this way, the hot water supply water A3 heated by the hot water supply heat exchanger 21 and the hot water supply water A3 from the hot water supply bypass passage 26 are mixed to supply hot water in the hot water supply passage 20. ing.

追焚き用熱交換器23は、追焚き用熱交換器23を通過した後の蓄熱水A1が給湯用熱交換器21に通流するように給湯用熱交換器21と直列状態で設けられている。追焚き用熱交換器23は、浴槽22との間で浴槽水A4を蓄熱水A1の放熱対象とするように構成されている。
浴槽22と追焚き用熱交換器23との間で浴槽水A4を循環する浴槽水循環路38が設けられている。この浴槽水循環路38には、浴槽22から追焚き用熱交換器23に供給する浴槽水A4の温度を検出する浴槽水温度センサ39、及び、浴槽水循環ポンプ40が設けられている。
The reheating heat exchanger 23 is provided in series with the hot water supply heat exchanger 21 so that the heat storage water A1 after passing through the reheating heat exchanger 23 flows to the hot water supply heat exchanger 21. Yes. The reheating heat exchanger 23 is configured so that the bathtub water A4 is a heat dissipation target of the heat storage water A1 between the bathtub 22 and the heat exchanger 23.
A bathtub water circulation path 38 that circulates the bathtub water A4 between the bathtub 22 and the reheating heat exchanger 23 is provided. The bathtub water circulation path 38 is provided with a bathtub water temperature sensor 39 for detecting the temperature of the bathtub water A4 supplied from the bathtub 22 to the reheating heat exchanger 23, and a bathtub water circulation pump 40.

放熱用熱交換器6としては、給湯用熱交換器21及び追焚き用熱交換器23に加えて、暖房対象空間の室内空気を放熱対象とする暖房用放熱器24が設けられている。この暖房用放熱器24は、例えば床暖房パネルであり、浴室暖房装置等も適応可能である。
暖房用放熱器24は、給湯用熱交換器21及び追焚き用熱交換器23と並列状態で設けられている。つまり、循環路2において給湯用熱交換器21及び追焚き用熱交換器23が設けられた部分とは並列状態で暖房用通流路41が設けられ、この暖房用通流路41に暖房用放熱器24が設けられている。暖房用通流路41は、排熱熱交換器バイパス路13の途中部分から分岐して循環路2に合流するように設けられ、排熱熱交換器バイパス路13の一部を兼用している。
暖房用通流路41には、蓄熱水A1の通流方向の上流側から、暖房用放熱器24に供給する蓄熱水A1の温度を検出する暖房往き温度センサ42、暖房用放熱器24に蓄熱水A1を供給するか否かを調整自在な熱動弁43、及び、蓄熱水A1の逆流を防止する暖房用逆止弁44が設けられている。
In addition to the hot water supply heat exchanger 21 and the reheating heat exchanger 23, the heat dissipation heat exchanger 6 is provided with a heating radiator 24 that radiates the indoor air in the heating target space. The heating radiator 24 is, for example, a floor heating panel, and a bathroom heating device or the like is also applicable.
The heating radiator 24 is provided in parallel with the hot water supply heat exchanger 21 and the reheating heat exchanger 23. That is, the heating passage 41 is provided in parallel with the portion of the circulation path 2 where the hot water supply heat exchanger 21 and the reheating heat exchanger 23 are provided, and the heating passage 41 is connected to the heating passage 41. A radiator 24 is provided. The heating flow passage 41 is provided so as to branch from the middle portion of the exhaust heat exchanger bypass passage 13 and join the circulation passage 2, and also serves as a part of the exhaust heat exchanger bypass passage 13. .
In the heating flow path 41, the heating forward temperature sensor 42 that detects the temperature of the heat storage water A <b> 1 supplied to the heating radiator 24 from the upstream side in the flow direction of the heat storage water A <b> 1, and the heat storage in the heating radiator 24. There are provided a thermal valve 43 that can adjust whether or not to supply water A1, and a heating check valve 44 that prevents the backflow of the heat storage water A1.

循環路2において蓄熱槽1の下部に蓄熱水A1を戻す戻し部分2aと蓄熱槽1の上部から蓄熱水A1を取り出す取り出し部分2bとを接続する蓄熱槽バイパス路45が設けられている。蓄熱槽バイパス路45には、通流する蓄熱水A1の温度を検出するバイパス温度センサ46、及び、蓄熱槽バイパス路45に蓄熱水A1を通流させるか否かを調整自在な蓄熱槽バイパス路通流手段としての蓄熱水戻し調整弁47が設けられている。そして、蓄熱槽バイパス路通流手段は、蓄熱水戻し調整弁47を開弁させることにより、放熱用熱交換器6を通過した後の蓄熱水A1の少なくとも一部を蓄熱槽バイパス路45に通流させる通流作動を実行可能に構成されている。   In the circulation path 2, a heat storage tank bypass path 45 is provided that connects a return portion 2 a that returns the heat storage water A <b> 1 to the lower portion of the heat storage tank 1 and an extraction portion 2 b that extracts the heat storage water A <b> 1 from the upper portion of the heat storage tank 1. The heat storage tank bypass passage 45 has a bypass temperature sensor 46 that detects the temperature of the heat storage water A1 that flows therethrough, and a heat storage tank bypass passage that is adjustable whether the heat storage water A1 flows through the heat storage tank bypass passage 45 or not. A heat storage water return adjustment valve 47 is provided as a flow means. Then, the heat storage tank bypass passage flow means opens the heat storage water return adjustment valve 47 to pass at least a part of the heat storage water A1 after passing through the heat dissipation heat exchanger 6 to the heat storage tank bypass passage 45. It is configured to be able to execute a flow-through operation.

この蓄熱放熱システムの運転を制御する運転制御手段としての運転制御装置48が設けられている。運転制御装置48は、冷却水A2にて搬送される熱供給装置4の排熱を蓄熱槽1に蓄熱する蓄熱運転、及び、放熱用熱交換器6にて蓄熱水A1を放熱させる放熱運転を実行可能に構成されている。運転制御装置48は、放熱運転として、給湯用熱交換器21にて蓄熱水A1を放熱させる給湯運転、追焚き用熱交換器23にて蓄熱水A1を放熱させる追焚き運転、及び、暖房用放熱器24にて蓄熱水A1を放熱させる暖房運転の夫々を実行可能に構成されている。
以下、各運転における動作について説明する。
An operation control device 48 is provided as an operation control means for controlling the operation of the heat storage and heat dissipation system. The operation control device 48 performs a heat storage operation in which the exhaust heat of the heat supply device 4 conveyed by the cooling water A2 is stored in the heat storage tank 1, and a heat radiation operation in which the heat storage water A1 is radiated by the heat dissipation heat exchanger 6. Configured to be executable. The operation control device 48 performs, as a heat radiation operation, a hot water supply operation in which the heat storage water A1 is radiated by the hot water supply heat exchanger 21, a reheating operation in which the heat storage water A1 is radiated by the reheating heat exchanger 23, and heating. Each of the heating operations in which the heat storage water A1 is radiated by the radiator 24 is configured to be executable.
Hereinafter, the operation in each operation will be described.

(蓄熱運転)
この蓄熱運転は、熱供給装置4の排熱を蓄熱槽1に蓄熱すべきときに行えばよく、どのようなときに実行するかは適宜変更が可能である。
例えば、運転制御装置48は、過去の実績等に基づいて求めたその日一日に必要となる必要放熱量と現在の蓄熱量とを比較して、必要放熱量が現在の蓄熱量よりも多いときには、熱供給装置4の排熱を蓄熱槽1に蓄熱すべきときであるとして、蓄熱運転を実行する。現在の蓄熱量については、各蓄熱水温度センサ25,29,46の検出情報及び蓄熱水流量センサ29の検出情報等により前回蓄熱運転を終了してから放熱用熱交換器6にて放熱された放熱量、並びに、外気温度や経過時間等から想定される蓄熱槽2での放熱量に基づいて求めることができる。
また、この実施形態では、熱供給装置4を熱電併給装置としているので、暖房の需要が多い冬季等には、電力の需要があると常時蓄熱運転を実行するようにすることもできる。
(Heat storage operation)
This heat storage operation may be performed when the exhaust heat of the heat supply device 4 is to be stored in the heat storage tank 1, and it is possible to appropriately change when it is executed.
For example, the operation control device 48 compares the required heat release amount required for the day and the current heat storage amount obtained based on past results, etc., and the required heat release amount is greater than the current heat storage amount. The heat storage operation is executed assuming that the exhaust heat of the heat supply device 4 is to be stored in the heat storage tank 1. About the present heat storage amount, it was radiated by the heat exchanger 6 for heat dissipation after the previous heat storage operation was finished by the detection information of each of the heat storage water temperature sensors 25, 29, 46 and the detection information of the heat storage water flow rate sensor 29, etc. It can be determined based on the amount of heat released and the amount of heat released in the heat storage tank 2 assumed from the outside air temperature, elapsed time, and the like.
Moreover, in this embodiment, since the heat supply device 4 is a combined heat and power supply device, in the winter season when there is a great demand for heating, when there is a demand for electric power, a constant heat storage operation can be executed.

図1に示すように、運転制御装置48は、熱供給装置4を作動させ且つ冷却水循環ポンプ8を作動させて、排熱熱交換器5に冷却水A2を通流させるように構成されている。運転制御装置48は、第1蓄熱水流量調整弁27及び第2蓄熱水流量調整弁30を開弁させ且つバイパス路調整弁18を閉弁した状態で蓄熱水循環ポンプ8を作動させることにより、蓄熱水循環手段3を全通流状態に切り換えるように構成されている。運転制御装置48は、冷却水戻り温度センサ11の検出温度が設定温度範囲内になるように、第1蓄熱水流量調整弁27の開度を調整して排熱熱交換器5に通流する蓄熱水A1の流量を調整する蓄熱水流量調整制御を行うように構成されている。
このようにして、蓄熱槽1の上部から取り出された蓄熱水A1の全量が排熱熱交換器5にて加熱されて蓄熱槽1の下部に戻される。その加熱された蓄熱水A1によって、蓄熱槽1に貯留された蓄熱水A1を全体的に温度上昇させて蓄熱槽1に蓄熱する。
As shown in FIG. 1, the operation control device 48 is configured to operate the heat supply device 4 and the cooling water circulation pump 8 so that the cooling water A2 flows through the exhaust heat exchanger 5. . The operation control device 48 activates the heat storage water circulation pump 8 with the first heat storage water flow rate adjustment valve 27 and the second heat storage water flow rate adjustment valve 30 opened and the bypass passage adjustment valve 18 closed. The water circulation means 3 is configured to be switched to the full flow state. The operation control device 48 adjusts the opening degree of the first heat storage water flow rate adjustment valve 27 so that the detected temperature of the cooling water return temperature sensor 11 falls within the set temperature range, and passes it to the exhaust heat exchanger 5. The heat storage water flow rate adjustment control for adjusting the flow rate of the heat storage water A1 is performed.
In this way, the entire amount of the heat storage water A1 taken out from the upper part of the heat storage tank 1 is heated by the exhaust heat exchanger 5 and returned to the lower part of the heat storage tank 1. With the heated heat storage water A1, the temperature of the heat storage water A1 stored in the heat storage tank 1 is entirely increased and stored in the heat storage tank 1.

運転制御装置48は、第1蓄熱水温度センサ25の検出温度が蓄熱完了設定温度になると、蓄熱運転を終了する。このときの蓄熱完了設定温度は、適宜変更が可能であるが、例えば、夏季等必要放熱量が小さいときには55℃と設定し、冬季等必要放熱量が大きいときには75℃と設定することができる。
そして、運転制御装置48は、一旦、熱供給装置4を作動させると、第1蓄熱水温度センサ25の検出温度が蓄熱完了設定温度以上になるまで熱供給装置4の作動を継続させるように構成されている。
The operation control device 48 ends the heat storage operation when the temperature detected by the first heat storage water temperature sensor 25 reaches the heat storage completion set temperature. The heat storage completion set temperature at this time can be appropriately changed. For example, it can be set to 55 ° C. when the required heat release amount is small, such as in summer, and can be set to 75 ° C., when the required heat release amount is high, such as in winter.
Then, once the heat supply device 4 is operated, the operation control device 48 is configured to continue the operation of the heat supply device 4 until the temperature detected by the first heat storage water temperature sensor 25 becomes equal to or higher than the heat storage completion set temperature. Has been.

(給湯運転)
図2では、第1蓄熱水温度センサ25の検出温度が第1設定温度(例えば、60℃)よりも高いときに熱供給装置4を作動させずに給湯運転を行う場合を示している。
運転制御装置48が、蓄熱水循環手段3を全通流状態に切り換えるとともに、出口温度センサ33の検出温度が給湯設定温度+αになるように、蓄熱水流量センサ29の検出流量に基づいて第2蓄熱水流量調整弁30の開度を調整する給湯温度用蓄熱水流量制御を行うように構成されている。また、運転制御装置48は、給湯量センサ34の検出流量が要求されている給湯量となり且つ給湯温度センサ35の検出温度が給湯設定温度になるように、給湯流量調整弁32及びバイパス流量調整弁37の開度を調整する給湯制御を行うように構成されている。
(Hot water operation)
FIG. 2 shows a case where the hot water supply operation is performed without operating the heat supply device 4 when the temperature detected by the first heat storage water temperature sensor 25 is higher than the first set temperature (for example, 60 ° C.).
The operation control device 48 switches the heat storage water circulation means 3 to the full flow state, and the second heat storage based on the detection flow rate of the heat storage water flow rate sensor 29 so that the detection temperature of the outlet temperature sensor 33 becomes the hot water supply set temperature + α. The hot water storage temperature heat storage water flow rate control for adjusting the opening degree of the water flow rate adjustment valve 30 is performed. Further, the operation control device 48 includes the hot water supply flow rate adjustment valve 32 and the bypass flow rate adjustment valve so that the detected flow rate of the hot water supply amount sensor 34 becomes the required hot water supply amount and the detected temperature of the hot water supply temperature sensor 35 becomes the hot water supply set temperature. The hot water supply control for adjusting the opening degree of 37 is performed.

図3では、第1蓄熱水温度センサ25の検出温度が第1設定温度よりも高いときに熱供給装置4を作動させて給湯運転を行う場合を示している。
運転制御装置48が、冷却水循環ポンプ8を作動させて排熱熱交換器5に冷却水A2を通流させるとともに蓄熱水流量調整制御を行うように構成されている。また、図2で示した場合と同様に、運転制御装置48は、給湯温度用蓄熱水流量制御、及び、給湯制御を行うように構成されている。
そして、蓄熱水循環手段3については、蓄熱水流量センサ29の検出流量が給湯用熱交換器21にて要求されている流量を満たすときには、運転制御装置48が蓄熱水循環手段3を全通流状態に切り換え、蓄熱水流量センサ29の検出流量が給湯用熱交換器21にて要求されている流量に満たないときには、運転制御装置48がバイパス路調整弁18を開弁して蓄熱水循環手段3を一部通流状態に切り換えるように構成されている。図3では、蓄熱水循環手段3を一部通流状態に切り換えた場合を示している。
FIG. 3 shows a case where the hot water supply operation is performed by operating the heat supply device 4 when the temperature detected by the first heat storage water temperature sensor 25 is higher than the first set temperature.
The operation control device 48 is configured to operate the cooling water circulation pump 8 to flow the cooling water A2 through the exhaust heat exchanger 5 and to perform heat storage water flow rate adjustment control. Further, similarly to the case shown in FIG. 2, the operation control device 48 is configured to perform hot water storage temperature storage water flow rate control and hot water supply control.
And about the thermal storage water circulation means 3, when the detection flow volume of the thermal storage water flow sensor 29 satisfy | fills the flow volume requested | required in the hot water supply heat exchanger 21, the operation control apparatus 48 makes the thermal storage water circulation means 3 into a full flow state. When the flow rate detected by the heat storage water flow sensor 29 is less than the flow rate required by the hot water supply heat exchanger 21, the operation control device 48 opens the bypass passage adjustment valve 18 and turns on the heat storage water circulation means 3. It is configured to switch to a partial flow state. FIG. 3 shows a case where the heat storage water circulation means 3 is partially switched to the flow state.

図4では、第1蓄熱水温度センサ25の検出温度が第1設定温度よりも高い第2設定温度(例えば、75℃)以上のときに熱供給装置4を作動させて給湯運転を行う場合を示している。
運転制御装置48が、蓄熱水循環手段3を全通流状態に切り換え、冷却水循環ポンプ8を作動させて排熱熱交換器5に冷却水A2を通流させるとともに、蓄熱水流量調整制御を行うように構成されている。また、図2で示した場合と同様に、運転制御装置48は、給湯温度用蓄熱水流量制御、及び、給湯制御を行うように構成されている。
この場合には、第1蓄熱水温度センサ25の検出温度が第2設定温度(例えば、75℃)以上であるので、蓄熱水流量調整制御を行っても、冷却水戻り温度センサ11の検出温度が設定温度範囲よりも高くなってしまう場合がある。そこで、運転制御装置48は、蓄熱水戻し調整弁47を開弁して蓄熱槽バイパス路通流手段を通流作動させ、蓄熱槽1の上部から取り出した高温の蓄熱水A1に蓄熱槽バイパス路45からの低温の蓄熱水A1を混合させて排熱熱交換器5に通流する蓄熱水A1の温度を低下させるように構成されている。
In FIG. 4, when the temperature detected by the first heat storage water temperature sensor 25 is equal to or higher than a second set temperature (for example, 75 ° C.) higher than the first set temperature, the heat supply device 4 is operated to perform a hot water supply operation. Show.
The operation control device 48 switches the regenerative water circulation means 3 to the full flow state, operates the cooling water circulation pump 8 to flow the cooling water A2 through the exhaust heat exchanger 5, and performs the regenerative water flow rate adjustment control. It is configured. Further, similarly to the case shown in FIG. 2, the operation control device 48 is configured to perform hot water storage temperature storage water flow rate control and hot water supply control.
In this case, since the detected temperature of the first heat storage water temperature sensor 25 is equal to or higher than the second set temperature (for example, 75 ° C.), even if the heat storage water flow rate adjustment control is performed, the detection temperature of the cooling water return temperature sensor 11 May become higher than the set temperature range. Therefore, the operation control device 48 opens the heat storage water return adjustment valve 47 to operate the heat storage tank bypass passage flow means, and adds the heat storage tank bypass passage to the high-temperature heat storage water A1 taken out from the upper portion of the heat storage tank 1. The low-temperature heat storage water A1 from 45 is mixed and the temperature of the heat storage water A1 flowing through the exhaust heat exchanger 5 is lowered.

図5では、第1蓄熱水温度センサ25の検出温度が第1設定温度(例えば、60℃)以下のときに熱供給装置4を作動させて給湯運転を行う場合を示している。
運転制御装置48が、第1蓄熱水流量調整弁27、第2蓄熱水流量調整弁30、及び、バイパス路調整弁18の夫々を開弁して蓄熱水循環手段3を一部通流状態に切り換え、冷却水循環ポンプ8を作動させて排熱熱交換器5に冷却水A2を通流させるとともに、蓄熱水流量調整制御を行うように構成されている。そして、運転制御装置48は、燃料ガス調整弁18を開弁させて補助加熱手段14を加熱作動させるように構成されている。また、図2で示した場合と同様に、運転制御装置48は、給湯温度用蓄熱水流量制御、及び、給湯制御を行うように構成されている。
FIG. 5 shows a case where the hot water supply operation is performed by operating the heat supply device 4 when the temperature detected by the first heat storage water temperature sensor 25 is equal to or lower than a first set temperature (for example, 60 ° C.).
The operation control device 48 opens each of the first heat storage water flow rate adjustment valve 27, the second heat storage water flow rate adjustment valve 30, and the bypass passage adjustment valve 18 to switch the heat storage water circulation means 3 to a partially flowing state. The cooling water circulation pump 8 is operated to cause the exhaust heat exchanger 5 to flow the cooling water A2, and the heat storage water flow rate adjustment control is performed. Then, the operation control device 48 is configured to open the fuel gas adjustment valve 18 and heat the auxiliary heating means 14. Further, similarly to the case shown in FIG. 2, the operation control device 48 is configured to perform hot water storage temperature storage water flow rate control and hot water supply control.

熱供給装置4を作動させて給湯運転を行う場合に、図3〜図5の夫々に示した各状態の切り換えについて説明する。
まず、蓄熱槽1に第2設定温度以上の蓄熱水A1が蓄熱されている場合には、図4に示した状態により給湯運転を行う。この給湯運転を行うことにより第1蓄熱水温度センサ25の検出温度が低下して、第1蓄熱水温度センサ25の検出温度が第2設定温度未満になると、図4に示した状態から図3に示した状態に切り換えて給湯運転を行う。この給湯運転を行うことにより第1蓄熱水温度センサ25の検出温度がさらに低下して、第1蓄熱水温度センサ25の検出温度が第1設定温度未満になると、図3に示した状態から図5に示した状態に切り換えて給湯運転を行う。
このようにして、図3〜図5の夫々に示した各状態を切り換えていくのであるが、図3及び図4の夫々に示した状態のように、補助加熱手段14を加熱作動させずに熱供給装置4の排熱のみによって給湯運転を極力行いながら、図5に示した状態のように、熱供給装置4の排熱だけでは給湯負荷を賄えないときのみ補助加熱手段14を加熱作動させるようにしている。したがって、熱供給装置4の排熱を有効に活用して省エネルギー化を図りながら、給湯を行うことができる。また、蓄熱水A1の温度が第1設定温度(例えば、60℃)以上の場合、蓄熱水A1を補助加熱手段14に通流させないことにより、補助加熱手段14での放熱を防ぐことができる。
When the hot water supply operation is performed by operating the heat supply device 4, switching of each state shown in FIGS. 3 to 5 will be described.
First, when the heat storage water A1 having a temperature equal to or higher than the second set temperature is stored in the heat storage tank 1, a hot water supply operation is performed in the state shown in FIG. When the detected temperature of the first heat storage water temperature sensor 25 is lowered by performing this hot water supply operation and the temperature detected by the first heat storage water temperature sensor 25 becomes lower than the second set temperature, the state shown in FIG. Switch to the state shown in, and perform hot water supply operation. When the detected temperature of the first heat storage water temperature sensor 25 is further lowered by performing this hot water supply operation and the temperature detected by the first heat storage water temperature sensor 25 becomes lower than the first set temperature, the state shown in FIG. 5 is switched to the state shown in FIG.
In this way, the respective states shown in FIGS. 3 to 5 are switched, but the auxiliary heating means 14 is not heated as in the states shown in FIGS. 3 and 4. While performing the hot water supply operation as much as possible only with the exhaust heat of the heat supply device 4, the auxiliary heating means 14 is heated only when the exhaust heat of the heat supply device 4 alone cannot cover the hot water supply load as shown in FIG. I try to let them. Therefore, it is possible to perform hot water supply while effectively utilizing the exhaust heat of the heat supply device 4 to save energy. Further, when the temperature of the heat storage water A1 is equal to or higher than the first set temperature (for example, 60 ° C.), the heat storage water A1 is not allowed to flow through the auxiliary heating unit 14, thereby preventing heat dissipation in the auxiliary heating unit 14.

(追焚き運転)
追焚き運転では、運転制御装置48が、浴槽水循環ポンプ40を作動させることにより、浴槽22から追焚き用熱交換器23に浴槽水A4を供給させて追焚き用熱交換器23にて浴槽水A4を加熱して、その加熱された浴槽水A4を浴槽22に戻すように構成されている。そして、追焚き運転は、追焚き用熱交換器23にて蓄熱水A1を放熱させる動作が給湯運転と異なるだけである。
つまり、図2〜図5に示した給湯運転の各状態において、給湯用の給水A3を給湯用熱交換器21に通流させるのに代えて、図6に示すように、浴槽水A4を追焚き用熱交換器23に通流させるようにしている。図6に示す状態は、図5に示す状態に対応するものであり、図示はしないが、追焚き運転においても、図2〜図4の各状態に対応する状態がある。
(Driving operation)
In the chasing operation, the operation control device 48 operates the bath water circulation pump 40 to supply the bath water A4 from the bathtub 22 to the chasing heat exchanger 23, and the bath water is heated in the chasing heat exchanger 23. A4 is heated and the heated bathtub water A4 is returned to the bathtub 22. The reheating operation is different from the hot water supply operation only in the operation of dissipating the heat storage water A1 in the reheating heat exchanger 23.
That is, in each state of the hot water supply operation shown in FIGS. 2 to 5, instead of passing the hot water supply water A3 to the hot water supply heat exchanger 21, as shown in FIG. It is made to flow through the heat exchanger 23 for the burning. The state shown in FIG. 6 corresponds to the state shown in FIG. 5, and although not shown, there are states corresponding to the states shown in FIGS.

この追焚き運転では、給湯運転における第1設定温度及び第2設定温度を追焚き設定温度に基づいて変更設定することができる。
運転制御装置48は、浴槽水温度センサ39の検出温度が追焚き用設定温度になるまで追焚き運転を継続し、浴槽水温度センサ39の検出温度が追焚き用設定温度以上になると追焚き運転を終了するように構成されている。
In the reheating operation, the first set temperature and the second set temperature in the hot water supply operation can be changed and set based on the reheating setting temperature.
The operation control device 48 continues the chasing operation until the temperature detected by the bathtub water temperature sensor 39 reaches the setting temperature for chasing, and when the temperature detected by the bath water temperature sensor 39 becomes equal to or higher than the chasing temperature, the chasing operation is performed. Is configured to exit.

この追焚き運転においても、上述の給湯運転と同様に、補助加熱手段14を加熱作動させずに熱供給装置4の排熱のみによって追焚き運転を極力行いながら、熱供給装置4の排熱だけでは給湯負荷を賄えないときのみ補助加熱手段14を加熱作動させるようにしているので、熱供給装置4の排熱を有効に活用して省エネルギー化を図りながら、浴槽水A4の追焚きを行うことができる。   Also in this reheating operation, similarly to the hot water supply operation described above, only the exhaust heat of the heat supply device 4 is obtained while performing the reheating operation only by the exhaust heat of the heat supply device 4 without heating the auxiliary heating means 14. Then, since the auxiliary heating means 14 is heated only when the hot water supply load cannot be covered, the bath water A4 is replenished while effectively utilizing the exhaust heat of the heat supply device 4 to save energy. be able to.

(給湯・追焚き同時運転)
運転制御装置48は、給湯運転と追焚き運転とを同時に行う給湯・追焚き同時運転を実行可能に構成されている。
この給湯・追焚き同時運転では、運転制御装置48が、上述の給湯運転と上述の追焚き運転とを同時に行う。例えば、図5に示す状態の給湯運転と図6に示す状態の追焚き運転とを同時に行うことになる。
(Simultaneous operation of hot water and reheating)
The operation control device 48 is configured to be able to execute a hot water supply / chasing simultaneous operation that simultaneously performs a hot water supply operation and a chasing operation.
In this hot water supply / chasing simultaneous operation, the operation control device 48 simultaneously performs the hot water supply operation and the chasing operation described above. For example, the hot water supply operation in the state shown in FIG. 5 and the chasing operation in the state shown in FIG. 6 are performed simultaneously.

(暖房運転)
図7では、第1蓄熱水温度センサ25の検出温度が暖房用蓄熱水設定温度(例えば、60℃)以上のときに熱供給装置4を作動させて暖房運転を行う場合を示している。
運転制御装置48が、第1蓄熱水流量調整弁27を開弁し且つ第2蓄熱水流量調整弁30及びバイパス路調整弁18の夫々を閉弁して蓄熱水循環手段3を全通流状態に切り換え、冷却水循環ポンプ8を作動させて排熱熱交換器5に冷却水A2を通流させるとともに、蓄熱水流量調整制御を行うように構成されている。このときには、第2蓄熱水流量調整弁30を閉弁しているので、排熱熱交換器5を通過した後の蓄熱水A1は、排熱熱交換器バイパス路13に通流したのち暖房用通流路41に通流して暖房用放熱器24に通流する。この場合には、第1蓄熱水温度センサ25の検出温度が暖房用蓄熱水設定温度(例えば、60℃)以上であるので、蓄熱水流量調整制御を行っても、冷却水戻り温度センサ11の検出温度が設定温度範囲よりも高くなってしまう場合がある。そこで、運転制御装置48は、蓄熱水戻し調整弁47を開弁して蓄熱槽バイパス路通流手段を通流作動させ、蓄熱槽1の上部から取り出した高温の蓄熱水A1に蓄熱槽バイパス路45からの低温の蓄熱水A1を混合させて排熱熱交換器5に通流する蓄熱水A1の温度を低下させるように構成されている。
(Heating operation)
FIG. 7 illustrates a case where the heating operation is performed by operating the heat supply device 4 when the temperature detected by the first heat storage water temperature sensor 25 is equal to or higher than the heat storage water set temperature for heating (for example, 60 ° C.).
The operation control device 48 opens the first heat storage water flow rate adjustment valve 27 and closes each of the second heat storage water flow rate adjustment valve 30 and the bypass path adjustment valve 18 to bring the heat storage water circulation means 3 into a full flow state. The cooling water circulation pump 8 is switched and the exhaust heat exchanger 5 is caused to flow the cooling water A2, and the heat storage water flow rate adjustment control is performed. At this time, since the second heat storage water flow rate adjustment valve 30 is closed, the heat storage water A1 after passing through the exhaust heat exchanger 5 is passed through the exhaust heat exchanger bypass 13 and then heated. It flows through the flow path 41 and flows to the heating radiator 24. In this case, since the temperature detected by the first heat storage water temperature sensor 25 is equal to or higher than the heat storage water set temperature for heating (for example, 60 ° C.), even if the heat storage water flow rate adjustment control is performed, the cooling water return temperature sensor 11 The detected temperature may be higher than the set temperature range. Therefore, the operation control device 48 opens the heat storage water return adjustment valve 47 to operate the heat storage tank bypass passage flow means, and adds the heat storage tank bypass passage to the high-temperature heat storage water A1 taken out from the upper portion of the heat storage tank 1. The low-temperature heat storage water A1 from 45 is mixed and the temperature of the heat storage water A1 flowing through the exhaust heat exchanger 5 is lowered.

運転制御装置48は、熱動弁43を開弁して暖房用放熱器24に蓄熱水A1を通流させる通流状態を設定開弁時間(例えば、3分)継続した後、熱動弁43を閉弁して暖房用放熱器24に対する蓄熱水A1の通流を停止させる通流停止状態を設定閉弁時間(例えば、17分)の間継続させる動作を設定周期(例えば、20分)で繰り返し行うように構成されている。そして、運転制御装置48は、通流停止状態を設定閉弁時間(例えば、17分)の間継続させているときに、図1に示すように、第2蓄熱水流量調整弁30を開弁させて排熱熱交換器5を通過した後の蓄熱水A1を蓄熱槽1の下部に戻すことにより蓄熱槽1への蓄熱を行うように構成されている。このようにして、熱供給装置4の排熱を有効に活用して、暖房運転を行いながら蓄熱運転を間欠的に行うことができるので、省エネルギー化を図ることができる。   The operation control device 48 opens the thermal valve 43 and continues the flow state in which the heat storage water A1 flows through the heating radiator 24 for a set valve opening time (for example, 3 minutes), and then the thermal valve 43. Is closed for a set valve closing time (for example, 17 minutes) at a set cycle (for example, 20 minutes). It is configured to repeat. Then, when the operation control device 48 continues the flow stop state for a set valve closing time (for example, 17 minutes), as shown in FIG. The heat storage water A <b> 1 after passing through the exhaust heat exchanger 5 is returned to the lower part of the heat storage tank 1 to store heat in the heat storage tank 1. In this way, the heat storage operation can be intermittently performed while performing the heating operation by effectively utilizing the exhaust heat of the heat supply device 4, so that energy saving can be achieved.

このように、第1蓄熱水温度センサ25の検出温度が暖房用蓄熱水設定温度(例えば、60℃)以上のときには、補助加熱手段14を加熱作動させずに熱供給装置4の排熱のみによって暖房運転を行うことができ、熱供給装置4の排熱を有効に活用して省エネルギー化を図りながら、暖房対象空間の暖房を行うことができる。   Thus, when the temperature detected by the first heat storage water temperature sensor 25 is equal to or higher than the heat storage water set temperature for heating (for example, 60 ° C.), the auxiliary heating means 14 is not heated and only the exhaust heat of the heat supply device 4 is used. Heating operation can be performed, and the space to be heated can be heated while effectively using the exhaust heat of the heat supply device 4 to save energy.

また、図7には示していないが、暖房用放熱器24近傍に、蓄熱槽1の上部から取り出した高温の蓄熱水A1を他の経路を介さずに直接通流させる熱交換器を別途設けることにより、当該熱交換器と暖房用放熱器24内とを通流する蓄熱水A1から放熱する構成を加えてもよい。このような構成を加えることで、当該熱交換器と暖房用放熱器24内とに通流させる蓄熱水A1の流量や通流させるか否かを制御する等により、暖房運転をさらに一層制御し易くすることができる。   Although not shown in FIG. 7, a heat exchanger is provided separately in the vicinity of the heating radiator 24 to allow the high-temperature heat storage water A1 taken out from the upper part of the heat storage tank 1 to flow directly without passing through another path. Therefore, a configuration may be added in which heat is radiated from the heat storage water A1 that flows through the heat exchanger and the heating radiator 24. By adding such a configuration, the heating operation is further controlled by controlling the flow rate of the heat storage water A1 to be passed through the heat exchanger and the heating radiator 24, whether or not to pass it. Can be made easier.

図8では、第1蓄熱水温度センサ25の検出温度が暖房用蓄熱水設定温度(例えば、60℃)未満のときに熱供給装置4を作動させて暖房運転を行う場合を示している。
図7にて説明したのと同様に、運転制御装置48が、第1蓄熱水流量調整弁27を開弁し且つ第2蓄熱水流量調整弁30及びバイパス路調整弁18の夫々を閉弁して蓄熱水循環手段3を全通流状態に切り換え、冷却水循環ポンプ8を作動させて排熱熱交換器5に冷却水A2を通流させるとともに、蓄熱水流量調整制御を行うように構成されている。この場合には、第1蓄熱水温度センサ25の検出温度が暖房用蓄熱水設定温度(例えば、60℃)未満であるので、暖房往き温度センサ42の検出温度が暖房設定温度(例えば、60℃)に満たない場合がある。そこで、運転制御装置48は、蓄熱水戻し調整弁47を開弁して蓄熱槽バイパス路通流手段を通流作動させ、蓄熱槽1の上部から取り出した低温の蓄熱水A1に蓄熱槽バイパス路45からの高温の蓄熱水A1を混合させて排熱熱交換器5に通流する蓄熱水A1の温度を上昇させるように構成されている。また、運転制御装置48は、この通流作動を行っても暖房往き温度センサ42の検出温度が暖房設定温度(例えば、60℃)に満たないときには、バイパス路調整弁18を開弁して蓄熱水循環手段3を一部通流状態に切り換えるとともに、燃料ガス調整弁18を開弁させて補助加熱手段14を加熱作動させるように構成されている。
FIG. 8 shows a case where the heating operation is performed by operating the heat supply device 4 when the temperature detected by the first heat storage water temperature sensor 25 is lower than the heat storage water set temperature for heating (for example, 60 ° C.).
As described with reference to FIG. 7, the operation control device 48 opens the first heat storage water flow rate adjustment valve 27 and closes each of the second heat storage water flow rate adjustment valve 30 and the bypass passage adjustment valve 18. Then, the heat storage water circulation means 3 is switched to the full flow state, the cooling water circulation pump 8 is operated, the cooling water A2 is passed through the exhaust heat exchanger 5, and the heat storage water flow rate adjustment control is performed. . In this case, since the temperature detected by the first heat storage water temperature sensor 25 is lower than the heating heat storage water set temperature (for example, 60 ° C.), the temperature detected by the heating forward temperature sensor 42 is the heating set temperature (for example, 60 ° C.). ) May not be met. Therefore, the operation control device 48 opens the heat storage water return adjustment valve 47 to operate the heat storage tank bypass passage flow means, and supplies the heat storage tank bypass passage to the low-temperature heat storage water A1 taken out from the upper portion of the heat storage tank 1. The high-temperature heat storage water A1 from 45 is mixed and the temperature of the heat storage water A1 flowing through the exhaust heat exchanger 5 is increased. Further, the operation control device 48 opens the bypass adjustment valve 18 to store heat when the detected temperature of the heating forward temperature sensor 42 does not reach the heating set temperature (for example, 60 ° C.) even after performing this flow operation. The water circulation means 3 is partially switched to the flow state, and the fuel gas adjustment valve 18 is opened to heat the auxiliary heating means 14.

この場合も、図7にて説明したのと同様に、運転制御装置48は、通流状態を設定開弁時間(例えば、3分)継続した後、通流停止状態を設定閉弁時間(例えば、17分)の間継続させる動作を設定周期(例えば、20分)で繰り返し行うように構成されている。そして、運転制御装置48は、通流停止状態を設定閉弁時間(例えば、17分)の間継続させているときに、図1に示すように、第2蓄熱水流量調整弁30を開弁させて排熱熱交換器5を通過した後の蓄熱水A1を蓄熱槽1の下部に戻すことにより蓄熱槽1への蓄熱を行うように構成されている。   In this case as well, as described with reference to FIG. 7, the operation control device 48 continues the flow state for a set valve opening time (for example, 3 minutes), and then sets the flow stop state for a set valve closing time (for example, , 17 minutes) is repeatedly performed at a set cycle (for example, 20 minutes). Then, when the operation control device 48 continues the flow stop state for a set valve closing time (for example, 17 minutes), as shown in FIG. The heat storage water A <b> 1 after passing through the exhaust heat exchanger 5 is returned to the lower part of the heat storage tank 1 to store heat in the heat storage tank 1.

〔別実施形態〕
(1)上記実施形態では、排熱熱交換器バイパス路13に補助加熱手段14を設けているが、この補助加熱手段14を設けなくてもよい。
[Another embodiment]
(1) In the above embodiment, the auxiliary heating means 14 is provided in the exhaust heat exchanger bypass passage 13, but the auxiliary heating means 14 may not be provided.

(2)上記実施形態では、第1蓄熱水温度センサ25を循環路2に設けているが、例えば、蓄熱槽1の上部に直接設置することも可能である。 (2) In the said embodiment, although the 1st thermal storage water temperature sensor 25 is provided in the circulation path 2, it is also possible to install directly in the upper part of the thermal storage tank 1, for example.

(3)上記実施形態では、図2〜図5の夫々に例示した動作の何れかにて給湯運転を行うようにしているが、どのような動作にて給湯運転を行うかは適宜変更が可能である。また、追焚き運転及び暖房運転の夫々についても、どのような動作にて行うかは適宜変更が可能である。 (3) In the above embodiment, the hot water supply operation is performed by any of the operations illustrated in FIGS. 2 to 5, but it is possible to appropriately change the operation for performing the hot water operation. It is. Moreover, it can change suitably what kind of operation is performed also about each of a chasing operation and heating operation.

(4)上記実施形態では、給湯運転と追焚き運転については同時運転を実行可能であり、暖房運転については単独でしか運転できないようにしているが、暖房運転についても給湯運転及び追焚き運転の何れか一方又は両方と同時運転を実行可能とすることもできる。
例えば、図7において、第2蓄熱水流量調整弁30を開弁させることにより、排熱熱交換器5を通過した後の蓄熱水A1の一部を暖房用通流路41に通流させるとともに、残りの蓄熱水A1を追焚き用熱交換器23に通流させる。
(4) In the above embodiment, simultaneous operation can be performed for the hot water supply operation and the follow-up operation, and only the heating operation can be performed alone, but the hot water supply operation and the follow-up operation are also performed for the heating operation. Simultaneous operation with either one or both may be possible.
For example, in FIG. 7, by opening the second heat storage water flow rate adjustment valve 30, a part of the heat storage water A <b> 1 after passing through the exhaust heat exchanger 5 is passed through the heating flow path 41. The remaining heat storage water A <b> 1 is passed through the reheating heat exchanger 23.

(5)上記実施形態では、放熱用熱交換器6として、給湯用熱交換器21、追焚き用熱交換器23、及び、暖房用放熱器24の3つを設けているが、放熱用熱交換器6の数については適宜変更が可能である。 (5) In the above-described embodiment, the heat dissipation heat exchanger 6 includes the hot water supply heat exchanger 21, the reheating heat exchanger 23, and the heating radiator 24. The number of exchangers 6 can be changed as appropriate.

(6)上記実施形態では、給湯用熱交換器21と追焚き用熱交換器23とを直列状態で設けた例を示したが、給湯用熱交換器21と追焚き用熱交換器23とを並列状態で設けることも可能である。
例えば、図9に示すように、循環路2において給湯用熱交換器21が設けられた部分とは並列状態で追焚き用通流路49が設けられ、この追焚き用通流路49に追焚き用熱交換器23が設けられている。このようにして、給湯用熱交換器21と追焚き用熱交換器23と暖房用放熱器24との夫々を並列状態で設けることができる。追焚き用通流路49は、排熱熱交換器バイパス路13において暖房用通流路41の分岐箇所よりも下流側から分岐して循環路2に合流するように設けられ、排熱熱交換器バイパス路13の一部を兼用している。また、追焚き用通流路49には、追焚き用熱交換器23を通過する蓄熱水A1の流量を調整自在な追焚き用流量調整弁50が設けられている。図9では蓄熱運転の状態を示している。
(6) In the said embodiment, although the example which provided the heat exchanger 21 for hot water supply and the heat exchanger 23 for reheating in series was shown, the heat exchanger 21 for hot water supply, the heat exchanger 23 for reheating, Can be provided in parallel.
For example, as shown in FIG. 9, a circulation passage 49 is provided in parallel with the portion of the circulation path 2 where the hot water supply heat exchanger 21 is provided. A soaking heat exchanger 23 is provided. In this way, each of the hot water supply heat exchanger 21, the reheating heat exchanger 23, and the heating radiator 24 can be provided in parallel. The additional flow passage 49 is provided so as to branch from the downstream side of the heating heat passage 41 in the exhaust heat exchanger bypass passage 13 to join the circulation passage 2, so that the exhaust heat exchange is performed. A part of the bypass unit 13 is also used. The reheating flow path 49 is provided with a reflow flow adjustment valve 50 for adjusting the flow rate of the heat storage water A1 passing through the reheating heat exchanger 23. FIG. 9 shows the state of the heat storage operation.

本発明は、蓄熱槽から取り出した蓄熱水を循環路にて循環させて蓄熱槽に戻す蓄熱水循環手段を設け、循環路には、熱供給装置の排熱を搬送する排熱搬送流体にて循環路を通流する蓄熱水を加熱する排熱熱交換器、及び、その排熱熱交換器を通過した後の蓄熱水を放熱させる放熱用熱交換器を設け、要求されている温度及び流量の蓄熱水を放熱用熱交換器に供給できる各種の蓄熱放熱システムに適応可能である。   The present invention is provided with heat storage water circulation means for circulating the heat storage water taken out from the heat storage tank and returning it to the heat storage tank, and circulating in the circulation path by the exhaust heat transfer fluid for transferring the exhaust heat of the heat supply device. An exhaust heat heat exchanger that heats the heat storage water flowing through the path, and a heat dissipation heat exchanger that dissipates the heat storage water after passing through the exhaust heat exchanger, are provided with the required temperature and flow rate. The present invention can be applied to various heat storage and heat dissipation systems that can supply heat storage water to the heat exchanger for heat dissipation.

蓄熱運転における蓄熱放熱システムの状態を示す図The figure which shows the state of the thermal storage thermal radiation system in thermal storage operation 給湯運転における蓄熱放熱システムの状態を示す図The figure which shows the state of the thermal storage thermal radiation system in hot water supply operation 給湯運転における蓄熱放熱システムの状態を示す図The figure which shows the state of the thermal storage thermal radiation system in hot water supply operation 給湯運転における蓄熱放熱システムの状態を示す図The figure which shows the state of the thermal storage thermal radiation system in hot water supply operation 給湯運転における蓄熱放熱システムの状態を示す図The figure which shows the state of the thermal storage thermal radiation system in hot water supply operation 追焚き運転における蓄熱放熱システムの状態を示す図The figure which shows the state of the thermal storage heat radiation system in the chasing operation 暖房運転における蓄熱放熱システムの状態を示す図The figure which shows the state of the thermal storage thermal radiation system in heating operation 暖房運転における蓄熱放熱システムの状態を示す図The figure which shows the state of the thermal storage thermal radiation system in heating operation 別実施形態における蓄熱放熱システムの状態を示す図The figure which shows the state of the thermal storage thermal radiation system in another embodiment

符号の説明Explanation of symbols

1 蓄熱槽
2 循環路
3 蓄熱水循環手段
4 熱供給装置
5 排熱熱交換器
6 放熱用熱交換器
13 排熱熱交換器バイパス路
14 補助加熱手段
20 給湯路
21 給湯用熱交換器
22 浴槽
23 追焚き用熱交換器
24 暖房用放熱器
27 蓄熱水流量調整手段(第1蓄熱水流量調整弁)
45 蓄熱槽バイパス路
47 蓄熱槽バイパス路通流手段(蓄熱水戻し調整弁)
A1 蓄熱水
A2 排熱搬送流体としての冷却水
A3 給湯用の給水
A4 浴槽水
DESCRIPTION OF SYMBOLS 1 Heat storage tank 2 Circulation path 3 Heat storage water circulation means 4 Heat supply device 5 Waste heat exchanger 6 Heat radiation heat exchanger 13 Waste heat exchanger bypass path 14 Auxiliary heating means 20 Hot water supply path 21 Hot water supply heat exchanger 22 Bathtub 23 Reheating heat exchanger 24 Heating radiator 27 Heat storage water flow rate adjustment means (first heat storage water flow rate adjustment valve)
45 Heat storage tank bypass passage 47 Heat storage tank bypass passage means (heat storage water return regulating valve)
A1 Thermal storage water A2 Cooling water as exhaust heat carrier fluid A3 Water supply for hot water supply A4 Bath water

Claims (10)

蓄熱水を貯留する蓄熱槽と、その蓄熱槽から取り出した蓄熱水を循環路にて循環させて前記蓄熱槽に戻す蓄熱水循環手段とが設けられ、
前記循環路には、熱供給装置の排熱を搬送する排熱搬送流体にて前記循環路を通流する蓄熱水を加熱する排熱熱交換器、及び、その排熱熱交換器を通過した後の蓄熱水を放熱させる放熱用熱交換器が設けられている蓄熱放熱システムであって、
前記蓄熱槽から前記循環路に取り出した蓄熱水を前記排熱熱交換器をバイパスさせて前記放熱用熱交換器に通流させる排熱熱交換器バイパス路が設けられ、
前記蓄熱水循環手段が、前記蓄熱槽から取り出した蓄熱水の全量を前記排熱熱交換器に通流させる形態で蓄熱水を循環させる全通流状態と、前記蓄熱槽から取り出した蓄熱水の一部を前記排熱熱交換器バイパス路に通流させる形態で蓄熱水を循環させる一部通流状態とに切換自在に構成されている蓄熱放熱システム。
A heat storage tank for storing the heat storage water, and a heat storage water circulation means for circulating the heat storage water taken out from the heat storage tank in the circulation path and returning it to the heat storage tank,
The circulation path passes through the exhaust heat heat exchanger that heats the heat storage water flowing through the circulation path with the exhaust heat carrier fluid that conveys the exhaust heat of the heat supply device, and the exhaust heat heat exchanger. It is a heat storage and heat dissipation system provided with a heat exchanger for heat dissipation that dissipates the heat storage water after,
An exhaust heat exchanger bypass path is provided for bypassing the exhaust heat exchanger and passing the heat storage water taken out from the heat storage tank into the circulation path to the heat dissipation heat exchanger,
The heat storage water circulation means has a whole flow state in which the heat storage water is circulated in a form in which the entire amount of the heat storage water taken out from the heat storage tank is passed through the exhaust heat exchanger, and one of the heat storage water taken out from the heat storage tank. A heat storage and radiating system configured to be switchable to a partially flowing state in which the heat storage water is circulated in a form in which the section is passed through the exhaust heat exchanger bypass path.
前記排熱熱交換器バイパス路には、通流する蓄熱水を加熱する加熱作動を実行可能な補助加熱手段が設けられている請求項1に記載の蓄熱放熱システム。   The heat storage and heat dissipation system according to claim 1, wherein auxiliary heat means capable of performing a heating operation for heating the stored heat storage water is provided in the exhaust heat exchanger bypass path. 前記蓄熱水循環手段が、前記蓄熱槽の上部から蓄熱水を取り出して前記蓄熱槽の下部に蓄熱水を戻すように構成され、
前記蓄熱水循環手段を前記全通流状態に切り換えて前記熱供給装置の排熱を前記蓄熱槽に蓄熱する蓄熱運転、及び、前記蓄熱水循環手段を前記全通流状態又は前記一部通流状態に切り換え且つ前記補助加熱手段を加熱作動させるか否かを制御して前記放熱用熱交換器にて前記蓄熱水を放熱させる放熱運転を実行可能な運転制御手段が設けられている請求項2に記載の蓄熱放熱システム。
The heat storage water circulation means is configured to take out the heat storage water from the upper part of the heat storage tank and return the heat storage water to the lower part of the heat storage tank,
The heat storage water circulating means is switched to the full flow state to store the exhaust heat of the heat supply device in the heat storage tank, and the heat storage water circulation means is set to the full flow state or the partial flow state. The operation control means which can perform the heat radiation operation which controls whether to switch and heat-activate the auxiliary heating means and to radiate the heat storage water in the heat radiating heat exchanger is provided. Heat storage and heat dissipation system.
前記排熱搬送流体としての冷却水を前記排熱熱交換器と前記熱供給装置との間で循環させる冷却水循環手段と、
前記循環路にて前記排熱熱交換器に通流する蓄熱水の流量を調整自在な蓄熱水流量調整手段とが設けられ、
前記運転制御手段が、前記冷却水循環手段にて前記排熱熱交換器から前記熱供給装置に戻す冷却水の温度が設定温度範囲内になるように、前記蓄熱水流量調整手段にて前記排熱熱交換器に通流する蓄熱水の流量を調整する蓄熱水流量調整制御を行うように構成されている請求項3に記載の蓄熱放熱システム。
A cooling water circulation means for circulating cooling water as the waste heat transfer fluid between the waste heat heat exchanger and the heat supply device;
A heat storage water flow rate adjusting means capable of adjusting the flow rate of the heat storage water flowing through the exhaust heat exchanger in the circulation path;
The operation control means causes the heat storage water flow rate adjustment means to adjust the exhaust heat so that the temperature of the cooling water returned from the exhaust heat exchanger to the heat supply device is within a set temperature range. The heat storage and heat dissipation system according to claim 3, wherein the heat storage water flow rate adjustment control for adjusting a flow rate of the heat storage water flowing through the heat exchanger is performed.
前記運転制御手段が、前記放熱運転において前記蓄熱水流量調整制御を行った場合に、前記放熱用熱交換器に対して要求されている流量の蓄熱水を供給できるときには、前記蓄熱水循環手段を前記全通流状態に切り換え、且つ、前記放熱用熱交換器に対して要求されている流量の蓄熱水を供給できないときには、前記蓄熱水循環手段を前記一部通流状態に切り換えるように構成されている請求項4に記載の蓄熱放熱システム。   When the operation control means performs the heat storage water flow rate adjustment control in the heat radiation operation, the heat storage water circulation means can be used when the heat storage water at the required flow rate can be supplied to the heat dissipation heat exchanger. The heat storage water circulating means is switched to the partial flow state when switching to the full flow state and when the heat storage water at the required flow rate cannot be supplied to the heat-dissipating heat exchanger. The heat storage and heat radiation system according to claim 4. 前記運転制御手段が、前記放熱運転において前記蓄熱水循環手段を前記一部通流状態に切り換えた場合に、前記放熱用熱交換器に対して要求されている温度の蓄熱水を供給できるときには前記補助加熱手段を加熱作動させず、且つ、前記放熱用熱交換器に対して要求されている温度の蓄熱水を供給できないときには前記補助加熱手段を加熱作動させるように構成されている請求項3〜5の何れか1項に記載の蓄熱放熱システム。   When the operation control means can supply the heat storage water at the required temperature to the heat dissipation heat exchanger when the heat storage water circulation means is switched to the partial flow state in the heat dissipation operation, the auxiliary 6. The auxiliary heating means is configured to be heated when the heating means is not heated and when the heat storage water at the temperature required for the heat radiating heat exchanger cannot be supplied. The heat storage and heat dissipation system according to any one of the above. 前記循環路において前記蓄熱槽の下部に蓄熱水を戻す戻し部分と前記蓄熱槽の上部から蓄熱水を取り出す取り出し部分とを接続する蓄熱槽バイパス路と、
前記放熱用熱交換器を通過した後の蓄熱水の少なくとも一部を前記蓄熱槽バイパス路に通流させる通流作動を実行可能な蓄熱槽バイパス路通流手段とが設けられ、
前記運転制御手段が、前記放熱運転において、前記蓄熱槽バイパス路通流手段を通流作動させるか否かを制御するように構成されている請求項3〜6の何れか1項に記載の蓄熱放熱システム。
A heat storage tank bypass for connecting a return part for returning the heat storage water to the lower part of the heat storage tank in the circulation path and an extraction part for taking out the heat storage water from the upper part of the heat storage tank;
A heat storage tank bypass passage flow means capable of performing a flow operation for flowing at least a portion of the heat storage water after passing through the heat dissipation heat exchanger to the heat storage tank bypass passage;
The heat storage according to any one of claims 3 to 6, wherein the operation control means is configured to control whether or not the heat storage tank bypass passage flow means is operated in the heat radiation operation. Heat dissipation system.
前記放熱用熱交換器として、給湯路に供給される給湯用の給水を蓄熱水の放熱対象とする給湯用熱交換器、浴槽との間で循環される浴槽水を蓄熱水の放熱対象とする追焚き用熱交換器、及び、暖房対象空間の室内空気を放熱対象とする暖房用放熱器の少なくとも一つが設けられている請求項1〜7の何れか1項に記載の蓄熱放熱システム。   As the heat-dissipating heat exchanger, the hot-water supply heat exchanger that uses hot-water supply water supplied to the hot-water supply channel as the heat-dissipation target, and the bathtub water circulated between the bathtubs is the heat-dissipation target. The heat storage and heat radiation system according to any one of claims 1 to 7, wherein at least one of a heat exchanger for heating and a heat radiator for heat radiation whose indoor air is heated is provided. 前記給湯用熱交換器と前記追焚き用熱交換器とが、前記追焚き用熱交換器を通過した後の蓄熱水が前記給湯用熱交換器に通流するように直列状態で設けられ、
前記給湯用熱交換器及び前記追焚き用熱交換器の何れか一方又は両方と前記暖房用放熱器とが並列状態で設けられている請求項8に記載の蓄熱放熱システム。
The hot water supply heat exchanger and the reheating heat exchanger are provided in series so that the heat storage water after passing through the reheating heat exchanger flows through the hot water supply heat exchanger,
The heat storage and heat radiation system according to claim 8, wherein one or both of the hot water supply heat exchanger and the reheating heat exchanger and the heating radiator are provided in parallel.
前記給湯用熱交換器と前記追焚き用熱交換器とが、並列状態で設けられている請求項8に記載の蓄熱放熱システム。   The heat storage and heat radiation system according to claim 8, wherein the hot water supply heat exchanger and the reheating heat exchanger are provided in parallel.
JP2007065444A 2007-03-14 2007-03-14 Thermal storage and heat dissipation system Expired - Fee Related JP4953436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007065444A JP4953436B2 (en) 2007-03-14 2007-03-14 Thermal storage and heat dissipation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007065444A JP4953436B2 (en) 2007-03-14 2007-03-14 Thermal storage and heat dissipation system

Publications (2)

Publication Number Publication Date
JP2008224158A JP2008224158A (en) 2008-09-25
JP4953436B2 true JP4953436B2 (en) 2012-06-13

Family

ID=39842991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007065444A Expired - Fee Related JP4953436B2 (en) 2007-03-14 2007-03-14 Thermal storage and heat dissipation system

Country Status (1)

Country Link
JP (1) JP4953436B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5989481B2 (en) * 2012-09-24 2016-09-07 株式会社コロナ Hot water storage water heater
JP6960668B2 (en) * 2017-10-27 2021-11-05 パーパス株式会社 Hot water supply system, hot water supply control program, hot water supply control method and hot water supply device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963448A (en) * 1982-10-05 1984-04-11 Matsushita Electric Ind Co Ltd Hot-water boiler
JP2001153459A (en) * 1999-11-29 2001-06-08 Hitachi Ltd Power and warm water supplier
JP4208390B2 (en) * 2000-06-23 2009-01-14 大阪瓦斯株式会社 Hot water storage hot water source
JP2004199920A (en) * 2002-12-17 2004-07-15 Noritz Corp Fuel cell cogeneration system
JP4033460B2 (en) * 2003-02-28 2008-01-16 株式会社ノーリツ Hot water storage type hot water supply apparatus and hot water filling control method thereof
JP4228976B2 (en) * 2004-04-19 2009-02-25 パナソニック株式会社 Heat pump water heater
JP2006336937A (en) * 2005-06-01 2006-12-14 Denso Corp Storage type hot water supply device

Also Published As

Publication number Publication date
JP2008224158A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP5174950B2 (en) Temperature adjusting device, fluid supply system, heating system, temperature adjusting device mounting method, and fluid supply method
EP2515050A1 (en) Hot water supply system
US8132422B2 (en) Cogeneration system
JP2011043321A (en) Heating medium supply device
JP2007132612A (en) Cogeneration system, its control method, and program
JP4934009B2 (en) Heat source water supply system
JP2010151429A (en) Hot water storage and supply system
JP2008275182A (en) Exhaust heat recovering system and auxiliary heat storage tank
JP5311128B2 (en) Hot water storage hot water supply system
JP2014142116A (en) Cogeneration system and heating equipment
JP2001194012A (en) Solar heat utilization hot water supply/heating apparatus
JP5069490B2 (en) Open air heat storage device
JP5472178B2 (en) Hot water heater
JP4953436B2 (en) Thermal storage and heat dissipation system
JP4933983B2 (en) Thermal storage and heat dissipation system
JP5480655B2 (en) Heat source water supply system
JP5037985B2 (en) Bath equipment
JP5703926B2 (en) Heat supply system
JP5217624B2 (en) Heating system
JP5921416B2 (en) Cogeneration system and hot water supply equipment
JP4889438B2 (en) Heat supply system
JP2003056910A (en) Heat recovery apparatus and cogeneration system
JP6663740B2 (en) Heat utilization system
JP2002364912A (en) Multifunctional water-heater
JP3851847B2 (en) Hot water storage hot water source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R150 Certificate of patent or registration of utility model

Ref document number: 4953436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees