JP5375119B2 - Cogeneration system - Google Patents

Cogeneration system Download PDF

Info

Publication number
JP5375119B2
JP5375119B2 JP2009009480A JP2009009480A JP5375119B2 JP 5375119 B2 JP5375119 B2 JP 5375119B2 JP 2009009480 A JP2009009480 A JP 2009009480A JP 2009009480 A JP2009009480 A JP 2009009480A JP 5375119 B2 JP5375119 B2 JP 5375119B2
Authority
JP
Japan
Prior art keywords
heating
heat
medium
flow path
exhaust heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009009480A
Other languages
Japanese (ja)
Other versions
JP2010169269A (en
Inventor
淳 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2009009480A priority Critical patent/JP5375119B2/en
Publication of JP2010169269A publication Critical patent/JP2010169269A/en
Application granted granted Critical
Publication of JP5375119B2 publication Critical patent/JP5375119B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cogeneration system capable of surely preventing occurrence of a situation of excessive heat exchange heating in a preheating operation in starting an exhaust heat source applying a heat medium for heating as a heat source, while keeping high heat exchange efficiency in an exhaust heat recovering operation from the exhaust heat source such as a fuel cell to the heat medium for heating. <P>SOLUTION: The warm water circulated in a heating circulation circuit 4 and the cooling water of the fuel cell 2 circulated in an exhaust heat recovering circulation circuit 3 are made to exchange heat by a heat exchanger 5. A first thermomotive valve 47b is opened and a second thermomotive valve 45b is closed in an exhaust heat utilization heating operation by recovering exhaust heat from the cooling water, to heat the return warm water of low temperature in a return flow channel 47 by heat exchange based on countercurrent. The first thermomotive valve is closed, and the second thermomotive valve is opened in a start preheating operation of the fuel cell 2 to allow the water of high temperature from a high-temperature going passage 45 to flow to the heat exchanger with parallel flow, thus the excessive heat exchange heating to the cooling water can be suppressed. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、例えば燃料電池等の排熱源の作動(発電)により生成される排熱との熱交換により暖房用熱媒を加熱する一方、燃料電池等の排熱源の起動時にはその予熱用熱源として暖房用熱媒を利用するようにしたコージェネシステムに関し、特に、燃料電池等の排熱源の起動時の予熱温度が過度に高温化することを簡単な構成により確実に回避し得る技術に係る。   The present invention heats a heating heat medium by exchanging heat with exhaust heat generated by, for example, operation (power generation) of an exhaust heat source such as a fuel cell, and serves as a preheating heat source when the exhaust heat source such as a fuel cell is activated. The present invention relates to a cogeneration system that uses a heating heat medium, and in particular, to a technique that can reliably avoid an excessive increase in preheating temperature at the time of activation of a waste heat source such as a fuel cell with a simple configuration.

従来、コージェネシステムとして、燃料電池の作動により生成される排熱との熱交換により暖房用熱媒を加熱するようにしたものが知られている(例えば特許文献1参照)。このものには、暖房端末での放熱により温度低下した戻り側暖房熱媒と、燃料電池のジャケット冷却水とを排熱回収用熱交換器に対し対向流になるように流すことにより、ジャケット冷却水の排熱により戻り側暖房熱媒を熱交換加熱するようにすることが開示されている。   2. Description of the Related Art Conventionally, a cogeneration system is known in which a heating medium is heated by heat exchange with exhaust heat generated by the operation of a fuel cell (see, for example, Patent Document 1). For this, jacket cooling is performed by flowing the return side heating heat medium whose temperature is lowered by heat radiation at the heating terminal and the jacket cooling water of the fuel cell so as to face the exhaust heat recovery heat exchanger. It is disclosed that the return side heating heat medium is heat exchange heated by exhaust heat of water.

又、他のコージェネシステムとして、燃料電池の作動により生成される排熱との熱交換により貯湯タンク内の水を加熱し、これを給湯用に供するようにしたものが知られている(例えば特許文献2参照)。このものには、燃料電池の起動時には貯湯タンク内の湯水を追い焚きバーナで燃焼加熱し、加熱後の高温水の熱エネルギーを熱交換により吸収させて燃料電池側に対しより高い熱エネルギーを与えるようにすることが開示されている。   As another cogeneration system, there is known a system in which water in a hot water storage tank is heated by heat exchange with exhaust heat generated by the operation of a fuel cell and used for hot water supply (for example, patents). Reference 2). In this type, when the fuel cell is started, hot water in the hot water storage tank is reheated and burned and heated by a burner, and the heat energy of the heated high temperature water is absorbed by heat exchange to give the fuel cell side higher thermal energy. It is disclosed to do so.

特開2004−361028号公報Japanese Patent Laid-Open No. 2004-361028 特開2002−42840号公報JP 2002-42840 A

ところで、燃料電池等の排熱源からの排熱回収により暖房用熱媒を熱交換加熱するものにおいて、燃料電池等の排熱源の起動時には逆に暖房用熱媒を熱源として燃料電池等の排熱源を予熱することが考えられる。この場合、暖房用熱交換器において排熱源側の熱媒である例えばジャケット冷却水と、暖房用熱媒とを互いに熱交換させて暖房用熱媒で排熱源側の熱媒を加熱することになる。この際、熱交換効率を高めるために熱源側の暖房用熱媒はより高温のものが望ましく、暖房用熱媒として低温・高温の2温度のものが供給可能な場合であれば、高温の暖房用熱媒を暖房用熱交換器に供給することになる。   By the way, in the case of heat exchange heating of a heating heat medium by exhaust heat recovery from an exhaust heat source such as a fuel cell, when the exhaust heat source such as a fuel cell is started, the exhaust heat source such as a fuel cell or the like is conversely used with the heating heat medium as a heat source. It is conceivable to preheat. In this case, in the heating heat exchanger, for example, the jacket cooling water which is the heat medium on the exhaust heat source side and the heating heat medium are mutually heat-exchanged to heat the heat medium on the exhaust heat source side with the heating heat medium. Become. At this time, in order to increase the heat exchange efficiency, the heating medium on the heat source side is desirably a higher temperature, and if the heating medium having a low temperature and a high temperature can be supplied, the heating medium having a high temperature can be used. The heating medium is supplied to the heating heat exchanger.

しかしながら、高温の暖房用熱媒を用いて燃料電池等の排熱源の起動時の予熱用熱源とする場合には、暖房側の運転状況によっては燃料電池等の排熱源に対し過度に高温の熱媒が供給されてしまうおそれがあり、そうなると燃料電池等の排熱源側の機能部品、例えばポンプ等の耐久性に悪影響を与えるおそれがある。   However, when a high-temperature heating medium is used as a preheating heat source at the start of an exhaust heat source such as a fuel cell, excessively high temperature heat is generated with respect to the exhaust heat source such as a fuel cell depending on the operating condition on the heating side. There is a risk that the medium will be supplied, and in such a case, there is a risk of adversely affecting the durability of the functional component on the exhaust heat source side such as a fuel cell, for example, a pump.

例えば図4に示すように、排熱源としての燃料電池2からの排熱により暖房用熱媒を熱交換加熱するという通常の排熱利用暖房運転の場合には、熱動弁401を開にして図外の暖房端末での放熱後に戻り流路402を通して戻される低温の暖房用熱媒(破線の矢印参照)を暖房用熱交換器403の入口404から内部に流す一方、燃料電池2との間で循環される燃料電池側熱媒(一点鎖線の矢印参照)を暖房用熱媒に対し対向流になるように上記熱交換器403内に流す。この熱交換器403内での液−液熱交換により、燃料電池2の作動(発電)により生成された反応熱が燃料電池側熱媒を介して上記戻り流路402の暖房用熱媒に回収されることになる。一方、燃料電池2の起動時には、上記熱動弁401を閉にし、代わりに熱動弁405を開にして図外の熱源機により燃焼加熱された高温(例えば80℃)の暖房用熱媒を上記入口404から熱交換器403内に流すように切換える。これにより、高温の暖房用熱媒により冷え切った燃料電池側熱媒が熱交換加熱され、この燃料電池側熱媒によって燃料電池2が予熱されることになる。つまり、いずれの場合も、熱交換器403内において熱源側になる熱媒と、熱交換加熱される側の熱媒とが互いに対向流になるように流されて熱交換効率を高めるようにされる。なお、燃料電池2が固体高分子型燃料電池であれば、起動時には40〜50℃程度に加熱した燃料電池側熱媒を循環供給して予熱する必要がある。   For example, as shown in FIG. 4, in the case of a normal exhaust heat utilization heating operation in which the heating medium is heat-exchanged and heated by exhaust heat from the fuel cell 2 as an exhaust heat source, the thermal valve 401 is opened. A low-temperature heating medium (see the dashed arrow) returned through the return flow path 402 after releasing heat from the heating terminal (not shown) flows from the inlet 404 of the heating heat exchanger 403 to the inside, while being connected to the fuel cell 2. The fuel cell side heat medium circulated in (1) is flowed into the heat exchanger 403 so as to be opposed to the heating heat medium. By the liquid-liquid heat exchange in the heat exchanger 403, the reaction heat generated by the operation (power generation) of the fuel cell 2 is recovered to the heating heat medium in the return flow path 402 via the fuel cell side heat medium. Will be. On the other hand, when the fuel cell 2 is started, the thermal valve 401 is closed, and instead, the thermal valve 405 is opened, and a high-temperature (for example, 80 ° C.) heating medium heated by combustion by a heat source device not shown is used. It switches so that it may flow in the heat exchanger 403 from the said inlet 404. FIG. Thereby, the fuel cell side heat medium cooled by the high temperature heating medium is heat exchange heated, and the fuel cell 2 is preheated by the fuel cell side heat medium. That is, in any case, the heat medium on the heat source side in the heat exchanger 403 and the heat medium on the heat exchange-heated side are caused to flow in opposite directions to increase the heat exchange efficiency. The If the fuel cell 2 is a polymer electrolyte fuel cell, it is necessary to preheat the fuel cell side heat medium heated to about 40 to 50 ° C. during circulation and to preheat it.

ところが、上記の起動時の予熱において、暖房側で暖房端末が運転停止状態であれば暖房用熱媒の放熱がなく、熱源機による燃焼加熱を継続させると上記熱交換器403に対し熱源の過剰供給に陥ることになるため、熱源機を例えば間欠燃焼させる、熱源機の燃焼加熱の設定温度を変更調整する、あるいは、混水により熱媒温度を低下させる、等の対策制御を付加する必要が生じてしまう。この場合、特に燃焼停止又は燃焼量変更の対策の場合にはオーバーシュート等の要因により80℃以上の高温の暖房用熱媒が熱交換器403に循環供給されてしまうおそれも考えられる。又、このような80℃以上の高温の暖房用熱媒が熱交換器403に供給されてしまう例として、高温用暖房端末に対し高温(例えば80℃)の暖房用熱媒を供給している暖房運転中であって上記暖房端末での放熱量(暖房負荷量)が比較的少ないときに、燃料電池2の起動時の予熱運転が重なった場合にも起こり得る。一方、上記の如き複雑な対策制御を採る以外に構造的な対策を考慮する際には、通常の排熱回収運転での熱交換効率を高く維持して熱交換効率を損なわないようにすることが求められることになる。このような事情は、排熱源が燃料電池である場合に限らず、他の排熱源、例えばガスエンジン等においても同様に生じると考えられる。   However, in the preheating at the time of the above startup, if the heating terminal is in the operation stop state on the heating side, there is no heat dissipation of the heating medium, and if the combustion heating by the heat source machine is continued, the heat exchanger 403 has an excessive heat source. Therefore, it is necessary to add control measures such as intermittent combustion of the heat source machine, changing or adjusting the set temperature of combustion heating of the heat source machine, or lowering the heat medium temperature by mixed water. It will occur. In this case, particularly in the case of measures for stopping combustion or changing the combustion amount, there is a possibility that a heating medium having a high temperature of 80 ° C. or higher is circulated and supplied to the heat exchanger 403 due to factors such as overshoot. Further, as an example in which such a high-temperature heating medium having a temperature of 80 ° C. or higher is supplied to the heat exchanger 403, a high-temperature heating medium (for example, 80 ° C.) is supplied to the high-temperature heating terminal. This may also occur when the preheating operation at the start-up time of the fuel cell 2 overlaps when the heating operation is in progress and the heat radiation amount (heating load amount) at the heating terminal is relatively small. On the other hand, when considering structural measures other than taking complicated countermeasure control as described above, maintain high heat exchange efficiency in normal exhaust heat recovery operation so as not to impair heat exchange efficiency. Will be required. Such a situation is not limited to the case where the exhaust heat source is a fuel cell, but may also occur in other exhaust heat sources such as a gas engine.

本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、燃料電池等の排熱源から暖房用熱媒への排熱回収運転における熱交換効率を高く維持しつつも、暖房用熱媒を熱源とする燃料電池等の排熱源の起動時の予熱運転においては過度の熱交換加熱に陥る事態の発生を確実に回避し得る、コージェネシステムを提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to maintain high heat exchange efficiency in an exhaust heat recovery operation from an exhaust heat source such as a fuel cell to a heating medium. Another object of the present invention is to provide a cogeneration system that can surely avoid the occurrence of an excessive heat exchange heating in the preheating operation at the time of activation of an exhaust heat source such as a fuel cell using a heating heat medium as a heat source.

上記目的を達成するために、本発明では、排熱源の排熱が担持される熱媒を循環させる排熱回収循環回路と、暖房端末に対し暖房用熱媒を放熱用熱源として循環供給するための暖房循環回路と、上記排熱回収循環回路に流される排熱源側熱媒と暖房循環回路に流される暖房用熱媒との間で熱交換させる暖房用熱交換器とを備えたコージェネシステムを対象にして次の特定事項を備えることとした。すなわち、上記暖房用熱交換器内における上記排熱源側熱媒と暖房用熱媒との互いの流れ方向を並行流と対向流とに相互に切換える流れ方向切換機構を備えることとし、上記流れ方向切換機構として、暖房用熱媒を熱源として排熱源側熱媒を熱交換加熱する排熱源の起動時の起動予熱運転においては並行流に切換制御される一方、排熱源側熱媒からの排熱回収により暖房用熱媒を熱交換加熱する排熱利用暖房運転においては対向流に切換制御される構成とするIn order to achieve the above object, in the present invention, an exhaust heat recovery circuit that circulates a heat medium carrying exhaust heat from an exhaust heat source, and a heating heat medium circulated and supplied to a heating terminal as a heat radiation heat source A cogeneration system comprising: a heating circulation circuit; and a heating heat exchanger for exchanging heat between the exhaust heat source side heat medium flowing in the exhaust heat recovery circulation circuit and the heating heat medium flowing in the heating circulation circuit The following specific items were prepared for the target. That is, it is provided with a flow direction switching mechanism for switching the flow direction of the exhaust heat source side heat medium and the heating heat medium in the heating heat exchanger between a parallel flow and a counter flow, and the flow direction. In the start-up preheating operation at the start of the exhaust heat source that heat-exchanges and heats the exhaust heat source side heat medium using the heating heat medium as a heat source, the switching mechanism is switched to parallel flow, while the exhaust heat from the exhaust heat source side heat medium recovered by the waste heat utilization heating operation the heating heat medium heating the heat exchanger is configured to be switched controlled counterflow.

この特定事項の場合、排熱利用暖房運転の際には暖房用熱交換器において対向流による熱交換に基づいて暖房用熱媒が熱交換効率よく排熱を回収して加熱される一方、排熱源の起動予熱運転の際には上記暖房用熱交換器において並行流による熱交換に基づいて暖房用熱媒から排熱源側熱媒への過度の熱交換加熱が抑えられた状態で熱交換させ得ることになる。これにより、排熱源から暖房用熱媒への排熱回収運転における熱交換効率を高く維持しつつも、暖房用熱媒を熱源とする排熱源の起動時の予熱運転においては過度の熱交換加熱に陥る事態の発生を確実に回避して、排熱源側の各種構成部品の耐久性に悪影響を及ぼす事態の発生も回避し得るようになる。しかも、このような作用を複雑な制御を付加することなく、簡易な切換制御により得ることが可能になる。 In the case of this specific matter , during the heating operation using exhaust heat, the heating heat medium recovers the exhaust heat efficiently and heats it based on the heat exchange by the counter flow in the heating heat exchanger. In the start-up preheating operation of the heat source, heat is exchanged in a state in which excessive heat exchange heating from the heating medium to the exhaust heat source side heat medium is suppressed based on heat exchange by parallel flow in the heating heat exchanger. Will get. As a result, while maintaining high heat exchange efficiency in the exhaust heat recovery operation from the exhaust heat source to the heating medium, excessive heat exchange heating is performed in the preheating operation when starting the exhaust heat source using the heating medium as the heat source. Therefore, it is possible to avoid occurrence of a situation that adversely affects the durability of various components on the exhaust heat source side. In addition, such an operation can be obtained by simple switching control without adding complicated control.

加えて、本発明では流れ方向切換機構として、上記暖房用熱交換器に対する暖房用熱媒の流れ方向を相互に逆転させることにより並行流と対向流とに相互に切換えるように構成す。このようにすることにより、暖房用熱交換器に対する暖房用熱媒の供給及びその流れ方向の切換が容易に実現させ得ることになる。 In addition, as the flow direction switching mechanism in the present invention, configured to switch to another and parallel flow and counter-flow by reversing the flow direction of the heating heat medium to the heat exchanger for the heating in each other. By doing in this way, supply of the heating heat medium to the heating heat exchanger and switching of the flow direction thereof can be easily realized.

さらに加えて、本発明では、上記暖房循環回路として、暖房用熱媒の循環流路として、暖房端末に対し暖房用熱媒を供給する往き流路と、暖房端末で放熱後の暖房用熱媒をその暖房端末から戻す戻り流路とを備えるようにし、上記排熱回収循環回路として、排熱源側熱媒を暖房用熱交換器内の一方の内部流路に対し一端側から他端側に流した後に排熱源に戻すように暖房用熱交換器と接続して、流れ方向切換機構を次のように具体的に構成し。すなわち、流れ方向切換機構として、上記暖房循環回路の戻り流路の上流側分岐点から下流側合流点までその戻り流路をバイパスして上記戻り流路により戻される暖房用熱媒を暖房用熱交換器内の他方の内部流路に対し他端側から一端側に流す戻りバイパス流路と、この戻りバイパス流路を開閉切換する第1開閉弁と、上記暖房循環回路の往き流路から分岐して往き流路により供給される暖房用熱媒を暖房用熱交換器の上記他方の内部流路に対し一端側から他端側に流す分岐往き流路と、この分岐往き流路を開閉切換する第2開閉弁とを備えて構成した(請求項)。このようにすることにより、暖房用熱交換器に対する暖房用熱媒の流れ方向の切換を具体的かつ容易に実現させ得ることになる。 In addition, in the present invention, as the heating circulation circuit, as a circulation flow path for the heating heat medium, a forward flow path for supplying the heating medium to the heating terminal, and a heating heat medium after the heat radiation at the heating terminal And a return flow path that returns from the heating terminal, and as the exhaust heat recovery circuit, the exhaust heat source side heat medium is moved from one end side to the other end side with respect to one internal flow path in the heating heat exchanger. connected to the heating heat exchanger back to the exhaust heat source after flow, and the flow direction switching mechanism specifically constructed as follows. That is, as the flow direction switching mechanism, the heating medium returned from the return flow path by bypassing the return flow path from the upstream branch point of the return flow path of the heating circulation circuit to the downstream junction point is heated. A return bypass passage that flows from the other end side to the one end side with respect to the other internal passage in the exchanger, a first on-off valve that opens and closes the return bypass passage, and a branch from the forward passage of the heating circulation circuit The branch forward flow path for flowing the heating medium supplied by the forward flow path from one end side to the other end side with respect to the other internal flow path of the heating heat exchanger, and switching the opening and closing of the branch forward flow path to the was configured with a second on-off valve (claim 1). By doing in this way, switching of the flow direction of the heating medium with respect to the heating heat exchanger can be realized concretely and easily.

本発明の第1開閉弁は、暖房用熱交換器の一端側よりも下流側の戻りバイパス流路に介装することができ(請求項)。このようにすることにより、戻りバイパス流路の開閉を確実に実現し得る上に、第2開閉弁も分岐往き流路に介装するだけで分岐往き流路の開閉も容易にかつ確実に実現し得ることになる。このため、流れ方向の切換も容易に実現させ得ることになる。 The 1st on-off valve of this invention can be interposed in the return bypass flow path downstream from the one end side of the heat exchanger for heating (Claim 2 ). In this way, opening and closing of the return bypass flow path can be realized with certainty, and opening and closing of the branch forward flow path can be easily and reliably realized by simply interposing the second open / close valve in the branch forward flow path. Will be able to. For this reason, switching of the flow direction can be easily realized.

又、上記の場合には、流れ方向切換機構による切換制御として、起動予熱運転においては第1開閉弁を閉状態に、第2開閉弁を開状態にそれぞれ切換制御する一方、排熱利用暖房運転においては上記第1開閉弁を開状態に、第2開閉弁を閉状態にそれぞれ切換制御するというように、簡易な制御により実現させ得ることになる(請求項)。 In the above case, as the switching control by the flow direction switching mechanism, in the startup preheating operation, the first on-off valve is switched to the closed state and the second on-off valve is switched to the open state, while the exhaust heat utilization heating operation is performed. opened the first on-off valve in the second on-off valve such that each switching control in the closed state, so that which can be realized by simple control (claim 3).

さらに、暖房循環回路として、暖房用熱媒を加熱する補助熱源機を備え、上記循環流路として、上記補助熱源機による加熱により高温にされた暖房用熱媒を高温用暖房端末に対し循環供給する高温往き流路と、低温の暖房用熱媒を低温用暖房端末に対し循環供給する低温往き流路とを備えるようにし、上記分岐往き流路を高温往き流路から分岐させる構成とすることができる(請求項)。このようにすることにより、起動予熱運転における排熱源側熱媒を、高温にされた暖房用熱媒により早期に熱交換加熱して予熱を終了させることが可能となる一方、熱源として高温の暖房用熱媒を供給したとしても排熱源側熱媒に対する過度の熱交換加熱が抑制されて排熱源側の各種構成部品の耐久性に悪影響を及ぼすこともない。その上に、分岐往き流路を高温往き流路から分岐させる構成としているため、暖房循環回路側の暖房運転状況の如何に拘わらず、分岐往き流路を通して暖房用熱交換器に対し、暖房運転状況に影響を受けるなりゆきの温度の暖房用熱媒ではなくて、より安定的に制御された温度の暖房用熱媒を供給し得ることになる。 Furthermore, an auxiliary heat source device that heats the heating heat medium is provided as a heating circulation circuit, and the heating heat medium heated to a high temperature by the heating by the auxiliary heat source device is circulated and supplied to the high-temperature heating terminal as the circulation channel. A high-temperature forward flow path, and a low-temperature forward flow path that circulates a low-temperature heating medium to the low-temperature heating terminal, and the branch forward flow path is branched from the high-temperature forward flow path. (Claim 4 ). In this way, the exhaust heat source side heat medium in the start-up preheating operation can be quickly heat-exchanged with the heating medium heated to end the preheating, while the high-temperature heating is used as the heat source. Even if the heating medium is supplied, excessive heat exchange heating to the exhaust heat source side heat medium is suppressed, and the durability of various components on the exhaust heat source side is not adversely affected. In addition, since the branch outgoing flow path is branched from the high temperature outgoing flow path, the heating operation is performed on the heat exchanger for heating through the branch outgoing flow path regardless of the heating operation state on the heating circulation circuit side. It is possible to supply a heating medium having a more stably controlled temperature rather than a heating medium having a temperature that is influenced by the situation.

このように高温の暖房用熱媒を供給する構成の場合には、排熱回収循環回路として、排熱源側熱媒が循環される循環流路に介装された貯留タンクを備えた構成にし、上記流れ方向切換機構として、上記貯留タンク内を強制加熱する再加熱運転において、第1開閉弁を閉状態に、第2開閉弁を開状態にそれぞれ切換制御して、補助熱源機により加熱された高温の暖房用熱媒を暖房用熱交換器に流す構成とすることができる(請求項)。このような再加熱運転を実行すると、排熱源側熱媒が高温の暖房用熱媒により熱交換加熱され、その排熱源側熱媒が貯留タンクに循環供給されて貯留タンク内が強制的に再加熱されることになる。これにより、例えば長期に亘り貯留タンク内の熱媒が不使用であっても、レジオネラ菌等を不活性にし得ることになる。 In the case of a configuration for supplying a high-temperature heating medium as described above, the exhaust heat recovery circuit is configured to include a storage tank interposed in a circulation channel through which the exhaust heat source side heat medium is circulated, In the reheating operation for forcibly heating the inside of the storage tank as the flow direction switching mechanism, the first on-off valve is switched to the closed state and the second on-off valve is switched to the open state, and heated by the auxiliary heat source machine. A high-temperature heating medium can be passed through the heating heat exchanger (claim 5 ). When such a reheating operation is executed, the heat source side heat medium is heat-exchanged and heated by a high-temperature heating medium, and the heat source side heat medium is circulated and supplied to the storage tank so that the inside of the storage tank is forcibly regenerated. It will be heated. Thereby, for example, even if the heat medium in the storage tank is not used for a long time, Legionella bacteria and the like can be inactivated.

以上のコージェネシステムにおける排熱源としては燃料電池を用いることができ(請求項)、又、その燃料電池としては固体高分子型燃料電池とすることができ(請求項)、固体高分子型燃料電池を用いた場合にはより低温で発電が可能となり起動時の予熱も早期に完了させ得ることになる。 A fuel cell can be used as an exhaust heat source in the above cogeneration system (Claim 6 ), and the fuel cell can be a solid polymer fuel cell (Claim 7 ). When a fuel cell is used, it is possible to generate power at a lower temperature, and preheating at start-up can be completed early.

以上、説明したように、請求項1〜請求項のいずれかのコージェネシステムによれば、排熱利用暖房運転の際には対向流による熱交換に基づいて燃料電池等の排熱源から暖房用熱媒への排熱回収運転における熱交換効率を高く維持しつつも、その排熱源の起動予熱運転の際には並行流による熱交換に基づいて過度の熱交換加熱に陥る事態の発生を確実に回避することができ、排熱源側の耐久性に悪影響を及ぼす事態の発生も確実に回避することができることになる。しかも、このような効果を複雑な制御を付加することなく、簡易な切換制御により得ることができるようになる。 As described above, according to the cogeneration system according to any one of claims 1 to 7 , in the case of heating operation using exhaust heat, heating is performed from an exhaust heat source such as a fuel cell based on heat exchange by a counter flow. While maintaining high heat exchange efficiency in the exhaust heat recovery operation to the heat medium, it is ensured that the exhaust heat source will experience excessive heat exchange heating based on the heat exchange by parallel flow during the startup preheating operation Therefore, it is possible to reliably avoid the occurrence of a situation that adversely affects the durability on the exhaust heat source side. Moreover, such an effect can be obtained by simple switching control without adding complicated control.

加えて、暖房用熱交換器に対する暖房用熱媒の供給及びその流れ方向の切換を容易に実現させることができる上に、暖房用熱交換器に対する暖房用熱媒の流れ方向の切換を具体的かつ容易に実現させることができるようになる。 In addition, specific on the as possible out easily be realized switching supply and its flow direction of the heating heat medium, the switching of the flow direction of the heating heat medium for heating heat exchanger for heating heat exchanger Can be realized easily and easily.

そして、請求項によれば、請求項の戻りバイパス流路の開閉を確実に行うことができるようになるだけでなく、第2開閉弁も分岐往き流路に介装するだけで分岐往き流路の開閉も容易にかつ確実に行うことができることになり、その結果、流れ方向の切換も容易に実現させることができるようになる。加えて、請求項によれば、流れ方向切換機構による流れ方向の切換を第1開閉弁又は第2開閉弁の開閉切換という簡易な制御により実現させることができるようになる。 Then, according to claim 2, branch just as well it is possible to reliably perform opening and closing of the return bypass passage according to claim 1, the second on-off valve interposed in the branch forward passage forward The flow channel can be opened and closed easily and reliably, and as a result, the flow direction can be easily switched. In addition, according to the third aspect , the switching of the flow direction by the flow direction switching mechanism can be realized by a simple control of switching the opening / closing of the first on-off valve or the second on-off valve.

さらに、請求項によれば、起動予熱運転における排熱源側熱媒を、高温にされた暖房用熱媒により早期に熱交換加熱して予熱を終了させることができる一方、熱源として高温の暖房用熱媒を供給したとしても排熱源側熱媒に対する過度の熱交換加熱を抑制して排熱源側の各種構成部品の耐久性に悪影響を及ぼすこともない。その上に、分岐往き流路を高温往き流路から分岐させる構成としているため、暖房循環回路側の暖房運転状況の如何に拘わらず、分岐往き流路を通して暖房用熱交換器に対し、暖房運転状況に影響を受けるなりゆきの温度の暖房用熱媒ではなくて、より安定的に制御された温度の暖房用熱媒を供給することができるようになる。 Furthermore, according to the fourth aspect , the exhaust heat source side heat medium in the start preheating operation can be quickly heat-exchanged by the heating medium heated to finish preheating, while the high temperature heating is used as the heat source. Even if the heating medium is supplied, excessive heat exchange heating to the exhaust heat source side heat medium is suppressed and the durability of various components on the exhaust heat source side is not adversely affected. In addition, since the branch outgoing flow path is branched from the high temperature outgoing flow path, the heating operation is performed on the heat exchanger for heating through the branch outgoing flow path regardless of the heating operation state on the heating circulation circuit side. It becomes possible to supply a heating medium having a more stably controlled temperature, rather than a heating medium having a temperature that is affected by the situation.

一方、請求項によれば、再加熱運転の実行が可能となり、この再加熱運転の実行によって貯留タンク内を強制的に再加熱することができ、これにより、例えば長期に亘り貯留タンク内の熱媒が不使用であっても、レジオネラ菌等を不活性にすることができるようになる。 On the other hand, according to the fifth aspect , the reheating operation can be executed, and the inside of the storage tank can be forcibly reheated by the execution of the reheating operation. Even if the heat medium is not used, Legionella bacteria and the like can be inactivated.

請求項によれば、排熱源として燃料電池を用いてコージェネシステムを構築することができ、請求項によれば、その燃料電池として固体高分子型燃料電池を用いて最適なコージェネシステムを構築することができる。
According to claim 6 , a cogeneration system can be constructed using a fuel cell as an exhaust heat source, and according to claim 7 , an optimum cogeneration system is constructed using a polymer electrolyte fuel cell as the fuel cell. can do.

本発明の第1実施形態を示す模式図である。It is a mimetic diagram showing a 1st embodiment of the present invention. 第2実施形態を示す模式図である。It is a schematic diagram which shows 2nd Embodiment. 第3実施形態を示す模式図である。It is a schematic diagram which shows 3rd Embodiment. 本発明と対比される想定のコージェネシステムの部分図である。It is a partial view of the assumed cogeneration system contrasted with this invention.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<第1実施形態>
図1は、本発明の第1実施形態に係るコージェネシステムを示し、符号2は排熱源としての燃料電池、3は燃料電池2から排熱を回収して貯湯する排熱回収循環回路、4は暖房用熱媒として温水を用いて温水循環式暖房機能を実現する暖房循環回路、5は排熱回収循環回路3と暖房循環回路4との間で熱交換させるための暖房用熱交換器である。これは燃料電池2から回収した排熱を暖房循環回路4の暖房用温水の熱交換加熱に利用する一方、燃料電池2の起動時には暖房用温水を燃料電池2の予熱用の熱源として利用するようにしたシステムである。
<First Embodiment>
FIG. 1 shows a cogeneration system according to a first embodiment of the present invention, wherein reference numeral 2 denotes a fuel cell as an exhaust heat source, 3 denotes an exhaust heat recovery circuit for recovering exhaust heat from the fuel cell 2 and storing hot water, 4 A heating circulation circuit 5 for realizing a hot water circulation heating function using hot water as a heating heat medium is a heating heat exchanger for exchanging heat between the exhaust heat recovery circulation circuit 3 and the heating circulation circuit 4. . This uses the exhaust heat recovered from the fuel cell 2 for heat exchange heating of the warm water for heating in the heating circuit 4, while the warm water for heating is used as a heat source for preheating the fuel cell 2 when the fuel cell 2 is started up. System.

燃料電池2は例えば固体高分子型燃料電池(PEFC)により構成され、電力生成に伴い発生する排熱を冷却水との熱交換により回収して温水を生成するようになっている。そして、燃料電池2の側に備えられた循環ポンプ21の作動により、排熱回収循環回路3に対し温水となった冷却水を循環させるようになっている。この冷却水が燃料電池側熱媒であり、かかる冷却水として後述の貯留タンク31に給水・貯留される水道水が用いられている。   The fuel cell 2 is composed of, for example, a polymer electrolyte fuel cell (PEFC), and recovers exhaust heat generated by generating power by heat exchange with cooling water to generate hot water. Then, the operation of the circulation pump 21 provided on the fuel cell 2 side circulates the cooling water that has become hot water to the exhaust heat recovery circuit 3. This cooling water is a fuel cell-side heat medium, and tap water supplied to and stored in a storage tank 31 described later is used as the cooling water.

排熱回収循環回路3は、貯留タンク31と燃料電池2との間で燃料電池側熱媒としての冷却水を循環させる循環流路32を基本構成要素として備えている。そして、貯留タンク31に供給・貯留した水(水道水)を上記の冷却水として用いて、燃料電池2からの排熱回収により水を湯の状態にして貯留タンク31に貯湯することで、回収した排熱を蓄熱するようにしている。貯留タンク31には、その底部に外部の給水源からの給水流路33が接続され、頂部には給湯等に利用するための取り出し流路34が接続されている。循環流路32は、燃料電池2から上記の暖房用熱交換器5及び貯湯切換弁35を通って貯留タンク31の頂部に往く熱媒往き流路36と、貯留タンク31の底部から循環ポンプ21を通して燃料電池2に戻る熱媒戻り流路37と、貯湯切換弁35から分岐して貯留タンク31を経由しないで熱媒戻り流路37に連通接続される非タンク循環流路38とを備えている。そして、貯湯切換弁35の貯留タンク31側を連通し非タンク循環流路38の側を遮断した切換状態(タンク連通状態)にすれば、燃料電池2と貯留タンク31との間で冷却水が循環(タンク間循環)され、貯湯切換弁35の貯留タンク31側を遮断し非タンク循環流路38の側を連通した切換状態(タンク遮断状態)にすれば、貯留タンク31を経由しないで燃料電池2と暖房用熱交換器5との間で冷却水が循環(非タンク循環)されるようになっている。   The exhaust heat recovery / circulation circuit 3 includes, as a basic component, a circulation channel 32 that circulates cooling water as a fuel cell side heat medium between the storage tank 31 and the fuel cell 2. Then, the water (tap water) supplied / stored in the storage tank 31 is used as the cooling water, and the water is made into hot water by the exhaust heat recovery from the fuel cell 2 and stored in the storage tank 31 to recover the water. The exhaust heat is stored. A water supply flow path 33 from an external water supply source is connected to the bottom of the storage tank 31, and a discharge flow path 34 for use in hot water supply or the like is connected to the top. The circulation flow path 32 includes a heat medium forward flow path 36 that goes from the fuel cell 2 through the heating heat exchanger 5 and the hot water storage switching valve 35 to the top of the storage tank 31, and a circulation pump 21 from the bottom of the storage tank 31. And a non-tank circulation passage 38 that branches from the hot water storage switching valve 35 and communicates with the heat medium return passage 37 without passing through the storage tank 31. Yes. Then, if the storage tank 31 side of the hot water storage switching valve 35 is communicated and the non-tank circulation flow path 38 side is shut off (tank communication state), the cooling water flows between the fuel cell 2 and the storage tank 31. If the storage tank 31 side of the hot water switching valve 35 is shut off and the non-tank circulation flow path 38 side is connected (tank cutoff state), the fuel is not passed through the storage tank 31. Cooling water is circulated between the battery 2 and the heating heat exchanger 5 (non-tank circulation).

ここで、暖房用熱交換器5は一方の内部流路に流される上記冷却水と、他方の内部流路に流れる暖房用の温水との間で液−液熱交換する液−液熱交換器として構成されている。そして、熱媒往き流路36は、この熱媒往き流路36を流れる冷却水が暖房用熱交換器5内の一方の内部流路に対しその一端(図1の左端)51側から他端(同図の右端)52側へ流れるように暖房用熱交換器5と接続されている。なお、図1又は他の図面において、暖房用熱交換器5は図面の左右方向に延びるように図示しているが、これに限らず、上下方向に延びるように配置してもよく、この場合には上記の一端や他端は上端又は下端となる。以下、図示したものに沿って「左端」又は「右端」と表示する。   Here, the heating heat exchanger 5 is a liquid-liquid heat exchanger that performs liquid-liquid heat exchange between the cooling water flowing in one internal flow path and the warm water for heating flowing in the other internal flow path. It is configured as. And the heat-medium going flow path 36 is the other end from the one end (left end of FIG. 1) 51 side with respect to the one internal flow path in the heat exchanger 5 for the cooling water which flows through this heat-medium going flow path 36. (The right end of the figure) It is connected to the heating heat exchanger 5 so as to flow toward the 52 side. In FIG. 1 or other drawings, the heating heat exchanger 5 is illustrated so as to extend in the left-right direction of the drawing, but is not limited thereto, and may be disposed so as to extend in the vertical direction. The one end and the other end are the upper end or the lower end. Hereinafter, the “left end” or “right end” is displayed along the illustrated one.

暖房循環回路4は、燃焼熱により循環温水を熱交換加熱するバックアップ用の補助熱源機41と、上記の暖房用熱交換器5とを通り、図外の低温用暖房端末又は高温用暖房端末との間で温水を循環させる循環流路42を備えている。循環流路42は、膨張タンク43に戻されて貯留される低温水を暖房用の循環ポンプ44の作動により上記補助熱源機41に送り、ここで燃焼加熱された高温水を高温往き流路45から図外の高温用暖房端末(例えば浴室乾燥機等)に供給するようになっている。又、上記の循環ポンプ44の作動により、膨張タンク43内の低温水を低温往き流路46を介して図外の低温用暖房端末(例えば床暖房機等)に供給し、上記の高温用暖房端末や低温用暖房端末等の全ての暖房端末から放熱により低温になった低温水を戻り流路47を通して膨張タンク43に戻すというように、循環させるようになっている。   The heating circulation circuit 4 passes through the auxiliary heat source 41 for backup that heats and heats the circulating hot water using combustion heat, and the heating heat exchanger 5, and is connected to a low-temperature heating terminal or a high-temperature heating terminal that is not shown in the drawing. A circulation channel 42 for circulating hot water between the two is provided. The circulation flow path 42 sends low temperature water returned to the expansion tank 43 and stored to the auxiliary heat source unit 41 by the operation of the circulation pump 44 for heating, and the high temperature water heated by combustion here is sent to the high temperature flow path 45. To a high-temperature heating terminal (for example, a bathroom dryer) outside the figure. Further, by the operation of the circulation pump 44, the low-temperature water in the expansion tank 43 is supplied to a low-temperature heating terminal (for example, a floor heater) (not shown) via the low-temperature forward flow path 46, and the high-temperature heating described above. The low-temperature water, which has become low temperature due to heat radiation from all the heating terminals such as terminals and low-temperature heating terminals, is circulated in such a manner as to return to the expansion tank 43 through the return flow path 47.

又、戻り流路47は、膨張タンク43に戻るまでの間に戻りバイパス流路47aに分岐して暖房用熱交換器5を通過したり、あるいは、暖房用熱交換器5を通過せずにそのまま膨張タンク43に戻ったりするようになっている。すなわち、戻り流路47には戻りバイパス流路47aが付設され、この戻りバイパス流路47aは上流側の分岐点d1から下流側の合流点d2までの間の戻り流路47をバイパスして途中において暖房用熱交換器5を通過するように形成されている。詳しくは、戻りバイパス流路47aは上流側位置の分岐点d1から分流させた戻り温水を暖房用熱交換器5内の他方の内部流路に対しその右端53から流入させ、右端53から左端54に流れた後に左端54から流出する戻り温水を下流側の合流点d2において戻り流路47に合流させるようになっている。加えて、戻りバイパス流路47aの下流側であって暖房用熱交換器5の左端54と合流点d2との間に、第1開閉弁としての第1熱動弁47bが介装されている。   The return flow path 47 branches to the return bypass flow path 47a before returning to the expansion tank 43 and passes through the heating heat exchanger 5, or without passing through the heating heat exchanger 5. It returns to the expansion tank 43 as it is. That is, a return bypass channel 47a is attached to the return channel 47, and the return bypass channel 47a bypasses the return channel 47 between the upstream branch point d1 and the downstream junction point d2, and is in the middle. Are formed so as to pass through the heat exchanger 5 for heating. Specifically, the return bypass flow path 47a causes the return hot water diverted from the branch point d1 at the upstream position to flow from the right end 53 to the other internal flow path in the heating heat exchanger 5 and from the right end 53 to the left end 54. The return warm water flowing out from the left end 54 after flowing into the flow path is joined to the return flow path 47 at the downstream junction point d2. In addition, a first thermal valve 47b as a first on-off valve is interposed downstream of the return bypass passage 47a and between the left end 54 of the heating heat exchanger 5 and the junction d2. .

さらに、上記の高温往き流路45の途中の分岐点d3から分岐した高温分岐往き流路45aが暖房用熱交換器5の左端54に接続され、この高温分岐往き流路45aには第2開閉弁としての第2熱動弁45bが介装されている。これら高温分岐往き流路45a、第2熱動弁45b、戻りバイパス流路47a及び第1熱動弁47bによって、暖房用熱交換器5の他方の内部流路を流れる暖房用温水の流れ方向を相互に逆転させる流れ方向切換機構10が構成されている。   Further, a high temperature branch forward flow path 45a branched from a branch point d3 in the middle of the high temperature forward flow path 45 is connected to the left end 54 of the heating heat exchanger 5, and the high temperature branch forward flow path 45a has a second opening and closing. A second thermal valve 45b as a valve is interposed. The flow direction of the hot water for heating flowing through the other internal flow path of the heat exchanger 5 for heating is determined by the high temperature branch forward flow path 45a, the second thermal valve 45b, the return bypass flow path 47a, and the first thermal valve 47b. A flow direction switching mechanism 10 for reversing each other is configured.

以上のコージェネシステムは図外のコントローラ(制御手段)によって運転制御されるようになっている。運転制御としては、燃料電池2が発電運転中(電力生成中)にあるときであって、かつ、暖房運転要求があるときの通常運転制御として燃料電池2の排熱を回収して暖房用温水の熱交換加熱に利用する排熱利用暖房運転制御と、燃料電池2の発電運転が停止状態にあるときから起動される際に暖房用温水を熱源として燃料電池2を予熱する起動予熱運転制御と、長期不在時等にレジオネラ菌対策として貯留タンク31内を再加熱(沸かし上げ)する貯留タンク再加熱運転制御とを備えている。   The above cogeneration system is controlled by a controller (control means) not shown. As the operation control, when the fuel cell 2 is in the power generation operation (power generation) and when there is a heating operation request, the exhaust heat of the fuel cell 2 is recovered and heating hot water is used as the normal operation control. Waste heat utilization heating operation control used for heat exchange heating of the fuel cell, and startup preheating operation control for preheating the fuel cell 2 using the warm water for heating as a heat source when the power generation operation of the fuel cell 2 is started from the stop state. And storage tank reheating operation control that reheats (boils) the inside of the storage tank 31 as a countermeasure against Legionella in the absence of a long period of time.

排熱利用暖房運転制御は、貯湯切換弁35をタンク遮断状態に切換えて熱媒循環流路32を非タンク循環にした状態で循環ポンプ21を作動させる一方、第1熱動弁47bを開状態に、第2熱動弁45bを閉状態にそれぞれ変換する。これにより、燃料電池2で昇温した冷却水が暖房用熱交換器5に対し左端51から右端52へ流れる一方(図1の一点鎖線の矢印参照)、戻り流路47から戻される低温の戻り温水が戻りバイパス流路47aにも分流されて暖房用熱交換器5に対し右端53から左端54へ流れることになる(同図の破線の矢印参照)。このため、暖房用熱交換器5内において、冷却水と戻り温水とが互いに対向流となって流れつつ液−液熱交換されることになり、戻り温水は対向流による液−液熱交換に基づき熱交換効率よく加熱されることになる。なお、戻り温水を熱交換加熱した後であっても暖房用熱交換器5の右端52から出た冷却水の温度が所定温度まで降温していない場合には、貯湯切換弁35をタンク連通状態又は望ましくは貯留タンク31にも連通すると同時に非タンク循環流路38にも連通して双方に分流し得る中間切換状態に切換えて貯留タンク31内の貯留湯水との熱交換又は混合により所定温度(例えば45℃以下)まで降温させた上で燃料電池2に戻すようにすればよい。   In the exhaust heat utilization heating operation control, the hot water storage switching valve 35 is switched to the tank shutoff state and the circulation pump 21 is operated with the heat medium circulation passage 32 being non-tank circulation, while the first thermal valve 47b is opened. The second thermal valve 45b is converted into a closed state. As a result, the cooling water whose temperature has risen in the fuel cell 2 flows from the left end 51 to the right end 52 with respect to the heating heat exchanger 5 (refer to the dashed line arrow in FIG. 1), while the low temperature return returned from the return flow path 47. The warm water returns to the bypass passage 47a and flows from the right end 53 to the left end 54 with respect to the heating heat exchanger 5 (see the broken arrow in the figure). For this reason, in the heating heat exchanger 5, the liquid-liquid heat exchange is performed while the cooling water and the return warm water flow in opposite directions, and the return warm water is used for the liquid-liquid heat exchange by the opposite flow. Based on this, heat is exchanged efficiently. If the temperature of the cooling water discharged from the right end 52 of the heating heat exchanger 5 has not dropped to a predetermined temperature even after the return hot water has been subjected to heat exchange heating, the hot water storage switching valve 35 is connected to the tank. Alternatively, it is desirable to switch to an intermediate switching state that communicates with the storage tank 31 and at the same time communicates with the non-tank circulation flow path 38 and can be diverted to both, and exchanges heat with the stored hot water in the storage tank 31 or mixes it with a predetermined temperature ( For example, the temperature may be lowered to 45 ° C. or lower and then returned to the fuel cell 2.

起動予熱運転制御は、貯湯切換弁35をタンク遮断状態に切換えて熱媒循環流路32を非タンク循環にした状態で循環ポンプ21を作動させる一方、第1熱動弁47bを閉状態に、第2熱動弁45bを開状態にそれぞれ変換する。これにより、運転停止中に低温状態に降温した冷却水が暖房用熱交換器5に対し左端51から右端52へ流れる一方(図1の一点鎖線の矢印参照)、高温分岐往き流路45aから高温水が暖房用熱交換器5に対し左端54から右端53へ流れた後に戻りバイパス流路47aの上流側部分及び戻り流路47を通って膨張タンク43に戻されることになる(同図の実線の矢印参照)。このため、暖房用熱交換器5内において、冷却水と高温水とが互いに並行流となって流れつつ液−液熱交換されることになり、冷却水は高温水により熱交換加熱されはするものの、並行流による液−液熱交換に基づき過度に加熱されることが回避されることになる。例えば、熱媒循環流路32での冷却水の循環流量が1L/minで30℃の状態である一方、高温分岐往き流路45aからの高温水の循環流量が10L/minで通常は80℃であるところ若干オーバーして85℃の状態で流れてきた場合を考えてみる。この場合、並行流であると、循環流量の大きな違いから仮にミキシングした最悪の場合を考えてみたとしても、熱交換加熱後の冷却水の温度は80℃[(85×10+30×1)/(10+1)=80]までの温度に保つことができ、対向流の場合には冷却水が熱源側温度(85℃)に限りなく近い温度まで加熱されてしまうことに比べて、冷却水が過度に熱交換加熱されてしまうことを回避することができるようになる。これにより、循環ポンプ21等の燃料電池2側の機能部品の耐久性に悪影響を与えることなく、それらの耐久性を良好に維持させることができるようになる。   In the startup preheating operation control, the hot water storage switching valve 35 is switched to the tank shut-off state and the circulation pump 21 is operated with the heat medium circulation passage 32 being non-tank circulation, while the first thermal valve 47b is closed. The second thermal valves 45b are each converted to an open state. As a result, the cooling water cooled to a low temperature during the operation stop flows from the left end 51 to the right end 52 with respect to the heating heat exchanger 5 (see the one-dot chain line arrow in FIG. 1), while the high temperature from the high temperature branch forward flow path 45a. After water flows from the left end 54 to the right end 53 with respect to the heating heat exchanger 5, it returns to the expansion tank 43 through the upstream portion of the return bypass flow path 47a and the return flow path 47 (the solid line in the figure). See arrow). For this reason, in the heat exchanger 5 for heating, liquid-liquid heat exchange is performed while the cooling water and the high-temperature water flow in parallel with each other, and the cooling water is heat-exchanged and heated by the high-temperature water. However, excessive heating based on liquid-liquid heat exchange by parallel flow is avoided. For example, while the circulating flow rate of the cooling water in the heat medium circulation channel 32 is 30 ° C. at 1 L / min, the circulating flow rate of the high-temperature water from the high temperature branch flow channel 45 a is 10 L / min and usually 80 ° C. However, consider the case where the flow is slightly overflowing at 85 ° C. In this case, the temperature of the cooling water after heat exchange heating is 80 ° C. [(85 × 10 + 30 × 1) / ( 10 + 1) = 80], and in the case of a counter flow, the cooling water is excessively heated compared to the fact that the cooling water is heated to a temperature close to the heat source side temperature (85 ° C.). It becomes possible to avoid heat exchange heating. Thereby, the durability of the functional components on the fuel cell 2 side such as the circulation pump 21 can be favorably maintained without adversely affecting the durability.

又、再加熱運転制御は、貯湯切換弁35をタンク連通状態に切換えて熱媒循環流路32をタンク間循環にした状態で循環ポンプ21を作動させる一方、起動予熱運転制御と同様に第1熱動弁47bを閉状態に、第2熱動弁45bを開状態にそれぞれ変換する。これにより、暖房用熱交換器5において高温水により加熱された冷却水が貯留タンク31に供給され、貯留タンク31内がレジオネラ菌等を不活性にし得る温度(例えば60℃以上)まで沸かし上げることができる。   In the reheating operation control, the hot water storage switching valve 35 is switched to the tank communication state and the circulation pump 21 is operated in a state where the heat medium circulation passage 32 is circulated between the tanks. The thermal valve 47b is converted into a closed state, and the second thermal valve 45b is converted into an open state. Thereby, the cooling water heated by the high-temperature water in the heating heat exchanger 5 is supplied to the storage tank 31, and the inside of the storage tank 31 is boiled up to a temperature (for example, 60 ° C. or more) that can inactivate Legionella bacteria. Can do.

以上、要するに流れ方向切換機構10を備えたことにより、暖房用熱交換器5での熱交換を対向流による熱交換と、並行流による熱交換とに切換えることができるようになる。これにより、燃料電池2の排熱により暖房用温水を熱交換加熱するという排熱利用暖房運転における熱交換効率を高く維持しつつも、暖房用温水を熱源とする燃料電池2の起動予熱運転においては過度の熱交換加熱に陥る事態の発生を確実に回避することができるようになる。   In short, by providing the flow direction switching mechanism 10, the heat exchange in the heating heat exchanger 5 can be switched between the heat exchange by the counter flow and the heat exchange by the parallel flow. Thus, in the start-up preheating operation of the fuel cell 2 using the warm water for heating as the heat source while maintaining high heat exchange efficiency in the exhaust heat utilization heating operation in which the warm water for heating is heat exchange heated by the exhaust heat of the fuel cell 2. It is possible to reliably avoid the occurrence of a situation of excessive heat exchange heating.

<第2実施形態>
図2は、本発明の第2実施形態に係るコージェネシステムを示す。この第2実施形態は上記の第1実施形態をより具体的に構成したものに相当する。すなわち、第2実施形態は、第1実施形態の構成に加えて、貯留タンク31からこれに貯留された貯湯に混水して温調した予混合給水を対象にして加熱する給湯回路6と、補助熱源機41で加熱された高温水を利用して液−液熱交換加熱するふろ追い焚き回路7とを備え、補助熱源機41や給湯回路6の給湯熱源機61として潜熱回収機能を付加した高効率型のものを用いたものである。なお、第1実施形態と同じ構成のものには第1実施形態と同じ符号を付して重複した詳細な説明を省略し、異なる点について説明を加える。
Second Embodiment
FIG. 2 shows a cogeneration system according to the second embodiment of the present invention. The second embodiment corresponds to a more specific configuration of the first embodiment. That is, in the second embodiment, in addition to the configuration of the first embodiment, the hot water supply circuit 6 that heats the premixed water that is mixed with the hot water stored in the storage tank 31 and temperature-controlled, and heated, And a bath reheating circuit 7 that performs liquid-liquid heat exchange heating using high-temperature water heated by the auxiliary heat source device 41, and a latent heat recovery function is added as the hot water supply heat source device 61 of the auxiliary heat source device 41 and the hot water supply circuit 6. A high-efficiency type is used. In addition, the same code | symbol as 1st Embodiment is attached | subjected to the thing of the same structure as 1st Embodiment, the detailed description which overlapped is abbreviate | omitted, and a different point is demonstrated.

給湯回路6は、給湯熱源機61と、この給湯熱源機61に対し上記の予混合給水を供給する予混合給水流路62と、給湯熱源機61で熱交換加熱された湯を給湯する給湯流路63とを備えている。給湯熱源機61は燃焼バーナ64の燃焼に伴う顕熱により主加熱する一次熱交換器65と、燃焼排ガスから潜熱を回収して予熱する二次熱交換器66とを備え、上記の予混合給水流路62は予混合給水をまず二次熱交換器66に通して予熱した上で、一次熱交換器65に通すようになっている。又、給湯流路63の途中には、排熱回収循環回路3の給水流路33から分岐された混水用給水流路67が合流され、一次熱交換器65からの出湯に対し混水用給水流路67からの給水が混水されて、設定給湯温度に温調されるようになっている。又、この混水用給水流路67の合流点よりも下流側位置の給湯流路63から分岐した注湯回路8が上記ふろ追い焚き回路7に接続され、注湯回路8を通して給湯流路63の湯が浴槽71に注湯可能とされている。   The hot water supply circuit 6 includes a hot water supply heat source device 61, a premixed water supply passage 62 for supplying the premixed water supply to the hot water supply heat source device 61, and a hot water supply flow for supplying hot water heat-exchanged by the hot water supply heat source device 61. Road 63 is provided. The hot water supply heat source device 61 includes a primary heat exchanger 65 that mainly heats by sensible heat accompanying combustion of the combustion burner 64, and a secondary heat exchanger 66 that recovers latent heat from the combustion exhaust gas and preheats the premixed water supply. The flow path 62 is configured so that the premixed feed water is first preheated by passing it through the secondary heat exchanger 66 and then passed through the primary heat exchanger 65. Further, in the middle of the hot water supply flow path 63, a mixed water supply flow path 67 branched from the water supply flow path 33 of the exhaust heat recovery circulation circuit 3 is joined, and mixed water is used for the hot water from the primary heat exchanger 65. The water supply from the water supply channel 67 is mixed to adjust the temperature to the set hot water supply temperature. Further, a pouring circuit 8 branched from the hot water supply passage 63 located downstream of the confluence of the mixed water supply water passage 67 is connected to the bath reheating circuit 7, and the hot water supply passage 63 passes through the pouring circuit 8. Hot water can be poured into the bathtub 71.

ふろ追い焚き回路7は、液−液熱交換式の加熱部としてのバスヒータ72が、ふろ戻り流路73及びふろ往き流路74からなる追い焚き循環流路75に介装されたものである。そして、追い焚き用循環ポンプ76の作動により浴槽71からふろ戻り流路73を通して取り出された浴槽水がバスヒータ72に送られ、このバスヒータ72において暖房循環回路4の高温往き流路45から分岐供給される高温水を熱源とする液−液熱交換により追い焚き加熱され、追い焚き加熱後の浴槽湯水がふろ往き流路74を通して浴槽71に送られるようになっている。   The bath reheating circuit 7 is configured such that a bath heater 72 as a liquid-liquid heat exchange type heating unit is interposed in a reheating circulation channel 75 including a bath return channel 73 and a bath flow channel 74. The bath water taken out from the bathtub 71 through the bath return flow path 73 by the operation of the recirculation circulation pump 76 is sent to the bath heater 72, and is branched and supplied from the high temperature forward flow path 45 of the heating circulation circuit 4 in the bath heater 72. The hot water is reheated by liquid-liquid heat exchange using high-temperature water as a heat source, and the bath water after reheating is sent to the bathtub 71 through the forward flow path 74.

暖房循環回路4の補助熱源機41は、給湯熱源機61と同様に、燃焼バーナ41aの燃焼に伴う顕熱により主加熱する一次熱交換器48と、燃焼排ガスから潜熱を回収して予熱する二次熱交換器49とを備えている。そして、戻り流路47により戻された戻り温水をまず二次熱交換器49に通して予熱した上で膨張タンク43に戻し、膨張タンク43から取り出した温水を一次熱交換器48に通して加熱した高温水を高温往き流路45に供給するようになっている。   The auxiliary heat source device 41 of the heating circulation circuit 4 is similar to the hot water supply heat source device 61, the primary heat exchanger 48 that mainly heats by the sensible heat accompanying the combustion of the combustion burner 41a, and the secondary heat source 48 that collects and preheats the latent heat from the combustion exhaust gas. And a secondary heat exchanger 49. Then, the return warm water returned by the return flow path 47 is first preheated through the secondary heat exchanger 49 and then returned to the expansion tank 43, and the hot water taken out from the expansion tank 43 is heated through the primary heat exchanger 48. The high-temperature water thus supplied is supplied to the high-temperature forward flow path 45.

又、図2中の符号91は高温用暖房端末、92は低温用暖房端末であり、共に放熱後は戻り温水となって戻り流路47により戻されることになる。又、排熱回収循環回路3には、暖房用熱交換器5の手前位置の熱媒往き流路36から分岐して、貯湯切換弁35と貯留タンク31との中間位置の熱媒往き流路36に合流する熱媒バイパス流路39が接続され、この熱媒バイパス流路39は途中に介装された電磁弁39aを開にすることで燃料電池2からの冷却水を暖房用熱交換器5と、熱媒バイパス流路39とに分流させ得るようになっている。   Further, reference numeral 91 in FIG. 2 is a high-temperature heating terminal, and 92 is a low-temperature heating terminal, both of which return to the return flow path 47 as return hot water after heat radiation. The exhaust heat recovery circulation circuit 3 branches from the heat medium flow path 36 at a position in front of the heating heat exchanger 5, and the heat medium flow path at an intermediate position between the hot water switching valve 35 and the storage tank 31. 36 is connected to a heat medium bypass flow path 39, and the heat medium bypass flow path 39 opens the electromagnetic valve 39 a interposed in the middle, thereby cooling the cooling water from the fuel cell 2 to the heat exchanger for heating. 5 and the heat medium bypass passage 39 can be shunted.

この第2実施形態においても、第1実施形態と同様の運転制御、すなわち、排熱利用暖房運転制御と、起動予熱運転制御と、貯留タンク再加熱運転制御とが図外のコントローラ(制御手段)によって運転制御されるようになっている。そして、第1実施形態で説明したものと同様の作用効果、すなわち、流れ方向切換機構10を備えたことにより、暖房用熱交換器5での熱交換を対向流による熱交換と、並行流による熱交換とに切換えることができるようになり、これにより、燃料電池2の排熱により暖房用温水を熱交換加熱するという排熱利用暖房運転における熱交換効率を高く維持しつつも、暖房用温水を熱源とする燃料電池2の起動予熱運転においては過度の熱交換加熱に陥る事態の発生を確実に回避することができるようになる。なお、第1実施形態で説明した運転制御以外の運転制御として貯留タンク31への貯湯運転制御、つまり、燃料電池2からの冷却水を貯留タンク31との間で循環させて燃料電池2の排熱回収により貯留タンク31内に湯として蓄熱するための運転制御を行う場合には、燃料電池2からの冷却水を暖房用熱交換器5と、熱媒バイパス流路39との双方に分流させる際などにおいて、暖房循環回路4側の第1熱動弁47b及び第2熱動弁45b(後述の第3実施形態においては第1熱動弁47b及び第2熱動弁46b)を共に閉弁状態に切換制御するようにする。このようにすることにより、燃料電池2の冷却水の有する排熱が暖房用熱交換器5を介して暖房循環回路4の側に放熱されてしまうことを回避することができ、暖房循環回路4の側への放熱ロスを阻止して効率よく排熱回収による貯湯運転を行うことができる。   Also in the second embodiment, the same operation control as in the first embodiment, that is, the exhaust heat utilization heating operation control, the startup preheating operation control, and the storage tank reheating operation control are not shown in the figure (controller). The operation is controlled by. And by providing the same operation effect as what was explained by a 1st embodiment, ie, flow direction change mechanism 10, heat exchange in heating heat exchanger 5 is based on heat exchange by counterflow, and parallel flow. It becomes possible to switch to heat exchange, and thereby, while maintaining high heat exchange efficiency in the exhaust heat utilization heating operation in which the hot water for heating is heat exchange heated by the exhaust heat of the fuel cell 2, the hot water for heating is maintained. In the start-up preheating operation of the fuel cell 2 using as a heat source, it is possible to reliably avoid the occurrence of a situation in which excessive heat exchange heating occurs. As operation control other than the operation control described in the first embodiment, hot water storage operation control to the storage tank 31, that is, cooling water from the fuel cell 2 is circulated between the storage tank 31 and the fuel cell 2 is discharged. When performing operation control for storing heat as hot water in the storage tank 31 by heat recovery, the cooling water from the fuel cell 2 is divided into both the heating heat exchanger 5 and the heat medium bypass passage 39. At the same time, both the first thermal valve 47b and the second thermal valve 45b (the first thermal valve 47b and the second thermal valve 46b in the third embodiment described later) on the heating circulation circuit 4 side are closed. Switch to the state. By doing in this way, it can avoid that the exhaust heat which the cooling water of the fuel cell 2 has is radiated to the heating circulation circuit 4 side via the heating heat exchanger 5, and the heating circulation circuit 4 can be avoided. The hot water storage operation by exhaust heat recovery can be efficiently performed by preventing the heat radiation loss to the side.

<第3実施形態>
図3は、本発明の第3実施形態に係るコージェネシステムを示す。この第3実施形態は第1実施形態における流れ方向切換機構10の変更形態に係る流れ方向切換機構10aを備えたものである。第3実施形態のその他の構成は第1実施形態と同じであり、第1実施形態と同じ構成のものには第1実施形態と同じ符号を付して重複した詳細な説明を省略し、異なる点について説明を加える。
<Third Embodiment>
FIG. 3 shows a cogeneration system according to the third embodiment of the present invention. The third embodiment includes a flow direction switching mechanism 10a according to a modification of the flow direction switching mechanism 10 in the first embodiment. The other configurations of the third embodiment are the same as those of the first embodiment, and the same configurations as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and detailed description thereof is omitted and different. Add a description of the points.

流れ方向切換機構10aは、第1実施形態の流れ方向切換機構10における高温分岐往き流路45a及び第2熱動弁45bの代わりに、低温往き流路46の途中の分岐点d4から分岐した低温分岐往き流路46aを暖房用熱交換器5の左端54に接続し、この低温分岐往き流路46aに第2開閉弁として第2熱動弁46bを介装したものである。そして、これら低温分岐往き流路46a、第2熱動弁46b、戻りバイパス流路47a及び第1熱動弁47bによって、暖房用温水の流れ方向切換機構10aを構成している。すなわち、暖房用熱交換器5において燃料電池2からの冷却水と並行流にして流す対象として、第1実施形態での高温水ではなくて、第3実施形態では低温水にしたものである。   The flow direction switching mechanism 10a is a low temperature branched from a branch point d4 in the middle of the low temperature forward flow path 46 instead of the high temperature branch forward flow path 45a and the second thermal valve 45b in the flow direction switching mechanism 10 of the first embodiment. The branch forward flow path 46a is connected to the left end 54 of the heating heat exchanger 5, and the low temperature branch forward flow path 46a is provided with a second thermal valve 46b as a second on-off valve. The low temperature branch forward flow path 46a, the second thermal valve 46b, the return bypass flow path 47a, and the first thermal valve 47b constitute a flow direction switching mechanism 10a for warm water for heating. That is, in the heat exchanger 5 for heating, the object to be flowed in parallel with the cooling water from the fuel cell 2 is not the high-temperature water in the first embodiment but the low-temperature water in the third embodiment.

この第3実施形態の場合、排熱利用暖房運転制御を第1実施形態で説明したものと同様の制御を行って、戻り温水を対向流による液−液熱交換に基づき熱交換効率よく加熱することができる。又、起動予熱運転制御は、貯湯切換弁35をタンク遮断状態に切換えて熱媒循環流路32を非タンク循環にした状態で循環ポンプ21を作動させる一方、第1熱動弁47bを閉状態に、第2熱動弁46bを開状態にそれぞれ変換する。これにより、運転停止中に低温状態に降温した冷却水が暖房用熱交換器5に対し左端51から右端52へ流れる一方(図3の一点鎖線の矢印参照)、低温分岐往き流路46aを通して膨張タンク43から供給される低温水が暖房用熱交換器5に対し左端54から右端53へ流れた後に戻りバイパス流路47aの上流側及び戻り流路47を通って膨張タンク43に再び戻されることになる(同図の実線の矢印参照)。この場合においても、膨張タンク43からの低温水は例えば50℃程度であるため、この低温水による冷却水の熱交換加熱によって燃料電池2の起動時に必要となる予熱の下限温度(例えば35℃)以上の熱を燃料電池2に対し付与することができる。   In the case of the third embodiment, the exhaust heat utilization heating operation control is performed in the same manner as described in the first embodiment, and the return hot water is heated with high heat exchange efficiency based on the liquid-liquid heat exchange by the counter flow. be able to. Further, in the start preheating operation control, the hot water storage switching valve 35 is switched to the tank shutoff state and the circulation pump 21 is operated with the heat medium circulation passage 32 being non-tank circulation, while the first thermal valve 47b is closed. The second thermal valve 46b is converted into an open state. As a result, the cooling water cooled to the low temperature state during the operation stop flows from the left end 51 to the right end 52 with respect to the heating heat exchanger 5 (see the arrow of the one-dot chain line in FIG. 3), and expands through the low temperature branch forward flow path 46a. The low-temperature water supplied from the tank 43 flows from the left end 54 to the right end 53 with respect to the heating heat exchanger 5 and then returns again to the expansion tank 43 through the upstream side of the return bypass passage 47a and the return passage 47. (See the solid arrow in the figure). Also in this case, since the low temperature water from the expansion tank 43 is about 50 ° C., for example, the lower limit temperature (for example, 35 ° C.) of the preheating required when starting the fuel cell 2 by heat exchange heating of the cooling water using this low temperature water The above heat can be applied to the fuel cell 2.

従って、高温水を用いた貯留タンク31に対する再加熱運転制御を行う必要がなければ、暖房用熱交換器5において並行流によって冷却水を熱交換加熱する熱源として低温水を用いることができることになる。   Therefore, if it is not necessary to perform reheating operation control for the storage tank 31 using high temperature water, low temperature water can be used as a heat source for heat exchange heating of the cooling water by the parallel flow in the heating heat exchanger 5. .

<他の実施形態>
なお、本発明は上記第1〜第3の各実施形態に限定されるものではなく、その他種々の実施形態を包含するものである。すなわち、上記各実施形態で用いる暖房用熱交換器5の形式は液−液熱交換器であればよく、図例の形式には限られない。又、上記各実施形態における燃料電池2を他の排熱源に置換してコージェネシステムを構成することができる。例えばガスエンジンを排熱源として用いることができ、この場合にはガスエンジンの冷却水を排熱源側熱媒として用いることができる。
<Other embodiments>
The present invention is not limited to the first to third embodiments described above, but includes other various embodiments. That is, the heating heat exchanger 5 used in each of the above embodiments may be a liquid-liquid heat exchanger, and is not limited to the illustrated example. Further, the cogeneration system can be configured by replacing the fuel cell 2 in each of the above embodiments with another exhaust heat source. For example, a gas engine can be used as an exhaust heat source, and in this case, cooling water of the gas engine can be used as an exhaust heat source side heat medium.

上記各実施形態における暖房用熱媒として、温水の他にもオイルや不凍液等を用いることができる。さらに、貯留タンク31に飲用水の貯湯をする構成を省略すれば、燃料電池2の排熱が担持される燃料電池側の熱媒として冷却水以外にも上記の如きオイルや不凍液等を用いることができる。   In addition to warm water, oil, antifreeze, or the like can be used as the heating medium in the above embodiments. Further, if the configuration for storing hot water for drinking water in the storage tank 31 is omitted, the above-described oil, antifreeze or the like is used in addition to the cooling water as the heat medium on the fuel cell side where the exhaust heat of the fuel cell 2 is carried. Can do.

さらに、上記各実施形態では、暖房用熱交換器5に対する暖房用温水の流れ方向を切換えるための流れ方向切換機構10,10aを示したが、これに限らず、暖房用温水の流れ方向は所定の一方向への流れ方向で不変とし、代わりに、燃料電池側の熱媒である冷却水の暖房用熱交換器5に対する流れ方向を正・逆に切換えるための流れ方向切換機構を備えるようにしてもよい。   Furthermore, in each said embodiment, although the flow direction switching mechanisms 10 and 10a for switching the flow direction of the warm water for heating with respect to the heat exchanger 5 for a heating were shown, not only this but the flow direction of the warm water for heating is predetermined. Instead of changing the flow direction in one direction, a flow direction switching mechanism for switching the flow direction of the cooling water, which is the heat medium on the fuel cell side, to the heating heat exchanger 5 is switched between forward and reverse. May be.

本発明は、家庭用や工業用の熱電併給システムとして利用可能であり、特に燃料電池2等による電力生成と、暖房循環回路4による暖房とを共に得られるため、電力産業や住宅設備産業等において利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used as a household or industrial combined heat and power supply system, and in particular, can obtain both power generation by the fuel cell 2 and the like and heating by the heating circulation circuit 4. Is available.

2 燃料電池(排熱源)
3 排熱回収循環回路
4 暖房循環回路
5 暖房用熱交換器
10,10a 流れ方向切換機構
31 貯留タンク
42 暖房用温水の循環流路
45 高温往き流路
46 低温往き流路
47 戻り流路
45a 高温分岐往き流路
45b 第2熱動弁(第2開閉弁)
46a 低温分岐往き流路
46b 第2熱動弁(第2開閉弁)
47a 戻りバイパス流路
47b 第1熱動弁(第1開閉弁)
d1 上流側の分岐点
d2 下流側の合流点
2 Fuel cell (exhaust heat source)
3 Heat recovery circuit 4 Heating circuit 5 Heating heat exchanger 10, 10a Flow direction switching mechanism 31 Reservoir tank 42 Heating hot water circulation channel 45 High temperature forward channel 46 Low temperature forward channel 47 Return channel 45a High temperature Branch / outward flow path 45b Second thermal valve (second on-off valve)
46a Low temperature branch outgoing flow path 46b Second thermal valve (second on-off valve)
47a Return bypass passage 47b First thermal valve (first on-off valve)
d1 Upstream branch point d2 Downstream junction

Claims (7)

排熱源の排熱が担持される熱媒を循環させる排熱回収循環回路と、暖房端末に対し暖房用熱媒を放熱用熱源として循環供給するための暖房循環回路と、上記排熱回収循環回路に流される排熱源側熱媒と暖房循環回路に流される暖房用熱媒との間で熱交換させる暖房用熱交換器とを備えたコージェネシステムであって、
上記暖房用熱交換器内における上記排熱源側熱媒と暖房用熱媒との互いの流れ方向を並行流と対向流とに相互に切換える流れ方向切換機構を備え、
上記流れ方向切換機構は、暖房用熱媒を熱源として排熱源側熱媒を熱交換加熱する排熱源の起動時の起動予熱運転においては並行流に切換制御される一方、排熱源側熱媒からの排熱回収により暖房用熱媒を熱交換加熱する排熱利用暖房運転においては対向流に切換制御されるように構成され、かつ、
上記流れ方向切換機構は、上記暖房用熱交換器に対する暖房用熱媒の流れ方向を相互に逆転させることにより並行流と対向流とに相互に切換えるように構成され、
上記暖房循環回路は、暖房用熱媒の循環流路として、暖房端末に対し暖房用熱媒を供給する往き流路と、暖房端末で放熱後の暖房用熱媒をその暖房端末から戻す戻り流路とを備え、
上記排熱回収循環回路は、排熱源側熱媒を暖房用熱交換器内の一方の内部流路に対し一端側から他端側に流した後に排熱源に戻すように暖房用熱交換器と接続され、
上記流れ方向切換機構は、上記暖房循環回路の戻り流路の上流側分岐点から下流側合流点までその戻り流路をバイパスして上記戻り流路により戻される暖房用熱媒を暖房用熱交換器内の他方の内部流路に対し他端側から一端側に流す戻りバイパス流路と、この戻りバイパス流路を開閉切換する第1開閉弁と、上記暖房循環回路の往き流路から分岐して往き流路により供給される暖房用熱媒を暖房用熱交換器の上記他方の内部流路に対し一端側から他端側に流す分岐往き流路と、この分岐往き流路を開閉切換する第2開閉弁とを備えて構成されている、
ことを特徴とするコージェネシステム。
An exhaust heat recovery circuit that circulates a heat medium carrying exhaust heat from an exhaust heat source, a heating circuit that circulates and supplies the heating medium as a heat dissipation heat source to the heating terminal, and the exhaust heat recovery circuit A cogeneration system comprising a heating heat exchanger for exchanging heat between an exhaust heat source side heating medium flowing through the heating medium and a heating heating medium flowing through the heating circulation circuit,
A flow direction switching mechanism for switching the flow direction of the exhaust heat source side heat medium and the heating heat medium in the heating heat exchanger to a parallel flow and a counter flow;
The flow direction switching mechanism is controlled to be switched to parallel flow in the startup preheating operation at the time of startup of the exhaust heat source that heats and heats the exhaust heat source side heat medium using the heating heat medium as a heat source. In the exhaust heat utilization heating operation for heat exchange heating of the heating medium by exhaust heat recovery of, it is configured to be controlled to switch to the counter flow, and
The flow direction switching mechanism is configured to mutually switch between a parallel flow and a counter flow by reversing the flow directions of the heating medium with respect to the heating heat exchanger.
The heating circulation circuit includes, as a heating heat medium circulation flow path, a forward flow path for supplying the heating heat medium to the heating terminal, and a return flow for returning the heating heat medium after heat radiation at the heating terminal from the heating terminal. Road and
The exhaust heat recovery circulation circuit includes a heating heat exchanger such that the exhaust heat source side heat medium flows from one end side to the other end side with respect to one internal flow path in the heating heat exchanger and then returns to the exhaust heat source. Connected,
The flow direction switching mechanism bypasses the return flow path from the upstream branch point of the return flow path of the heating circulation circuit to the downstream merge point, and exchanges the heating heat medium returned by the return flow path for heating. A return bypass flow channel that flows from the other end side to the one end side relative to the other internal flow channel in the chamber, a first on-off valve that switches the return bypass flow channel, and a forward flow channel of the heating circulation circuit. A branch forward flow path for flowing the heating medium supplied by the forward flow path from one end side to the other end side with respect to the other internal flow path of the heating heat exchanger, and opening / closing switching of the branch forward flow path that is configured and a second on-off valve,
Co over generator system, characterized in that.
請求項に記載のコージェネシステムであって、
上記第1開閉弁は、暖房用熱交換器の一端側よりも下流側の戻りバイパス流路に介装されている、コージェネシステム。
The cogeneration system according to claim 1 ,
The first on-off valve is a cogeneration system that is interposed in a return bypass flow path downstream of one end side of the heating heat exchanger.
請求項又は請求項に記載のコージェネシステムであって、
上記流れ方向切換機構は、起動予熱運転においては第1開閉弁を閉状態に、第2開閉弁を開状態にそれぞれ切換制御する一方、排熱利用暖房運転においては上記第1開閉弁を開状態に、第2開閉弁を閉状態にそれぞれ切換制御するように構成されている、コージェネシステム。
The cogeneration system according to claim 1 or 2 ,
The flow direction switching mechanism switches the first on-off valve to the closed state and the second on-off valve to the open state in the startup preheating operation, and opens the first on-off valve in the exhaust heat utilization heating operation. And a cogeneration system configured to control each of the second on-off valves to be closed.
請求項〜請求項のいずれかに記載のコージェネシステムであって、
上記暖房循環回路は、暖房用熱媒を加熱する補助熱源機を備え、上記循環流路として、上記補助熱源機による加熱により高温にされた暖房用熱媒を高温用暖房端末に対し循環供給する高温往き流路と、低温の暖房用熱媒を低温用暖房端末に対し循環供給する低温往き流路とを備えており、
上記分岐往き流路は高温往き流路から分岐されている、コージェネシステム。
A cogeneration system according to any one of claims 1 to 3,
The heating circulation circuit includes an auxiliary heat source device that heats the heating heat medium, and circulates and supplies the heating heat medium heated to the high temperature by the heating by the auxiliary heat source device to the high temperature heating terminal as the circulation channel. A high-temperature flow path and a low-temperature flow path that circulates a low-temperature heating medium to the low-temperature heating terminal,
A cogeneration system in which the branch outgoing channel is branched from the high temperature outgoing channel.
請求項に記載のコージェネシステムであって、
上記排熱回収循環回路は、排熱源側熱媒が循環される循環流路に介装された貯留タンクを備え、
上記流れ方向切換機構は、上記貯留タンク内を強制加熱する再加熱運転において、第1開閉弁を閉状態に、第2開閉弁を開状態にそれぞれ切換制御して、補助熱源機により加熱された高温の暖房用熱媒を暖房用熱交換器に流すように構成されている、コージェネシステム。
The cogeneration system according to claim 4 ,
The exhaust heat recovery circuit includes a storage tank interposed in a circulation channel through which the exhaust heat source side heat medium is circulated,
In the reheating operation for forcibly heating the inside of the storage tank, the flow direction switching mechanism is controlled by switching the first on-off valve to the closed state and the second on-off valve to the open state, and is heated by the auxiliary heat source unit. A cogeneration system configured to flow a high-temperature heating medium through a heating heat exchanger.
請求項1〜請求項のいずれかに記載のコージェネシステムであって、
上記排熱源は燃料電池である、コージェネシステム。
The cogeneration system according to any one of claims 1 to 5 ,
A cogeneration system in which the exhaust heat source is a fuel cell.
請求項に記載のコージェネシステムであって、
上記燃料電池は固体高分子型燃料電池である、コージェネシステム。
The cogeneration system according to claim 6 ,
The fuel cell is a solid polymer fuel cell, a cogeneration system.
JP2009009480A 2009-01-20 2009-01-20 Cogeneration system Expired - Fee Related JP5375119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009009480A JP5375119B2 (en) 2009-01-20 2009-01-20 Cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009009480A JP5375119B2 (en) 2009-01-20 2009-01-20 Cogeneration system

Publications (2)

Publication Number Publication Date
JP2010169269A JP2010169269A (en) 2010-08-05
JP5375119B2 true JP5375119B2 (en) 2013-12-25

Family

ID=42701596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009009480A Expired - Fee Related JP5375119B2 (en) 2009-01-20 2009-01-20 Cogeneration system

Country Status (1)

Country Link
JP (1) JP5375119B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016096112A (en) * 2014-11-17 2016-05-26 東京瓦斯株式会社 Fuel cell system and control program thereof
CN114976108B (en) * 2022-06-17 2023-09-01 北京亿华通科技股份有限公司 Fuel cell cogeneration system and control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043232A (en) * 1990-05-10 1991-08-27 International Fuel Cells Corporation Fuel Preheating for a fuel processing system of a fuel cell power plant
JP2002063925A (en) * 2000-08-22 2002-02-28 Mitsubishi Heavy Ind Ltd Fuel cell system and operating method of fuel cell
JP4716352B2 (en) * 2004-07-21 2011-07-06 大阪瓦斯株式会社 Hot water storage hot water source
JP5170515B2 (en) * 2007-06-29 2013-03-27 株式会社ノーリツ Cogeneration system and storage tank unit

Also Published As

Publication number Publication date
JP2010169269A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
JP4296200B2 (en) Hot water system
JP6199977B2 (en) Hot water temperature control structure of exhaust heat recovery system using three-way valve or mixing valve, and hot water temperature control structure of exhaust heat recovery system using hot water tank heat exchanger
JP5333847B2 (en) Cogeneration system
JP2010236713A (en) Hot water storage type hot water supply system
JP2010151429A (en) Hot water storage and supply system
JP5311128B2 (en) Hot water storage hot water supply system
JP5375119B2 (en) Cogeneration system
JP2012057923A (en) Hot water supply system
JP2018527699A (en) Fuel cell system
JP2004179077A (en) Cogeneration system
JP3933543B2 (en) Heat medium supply device
JP6252762B2 (en) Hot water storage hot water system
JP2020153613A (en) Energy supply system
JP5973209B2 (en) Heat supply system
JP5445811B2 (en) Cogeneration system and storage tank side unit
JP2007132613A (en) Cogeneration system
JP6015924B2 (en) Hot water storage hot water system
JP2012057932A (en) Heating medium supply apparatus
JP2012225562A (en) Heat supply system
JP2010151428A (en) Hot water storage and supply system
JP2004053151A (en) Hot water supply device
JP2015158323A (en) Cogeneration system
JP4663926B2 (en) Heat recovery system
JP2016207581A (en) Fuel cell cogeneration system
JP4151442B2 (en) Waste heat utilization heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Ref document number: 5375119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees