JP4933983B2 - Thermal storage and heat dissipation system - Google Patents

Thermal storage and heat dissipation system Download PDF

Info

Publication number
JP4933983B2
JP4933983B2 JP2007214790A JP2007214790A JP4933983B2 JP 4933983 B2 JP4933983 B2 JP 4933983B2 JP 2007214790 A JP2007214790 A JP 2007214790A JP 2007214790 A JP2007214790 A JP 2007214790A JP 4933983 B2 JP4933983 B2 JP 4933983B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
water
storage tank
storage water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007214790A
Other languages
Japanese (ja)
Other versions
JP2009047370A (en
Inventor
喜徳 久角
義通 木内
秀樹 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2007214790A priority Critical patent/JP4933983B2/en
Publication of JP2009047370A publication Critical patent/JP2009047370A/en
Application granted granted Critical
Publication of JP4933983B2 publication Critical patent/JP4933983B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、蓄熱水を貯留する蓄熱槽と、その蓄熱槽から取り出した蓄熱水を循環路にて循環させて蓄熱槽に戻す蓄熱水循環手段と、熱供給装置の排熱を搬送する排熱搬送流体にて前記循環路を通流する蓄熱水を加熱する排熱熱交換器と、その排熱熱交換器を通過した後の蓄熱水を放熱させる放熱用熱交換器とを設けている蓄熱放熱システムに関する。   The present invention relates to a heat storage tank that stores heat storage water, a heat storage water circulation means that circulates the heat storage water taken out from the heat storage tank in a circulation path and returns the heat storage water to the heat storage tank, and an exhaust heat transport that transports the exhaust heat of the heat supply device Heat storage heat dissipation provided with an exhaust heat exchanger that heats the heat storage water flowing through the circulation path with a fluid, and a heat dissipation heat exchanger that dissipates the heat storage water after passing through the exhaust heat exchanger About the system.

上記のような蓄熱放熱システムでは、排熱熱交換器にて蓄熱水と排熱搬送流体との熱交換により蓄熱水を加熱し、その加熱した蓄熱水を蓄熱槽に戻すことにより熱供給装置の排熱を蓄熱槽に蓄熱する。蓄熱槽の蓄熱水や排熱熱交換器にて加熱した蓄熱水を放熱用熱交換器に供給して蓄熱水を放熱し、その放熱した熱を給湯や暖房等に利用するようにしている。このように、給湯や暖房等を行うに当り、熱供給装置の排熱を利用することによりエネルギー効率の向上を図っている。   In the heat storage heat dissipation system as described above, the heat storage water is heated by heat exchange between the heat storage water and the exhaust heat carrier fluid in the exhaust heat exchanger, and the heated heat storage water is returned to the heat storage tank to return the heat storage device. The waste heat is stored in the heat storage tank. Heat storage water in a heat storage tank or heat storage water heated by an exhaust heat exchanger is supplied to a heat dissipation heat exchanger to dissipate the heat storage water, and the released heat is used for hot water supply or heating. Thus, when performing hot water supply, heating, etc., the energy efficiency is improved by utilizing the exhaust heat of the heat supply device.

放熱用熱交換器に蓄熱水を供給するに当り、放熱用熱交換器での放熱を適正に行うために、放熱用熱交換器にて要求されている温度の蓄熱水を供給することが求められる。しかしながら、蓄熱槽の蓄熱水が要求されている温度に満たない、或いは、排熱熱交換器にて加熱しても要求されている温度に満たない場合もある。そこで、従来の蓄熱放熱システムでは、排熱熱交換器を通過した後の蓄熱水を加熱する補助加熱装置を設け、蓄熱水循環手段が、蓄熱槽から循環路に取り出した蓄熱水の全量を、排熱熱交換器、補助加熱装置、放熱用熱交換器に順次供給するように構成している。補助加熱装置が放熱用熱交換器にて要求されている温度に蓄熱水を加熱し、その加熱した蓄熱水を放熱用熱交換器に供給するようにしている(例えば、特許文献1参照。)。   When supplying the heat storage water to the heat dissipation heat exchanger, it is required to supply the heat storage water at the temperature required by the heat dissipation heat exchanger in order to properly perform heat dissipation in the heat dissipation heat exchanger. It is done. However, there are cases where the heat storage water in the heat storage tank does not reach the required temperature, or even if it is heated by the exhaust heat exchanger, it does not reach the required temperature. Therefore, in the conventional heat storage and heat dissipation system, an auxiliary heating device for heating the heat storage water after passing through the exhaust heat exchanger is provided, and the heat storage water circulation means discharges the entire amount of the heat storage water taken out from the heat storage tank to the circulation path. A heat heat exchanger, an auxiliary heating device, and a heat dissipation heat exchanger are sequentially supplied. The auxiliary heating device heats the heat storage water to a temperature required by the heat dissipation heat exchanger, and supplies the heated heat storage water to the heat dissipation heat exchanger (see, for example, Patent Document 1). .

特開2004−264011号公報JP 2004-264011 A

上記のような蓄熱放熱システムでは、排熱熱交換器、放熱用熱交換器、補助加熱装置、及び、蓄熱水循環手段等の各種機器を収納体に収納し、通常、その収納体を屋外に設置している。その為に、例えば、冬季等には各機器での放熱量が大きくなって放熱ロスが大きくなるので、この放熱ロスを抑制することが求められる。   In the heat storage and heat dissipation system as described above, various devices such as a waste heat exchanger, heat dissipation heat exchanger, auxiliary heating device, and heat storage water circulation means are stored in a storage body, and usually the storage body is installed outdoors. is doing. Therefore, for example, in the winter season and the like, the amount of heat radiation in each device increases and the heat radiation loss increases, so it is required to suppress this heat radiation loss.

放熱ロスを抑制するために、全ての機器の夫々を断熱材にて覆われた断熱空間に収納させる等によって、全ての機器を断熱材にて放熱を抑制する断熱空間に収納させて断熱状態で設けることが考えられる。しかしながら、全ての機器の夫々を断熱空間に収納させるのは、作業面及びコスト面での負担が重くなる。また、補助加熱装置として、例えば、ガスバーナの燃焼により蓄熱水を加熱する燃焼式のものを適応した場合には、燃焼用空気の吸気及び燃焼ガスの排気を行えるようにしながら、補助加熱装置を断熱空間に収納させる必要があり、補助加熱装置を断熱状態で設けることは難しい。   In order to suppress heat dissipation loss, by storing each device in a heat insulating space covered with a heat insulating material, etc., all devices are stored in a heat insulating space that suppresses heat dissipation with a heat insulating material. It is conceivable to provide. However, storing each of all the devices in the heat insulation space increases the burden on the work surface and the cost. In addition, for example, when a combustion type that heats stored water by combustion of a gas burner is applied as an auxiliary heating device, the auxiliary heating device is insulated while enabling intake of combustion air and exhaust of combustion gas. It is necessary to store in the space, and it is difficult to provide the auxiliary heating device in a heat insulating state.

そこで、補助加熱装置は、放熱を許容する非断熱状態にて設け、その他の機器については断熱空間に収納させて断熱状態で設けることが考えられるが、下記のような問題が生じる。
上記従来の蓄熱放熱システムでは、補助加熱装置にて蓄熱水を加熱しないときにも、蓄熱水循環手段が、蓄熱槽から循環路に取り出した蓄熱水の全量を、排熱熱交換器、補助加熱装置、放熱用熱交換器に順次供給する。したがって、熱供給装置の排熱を蓄熱槽に蓄熱する場合や放熱用熱交換器にて蓄熱水を放熱する場合にも、補助加熱装置にて蓄熱水が放熱して放熱ロスが大きくなってしまう。
Therefore, it is conceivable that the auxiliary heating device is provided in a non-insulated state that allows heat dissipation, and other devices are accommodated in a heat-insulating space and provided in a heat-insulated state, but the following problems occur.
In the above conventional heat storage and heat dissipation system, even when the heat storage water is not heated by the auxiliary heating device, the heat storage water circulation means removes the total amount of the heat storage water taken out from the heat storage tank into the circulation path, the exhaust heat exchanger, the auxiliary heating device And sequentially supply to the heat exchanger for heat dissipation. Therefore, even when the waste heat from the heat supply device is stored in the heat storage tank or when the heat storage water is radiated by the heat exchanger for heat dissipation, the heat storage water dissipates in the auxiliary heating device and the heat dissipation loss increases. .

ちなみに、特許文献1に記載の蓄熱放熱システムでは、過去の1日のどの時間帯にどれだけの熱負荷を使用したのかの実績熱負荷に基づいて、将来の1日のどの時間帯にどれだけの熱負荷が必要であるかの予測熱負荷を求め、その予測熱負荷を満たすように蓄熱槽に蓄熱している。このように、必要と予測された熱量だけを蓄熱槽に貯めておくことにより、必要以上に蓄熱槽に熱量を貯めないようにすることができ、放熱ロスを抑制することができる。しかしながら、給湯や暖房を使用する時間帯や給湯や暖房に必要となる熱量は日々変化するので、必要熱量に対して予測熱負荷が不足したり、逆に、過剰になってしまうことがある。予測熱負荷が不足した場合には、補助加熱装置を運転させて蓄熱水を加熱することになるので、熱供給装置の排熱を有効に利用できず、エネルギー効率が低下する可能性がある。予測熱負荷が過剰になった場合には、必要以上の熱量を蓄熱槽に貯えることになり、その熱を無駄に放熱することとなって、エネルギー効率が低下する可能性がある。   By the way, in the heat storage and heat dissipation system described in Patent Document 1, based on the actual heat load of how much heat load was used in what time zone of the past day, how much in what time zone of the future day The heat load is stored in the heat storage tank so as to satisfy the predicted heat load. In this way, by storing only the amount of heat predicted to be necessary in the heat storage tank, it is possible to prevent the heat storage tank from storing more heat than necessary, and to reduce heat dissipation loss. However, since the time zone in which hot water supply or heating is used or the amount of heat required for hot water supply or heating changes every day, the predicted heat load may be insufficient or conversely excessive with respect to the required amount of heat. When the predicted heat load is insufficient, the auxiliary heating device is operated to heat the heat storage water, so that the exhaust heat of the heat supply device cannot be used effectively, and the energy efficiency may be reduced. When the predicted heat load becomes excessive, an excessive amount of heat is stored in the heat storage tank, and the heat is dissipated wastefully, which may reduce energy efficiency.

本発明は、かかる点に着目してなされたものであり、その目的は、各機器を断熱する際の作業面及びコスト面の軽減を図りながら、放熱ロスを抑えることができる蓄熱放熱システムを提供する点にある。   The present invention has been made paying attention to such points, and its purpose is to provide a heat storage and heat dissipation system capable of suppressing heat dissipation loss while reducing the work surface and the cost when heat insulating each device. There is in point to do.

この目的を達成するために、本発明に係る蓄熱放熱システムの特徴構成は、蓄熱水を貯留する蓄熱槽と、その蓄熱槽から取り出した蓄熱水を循環路にて循環させて蓄熱槽に戻す蓄熱水循環手段と、熱供給装置の排熱を搬送する排熱搬送流体にて前記循環路を通流する蓄熱水を加熱する排熱熱交換器と、その排熱熱交換器を通過した後の蓄熱水を放熱させる放熱用熱交換器とを設けている蓄熱放熱システムであって、前記蓄熱槽から前記循環路に取り出した蓄熱水を前記排熱熱交換器をバイパスさせて前記放熱用熱交換器に供給する排熱熱交換器バイパス路と、その排熱熱交換器バイパス路に蓄熱水を供給する供給状態と供給しない非供給状態とに切換自在な供給状態切換手段と、前記排熱熱交換器バイパス路を通流する蓄熱水を加熱する補助加熱装置と、前記供給状態切換手段を供給状態と非供給状態とに切り換えて蓄熱水の循環状態を制御するとともに、前記補助加熱装置の運転を制御する運転制御手段とを設け、前記補助加熱装置は、放熱を許容する非断熱状態にて設けてあり、前記蓄熱槽、前記循環路、前記蓄熱水循環手段、前記排熱熱交換器、及び、前記放熱用熱交換器は、断熱材にて放熱を抑制する断熱空間内に収納されて断熱状態にて設けている点にある。   In order to achieve this object, the characteristic configuration of the heat storage and heat dissipation system according to the present invention includes a heat storage tank that stores the heat storage water, and a heat storage tank that circulates the heat storage water extracted from the heat storage tank and returns it to the heat storage tank. Water circulation means, a waste heat heat exchanger that heats the heat storage water flowing through the circulation path with a waste heat carrier fluid that conveys waste heat of the heat supply device, and heat storage after passing through the waste heat heat exchanger A heat storage and heat dissipation system provided with a heat dissipation heat exchanger for radiating water, wherein the heat storage water taken out from the heat storage tank to the circulation path is bypassed by the exhaust heat exchanger and the heat dissipation heat exchanger An exhaust heat heat exchanger bypass path to be supplied to the exhaust heat exchanger, a supply state switching means switchable between a supply state in which the heat storage water is supplied to the exhaust heat exchanger bypass path and a non-supply state in which the heat storage water is not supplied, For heating the heat storage water flowing through the bypass path The auxiliary heating device is provided with a heating device and an operation control means for controlling the circulation state of the heat storage water by switching the supply state switching means between the supply state and the non-supply state, and controlling the operation of the auxiliary heating device. Is provided in a non-adiabatic state that allows heat dissipation, and the heat storage tank, the circulation path, the heat storage water circulation means, the exhaust heat exchanger, and the heat dissipation heat exchanger are radiated by a heat insulating material. It is in the point provided in the heat insulation state accommodated in the heat insulation space which suppresses.

本構成によれば、蓄熱槽、循環路、蓄熱水循環手段、排熱熱交換器、及び、放熱用熱交換器は断熱空間内に収納されて断熱状態で設けるものの、補助加熱装置を非断熱状態にて設けるので、全ての機器を断熱空間内に収納させて断熱状態で設ける必要がなく、作業面及びコスト面での負担を軽減できる。しかも、非断熱状態で設けるのが補助加熱装置であるので、例えば、補助加熱装置として燃焼式のものを用いた場合でも、燃焼用空気の吸気及び燃焼ガスの排気を行えるようにしながら補助加熱装置を断熱空間内に収納させる必要がなく、作業面及びコスト面での負担の軽減を効果的に図ることができる。また、各機器をつなぐ配管等も含めて断熱空間内に収納して断熱できるので、放熱ロスを従来よりも格段に抑制することができる。
運転制御手段が、供給状態切換手段を非供給状態に切り換えることにより、蓄熱槽から取り出した蓄熱水を補助加熱装置に供給することなく、排熱熱交換器、放熱用熱交換器に順次供給することができる。したがって、熱供給装置の排熱を蓄熱槽に蓄熱する場合や放熱用熱交換器にて蓄熱水を放熱する場合に、非断熱状態の補助加熱装置に蓄熱水を供給することがなく、放熱ロスを抑えることができる。
このようにして、各機器を断熱する際の作業面及びコスト面の軽減を図りながら、放熱ロスを抑えることが実現できることとなる。
According to this configuration, the heat storage tank, the circulation path, the heat storage water circulation means, the exhaust heat exchanger, and the heat dissipation heat exchanger are housed in the heat insulation space and provided in a heat insulation state, but the auxiliary heating device is in a non-heat insulation state. Therefore, it is not necessary to house all the devices in the heat insulating space and provide them in a heat insulating state, and the burden on the work surface and the cost can be reduced. In addition, since the auxiliary heating device is provided in a non-adiabatic state, for example, even when a combustion type is used as the auxiliary heating device, the auxiliary heating device can perform intake of combustion air and exhaust of combustion gas. Is not required to be stored in the heat insulating space, and the burden on the work surface and the cost can be effectively reduced. Moreover, since it can be accommodated and insulated in the heat insulation space including the piping etc. which connect each apparatus, a heat dissipation loss can be suppressed markedly conventionally.
By switching the supply state switching means to the non-supply state, the operation control means sequentially supplies the heat storage water taken out from the heat storage tank to the exhaust heat exchanger and the heat dissipation heat exchanger without supplying it to the auxiliary heating device. be able to. Therefore, when the waste heat from the heat supply device is stored in the heat storage tank or when heat storage water is radiated by the heat dissipation heat exchanger, the heat storage water is not supplied to the non-insulated auxiliary heating device, and the heat dissipation loss Can be suppressed.
In this way, it is possible to realize a reduction in heat dissipation while reducing the work surface and the cost when heat insulating each device.

本発明に係る蓄熱放熱システムの更なる特徴構成は、前記蓄熱槽は、上部を大気開放し且つ平面視で矩形状に形成してあり、前記断熱空間は、前記蓄熱槽の矩形状の短辺に対応する側面部に設け、前記断熱材は、前記蓄熱槽及び前記断熱空間の外周部を覆う状態で設けている点にある。   The heat storage radiating system according to the present invention is further characterized in that the heat storage tank is open to the atmosphere and formed in a rectangular shape in plan view, and the heat insulating space is a rectangular short side of the heat storage tank. The heat insulating material is provided in a state of covering the outer peripheral portion of the heat storage tank and the heat insulating space.

本構成によれば、蓄熱槽を、強い強度が要求される密閉型とするのではなく、上部を大気開放した大気開放型とするので、構成の簡素化を図ることができるとともに、蓄熱槽の形状も平面視で矩形状の単純な形状として、製作の容易化を図ることができる。蓄熱槽、循環路、蓄熱水循環手段、排熱熱交換器、及び、放熱用熱交換器を断熱状態で設けるに当り、蓄熱槽も断熱空間も平面視で矩形状の単純な形状であるので、蓄熱槽及び断熱空間の外周部を断熱材で覆うという単純な作業だけでよく、作業面の負担の低減を効果的に図れる。しかも、断熱空間は、蓄熱槽の矩形状の短辺に対応する側面部に設けているので、蓄熱槽の矩形状の長辺に対応する側面部に設けるよりも、蓄熱槽と断熱空間とが対向する面積を小さくでき、蓄熱槽と断熱空間との間での放熱ロスを低減できる。   According to this configuration, the heat storage tank is not an airtight type that requires strong strength, but is an air release type with the upper part being open to the atmosphere. The shape can be simplified as a rectangular shape in plan view. When installing the heat storage tank, the circulation path, the heat storage water circulation means, the exhaust heat exchanger, and the heat exchanger for heat radiation in a heat-insulated state, both the heat storage tank and the heat insulating space have a simple rectangular shape in plan view. Only a simple work of covering the outer periphery of the heat storage tank and the heat insulation space with the heat insulating material is required, and the burden on the work surface can be effectively reduced. And since the heat insulation space is provided in the side part corresponding to the rectangular short side of a heat storage tank, rather than providing in the side part corresponding to the rectangular long side of a heat storage tank, a heat storage tank and heat insulation space are The opposing area can be reduced, and heat dissipation loss between the heat storage tank and the heat insulation space can be reduced.

本発明に係る蓄熱放熱システムの更なる特徴構成は、前記補助加熱装置と前記断熱空間とは、前記蓄熱槽の矩形状の短辺に対応する側面部において上下方向に並ぶ状態で配置されている点にある。   According to a further feature of the heat storage and heat dissipation system according to the present invention, the auxiliary heating device and the heat insulating space are arranged in a state of being vertically aligned in a side surface corresponding to a rectangular short side of the heat storage tank. In the point.

本構成によれば、蓄熱槽の矩形状の短辺に対応する側面部におけるスペースを有効に活用しながら、補助加熱装置と断熱空間とを上下に並べてコンパクトに配置できる。したがって、蓄熱放熱システムとして、設置スペースのコンパクト化を図ることができる。   According to this configuration, the auxiliary heating device and the heat insulating space can be arranged vertically and compactly while effectively utilizing the space in the side surface corresponding to the rectangular short side of the heat storage tank. Therefore, the installation space can be made compact as a heat storage and heat dissipation system.

本発明に係る蓄熱放熱システムの更なる特徴構成は、前記蓄熱槽は、貯留した蓄熱水と大気との界面部分の面積を当該界面部分以外の部分の断面積よりも小さくするように構成している点にある。   According to a further feature of the heat storage and heat dissipation system according to the present invention, the heat storage tank is configured such that the area of the interface portion between the stored heat storage water and the atmosphere is smaller than the cross-sectional area of the portion other than the interface portion. There is in point.

本構成によれば、蓄熱槽において、蓄熱水と大気との界面部分の面積を小さくすることにより、蓄熱水の蒸発を抑えることができる。したがって、蓄熱槽における蓄熱水の蒸発による放熱ロスを抑制できる。   According to this configuration, in the heat storage tank, the evaporation of the heat storage water can be suppressed by reducing the area of the interface portion between the heat storage water and the atmosphere. Therefore, the heat dissipation loss due to the evaporation of the heat storage water in the heat storage tank can be suppressed.

本発明に係る蓄熱放熱システムの更なる特徴構成は、前記蓄熱水循環手段が、前記蓄熱槽の上部から蓄熱水を取り出して前記蓄熱槽の下部に蓄熱水を戻すように構成してあり、前記運転制御手段が、前記供給状態切換手段を非供給状態に切り換えて前記熱供給装置の排熱を前記蓄熱槽に蓄熱する排熱蓄熱運転、及び、前記供給状態切換手段を供給状態又は非供給状態に切り換えて前記放熱用熱交換器にて蓄熱水を放熱させる放熱運転を行うように構成している点にある。   A further characteristic configuration of the heat storage and heat dissipation system according to the present invention is such that the heat storage water circulation means is configured to take out the heat storage water from the upper part of the heat storage tank and return the heat storage water to the lower part of the heat storage tank, and The control means switches the supply state switching means to a non-supply state and stores the exhaust heat of the heat supply device in the heat storage tank to store the heat in the heat storage tank, and sets the supply state switch means to a supply state or a non-supply state. It is the point which is comprised so that it may switch and may perform the thermal radiation operation which thermally radiates thermal storage water with the said heat exchanger for thermal radiation.

本構成によれば、運転制御手段が排熱蓄熱運転を行うことにより、蓄熱槽の上部から取り出した蓄熱水を排熱熱交換器にて加熱し、加熱した高温の蓄熱水を蓄熱槽の下部に戻すことによって、蓄熱槽に貯留している蓄熱水を全体的に温度上昇させながら蓄熱できる。したがって、蓄熱槽の蓄熱量を管理するに当り、蓄熱槽の側面部の複数箇所(例えば5箇所)の夫々に温度センサを設けなくても、例えば1箇所に温度センサを設けるだけでよく、蓄熱量の管理を容易に且つ簡易に行える。しかも、排熱蓄熱運転では、運転制御手段が供給状態切換手段を非供給状態に切り換えるので、補助加熱装置に蓄熱水を供給せず、放熱ロスを抑制しながら蓄熱槽への蓄熱を行うことができる。
放熱運転では、補助加熱装置にて蓄熱水を加熱しなければ放熱用熱交換器にて要求されている温度の蓄熱水を供給できないときに、運転制御手段が供給状態切換手段を供給状態に切り換えることにより、補助加熱装置にて蓄熱水を加熱して放熱用熱交換器にて要求されている温度の蓄熱水を供給できる。逆に、補助加熱装置にて蓄熱水を加熱しなくても放熱用熱交換器にて要求されている温度の蓄熱水を供給できるときには、運転制御手段が供給状態切換手段を非供給状態に切り換えることにより、補助加熱装置に蓄熱水を供給せず放熱ロスを抑制できる。
According to this configuration, when the operation control means performs the exhaust heat storage operation, the heat storage water taken out from the upper part of the heat storage tank is heated by the exhaust heat exchanger, and the heated high-temperature heat storage water is converted into the lower part of the heat storage tank. By returning to, the heat storage water stored in the heat storage tank can be stored while raising the temperature as a whole. Therefore, when managing the amount of heat stored in the heat storage tank, it is not necessary to provide temperature sensors at each of a plurality of locations (for example, five locations) on the side surface of the heat storage tank. The amount can be easily and easily managed. Moreover, in the exhaust heat storage operation, the operation control means switches the supply state switching means to the non-supply state, so heat storage water is not supplied to the auxiliary heating device, and heat storage in the heat storage tank can be performed while suppressing heat dissipation loss. it can.
In heat radiation operation, when the heat storage water is not heated by the auxiliary heating device, the operation control means switches the supply state switching means to the supply state when the heat storage water at the temperature required by the heat dissipation heat exchanger cannot be supplied. Thereby, the heat storage water can be heated by the auxiliary heating device, and the heat storage water at the temperature required by the heat exchanger for heat radiation can be supplied. Conversely, when the heat storage water at the temperature required by the heat radiating heat exchanger can be supplied without heating the heat storage water by the auxiliary heating device, the operation control means switches the supply state switching means to the non-supply state. Thus, heat storage loss can be suppressed without supplying heat storage water to the auxiliary heating device.

本発明に係る蓄熱放熱システムの更なる特徴構成は、前記運転制御手段は、前記放熱運転において、前記蓄熱槽から前記循環路に取り出す蓄熱水が補助加熱開始用温度以下になると、前記供給状態切換手段を供給状態に切り換えるとともに、前記補助加熱装置の運転を開始し、前記蓄熱槽から前記循環路に取り出す蓄熱水が補助加熱停止用温度以上になると、前記供給状態切換手段を非供給状態に切り換えるとともに、前記補助加熱装置の運転を停止するように構成している点にある。   According to a further feature of the heat storage and heat dissipation system according to the present invention, the operation control means switches the supply state when the heat storage water taken out from the heat storage tank to the circulation path is below the auxiliary heating start temperature in the heat dissipation operation. The means is switched to the supply state, the operation of the auxiliary heating device is started, and the supply state switching means is switched to the non-supply state when the heat storage water taken out from the heat storage tank to the circulation path becomes equal to or higher than the auxiliary heating stop temperature. At the same time, the operation of the auxiliary heating device is stopped.

例えば、蓄熱槽から循環路に取り出す蓄熱水の温度が低いときには、補助加熱装置にて蓄熱水を加熱しなければ、放熱用熱交換器にて要求されている温度の蓄熱水を供給できない。逆に、蓄熱槽から循環路に取り出す蓄熱水の温度が高いときには、補助加熱装置にて蓄熱水を加熱しなくても、放熱用熱交換器にて要求されている温度の蓄熱水を供給できる。このように、放熱用熱交換器にて要求されている温度の蓄熱水を供給するために補助加熱装置にて蓄熱水を加熱すべきかどうかは、蓄熱槽から循環路に取り出す蓄熱水の温度によって決めることができる。このことを利用して、供給状態切換手段を供給状態に切り換えて補助加熱装置の定格出力での運転を開始する条件を、蓄熱槽から循環路に取り出す蓄熱水が補助加熱開始用温度以下となることとし、供給状態切換手段を非供給状態に切り換えて補助加熱装置の運転を停止する条件を、蓄熱槽から前記循環路に取り出す蓄熱水が補助加熱停止用温度以上となることとしている。したがって、補助加熱装置にて蓄熱水を加熱すべきときには補助加熱装置にて蓄熱水を加熱し、補助加熱装置にて蓄熱水を加熱しなくてもよいときには補助加熱装置に蓄熱水を供給せずに放熱ロスを抑制できる。   For example, when the temperature of the heat storage water taken out from the heat storage tank to the circulation path is low, the heat storage water at the temperature required by the heat exchanger for heat radiation cannot be supplied unless the heat storage water is heated by the auxiliary heating device. On the contrary, when the temperature of the heat storage water taken out from the heat storage tank to the circulation path is high, the heat storage water at the temperature required by the heat exchanger for heat radiation can be supplied without heating the heat storage water with the auxiliary heating device. . In this way, whether or not the heat storage water should be heated by the auxiliary heating device in order to supply the heat storage water at the temperature required by the heat exchanger for heat radiation depends on the temperature of the heat storage water taken out from the heat storage tank to the circulation path. I can decide. Utilizing this, the condition for starting the operation at the rated output of the auxiliary heating device by switching the supply state switching means to the supply state is such that the heat storage water taken out from the heat storage tank to the circulation path is below the auxiliary heating start temperature. As a condition for switching the supply state switching means to the non-supply state and stopping the operation of the auxiliary heating device, the heat storage water taken out from the heat storage tank to the circulation path is equal to or higher than the auxiliary heating stop temperature. Accordingly, when the heat storage water is to be heated by the auxiliary heating device, the heat storage water is heated by the auxiliary heating device, and when it is not necessary to heat the heat storage water by the auxiliary heating device, the heat storage water is not supplied to the auxiliary heating device. Heat dissipation loss can be suppressed.

本発明に係る蓄熱放熱システムの更なる特徴構成は、前記補助加熱装置に、当該補助加熱装置を所定出力以上の出力にて運転させて低出力での運転を防止する低出力運転防止機能を備えさせている点にある。   A further characteristic configuration of the heat storage and heat dissipation system according to the present invention is provided with a low-output operation prevention function that prevents the auxiliary heating device from operating at a low output by operating the auxiliary heating device at an output higher than a predetermined output. It is in the point letting you.

補助加熱装置を運転させるに当り、例えば、燃焼式のものでは、低出力での運転を行うと空気過剰となって、補助加熱装置自体の熱効率が低下する。そこで、本発明では、補助加熱装置に低出力運転防止機能を備えさせることにより、補助加熱装置側に流れる蓄熱水の流量を確保して、所定出力以上の出力にて補助加熱装置を運転させることにより、補助加熱装置自体の熱効率の低下を抑制でき、エネルギー効率の向上を図ることができる。しかも、所定出力以上の出力により補助加熱装置にて加熱した蓄熱水は、放熱用熱交換器に供給したのち蓄熱槽に戻される。したがって、補助加熱装置が発生する熱を、放熱用熱交換器にて給湯や暖房等の加熱に使うのみならず、蓄熱槽に蓄熱することもできる。その結果、熱供給装置の排熱だけでなく、補助加熱装置が発生する熱をも蓄熱しながら有効に活用して給湯や暖房等を行うことができ、より一層のエネルギー効率の向上を図ることができる。また、熱供給装置の排熱だけでなく、補助加熱装置が発生する熱をも蓄熱槽に蓄熱して、その蓄熱された熱の放熱を抑制できることから、蓄熱槽の蓄熱量をより多い熱量に保つことができる。したがって、例えば、給湯や暖房等を行う時点でそのために必要な蓄熱量を蓄熱槽に蓄熱しておくことができ、給湯や暖房等を行う時点よりも以前から蓄熱槽に蓄熱しておく必要がなくなる。   In operating the auxiliary heating device, for example, in the combustion type, if the operation is performed at a low output, the air becomes excessive and the thermal efficiency of the auxiliary heating device itself is lowered. Therefore, in the present invention, by providing the auxiliary heating device with a low output operation prevention function, the flow rate of the heat storage water flowing to the auxiliary heating device side is secured, and the auxiliary heating device is operated at an output of a predetermined output or more. Thus, it is possible to suppress a decrease in the thermal efficiency of the auxiliary heating device itself and to improve the energy efficiency. Moreover, the heat storage water heated by the auxiliary heating device with an output equal to or higher than a predetermined output is supplied to the heat exchanger for heat dissipation and then returned to the heat storage tank. Therefore, the heat generated by the auxiliary heating device can be used not only for heating such as hot water supply or heating in the heat-dissipating heat exchanger, but can also be stored in the heat storage tank. As a result, not only the exhaust heat of the heat supply device but also the heat generated by the auxiliary heating device can be used effectively while accumulating heat, heating, etc., and further improving energy efficiency Can do. Moreover, not only the exhaust heat of the heat supply device but also the heat generated by the auxiliary heating device can be stored in the heat storage tank, and the heat stored in the heat storage tank can be increased to a greater amount of heat because the heat release can be suppressed. Can keep. Therefore, for example, when the hot water supply or heating is performed, the heat storage amount necessary for that can be stored in the heat storage tank, and it is necessary to store the heat in the heat storage tank before the time of hot water supply or heating. Disappear.

本発明に係る蓄熱放熱システムの更なる特徴構成は、前記運転制御手段は、時系列的な電力負荷を管理し、電力負荷が増加する時間帯において前記蓄熱槽から前記循環路に取り出す蓄熱水が排熱蓄熱開始温度以下になると、前記排熱蓄熱運転を行い、その排熱蓄熱運転中に電力負荷が減少すると、前記排熱熱交換器に供給する蓄熱水の流量を増加させるべく、前記蓄熱水循環手段を作動させるように構成している点にある。   According to a further characteristic configuration of the heat storage and heat dissipation system according to the present invention, the operation control unit manages time-series power load, and the heat storage water taken out from the heat storage tank to the circulation path in a time zone when the power load increases. When the exhaust heat storage start temperature or lower, the exhaust heat storage operation is performed, and when the power load decreases during the exhaust heat storage operation, the heat storage is performed in order to increase the flow rate of the heat storage water supplied to the exhaust heat exchanger. The water circulating means is configured to operate.

例えば、熱供給装置として、熱と電力とを発生する熱電併給装置を用いた場合には、運転制御手段が、電力負荷が増加する時間帯において蓄熱槽から循環路に取り出す蓄熱水が排熱蓄熱開始温度以下になることにより排熱蓄熱運転を行うと、熱電併給装置が発生する電力を電力負荷に当てることができながら、熱電併給装置が発生する熱を蓄熱槽に蓄熱することができ、エネルギー効率の向上を図ることができる。さらに、本構成によれば、運転制御手段は、単に、排熱蓄熱運転を行うだけでなく、排熱蓄熱運転中に電力負荷が減少すると、排熱熱交換器に供給する蓄熱水の流量を増加させるように蓄熱水循環手段を作動させる。このように、排熱熱交換器に供給する蓄熱水の流量を増加させることによって、蓄熱槽に蓄熱していくスピードを速めることができ、蓄熱槽への蓄熱を早期に終了することができる。しかも、電力負荷の減少によって余剰となった電力を用いて、排熱熱交換器に供給する蓄熱水の流量を増加させるように蓄熱水循環手段を作動させることができるので、熱電併給装置が発生する電力をより有効に活用することができる。   For example, when a heat and power cogeneration device that generates heat and electric power is used as the heat supply device, the heat storage water that the operation control means takes out from the heat storage tank to the circulation path in the time zone when the power load increases is the waste heat heat storage. When exhaust heat storage operation is performed by lowering the start temperature or less, the heat generated by the combined heat and power supply device can be stored in the heat storage tank while the power generated by the combined heat and power supply device can be applied to the power load. Efficiency can be improved. Furthermore, according to this configuration, the operation control means not only performs the exhaust heat storage operation, but also reduces the flow rate of the stored heat water supplied to the exhaust heat exchanger when the power load decreases during the exhaust heat storage operation. The heat storage water circulation means is operated so as to increase. Thus, by increasing the flow rate of the heat storage water supplied to the exhaust heat exchanger, the speed at which heat is stored in the heat storage tank can be increased, and the heat storage in the heat storage tank can be terminated early. Moreover, since the heat storage water circulation means can be operated so as to increase the flow rate of the heat storage water supplied to the exhaust heat exchanger by using the surplus power due to the decrease in the power load, a combined heat and power supply device is generated. Electric power can be used more effectively.

本発明に係る蓄熱放熱システムの更なる特徴構成は、前記運転制御手段は、前記蓄熱槽の蓄熱量を所定の蓄熱量以上に維持すべく、前記排熱蓄熱運転を行うように構成している点にある。   The further characteristic structure of the thermal storage heat dissipation system which concerns on this invention is comprised so that the said operation control means may perform the said waste heat thermal storage operation so that the thermal storage amount of the said thermal storage tank may be maintained more than predetermined | prescribed thermal storage amount. In the point.

本構成によれば、蓄熱槽の蓄熱量を所定の蓄熱量以上に維持することができるので、給湯や暖房等を行うときに、補助加熱装置にて蓄熱水を加熱しなくても放熱用熱交換器にて要求される温度の蓄熱水を供給することができる。そのために、補助加熱装置にて蓄熱水を加熱しなければ、放熱用熱交換器にて要求されている温度の蓄熱水を供給できない状態となるのを極力回避できる。したがって、補助加熱装置を極力運転させずに、熱供給装置の排熱を活用しながら給湯や暖房等を行うことができ、エネルギー効率の向上を効果的に図ることができる。   According to this configuration, the heat storage amount of the heat storage tank can be maintained at a predetermined heat storage amount or more, so when performing hot water supply, heating, etc., the heat for heat radiation can be obtained without heating the heat storage water with the auxiliary heating device. Heat storage water at a temperature required by the exchanger can be supplied. Therefore, if the heat storage water is not heated by the auxiliary heating device, it is possible to avoid as much as possible that the heat storage water having the temperature required by the heat radiating heat exchanger cannot be supplied. Therefore, without operating the auxiliary heating device as much as possible, hot water supply or heating can be performed while utilizing the exhaust heat of the heat supply device, and energy efficiency can be effectively improved.

本発明に係る蓄熱放熱システムの実施形態を図面に基づいて説明する。
この蓄熱放熱システムは、図1、図3及び図4に示すように、蓄熱水A1としての水を貯留する蓄熱槽1と、その蓄熱槽1から取り出した蓄熱水A1を循環路2にて循環させて蓄熱槽1に戻す蓄熱水循環手段3とを設けている。循環路2には、熱供給装置4の排熱を搬送する排熱搬送流体にて循環路2を通流する蓄熱水A1を加熱する排熱熱交換器5、及び、その排熱熱交換器5を通過した後の蓄熱水A1を放熱させる放熱用熱交換器6を設けている。
図1、図3及び図4では、流体の通流状態を太線及び矢印にて示している。図1、図3及び図4は、流体が通流する部分が異なるだけでその他の構成については同様の構成を示している。
An embodiment of a heat storage and heat dissipation system according to the present invention will be described with reference to the drawings.
As shown in FIGS. 1, 3, and 4, this heat storage and heat dissipation system circulates in a circulation path 2 through a heat storage tank 1 that stores water as the heat storage water A <b> 1 and the heat storage water A <b> 1 extracted from the heat storage tank 1. Heat storage water circulation means 3 is provided for returning to the heat storage tank 1. In the circulation path 2, an exhaust heat exchanger 5 that heats the heat storage water A <b> 1 that flows through the circulation path 2 using an exhaust heat transfer fluid that transfers the exhaust heat of the heat supply device 4, and the exhaust heat exchanger thereof The heat-dissipating heat exchanger 6 that dissipates the heat storage water A <b> 1 after passing through 5 is provided.
In FIG. 1, FIG. 3 and FIG. 4, the flow state of the fluid is indicated by thick lines and arrows. 1, FIG. 3 and FIG. 4 show the same configuration with respect to other configurations except that the portion through which the fluid flows is different.

熱供給装置4は、例えば、都市ガスを燃料とするガスエンジンや燃料電池を備えた熱電併給装置であり、排熱搬送流体としての熱源水A2がガスエンジンや燃料電池での排熱を回収するように構成している。排熱熱交換器5と熱供給装置4との間で熱源水A2を循環する熱源水循環路7を設け、この熱源水循環路7に熱源水膨張タンク8及び熱源水循環ポンプ9を設けている。
熱源水循環路7には、熱供給装置4から排熱熱交換器5に供給する熱源水A2の流量を検出する熱源水流量センサ11、熱供給装置4から排熱熱交換器5に供給する熱源水A2の温度を検出する熱源水往き温度センサ10、及び、排熱熱交換器5から熱供給装置4に戻す熱源水A2の温度を検出する熱源水戻り温度センサ12を設けている。
The heat supply device 4 is, for example, a combined heat and power supply device including a gas engine that uses city gas as a fuel and a fuel cell, and the heat source water A2 as the exhaust heat carrier fluid recovers exhaust heat from the gas engine and the fuel cell. It is configured as follows. A heat source water circulation path 7 for circulating the heat source water A2 is provided between the exhaust heat exchanger 5 and the heat supply device 4, and a heat source water expansion tank 8 and a heat source water circulation pump 9 are provided in the heat source water circulation path 7.
The heat source water circulation path 7 includes a heat source water flow rate sensor 11 that detects the flow rate of the heat source water A2 that is supplied from the heat supply device 4 to the exhaust heat exchanger 5, and a heat source that is supplied from the heat supply device 4 to the exhaust heat exchanger 5. A heat source water return temperature sensor 10 that detects the temperature of the water A2 and a heat source water return temperature sensor 12 that detects the temperature of the heat source water A2 returned from the exhaust heat exchanger 5 to the heat supply device 4 are provided.

蓄熱槽1は、貯留している蓄熱水A1の上面よりも高い位置に大気に通じる開口を有して上部を大気開放している。蓄熱槽1は、矩形筒状の下部部分1aと矩形筒状の上部部分1bとから構成してあり、平面視で矩形状に形成している。蓄熱槽1は、貯留した蓄熱水A1と大気との界面部分である上部部分1bの断面積を上部部分1b以外の下部部分1aの断面積よりも小さくするように構成している。このようにして、蓄熱水A1の蒸発を抑制して放熱ロスを低減している。   The heat storage tank 1 has an opening leading to the atmosphere at a position higher than the upper surface of the stored heat storage water A1, and the upper part is opened to the atmosphere. The heat storage tank 1 is composed of a rectangular cylindrical lower portion 1a and a rectangular cylindrical upper portion 1b, and is formed in a rectangular shape in plan view. The heat storage tank 1 is configured such that the cross-sectional area of the upper portion 1b, which is the interface portion between the stored heat storage water A1 and the atmosphere, is smaller than the cross-sectional area of the lower portion 1a other than the upper portion 1b. In this way, the heat dissipation loss is reduced by suppressing evaporation of the heat storage water A1.

蓄熱槽1及び熱源水膨張タンク8に蓄熱水A1及び熱源水A2としての水を補給するために、補給路13及び補給弁14a,14bを設けている。蓄熱槽1及び熱源水膨張タンク8には、下限水位及び上限水位を検出する一対の水位センサ15a,15bを設けている。蓄熱槽1及び熱源水膨張タンク8では、水位センサ15a,15bにて水位が下限水位未満になったことを検出すると、補給弁14a,14bを開弁して補給路13にて水を補給し、水位センサ15a,15bにて水位が上限水位になったことを検出すると、補給弁14a,14bを閉弁して補給路13による水の補給を停止する。このようにして、蓄熱槽1及び熱源水膨張タンク8では、蓄熱水A1及び熱源水A2の水位を下限水位と上限水位との間に維持するようにしている。   In order to replenish water as the heat storage water A1 and the heat source water A2 to the heat storage tank 1 and the heat source water expansion tank 8, a supply path 13 and supply valves 14a and 14b are provided. The heat storage tank 1 and the heat source water expansion tank 8 are provided with a pair of water level sensors 15a and 15b for detecting a lower limit water level and an upper limit water level. In the heat storage tank 1 and the heat source water expansion tank 8, when the water level sensors 15a and 15b detect that the water level is lower than the lower limit water level, the replenishing valves 14a and 14b are opened and water is replenished in the replenishment path 13. When the water level sensors 15a and 15b detect that the water level has reached the upper limit water level, the replenishing valves 14a and 14b are closed to stop the replenishment of water through the replenishment path 13. Thus, in the heat storage tank 1 and the heat source water expansion tank 8, the water levels of the heat storage water A1 and the heat source water A2 are maintained between the lower limit water level and the upper limit water level.

循環路2は、蓄熱槽1の上部及び下部に接続してあり、蓄熱水循環手段3は、蓄熱槽1の上部から蓄熱水A1を取り出して蓄熱槽1の下部に蓄熱水A1を戻すように構成している。蓄熱槽1から循環路2に取り出した蓄熱水A1を、排熱熱交換器5をバイパスさせて放熱用熱交換器6に供給する排熱熱交換器バイパス路16を設けている。この排熱熱交換器バイパス路16には、排熱熱交換器バイパス路16に蓄熱水A1を供給するか否か及びその流量を調整可能なバイパス路調整弁17を設けている。   The circulation path 2 is connected to the upper and lower parts of the heat storage tank 1, and the heat storage water circulation means 3 is configured to take out the heat storage water A 1 from the upper part of the heat storage tank 1 and return the heat storage water A 1 to the lower part of the heat storage tank 1. is doing. An exhaust heat exchanger bypass path 16 is provided for supplying the stored heat water A1 taken out from the heat storage tank 1 to the circulation path 2 to the heat exchanger 6 for heat dissipation by bypassing the exhaust heat exchanger 5. This exhaust heat exchanger bypass passage 16 is provided with a bypass passage adjustment valve 17 capable of adjusting whether or not the heat storage water A1 is supplied to the exhaust heat exchanger bypass passage 16 and its flow rate.

このバイパス路調整弁17が、供給状態切換手段に相当する。バイパス路調整弁17は、開弁状態となることにより排熱熱交換器バイパス路16に蓄熱水A1を供給する供給状態(例えば図4の太線部)と、閉弁状態となることにより排熱熱交換器バイパス路16に蓄熱水A1を供給しない非供給状態(例えば図1及び図3の太線部)とに切換自在に構成している。   The bypass path adjusting valve 17 corresponds to a supply state switching unit. The bypass passage adjusting valve 17 is in a valve opening state to supply heat storage water A1 to the exhaust heat exchanger bypass passage 16 (for example, a thick line portion in FIG. 4), and in a valve closing state, exhaust heat is discharged. The heat exchanger bypass passage 16 is configured to be switchable to a non-supply state (for example, a thick line portion in FIGS. 1 and 3) in which the heat storage water A1 is not supplied.

排熱熱交換器バイパス路16には、通流する蓄熱水A1を加熱する補助加熱装置19、補助加熱装置19を通過した蓄熱水A1の温度を検出する補助加熱温度センサ20を設けている。補助加熱装置19は、燃料ガス供給路22にてガスバーナ21に都市ガス等の燃料ガスを供給してガスバーナ21を燃焼させ、定格出力にて蓄熱水A1を加熱するように構成している。このように、補助加熱装置19に、当該補助加熱装置19を所定出力以上の出力にて運転させて低出力での運転を防止する低出力運転防止機能を備えさせている。補助加熱装置19を運転させるに当り、例えば、低出力での運転を行うと空気過剰となって、補助加熱装置19自体の熱効率が低下する。そこで、補助加熱装置19側に流れる蓄熱水A1の流量を確保して、熱効率の良好な定格出力にて補助加熱装置19を運転させることにより、補助加熱装置19自体の熱効率の低下を抑制できる。また、補助加熱装置19は、単に、定格出力にて運転するように構成すればよいので、出力を調整するための構成を必要とせず、補助加熱装置19を単純な構成とすることができる。   The exhaust heat exchanger bypass 16 is provided with an auxiliary heating device 19 that heats the stored heat storage water A1 and an auxiliary heating temperature sensor 20 that detects the temperature of the heat storage water A1 that has passed through the auxiliary heating device 19. The auxiliary heating device 19 is configured to supply a fuel gas such as city gas to the gas burner 21 through the fuel gas supply passage 22 to burn the gas burner 21 and to heat the heat storage water A1 at a rated output. In this way, the auxiliary heating device 19 is provided with a low output operation prevention function that prevents the low heating operation by operating the auxiliary heating device 19 with an output of a predetermined output or more. When the auxiliary heating device 19 is operated, for example, if the operation is performed at a low output, the air becomes excessive and the thermal efficiency of the auxiliary heating device 19 itself is lowered. Then, the fall of the thermal efficiency of auxiliary heating device 19 itself can be suppressed by ensuring the flow volume of the thermal storage water A1 which flows into the auxiliary heating device 19 side, and operating the auxiliary heating device 19 with the rated output with favorable thermal efficiency. Further, since the auxiliary heating device 19 is simply configured to operate at the rated output, a configuration for adjusting the output is not required, and the auxiliary heating device 19 can have a simple configuration.

循環路2において蓄熱槽1の下部に蓄熱水A1を戻す戻し部分2aと蓄熱槽1の上部から蓄熱水A1を取り出す取り出し部分2bとを接続する蓄熱槽バイパス路23を設けている。循環路2において蓄熱槽バイパス路23の分岐箇所には、蓄熱槽1の下部に戻す蓄熱水A1の温度を検出する蓄熱槽戻し温度センサ24を設けている。蓄熱槽バイパス路23には、通流する蓄熱水A1の流量を検出するバイパス流量センサ25を設けている。   In the circulation path 2, a heat storage tank bypass path 23 that connects a return portion 2 a that returns the heat storage water A 1 to the lower portion of the heat storage tank 1 and an extraction portion 2 b that extracts the heat storage water A 1 from the upper portion of the heat storage tank 1 is provided. In the circulation path 2, a heat storage tank return temperature sensor 24 that detects the temperature of the heat storage water A <b> 1 that returns to the lower part of the heat storage tank 1 is provided at a branch point of the heat storage tank bypass path 23. The heat storage tank bypass path 23 is provided with a bypass flow rate sensor 25 that detects the flow rate of the heat storage water A1 flowing therethrough.

循環路2には、蓄熱水A1の通流方向の上流側から、蓄熱槽1から取り出す蓄熱水A1の温度を検出する第1蓄熱水温度センサ26、循環路2の蓄熱水A1と蓄熱槽バイパス路23の蓄熱水A1との混合比率を調整自在な混合調整弁27、蓄熱水循環手段3としての蓄熱水循環ポンプ18、通流する蓄熱水A1の温度を検出する第2蓄熱水温度センサ28、排熱熱交換器5に通流する蓄熱水A1の流量を調整自在な第1蓄熱水流量調整弁29、排熱熱交換器5、通流する蓄熱水A1の温度を検出する第3蓄熱水温度センサ30、放熱用熱交換器6としての給湯用熱交換器31、給湯用熱交換器31を通過する蓄熱水A1の流量を検出する第2蓄熱水流量調整弁32、蓄熱水戻し温度センサ24、蓄熱槽1の下部に戻す蓄熱水A1の流量を検出する蓄熱水戻し流量センサ53を設けている。   In the circulation path 2, the first heat storage water temperature sensor 26 that detects the temperature of the heat storage water A <b> 1 taken out from the heat storage tank 1 from the upstream side in the flow direction of the heat storage water A <b> 1, the heat storage water A <b> 1 of the circulation path 2 and the heat storage tank bypass A mixing control valve 27 capable of adjusting the mixing ratio with the heat storage water A1 in the passage 23, a heat storage water circulation pump 18 as the heat storage water circulation means 3, a second heat storage water temperature sensor 28 for detecting the temperature of the circulating heat storage water A1, an exhaust The first heat storage water flow rate adjustment valve 29 that can adjust the flow rate of the heat storage water A1 flowing through the heat heat exchanger 5, the exhaust heat exchanger 5, and the third heat storage water temperature that detects the temperature of the heat storage water A1 flowing through. A sensor 30, a hot water supply heat exchanger 31 as the heat dissipation heat exchanger 6, a second heat storage water flow rate adjustment valve 32 that detects the flow rate of the heat storage water A1 that passes through the hot water supply heat exchanger 31, and a heat storage water return temperature sensor 24. The flow rate of the heat storage water A1 returned to the bottom of the heat storage tank 1 is detected The flow sensor 53 is provided back heat storage water that.

給湯用熱交換器31は、給水路33から供給されて給湯路34に供給する給湯用の給水A3を蓄熱水A1の放熱対象とするように構成している。給水路33には、給湯用熱交換器21に供給する給水温度を検出する給水温度センサ35を設けている。給湯路34には、給湯用の給水A3の通流方向において上流側から、給湯用熱交換器31を通過した後の給湯用の給水A3の温度を検出する出口温度センサ36、給湯路34にて給湯する給湯量を検出する給湯量センサ37、給湯路34にて給湯する給湯温度を検出する給湯温度センサ38、給湯路34による給湯を行うか否かを調整する給湯調整弁39を設けている。
給水路33からの給湯用の給水A3を、給湯用熱交換器31をバイパスして給湯路34に供給する給湯用バイパス路40を設けている。給湯路34において給湯用バイパス路40の合流箇所には、給湯用熱交換器31を通過した給湯用の給水A3と給湯用バイパス路40の給湯用の給水A3との混合比率を調整自在な給湯混合調整弁41を設けている。
The hot water supply heat exchanger 31 is configured such that the hot water supply water A3 supplied from the water supply path 33 and supplied to the hot water supply path 34 is a heat dissipation target of the heat storage water A1. The water supply path 33 is provided with a water supply temperature sensor 35 that detects the temperature of the water supplied to the hot water supply heat exchanger 21. An outlet temperature sensor 36 for detecting the temperature of the hot water supply water A3 after passing through the hot water supply heat exchanger 31 from the upstream side in the flow direction of the hot water supply water A3, There are provided a hot water supply amount sensor 37 for detecting the amount of hot water supplied, a hot water supply temperature sensor 38 for detecting the temperature of hot water supplied through the hot water supply passage 34, and a hot water supply adjustment valve 39 for adjusting whether or not to supply hot water through the hot water supply passage 34. Yes.
There is provided a hot water supply bypass passage 40 for supplying hot water supply water A3 from the water supply passage 33 to the hot water supply passage 34 by bypassing the hot water supply heat exchanger 31. In the hot water supply passage 34, a hot water supply in which the mixing ratio of the hot water supply water A 3 that has passed through the hot water supply heat exchanger 31 and the hot water supply water A 3 in the hot water supply bypass passage 40 can be adjusted is provided at the junction of the hot water supply bypass passage 40. A mixing adjustment valve 41 is provided.

放熱用熱交換器6として、給湯用熱交換器31に加えて、風呂の浴槽Yとの間で循環される浴槽水A4を蓄熱水A1の放熱対象とする風呂用熱交換器42を設けている。風呂用熱交換器42は、循環路2から分岐した分岐流路部分2cに配置してあり、循環路2において給湯用熱交換器31と並列状態で設けている。分岐流路部分2cには、風呂用熱交換器42に蓄熱水A1を供給するか否かを調整する蓄熱水調整弁44を設けている。風呂用熱交換器42は、詳細な図示は省略するが、浴槽水A4を循環する浴槽水循環路43と蓄熱水A1を通流する循環路2の分岐流路部分2cとの一方を内側とし且つ他方を外側とする二重管式の熱交換器にて構成している。浴槽水循環路43は、浴槽Yと接続してあり、浴槽水循環ポンプ45、浴槽水A4の温度を検出する浴槽水温度センサ46が設けられている。
給湯路34には、浴槽Yに温水を供給する湯張り路47を分岐接続している。湯張り路47は、浴槽水循環路43に接続してあり、浴槽水循環路43を用いて浴槽Yに温水を供給する。湯張り路47には、浴槽Yに供給する温水の流量を検出する湯張り流量センサ48、浴槽Yへの温水の供給を断続する湯張り弁49、風呂逆止弁50を設けている。
In addition to the hot water supply heat exchanger 31, a heat exchanger 42 for bathing that uses the bathtub water A4 circulated between the bath tub Y and the heat storage water A1 as a heat radiation target is provided as the heat exchanger 6 for heat dissipation. Yes. The bath heat exchanger 42 is disposed in the branch flow path portion 2 c branched from the circulation path 2, and is provided in parallel with the hot water supply heat exchanger 31 in the circulation path 2. The branch flow path portion 2c is provided with a heat storage water adjusting valve 44 for adjusting whether or not the heat storage water A1 is supplied to the bath heat exchanger. Although the detailed illustration of the bath heat exchanger 42 is omitted, one of the bathtub water circulation path 43 that circulates the bathtub water A4 and the branch flow path portion 2c of the circulation path 2 that flows the heat storage water A1 is set inside, and It is composed of a double tube heat exchanger with the other outside. The bathtub water circulation path 43 is connected to the bathtub Y, and a bathtub water circulation sensor 45 and a bathtub water temperature sensor 46 that detects the temperature of the bathtub water A4 are provided.
A hot water supply passage 47 for supplying hot water to the bathtub Y is branched and connected to the hot water supply passage 34. The hot water passage 47 is connected to the bathtub water circulation path 43 and supplies hot water to the bathtub Y using the bathtub water circulation path 43. The hot water filling passage 47 is provided with a hot water flow rate sensor 48 for detecting the flow rate of hot water supplied to the bathtub Y, a hot water filling valve 49 for intermittently supplying hot water to the bathtub Y, and a bath check valve 50.

循環路2には、第3蓄熱水温度センサ30の配設箇所から分岐して暖房用放熱器Dに蓄熱水A1を供給する放熱用往き路51を分岐接続してあり、暖房用放熱器Dに供給した蓄熱水A1を給湯用熱交換器31及び風呂用熱交換器42よりも下流側に戻す放熱用戻り路52を接続している。暖房用放熱器Dは、放熱用熱交換器6に相当し、例えば、放熱用往き路51にて供給される蓄熱水A1を放熱する床暖房パネルである。また、暖房用放熱器Dは、床暖房パネル以外に、浴室暖房装置等を適応することもできる。放熱用戻り路52には、通流する蓄熱水A1の流量を検出する放熱戻り流量センサ54、放熱逆止弁55、通流する蓄熱水A1の温度を検出する放熱戻り温度センサ56を設けている。   The circulation path 2 is branched from a disposition location of the third heat storage water temperature sensor 30 and connected to a heat dissipation forward path 51 for supplying the heat storage water A1 to the heating radiator D. The heating radiator D A heat dissipation return path 52 is connected to return the heat storage water A1 supplied to the hot water supply heat exchanger 31 and the bath heat exchanger 42 to the downstream side. The heating radiator D corresponds to the heat dissipation heat exchanger 6 and is, for example, a floor heating panel that dissipates the heat storage water A <b> 1 supplied through the heat dissipation outbound path 51. Moreover, the radiator D for heating can also apply a bathroom heating apparatus etc. besides a floor heating panel. The return path 52 for heat dissipation is provided with a heat release return flow sensor 54 for detecting the flow rate of the stored heat storage water A1, a heat release check valve 55, and a heat release return temperature sensor 56 for detecting the temperature of the stored heat storage water A1. Yes.

図2に示すように、この蓄熱放熱システムは、収納体57に収納した状態で通常屋外に設置している。収納体57は、矩形状の第1収納部57aと矩形状の第2収納部57bと矩形状の第3収納部57cとを組み合わせて矩形状に形成している。第1収納部57aは、蓄熱槽1及び熱源水膨張タンク8を収納している。第2収納部57bは、循環路2、蓄熱水循環手段3、排熱熱交換器5、及び、放熱用熱交換器6等をユニットとし、そのユニットを収納している。第3収納部57cは、補助加熱装置19及び蓄熱放熱システムの運転を制御する運転制御装置62を収納している。この運転制御装置62が、運転制御手段に相当する。   As shown in FIG. 2, this heat storage and heat dissipation system is normally installed outdoors while being stored in a storage body 57. The storage body 57 is formed in a rectangular shape by combining a rectangular first storage portion 57a, a rectangular second storage portion 57b, and a rectangular third storage portion 57c. The first storage unit 57 a stores the heat storage tank 1 and the heat source water expansion tank 8. The second storage portion 57b includes the circulation path 2, the heat storage water circulation means 3, the exhaust heat exchanger 5, the heat dissipation heat exchanger 6 and the like as a unit, and stores the unit. The 3rd accommodating part 57c accommodates the operation control apparatus 62 which controls the driving | operation of the auxiliary | assistant heating apparatus 19 and a thermal storage heat radiation system. The operation control device 62 corresponds to operation control means.

第1収納部57aでは、熱源水膨張タンク8を、蓄熱槽1の下部部分1aの上方で且つ蓄熱槽1の上部部分1bの矩形状の短辺に対応する側面部に配置している。第1収納部57aの側面部及び上面部の夫々に断熱材58を設け、蓄熱槽1の外周部を覆う状態で断熱材58を設けている。蓄熱槽1及び熱源水膨張タンク8は、断熱材58にて蓄熱水A1の放熱を抑制する断熱状態にて設けている。   In the 1st accommodating part 57a, the heat-source water expansion tank 8 is arrange | positioned above the lower part 1a of the thermal storage tank 1, and the side part corresponding to the rectangular short side of the upper part 1b of the thermal storage tank 1. FIG. The heat insulating material 58 is provided on each of the side surface portion and the upper surface portion of the first storage portion 57 a, and the heat insulating material 58 is provided so as to cover the outer peripheral portion of the heat storage tank 1. The heat storage tank 1 and the heat source water expansion tank 8 are provided in a heat insulating state in which the heat insulating material 58 suppresses heat radiation of the heat storage water A1.

第2収納部57bは、第1収納部57aの矩形状の短辺に対応する側面部に配置してあり、第1収納部57aよりも高さが低くなるように形成している。第2収納部57bの側面部及び上面部の夫々に断熱材58を設け、第2収納部57bの内部空間を断熱空間59とし、この断熱空間59を蓄熱槽1の矩形状の短辺に対応する側面部に設けている。循環路2、蓄熱水循環手段3、排熱熱交換器5、及び、放熱用熱交換器6等からなるユニットは、断熱材58にて外周部が覆われた断熱空間59において蓄熱水A1の放熱を抑制する断熱状態にて設けている。   The second storage portion 57b is disposed on a side surface portion corresponding to the rectangular short side of the first storage portion 57a, and is formed to be lower in height than the first storage portion 57a. A heat insulating material 58 is provided on each of the side surface portion and the upper surface portion of the second storage portion 57b, the internal space of the second storage portion 57b is defined as a heat insulating space 59, and this heat insulating space 59 corresponds to the rectangular short side of the heat storage tank 1. Provided on the side surface. The unit comprising the circulation path 2, the heat storage water circulation means 3, the exhaust heat exchanger 5, the heat exchanger 6 for heat dissipation, etc., radiates heat of the heat storage water A1 in the heat insulating space 59 whose outer periphery is covered with the heat insulating material 58. Is provided in a heat-insulating state.

第3収納部57cは、第1収納部57aの矩形状の短辺に対応する側面部において、第2収納部57bの上方に配置している。第3収納部57cには、断熱材58が設けられておらず、補助加熱装置19及び運転制御装置62が放熱を許容する非断熱状態にて設けられている。第3収納部57cの側面部には、補助加熱装置19が燃焼用空気を吸気するための吸気口60、及び、補助加熱装置19の燃焼排ガスを排気するための排気口61を設けている。   The third storage portion 57c is disposed above the second storage portion 57b in the side surface portion corresponding to the rectangular short side of the first storage portion 57a. The third storage portion 57c is not provided with the heat insulating material 58, and the auxiliary heating device 19 and the operation control device 62 are provided in a non-insulated state that allows heat dissipation. In the side surface portion of the third storage portion 57c, an intake port 60 for the auxiliary heating device 19 to intake combustion air and an exhaust port 61 for exhausting the combustion exhaust gas of the auxiliary heating device 19 are provided.

このように、蓄熱槽1の矩形状の短辺に対応する側面部におけるスペースを有効に活用しながら、循環路2、蓄熱水循環手段3、排熱熱交換器5、及び、放熱用熱交換器6等を配置する断熱空間59と補助加熱装置19とを上下に並べてコンパクトに配置している。しかも、蓄熱放熱システムを収納する収納体57自体も平面視で矩形状に形成した薄型としているので、蓄熱放熱システムの設置スペースのコンパクト化を図ることができる。また、第1収納部57a及び第2収納部57bの側面部及び上面部の夫々に断熱材58を設けるだけで、補助加熱装置19及び運転制御装置62以外の、蓄熱槽1、循環路2、蓄熱水循環手段3、排熱熱交換器5、及び、放熱用熱交換器6等の各機器を断熱状態で設けることができ、作業面及びコスト面での負担の軽減を図ることができる。   Thus, while effectively utilizing the space in the side surface corresponding to the rectangular short side of the heat storage tank 1, the circulation path 2, the heat storage water circulation means 3, the exhaust heat exchanger 5, and the heat exchanger for heat radiation The heat insulating space 59 and the auxiliary heating device 19 in which 6 etc. are arranged are arranged vertically and arranged compactly. In addition, since the storage body 57 itself that stores the heat storage and heat dissipation system is also thin and formed in a rectangular shape in plan view, the installation space of the heat storage and heat dissipation system can be made compact. Moreover, only by providing the heat insulating material 58 in each of the side surface part and the upper surface part of the first storage part 57a and the second storage part 57b, other than the auxiliary heating device 19 and the operation control device 62, the heat storage tank 1, the circulation path 2, Each device such as the heat storage water circulation means 3, the exhaust heat exchanger 5, and the heat exchanger 6 for heat radiation can be provided in a heat-insulated state, and the burden on the work surface and the cost can be reduced.

以下、図1、図3、図4に基づいて蓄熱放熱システムの運転について説明する。
運転制御装置62は、熱源水A2にて搬送される熱供給装置4の排熱を蓄熱槽1に蓄熱する排熱蓄熱運転、及び、放熱用熱交換器6にて蓄熱水A1を放熱させる放熱運転を行うように構成されている。
Hereinafter, the operation of the heat storage and heat dissipation system will be described based on FIGS. 1, 3, and 4.
The operation control device 62 is an exhaust heat storage operation for storing the exhaust heat of the heat supply device 4 conveyed by the heat source water A2 in the heat storage tank 1, and a heat dissipation that dissipates the heat storage water A1 by the heat exchanger 6 for heat dissipation. It is configured to drive.

(排熱蓄熱運転)
排熱蓄熱運転として、蓄熱槽1の蓄熱量を所定の蓄熱量以上に維持するように熱供給装置4の排熱を蓄熱槽1に蓄熱する第1排熱蓄熱運転と、排熱蓄熱開始条件が満たされると熱供給装置4の排熱の蓄熱槽1への蓄熱を開始し、排熱蓄熱停止条件が満たされると蓄熱槽1への蓄熱を停止する第2排熱蓄熱運転とがある。
(Exhaust heat storage operation)
As the exhaust heat storage operation, the first exhaust heat storage operation for storing the exhaust heat of the heat supply device 4 in the heat storage tank 1 so as to maintain the heat storage amount of the heat storage tank 1 at a predetermined heat storage amount or more, and the exhaust heat storage start condition Is satisfied, there is a second waste heat storage operation that starts storing heat in the heat storage tank 1 of the exhaust heat of the heat supply device 4 and stops heat storage in the heat storage tank 1 when the exhaust heat storage stop condition is satisfied.

第1排熱蓄熱運転について説明する。
運転制御装置62は、現在の蓄熱量を逐次求めており、その求めた蓄熱量が設定下限蓄熱量(例えば満蓄熱量の2/3)以下になると、第1排熱蓄熱運転を開始し、その運転開始から排熱蓄熱運転継続時間(例えば1〜2時間)が経過すると、第1排熱蓄熱運転を停止する。
現在の蓄熱量については、例えば、運転制御装置62は、初期蓄熱残量C1から、前回の蓄熱完了からの払い出し温水出力C2及び蓄熱槽1の放熱量C3を減算することにより、現在の蓄熱量を求めることができる。ここで、払い出し温水出力C2は、蓄熱槽1から払い出した温水の出力である。初期蓄熱残量C1については、例えば、下記〔数1〕を用いて求めることができ、払い出し温水出力C2については、例えば、下記〔数2〕を用いて求めることができ、蓄熱槽1の放熱量C3については、例えば、下記〔数3〕を用いて求めることができる。
The first exhaust heat storage operation will be described.
The operation control device 62 sequentially obtains the current heat storage amount. When the obtained heat storage amount becomes equal to or less than the set lower limit heat storage amount (for example, 2/3 of the full heat storage amount), the first exhaust heat storage operation is started. When the exhaust heat storage operation continuation time (for example, 1 to 2 hours) elapses from the start of the operation, the first exhaust heat storage operation is stopped.
For the current heat storage amount, for example, the operation control device 62 subtracts the discharged hot water output C2 from the previous heat storage completion and the heat release amount C3 of the heat storage tank 1 from the initial heat storage remaining amount C1, thereby obtaining the current heat storage amount. Can be requested. Here, the discharged hot water output C <b> 2 is an output of hot water discharged from the heat storage tank 1. The initial heat storage remaining amount C1 can be obtained using, for example, the following [Equation 1], and the dispensed hot water output C2 can be obtained, for example, using the following [Equation 2]. About calorie | heat amount C3, it can obtain | require, for example using following [Formula 3].

〔数1〕
C1=(T1−T2min)×V/860
ただし、C1は初期蓄熱残量(kWh)であり、T1は前回の排熱蓄熱運転完了時の第1蓄熱水温度センサの検出温度であり、T2minは、限定期間(例えば過去5日間)における蓄熱槽戻し温度センサ24の最低検出温度であり、Vは蓄熱槽1の有効蓄熱水容量である。
[Equation 1]
C1 = (T1-T2min) × V / 860
However, C1 is the initial heat storage remaining amount (kWh), T1 is the temperature detected by the first heat storage water temperature sensor when the previous exhaust heat storage operation is completed, and T2min is the heat storage in a limited period (for example, the past 5 days). The minimum detection temperature of the tank return temperature sensor 24, V is the effective heat storage water capacity of the heat storage tank 1.

〔数2〕
C2=(T1−T2)×F×60/860
ただし、C2は払い出し温水出力(kW)であり、T1は第1蓄熱水温度センサの検出温度であり、T2は蓄熱槽戻し温度センサ24の検出温度であり、Fは蓄熱水戻し流量センサ53の検出流量である。
[Equation 2]
C2 = (T1-T2) × F × 60/860
However, C2 is a discharge warm water output (kW), T1 is a detection temperature of the first heat storage water temperature sensor, T2 is a detection temperature of the heat storage tank return temperature sensor 24, and F is a heat storage water return flow rate sensor 53. This is the detected flow rate.

〔数3〕
C3=δTloss×V/860
ただし、C3は蓄熱槽1の放熱量(kW)であり、δTlossは単位容量当りの蓄熱槽1の放熱量であり、Vは蓄熱槽1の有効蓄熱水容量である。
[Equation 3]
C3 = δTloss × V / 860
However, C3 is the heat dissipation amount (kW) of the heat storage tank 1, δTloss is the heat dissipation amount of the heat storage tank 1 per unit capacity, and V is the effective heat storage water capacity of the heat storage tank 1.

ちなみに、詳述はしないが、運転制御装置62は、各温度センサ及び各流量センサの検出情報に基づいて、排熱熱交換器5における熱負荷、補助加熱装置19における熱負荷、及び、給湯熱交換器31における熱負荷等の各熱負荷も求めることができる。   Incidentally, although not described in detail, the operation control device 62 determines the heat load in the exhaust heat exchanger 5, the heat load in the auxiliary heating device 19, and the hot water supply heat based on the detection information of each temperature sensor and each flow sensor. Each heat load such as a heat load in the exchanger 31 can also be obtained.

図1に示すように、運転制御装置62は、熱供給装置4を作動させ且つ熱源水循環ポンプ9を作動させて、排熱熱交換器5に熱源水A2を供給するように構成している。運転制御装置62は、第1蓄熱水流量調整弁29及び第2蓄熱水流量調整弁32を開弁させて蓄熱水循環ポンプ18を作動させるとともに、バイパス路調整弁17を閉弁状態として非供給状態に切り換えて、蓄熱槽1の上部から取り出した蓄熱水A1を排熱熱交換器5に供給するように構成している。ここで、運転制御装置62は、熱源水戻り温度センサ12の検出温度が所定温度範囲(例えば70℃±設定温度)内となるように、第1蓄熱水流量調整弁29の開度及び蓄熱水循環ポンプ18の回転速度を調整して排熱熱交換器5に供給する蓄熱水A1の流量を調整する蓄熱水供給量制御を行うように構成している。   As shown in FIG. 1, the operation control device 62 is configured to operate the heat supply device 4 and the heat source water circulation pump 9 to supply the heat source water A <b> 2 to the exhaust heat exchanger 5. The operation control device 62 opens the first heat storage water flow rate adjustment valve 29 and the second heat storage water flow rate adjustment valve 32 to operate the heat storage water circulation pump 18, and the bypass path adjustment valve 17 is closed and is not supplied. And the heat storage water A1 taken out from the upper part of the heat storage tank 1 is supplied to the exhaust heat exchanger 5. Here, the operation control device 62 determines the opening degree of the first heat storage water flow rate adjustment valve 29 and the heat storage water circulation so that the temperature detected by the heat source water return temperature sensor 12 falls within a predetermined temperature range (for example, 70 ° C. ± set temperature). The heat storage water supply amount control for adjusting the flow rate of the heat storage water A1 that is supplied to the exhaust heat exchanger 5 by adjusting the rotation speed of the pump 18 is configured.

第2排熱蓄熱運転について説明する。
運転制御装置62は、時系列的な電力負荷を管理しており、電力負荷が増加する時間帯(例えば早朝や夕方)において第1蓄熱水温度センサ26の検出温度(蓄熱槽1から循環路2に取り出す蓄熱水A1の温度)が排熱蓄熱開始温度以下となると、排熱蓄熱開始条件が満たされたとして、第2排熱蓄熱運転を開始し、第1蓄熱水温度センサ26の検出温度が排熱蓄熱停止温度以上となると、排熱蓄熱停止条件が満たされたとして、第2排熱蓄熱運転を停止する。排熱蓄熱開始温度は、例えば、冬季には63℃、中間季には58℃、夏季には55℃と設定することができる。排熱蓄熱停止温度は、例えば、冬季には70℃、中間季には65℃、夏季には60℃と設定することができる。
The second exhaust heat storage operation will be described.
The operation control device 62 manages the time-series power load, and the temperature detected by the first heat storage water temperature sensor 26 (from the heat storage tank 1 to the circulation path 2) in a time zone during which the power load increases (for example, early morning or evening). If the exhaust heat storage start condition is satisfied, the second exhaust heat storage operation is started, and the detected temperature of the first heat storage water temperature sensor 26 is When the exhaust heat storage stop temperature is reached, the second exhaust heat storage operation is stopped assuming that the exhaust heat storage stop condition is satisfied. The exhaust heat storage start temperature can be set to 63 ° C. in the winter, 58 ° C. in the intermediate season, and 55 ° C. in the summer, for example. The exhaust heat storage stop temperature can be set to, for example, 70 ° C. in the winter, 65 ° C. in the intermediate season, and 60 ° C. in the summer.

運転制御装置62は、例えば、実際に使用された1日の各時間帯(1時間ごと)の電力負荷に基づいて、既に記憶している1日の各時間帯(1時間ごと)の電力負荷を更新して、1日の各時間帯(1時間ごと)の電力負荷に区分けした状態で時系列的な電力負荷を管理している。電力負荷については、例えば、運転制御装置62が、熱供給装置4としての熱電併給装置の電力を出力するインバータの出力値、及び、テレビ、冷蔵庫、洗濯機等の電力負荷に接続された商業用電力供給ラインに設けられた電力計測手段の計測情報に基づいて、実際に使用された電力負荷を求めることができる。   The operation control device 62, for example, based on the power load for each time zone (every hour) that is actually used, the power load for each time zone (every hour) that is already stored. The time series power load is managed in a state where the power load is divided into power loads for each time zone (every hour) of the day. As for the power load, for example, the operation control device 62 is connected to the output value of an inverter that outputs the power of the cogeneration device as the heat supply device 4 and the power load of a television, a refrigerator, a washing machine, or the like. Based on the measurement information of the power measuring means provided in the power supply line, the actually used power load can be obtained.

第2蓄熱排熱運転における蓄熱水A1及び熱源水A2の通流状態は、上述の第1蓄熱排熱運転と同様で、図1に示す状態となる。運転制御装置62は、蓄熱水供給量制御に代えて、例えば、第1蓄熱水流量調整弁29の開度を所定開度とし且つ蓄熱水循環ポンプ18の回転速度を所定回転速度に調整するように構成している。そして、運転制御装置62は、第2蓄熱排熱運転中に現在の電力負荷が減少すると、排熱熱交換器5に供給する蓄熱水A1の流量を増加させるべく、蓄熱水循環手段3としての蓄熱水循環ポンプ18を作動させる。つまり、運転制御装置62は、例えば、蓄熱水循環ポンプ18の回転速度を最大回転速度に調整して、排熱熱交換器5に供給する蓄熱水A1の流量を増大させるように構成している。蓄熱水循環ポンプ18の回転速度を増大させることによって、蓄熱槽1に蓄熱していくスピードを速めることができ、蓄熱槽1への蓄熱を早期に終了することができる。現在の電力負荷が減少すると、熱供給装置4としての熱電併給装置が出力する電力が電力負荷に対して余剰となる。そこで、余剰となった電力を用いて蓄熱水循環ポンプ18の回転速度を増大させることができる。したがって、余剰となる電力を有効に活用しながら、蓄熱槽1に蓄熱していくスピードを速めることができる。   The flow state of the heat storage water A1 and the heat source water A2 in the second heat storage exhaust heat operation is the same as that in the first heat storage exhaust heat operation described above, and is the state shown in FIG. For example, the operation control device 62 sets the opening degree of the first heat storage water flow rate adjustment valve 29 to a predetermined opening degree and adjusts the rotation speed of the heat storage water circulation pump 18 to a predetermined rotation speed instead of the heat storage water supply amount control. It is composed. Then, when the current power load decreases during the second heat storage and exhaust heat operation, the operation control device 62 stores heat as the heat storage water circulation means 3 in order to increase the flow rate of the heat storage water A1 supplied to the exhaust heat exchanger 5. The water circulation pump 18 is activated. That is, the operation control device 62 is configured to increase the flow rate of the heat storage water A1 supplied to the exhaust heat exchanger 5, for example, by adjusting the rotation speed of the heat storage water circulation pump 18 to the maximum rotation speed. By increasing the rotational speed of the heat storage water circulation pump 18, the speed at which heat is stored in the heat storage tank 1 can be increased, and the heat storage in the heat storage tank 1 can be terminated early. When the current power load decreases, the power output from the combined heat and power supply device as the heat supply device 4 becomes redundant with respect to the power load. Therefore, the rotational speed of the heat storage water circulation pump 18 can be increased using the surplus power. Therefore, the speed at which heat is stored in the heat storage tank 1 can be increased while effectively using surplus power.

(放熱運転)
運転制御装置62は、放熱運転として、給湯用熱交換器31にて蓄熱水A1を放熱させる給湯運転を行うように構成されている。
運転制御装置62は、放熱運転において、第1蓄熱水温度センサ26の検出温度が補助加熱開始用温度(例えば55℃)よりも高いと、補助加熱装置19にて蓄熱水A1を加熱せずに給湯用熱交換器31に蓄熱水A1を供給するように構成している。
(Heat dissipation operation)
The operation control device 62 is configured to perform a hot water supply operation in which the heat storage water A1 is radiated by the hot water supply heat exchanger 31 as a heat dissipation operation.
When the temperature detected by the first heat storage water temperature sensor 26 is higher than the auxiliary heating start temperature (for example, 55 ° C.), the operation control device 62 does not heat the heat storage water A1 by the auxiliary heating device 19 in the heat dissipation operation. The heat storage water A1 is supplied to the hot water supply heat exchanger 31.

図3に示すように、運転制御装置62は、第1蓄熱水流量調整弁29及び第2蓄熱水流量調整弁32を開弁させて蓄熱水循環ポンプ18を作動させるとともに、バイパス路調整弁17を閉弁状態として非供給状態に切り換えて、蓄熱槽1の上部から取り出した蓄熱水A1を給湯用熱交換器31に供給するように構成している。また、運転制御装置52は、給湯調整弁39を開弁状態として出口温度センサ36の検出温度が給湯設定温度+αになるように、第2蓄熱水流量調整弁32の開度を調整するとともに、給湯量センサ37の検出流量が要求されている給湯量となり且つ給湯温度センサ38の検出温度が給湯設定温度になるように、給湯混合調整弁41における混合比率を調整するように構成している。
この場合に、運転制御装置62は、熱供給装置4を作動させ且つ熱源水循環ポンプ9を作動させて、排熱熱交換器5に熱源水A2を供給してもよい(図1の太線部参照)。このときには、蓄熱槽1の上部から取り出された蓄熱水A1が排熱熱交換器5にて加熱されたのち給湯用熱交換器31に供給される。
As shown in FIG. 3, the operation control device 62 opens the first heat storage water flow rate adjustment valve 29 and the second heat storage water flow rate adjustment valve 32 to operate the heat storage water circulation pump 18, and sets the bypass passage adjustment valve 17. It switches to a non-supply state as a valve-closed state, and is comprised so that the thermal storage water A1 taken out from the upper part of the thermal storage tank 1 may be supplied to the heat exchanger 31 for hot water supply. Further, the operation control device 52 adjusts the opening degree of the second heat storage water flow rate adjustment valve 32 so that the detection temperature of the outlet temperature sensor 36 becomes the hot water supply set temperature + α with the hot water supply adjustment valve 39 opened. The mixing ratio in the hot water supply mixing adjustment valve 41 is adjusted so that the detected flow rate of the hot water supply amount sensor 37 becomes the required hot water supply amount and the detected temperature of the hot water supply temperature sensor 38 becomes the hot water supply set temperature.
In this case, the operation control device 62 may operate the heat supply device 4 and operate the heat source water circulation pump 9 to supply the heat source water A2 to the exhaust heat exchanger 5 (see the thick line portion in FIG. 1). ). At this time, the heat storage water A1 taken out from the upper part of the heat storage tank 1 is heated by the exhaust heat exchanger 5 and then supplied to the hot water supply heat exchanger 31.

運転制御装置62は、放熱運転において、蓄熱槽1から循環路2に取り出す蓄熱水が補助加熱開始用温度(例えば55℃)以下であると、バイパス路調整弁17を開弁状態として供給状態に切り換えるとともに、補助加熱装置19の運転を開始し、蓄熱槽1から循環路2に取り出す蓄熱水が補助加熱停止用温度(例えば58℃)以上になると、バイパス路調整弁17を閉弁状態として非供給状態に切り換えるとともに、補助加熱装置19の運転を停止するように構成している。   When the heat storage water taken out from the heat storage tank 1 to the circulation path 2 is equal to or lower than the auxiliary heating start temperature (for example, 55 ° C.) in the heat radiation operation, the operation control device 62 opens the bypass path adjustment valve 17 to the supply state. At the same time as switching, when the operation of the auxiliary heating device 19 is started and the heat storage water taken out from the heat storage tank 1 to the circulation path 2 reaches the auxiliary heating stop temperature (for example, 58 ° C.) or higher, the bypass path adjustment valve 17 is closed. While switching to a supply state, it is comprised so that the driving | operation of the auxiliary heating apparatus 19 may be stopped.

すなわち、運転制御装置62は、第1蓄熱水温度センサ26の検出温度が補助加熱開始用温度(例えば55℃)以下であると、図4に示すように、第1蓄熱水流量調整弁29を閉弁し且つバイパス路調整弁17を開弁状態として供給状態に切り換えて、蓄熱槽1の上部から取り出した蓄熱水A1を補助加熱装置19に供給するように構成している。運転制御装置62は、燃料ガス供給路22にてガスバーナ21への燃料ガスの供給を開始し、補助加熱装置19の定格出力での運転を開始する。このようにして、蓄熱槽1の上部から取り出した蓄熱水A1を補助加熱装置19にて加熱し、その加熱した蓄熱水A1を給湯用熱交換器31に供給するようにしている。このときの給水路33及び給湯路34における給湯用の給水A3の通流状態は、図3に示したものと同様である。   That is, when the temperature detected by the first heat storage water temperature sensor 26 is equal to or lower than the auxiliary heating start temperature (for example, 55 ° C.), the operation control device 62 sets the first heat storage water flow rate adjustment valve 29 as shown in FIG. The valve is closed and the bypass passage adjusting valve 17 is opened to switch to the supply state, and the heat storage water A1 taken out from the upper part of the heat storage tank 1 is supplied to the auxiliary heating device 19. The operation control device 62 starts supplying fuel gas to the gas burner 21 through the fuel gas supply path 22 and starts operation at the rated output of the auxiliary heating device 19. Thus, the heat storage water A1 taken out from the upper part of the heat storage tank 1 is heated by the auxiliary heating device 19, and the heated heat storage water A1 is supplied to the hot water supply heat exchanger 31. The flow state of the hot water supply water A3 in the water supply path 33 and the hot water supply path 34 at this time is the same as that shown in FIG.

所定出力以上の出力により補助加熱装置19にて加熱した蓄熱水A1は、給湯用熱交換器31に供給したのち蓄熱槽1の下部に戻される。したがって、補助加熱装置19が発生する熱を、給湯の加熱に使うのみならず、蓄熱槽1に蓄熱することもできる。その結果、熱供給装置4の排熱だけでなく、補助加熱装置19が発生する熱をも蓄熱しながら有効に活用して給湯や暖房等を行うことができ、より一層のエネルギー効率の向上を図ることができる。また、蓄熱槽1に蓄熱された熱の放熱を抑制できることから、蓄熱槽1の蓄熱量をより多い熱量に保つことができ、放熱運転を行う時点でそのために必要な蓄熱量を蓄熱槽1に蓄熱しておくことができ、放熱運転を行う時点よりも以前から蓄熱槽1に蓄熱しておく必要がなくなる。   The heat storage water A1 heated by the auxiliary heating device 19 with an output of a predetermined output or higher is supplied to the hot water supply heat exchanger 31 and then returned to the lower part of the heat storage tank 1. Therefore, the heat generated by the auxiliary heating device 19 can be stored not only in the hot water supply but also in the heat storage tank 1. As a result, not only the exhaust heat of the heat supply device 4 but also the heat generated by the auxiliary heating device 19 can be effectively utilized while accumulating, and hot water supply, heating, etc. can be performed, further improving energy efficiency. Can be planned. Moreover, since the heat dissipation of the heat stored in the heat storage tank 1 can be suppressed, the heat storage amount of the heat storage tank 1 can be kept at a larger amount of heat, and the heat storage amount necessary for that is stored in the heat storage tank 1 at the time of performing the heat dissipation operation. Heat can be stored, and it is no longer necessary to store heat in the heat storage tank 1 before the time when the heat radiation operation is performed.

運転制御装置62は、第1蓄熱水温度センサ26の検出温度が補助加熱停止用温度(例えば58℃)以上になると、第1蓄熱水流量調整弁29を開弁させ且つバイパス路調整弁17を閉弁状態として非供給状態に切り換えるとともに、燃料ガス供給路22によるガスバーナ21への燃料ガスの供給を停止して補助加熱装置19の運転を停止して、図3に示す通流状態に切り換える。   When the temperature detected by the first heat storage water temperature sensor 26 is equal to or higher than the auxiliary heating stop temperature (for example, 58 ° C.), the operation control device 62 opens the first heat storage water flow rate adjustment valve 29 and sets the bypass passage adjustment valve 17. In addition to switching to the non-supply state as the closed valve state, the supply of the fuel gas to the gas burner 21 through the fuel gas supply path 22 is stopped to stop the operation of the auxiliary heating device 19, and the flow state is switched to that shown in FIG.

図4に示す通流状態において、運転制御装置62は、給湯用熱交換器31を通過して蓄熱槽1の下部に戻す蓄熱水A1の一部を蓄熱槽バイパス路23に供給すべく、混合調整弁27における混合比率を調整するように構成している。このようにして、蓄熱槽1の上部から取り出した低温の蓄熱水A1に蓄熱槽バイパス路23の高温の蓄熱水A1を混合することにより、補助加熱装置19に供給する蓄熱水A1の温度を上昇させるようにしている。このとき、運転制御装置62は、補助加熱装置19に供給する蓄熱水A1の温度が所定範囲内になるように、混合調整弁27における混合比率を調整するように構成している。   In the flow state shown in FIG. 4, the operation control device 62 mixes to supply a part of the heat storage water A1 that passes through the hot water heat exchanger 31 and returns to the lower part of the heat storage tank 1 to the heat storage tank bypass 23. The mixing ratio in the adjusting valve 27 is adjusted. In this way, the temperature of the heat storage water A1 supplied to the auxiliary heating device 19 is increased by mixing the high temperature heat storage water A1 of the heat storage tank bypass passage 23 with the low temperature heat storage water A1 taken out from the upper part of the heat storage tank 1. I try to let them. At this time, the operation control device 62 is configured to adjust the mixing ratio in the mixing adjustment valve 27 so that the temperature of the heat storage water A1 supplied to the auxiliary heating device 19 is within a predetermined range.

図4に示す通流状態においても、運転制御装置62は、第1蓄熱水流量調整弁29を開弁させるとともに、熱供給装置4を作動させ且つ熱源水循環ポンプ9を作動させて、排熱熱交換器5に熱源水A2を供給してもよい。このときには、運転制御装置62が、給湯用熱交換器31に供給する蓄熱水A1が所定温度範囲になるように、バイパス路調整弁17及び第1蓄熱水流量調整弁29の開度を調整するように構成している。   Even in the flow state shown in FIG. 4, the operation control device 62 opens the first heat storage water flow rate adjustment valve 29, operates the heat supply device 4 and operates the heat source water circulation pump 9, and exhaust heat heat The heat source water A2 may be supplied to the exchanger 5. At this time, the operation control device 62 adjusts the opening degree of the bypass passage adjustment valve 17 and the first heat storage water flow rate adjustment valve 29 so that the heat storage water A1 supplied to the hot water supply heat exchanger 31 is in a predetermined temperature range. It is configured as follows.

運転制御装置62は、放熱運転として、給湯運転以外に、風呂用熱交換器42にて蓄熱水A1を浴槽Yとの間で循環される浴槽水A4に放熱させる追焚き運転、及び、暖房用放熱器Dにて蓄熱水A1を放熱させる暖房運転の夫々を行うように構成されている。
追焚き運転では、運転制御装置62が、浴槽水循環ポンプ45を作動させて、浴槽水A4を浴槽Yと風呂用熱交換器42との間で循環させる。蓄熱水A1の通流状態については、運転制御装置62が、第2蓄熱水流量調整弁32を閉弁し且つ蓄熱水調整弁44を開弁して、給湯用熱交換器31には蓄熱水A1を供給せず、風呂用熱交換器42に蓄熱水A1を供給するように構成している。このように、風呂用熱交換器42にて蓄熱水A1にて浴槽水A4を加熱し、その加熱した浴槽水Aを浴槽Yに供給することにより、浴槽水A4の追焚きを行っている。
暖房運転では、運転制御装置62が、第2蓄熱水流量調整弁32及び蓄熱水調整弁44を閉弁して、給湯用熱交換器31及び風呂用熱交換器42には蓄熱水A1を供給せず、暖房用放熱器Dに蓄熱水A1を供給するように構成している。このように、暖房用放熱器Dに蓄熱水A1を供給して放熱するようにしている。
In addition to hot water supply operation, the operation control device 62 performs a reheating operation that heats the stored water A1 to the bath water A4 that is circulated between the bath Y and the bath heat exchanger 42, and for heating. It is comprised so that each of the heating operation which radiates the thermal storage water A1 with the heat radiator D may be performed.
In the chasing operation, the operation control device 62 operates the bathtub water circulation pump 45 to circulate the bathtub water A4 between the bathtub Y and the heat exchanger 42 for bath. Regarding the flow state of the heat storage water A1, the operation control device 62 closes the second heat storage water flow rate adjustment valve 32 and opens the heat storage water adjustment valve 44, and the hot water supply heat exchanger 31 has the heat storage water. The storage water A1 is supplied to the bath heat exchanger 42 without supplying A1. In this way, the bathtub water A4 is heated by the heat storage water A1 in the bath heat exchanger 42, and the heated bathtub water A is supplied to the bathtub Y, whereby the bathtub water A4 is re chased.
In the heating operation, the operation control device 62 closes the second heat storage water flow rate adjustment valve 32 and the heat storage water adjustment valve 44, and supplies the heat storage water A1 to the hot water supply heat exchanger 31 and the bath heat exchanger 42. Without, it is comprised so that the thermal storage water A1 may be supplied to the radiator D for heating. As described above, the heat storage water A1 is supplied to the heating radiator D to radiate heat.

運転制御装置62は、給湯運転、追焚き運転、暖房運転の夫々を単独で行うだけでなく、例えば、給湯運転と追焚き運転とを同時に行う等、給湯運転、追焚き運転、暖房運転の2つ及び全部を同時に行うこともできる。   The operation control device 62 not only performs a hot water supply operation, a reheating operation, and a heating operation alone, but also performs, for example, a hot water supply operation, a reheating operation, and a heating operation. One and all can be done simultaneously.

〔別実施形態〕
(1)上記実施形態において、蓄熱槽1、補助加熱装置19、排熱熱交換器5等の各機器をどのように配置して収納体57に収納するかは適宜変更が可能である。
[Another embodiment]
(1) In the said embodiment, how to arrange | position each apparatus, such as the thermal storage tank 1, the auxiliary | assistant heating apparatus 19, the waste heat exchanger 5, etc., and to accommodate in the accommodating body 57 can be changed suitably.

(2)上記実施形態において、蓄熱槽1の形状についてはどのような形状にするかは適宜変更が可能である。 (2) In the said embodiment, what kind of shape it makes about the shape of the thermal storage tank 1 can be changed suitably.

(3)上記実施形態では、第1蓄熱水温度センサ26を循環路2に設けているが、例えば、蓄熱槽1の上部に直接設置することも可能である。 (3) In the said embodiment, although the 1st thermal storage water temperature sensor 26 is provided in the circulation path 2, it is also possible to install directly in the upper part of the thermal storage tank 1, for example.

(4)上記実施形態では、放熱用熱交換器6として、給湯用熱交換器31、風呂用熱交換器42、及び、暖房用放熱器Dの3つを設けているが、放熱用熱交換器6の数については適宜変更が可能である。 (4) In the above-described embodiment, as the heat-dissipating heat exchanger 6, there are provided the heat exchanger 31 for hot water supply, the heat exchanger 42 for bath, and the radiator D for heating. The number of vessels 6 can be changed as appropriate.

(5)上記実施形態では、給湯用熱交換器31と風呂用熱交換器42とを並列状態で設けているが、給湯用熱交換器31と風呂用熱交換器42とを直列状態で設けることもできる。 (5) In the above embodiment, the hot water supply heat exchanger 31 and the bath heat exchanger 42 are provided in parallel, but the hot water supply heat exchanger 31 and the bath heat exchanger 42 are provided in series. You can also

本発明は、蓄熱槽から取り出した蓄熱水を循環路にて循環させて蓄熱槽に戻す蓄熱水循環手段と、熱供給装置の排熱を搬送する排熱搬送流体にて循環路を通流する蓄熱水を加熱する排熱熱交換器と、その排熱熱交換器を通過した後の蓄熱水を放熱させる放熱用熱交換器とを設け、各機器を断熱する際の作業面及びコスト面の軽減を図りながら、放熱ロスを抑えることができる各種の蓄熱放熱システムに適応することができる。   The present invention relates to heat storage water circulating means that circulates heat storage water taken out from the heat storage tank and returns it to the heat storage tank, and heat storage that flows through the circulation path using exhaust heat transfer fluid that conveys exhaust heat of the heat supply device. Waste heat heat exchanger that heats water and heat dissipation heat exchanger that dissipates heat storage water after passing through the waste heat heat exchanger are provided to reduce work and costs when insulating each device It is possible to adapt to various heat storage and heat dissipation systems that can suppress heat dissipation loss.

排熱蓄熱運転における蓄熱放熱システムの状態を示す図The figure which shows the state of the thermal storage thermal radiation system in exhaust heat thermal storage operation 蓄熱放熱システムの設置状態を示す斜視図The perspective view which shows the installation state of a thermal storage thermal radiation system 放熱運転における蓄熱放熱システムの状態を示す図The figure which shows the state of the thermal storage thermal radiation system in thermal radiation operation 放熱運転における蓄熱放熱システムの状態を示す図The figure which shows the state of the thermal storage thermal radiation system in thermal radiation operation

符号の説明Explanation of symbols

1 蓄熱槽
2 循環路
3 蓄熱水循環手段
4 熱供給装置
5 排熱熱交換器
6 放熱用熱交換器
16 排熱熱交換器バイパス路
17 供給状態切換手段(バイパス路調整弁)
19 補助加熱装置
58 断熱材
59 断熱空間
62 運転制御手段(運転制御装置)
A1 蓄熱水
A2 排熱搬送流体(熱源水)
DESCRIPTION OF SYMBOLS 1 Heat storage tank 2 Circulation path 3 Thermal storage water circulation means 4 Heat supply device 5 Waste heat exchanger 6 Heat radiation heat exchanger 16 Waste heat exchanger bypass path 17 Supply state switching means (bypass path adjustment valve)
19 Auxiliary heating device 58 Heat insulation material 59 Heat insulation space 62 Operation control means (operation control device)
A1 Heat storage water A2 Waste heat transfer fluid (heat source water)

Claims (9)

蓄熱水を貯留する蓄熱槽と、その蓄熱槽から取り出した蓄熱水を循環路にて循環させて蓄熱槽に戻す蓄熱水循環手段と、熱供給装置の排熱を搬送する排熱搬送流体にて前記循環路を通流する蓄熱水を加熱する排熱熱交換器と、その排熱熱交換器を通過した後の蓄熱水を放熱させる放熱用熱交換器とを設けている蓄熱放熱システムであって、
前記蓄熱槽から前記循環路に取り出した蓄熱水を前記排熱熱交換器をバイパスさせて前記放熱用熱交換器に供給する排熱熱交換器バイパス路と、その排熱熱交換器バイパス路に蓄熱水を供給する供給状態と供給しない非供給状態とに切換自在な供給状態切換手段と、前記排熱熱交換器バイパス路を通流する蓄熱水を加熱する補助加熱装置と、前記供給状態切換手段を供給状態と非供給状態とに切り換えて蓄熱水の循環状態を制御するとともに、前記補助加熱装置の運転を制御する運転制御手段とを設け、
前記補助加熱装置は、放熱を許容する非断熱状態にて設けてあり、
前記蓄熱槽、前記循環路、前記蓄熱水循環手段、前記排熱熱交換器、及び、前記放熱用熱交換器は、断熱材にて放熱を抑制する断熱空間内に収納されて断熱状態にて設けている蓄熱放熱システム。
The heat storage tank for storing the heat storage water, the heat storage water circulating means for circulating the heat storage water taken out from the heat storage tank and returning it to the heat storage tank, and the exhaust heat transport fluid for transporting the exhaust heat of the heat supply device A heat storage and heat dissipation system provided with an exhaust heat exchanger that heats the heat storage water flowing through the circulation path, and a heat dissipation heat exchanger that dissipates the heat storage water after passing through the exhaust heat exchanger. ,
The heat storage water taken out from the heat storage tank to the circulation path bypasses the exhaust heat exchanger and supplies the heat dissipation heat exchanger to the exhaust heat exchanger bypass, and the exhaust heat exchanger bypass Supply state switching means capable of switching between a supply state for supplying heat storage water and a non-supply state for not supplying, an auxiliary heating device for heating the heat storage water flowing through the exhaust heat exchanger bypass, and the supply state switching Switching the means between a supply state and a non-supply state to control the circulation state of the heat storage water, and providing operation control means for controlling the operation of the auxiliary heating device,
The auxiliary heating device is provided in a non-insulated state allowing heat dissipation,
The heat storage tank, the circulation path, the heat storage water circulation means, the exhaust heat exchanger, and the heat dissipation heat exchanger are housed in a heat insulating space that suppresses heat dissipation by a heat insulating material and provided in a heat insulating state. Thermal storage heat dissipation system.
前記蓄熱槽は、上部を大気開放し且つ平面視で矩形状に形成してあり、
前記断熱空間は、前記蓄熱槽の矩形状の短辺に対応する側面部に設け、
前記断熱材は、前記蓄熱槽及び前記断熱空間の外周部を覆う状態で設けている請求項1に記載の蓄熱放熱システム。
The heat storage tank is open to the atmosphere and formed in a rectangular shape in plan view,
The heat insulation space is provided on a side surface corresponding to a rectangular short side of the heat storage tank,
The heat storage and heat dissipation system according to claim 1, wherein the heat insulating material is provided in a state of covering an outer peripheral portion of the heat storage tank and the heat insulating space.
前記補助加熱装置と前記断熱空間とは、前記蓄熱槽の矩形状の短辺に対応する側面部において上下方向に並ぶ状態で配置されている請求項2に記載の蓄熱放熱システム。   The heat storage / radiation system according to claim 2, wherein the auxiliary heating device and the heat insulation space are arranged in a state of being arranged in a vertical direction on a side surface corresponding to a rectangular short side of the heat storage tank. 前記蓄熱槽は、貯留した蓄熱水と大気との界面部分の断面積を当該界面部分以外の部分の断面積よりも小さくするように構成している請求項2又は3に記載の蓄熱放熱システム。   The heat storage heat dissipation system according to claim 2 or 3, wherein the heat storage tank is configured to make a cross-sectional area of an interface portion between the stored heat storage water and the atmosphere smaller than a cross-sectional area of a portion other than the interface portion. 前記蓄熱水循環手段は、前記蓄熱槽の上部から蓄熱水を取り出して前記蓄熱槽の下部に蓄熱水を戻すように構成してあり、
前記運転制御手段は、前記供給状態切換手段を非供給状態に切り換えて前記熱供給装置の排熱を前記蓄熱槽に蓄熱する排熱蓄熱運転、及び、前記供給状態切換手段を供給状態又は非供給状態に切り換えて前記放熱用熱交換器にて蓄熱水を放熱させる放熱運転を行うように構成している請求項1〜4の何れか1項に記載の蓄熱放熱システム。
The heat storage water circulation means is configured to take out the heat storage water from the upper part of the heat storage tank and return the heat storage water to the lower part of the heat storage tank,
The operation control means switches the supply state switching means to a non-supply state and stores the exhaust heat of the heat supply device in the heat storage tank, and stores the supply state switch means in a supply state or non-supply state. The heat storage and heat dissipation system according to any one of claims 1 to 4, wherein the heat storage and heat dissipation system is configured to perform a heat radiation operation in which the heat storage water is radiated by the heat exchanger for heat radiation by switching to a state.
前記運転制御手段は、前記放熱運転において、前記蓄熱槽から前記循環路に取り出す蓄熱水が補助加熱開始用温度以下になると、前記供給状態切換手段を供給状態に切り換えるとともに、前記補助加熱装置の運転を開始し、前記蓄熱槽から前記循環路に取り出す蓄熱水が補助加熱停止用温度以上になると、前記供給状態切換手段を非供給状態に切り換えるとともに、前記補助加熱装置の運転を停止するように構成している請求項5に記載の蓄熱放熱システム。   In the heat radiation operation, the operation control means switches the supply state switching means to a supply state when the heat storage water taken out from the heat storage tank to the circulation path is equal to or lower than the auxiliary heating start temperature, and operates the auxiliary heating device. And when the heat storage water taken out from the heat storage tank to the circulation path becomes equal to or higher than the auxiliary heating stop temperature, the supply state switching means is switched to the non-supply state and the operation of the auxiliary heating device is stopped. The heat storage and heat radiation system according to claim 5. 前記補助加熱装置に、当該補助加熱装置を所定出力以上の出力にて運転させて低出力での運転を防止する低出力運転防止機能を備えさせている請求項5又は6に記載の蓄熱放熱システム。   The heat storage and heat radiation system according to claim 5 or 6, wherein the auxiliary heating device is provided with a low output operation prevention function for preventing the operation at a low output by operating the auxiliary heating device at an output higher than a predetermined output. . 前記運転制御手段は、時系列的な電力負荷を管理し、電力負荷が増加する時間帯において前記蓄熱槽から前記循環路に取り出す蓄熱水が排熱蓄熱開始温度以下になると、前記排熱蓄熱運転を行い、その排熱蓄熱運転中に電力負荷が減少すると、前記排熱熱交換器に供給する蓄熱水の流量を増加させるべく、前記蓄熱水循環手段を作動させるように構成している請求項5〜7の何れか1項に記載の蓄熱放熱システム。   The operation control means manages the time-series power load, and when the heat storage water taken out from the heat storage tank to the circulation path becomes less than or equal to the exhaust heat storage start temperature in the time zone when the power load increases, the exhaust heat storage operation And when the electric power load decreases during the exhaust heat storage operation, the heat storage water circulation means is operated to increase the flow rate of the heat storage water supplied to the exhaust heat exchanger. The heat storage and heat radiation system of any one of? 7. 前記運転制御手段は、前記蓄熱槽の蓄熱量を所定の蓄熱量以上に維持すべく、前記排熱蓄熱運転を行うように構成している請求項5〜8の何れか1項に記載の蓄熱放熱システム。   The heat storage device according to any one of claims 5 to 8, wherein the operation control means is configured to perform the exhaust heat storage operation so as to maintain a heat storage amount of the heat storage tank at or above a predetermined heat storage amount. Heat dissipation system.
JP2007214790A 2007-08-21 2007-08-21 Thermal storage and heat dissipation system Expired - Fee Related JP4933983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007214790A JP4933983B2 (en) 2007-08-21 2007-08-21 Thermal storage and heat dissipation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007214790A JP4933983B2 (en) 2007-08-21 2007-08-21 Thermal storage and heat dissipation system

Publications (2)

Publication Number Publication Date
JP2009047370A JP2009047370A (en) 2009-03-05
JP4933983B2 true JP4933983B2 (en) 2012-05-16

Family

ID=40499752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007214790A Expired - Fee Related JP4933983B2 (en) 2007-08-21 2007-08-21 Thermal storage and heat dissipation system

Country Status (1)

Country Link
JP (1) JP4933983B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5347654B2 (en) * 2009-03-30 2013-11-20 株式会社ノーリツ Hot water storage hot water supply system
JP5316229B2 (en) * 2009-05-28 2013-10-16 株式会社ノーリツ Hot water storage hot water unit
CN101881495B (en) * 2010-07-26 2013-04-03 西安工程大学 Cold accumulation type radiant air-conditioning system based on evaporative cooling
JP5492744B2 (en) * 2010-11-12 2014-05-14 日立アプライアンス株式会社 Water heater
KR101211816B1 (en) * 2010-12-24 2012-12-12 주식회사 경동나비엔 Domestic generation system combined heat and power

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043935A (en) * 1983-08-20 1985-03-08 Fujitsu Ltd Signal synchronous converter
JPS63238356A (en) * 1987-03-24 1988-10-04 Noritsu Co Ltd Hot water supplier
JPH05340305A (en) * 1992-06-10 1993-12-21 Suga Kogyo Kk Cogeneration system
JP2952563B2 (en) * 1995-07-18 1999-09-27 東京瓦斯株式会社 Heat control method of heat exchange device
JP3711167B2 (en) * 1996-01-27 2005-10-26 大阪瓦斯株式会社 Heating medium tank of heating heat source machine
JP4174575B2 (en) * 2000-06-23 2008-11-05 大阪瓦斯株式会社 Hot water storage hot water source
JP4195974B2 (en) * 2002-10-07 2008-12-17 パナソニック株式会社 Fuel cell cogeneration system
JP3900098B2 (en) * 2003-03-20 2007-04-04 株式会社デンソー Water heater
JP3970238B2 (en) * 2003-11-20 2007-09-05 大阪瓦斯株式会社 Cogeneration system

Also Published As

Publication number Publication date
JP2009047370A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
US20100037888A1 (en) Solar heating system with back-up electric heating
JP5580658B2 (en) Heat medium supply device
JP4933983B2 (en) Thermal storage and heat dissipation system
JP2003214705A (en) Cogeneration system
JP2007132612A (en) Cogeneration system, its control method, and program
JP2008275182A (en) Exhaust heat recovering system and auxiliary heat storage tank
JP2005147494A (en) Multi-temperature heat storage tank and heat storage system using the same
JP5003931B2 (en) Heat recovery device and cogeneration system
JP5472178B2 (en) Hot water heater
JP4560449B2 (en) Circulating hot water storage system
JP4030394B2 (en) Hot water storage water heater
JP5069490B2 (en) Open air heat storage device
JP2001194012A (en) Solar heat utilization hot water supply/heating apparatus
JP5037985B2 (en) Bath equipment
JP2006125722A (en) Heat pump hot water supply heating system
JP2005315480A (en) Heat pump type water heater
JP5921416B2 (en) Cogeneration system and hot water supply equipment
JP5567863B2 (en) Heat supply equipment
JP4194213B2 (en) Hot water storage hot water source
JP4953436B2 (en) Thermal storage and heat dissipation system
JP2004100997A (en) Hot-water supply heating system
JP4169452B2 (en) Water heater
JP2002364912A (en) Multifunctional water-heater
JP2010025499A (en) Hybrid hot-water supply system
JP2007322013A (en) Heat storage-hot water combination heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120217

R150 Certificate of patent or registration of utility model

Ref document number: 4933983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees