JP2011242057A - Water supply control system and control method of the same - Google Patents

Water supply control system and control method of the same Download PDF

Info

Publication number
JP2011242057A
JP2011242057A JP2010114389A JP2010114389A JP2011242057A JP 2011242057 A JP2011242057 A JP 2011242057A JP 2010114389 A JP2010114389 A JP 2010114389A JP 2010114389 A JP2010114389 A JP 2010114389A JP 2011242057 A JP2011242057 A JP 2011242057A
Authority
JP
Japan
Prior art keywords
heat
primary
differential pressure
heat exchanger
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010114389A
Other languages
Japanese (ja)
Other versions
JP5558202B2 (en
Inventor
Shigeru Kawasaki
茂 川崎
Masashi Sakasai
雅史 坂齊
Yutaka Shoji
豊 荘司
Hiromasa Katsuragi
宏昌 桂木
Kenichi Sasajima
賢一 笹嶋
Kyohei Tanaka
亨平 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Energy Advance Co Ltd
Nihon Sekkei Inc
Original Assignee
Tokyo Gas Co Ltd
Energy Advance Co Ltd
Nihon Sekkei Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Energy Advance Co Ltd, Nihon Sekkei Inc filed Critical Tokyo Gas Co Ltd
Priority to JP2010114389A priority Critical patent/JP5558202B2/en
Publication of JP2011242057A publication Critical patent/JP2011242057A/en
Application granted granted Critical
Publication of JP5558202B2 publication Critical patent/JP5558202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a water supply control system that transfers the heat by a necessary minimum pump discharge pressure, and to provide a control method of the system.SOLUTION: The water supply control system includes: a primary-side pump 7 that circulates primary-side cold/warm water between a heat source 1 and a plurality of heat exchangers 2A, 2B; an inverter 7a controlling the number of rotation of the pump; a plurality of primary-side flow regulating valves V1, V2 regulating flow rates of the primary-side cold/warm water; pressure sensors 10, 11 detecting input and output pressures; a control device 8 that controls opening degrees of the plurality of primary-side flow regulating valves; a plurality of secondary-side pumps 12, 13; a plurality of flow rate sensors F1, F2 for secondary-side cold/warm water; and a plurality of temperature sensors T1 to T4 for measuring temperature. The control device calculates an appropriate flow amount of the primary-side cold/warm water in each heat exchanger based on the heat exchange quantity, calculates an optimal pressure difference of each heat exchanger, identifies a heat exchanger that most requires circulation pumping based on a difference between the optimal pressure difference and an actual pressure difference, and controls the number of revolutions of the pump through the inverter.

Description

本発明は、熱源機により生成された冷温水を複数の負荷機器へ送水するポンプの流量を制御する送水制御システムと、送水制御方法に係り、特に、最小の動力で複数の負荷機器へ送水できる送水制御システム及びその制御方法に関する。   The present invention relates to a water supply control system that controls the flow rate of a pump that supplies cold / hot water generated by a heat source device to a plurality of load devices, and a water supply control method, and in particular, can supply water to a plurality of load devices with minimum power. The present invention relates to a water supply control system and a control method thereof.

従来の地域冷暖房装置等で冷温水を搬送する送水制御システムにおいて、熱負荷の大きさに応じて搬送動力を低減する方法としては、往きヘッダーの吐出圧力が一定になるよう、複数台のポンプの運転台数やポンプの回転数をインバータにて制御する方法や、最も循環揚程を要求する配管経路を想定し、その経路が要求する送水圧力を流量から推定する、推定末端圧制御を採用するなどの方法がある。   In a water supply control system that transports cold / hot water using a conventional district heating / cooling system, etc., a method for reducing the transport power according to the heat load is to use multiple pumps so that the discharge pressure of the forward header is constant. A method of controlling the number of operating units and the number of pump revolutions with an inverter, a piping route that requires the most circulating head, and estimating the water supply pressure required by that route from the flow rate, adopting estimated terminal pressure control, etc. There is a way.

往きヘッダーの吐出圧力が一定になるよう複数台のポンプの運転台数やポンプの回転数を制御する方法では、配管経路が要求する最大揚程を随時把握することが難しい。そのため、揚程が不足して流量が減少することで熱交換量が不足してしまうことを避けるよう、往きヘッダーの吐出圧力を設定する必要がある。結果として、負荷機器の熱需要の大きさによっては、配管経路が必要とする揚程よりも高い圧力で送水している状態になることがある。また、推定末端圧制御は、推定の精度に搬送動力の削減効果が依存するため、より大きな削減効果を得るためには、推定の精度を上げることを目的とした煩雑なシステムのチューニングが必要となる。   In the method of controlling the number of pumps operated and the number of pump rotations so that the discharge pressure of the forward header becomes constant, it is difficult to grasp the maximum head required by the piping path as needed. Therefore, it is necessary to set the discharge pressure of the forward header so as to avoid a shortage of heat exchange due to a shortage of head and a decrease in flow rate. As a result, depending on the magnitude of the heat demand of the load equipment, water may be fed at a pressure higher than the head required by the piping path. In addition, since the estimated terminal pressure control depends on the reduction effect of the conveyance power on the estimation accuracy, complicated system tuning is required to increase the estimation accuracy in order to obtain a greater reduction effect. Become.

従来、この種の送水圧制御システムとしては、負荷機器からの還水に圧力を付加した送水を負荷機器に送水するポンプと、還水が入力されるポンプの入力側と送水が出力されるポンプの出力側とを接続するバイパスに設けられたバイパス弁と、末端の負荷機器に入力される送水の圧力を計測するセンサと、このセンサにより計測される圧力に基づいて、ポンプから出力される送水の圧力を設定する制御装置とを備えており、ポンプ揚程にかかるエネルギーを削減することが可能となり、結果として、さらなる省エネルギー化を実現することができるものである(例えば、特許文献1参照)。   Conventionally, as this type of water supply pressure control system, there are a pump for supplying water to which the pressure is added to the return water from the load device, a pump for supplying the return water, and a pump for outputting the water supply. A bypass valve provided in the bypass connecting to the output side of the power supply, a sensor for measuring the pressure of the water supplied to the load device at the end, and the water supplied from the pump based on the pressure measured by the sensor It is possible to reduce the energy required for the pump head, and as a result, further energy saving can be realized (see, for example, Patent Document 1).

また、他の送水圧制御システムは、冷温水を生成する熱源機と、この熱源機からの冷温水の往水管路と還水管路との間に設けられた複数の負荷機器と、これら負荷機器への熱源機からの冷温水の送水圧を制御する制御装置とを備え、負荷機器の各々は、自己の負荷機器に流れる冷温水の流量を負荷機器流量として計測する流量計測手段と、自己の負荷機器に流れる冷温水の流量を調整するバルブの入口側と出口側との間の差圧をバルブ差圧として計測する差圧計測手段とを備え、制御装置は、負荷機器毎に流量計測手段によって計測された負荷機器流量と差圧計測手段によって計測されたバルブ差圧とからその負荷機器の入力側と出力側との間に加わる差圧を負荷機器差圧として推定する負荷機器差圧推定手段と、この負荷機器差圧推定手段によって推定された負荷機器毎の負荷機器差圧中の最小値に基づいて熱源機からの負荷機器への冷温水の送水圧を設定する送水圧設定手段とを備え、末端に位置する負荷機器を探索する必要がなくなり、かつ末端に位置する負荷機器に末端差圧を計測するための専用の差圧センサを設置することなく、熱源機からの負荷機器への冷温水の送水圧を状況に応じて変更し、省エネルギーを図ることが可能となるものである(例えば、特許文献2参照)。   In addition, another water supply pressure control system includes a heat source device that generates cold / hot water, a plurality of load devices provided between the outlet and return water pipelines of the cold / hot water from the heat source device, and these load devices. A control device that controls the supply pressure of the cold / hot water from the heat source device to each of the load devices, and each load device has a flow rate measuring means for measuring the flow rate of the cold / warm water flowing to the load device as a load device flow rate, Differential pressure measuring means for measuring the differential pressure between the inlet side and outlet side of the valve for adjusting the flow rate of the cold / hot water flowing to the load equipment as the valve differential pressure, and the control device is provided with a flow rate measuring means for each load equipment. Load equipment differential pressure estimation that estimates the differential pressure applied between the input side and output side of the load equipment as the load equipment differential pressure from the load equipment flow rate measured by the valve and the valve differential pressure measured by the differential pressure measuring means Means and load device differential pressure estimating means Therefore, it is provided with a water supply pressure setting means for setting the water supply pressure of the cold / hot water from the heat source device to the load device based on the estimated minimum value in the load device differential pressure for each load device. There is no need to search, and the supply pressure of cold / hot water from the heat source unit to the load device can be adjusted according to the situation without installing a dedicated differential pressure sensor to measure the end differential pressure at the load device located at the end. Thus, energy saving can be achieved (for example, see Patent Document 2).

特開2005−299980号公報JP 2005-299980 A 特開2009−121722号公報JP 2009-121722 A

ところで、通常の送水制御システムにおいては、複数の熱の需要先に対して、ひとつの場所で製造した熱を搬送する際に、最も要求圧力の大きな負荷機器に通じる経路に合わせてポンプや送水圧力を設定している。しかしながら、設計段階で要求圧力の最も大きな経路が特定しづらいケースや、竣工後の改修工事などに伴い、最も要求圧力の大きい経路が変わるケースもある。   By the way, in a normal water supply control system, when transporting the heat produced in one place to a plurality of heat demand destinations, the pump and the water supply pressure are matched to the route leading to the load equipment with the largest required pressure. Is set. However, there are cases where it is difficult to identify the route with the highest required pressure at the design stage, and there are cases where the route with the highest required pressure changes due to repair work after completion.

前記特許文献1に記載の送水制御装置およびその方法では、物理的な末端にある熱交換器がポンプ揚程を支配する熱交換器としている。しかし、熱需要が大きい熱交換器が途中の経路で存在した場合、その熱交換器がポンプ揚程を支配する熱交換器となり得ることが考慮されていないため、ポンプ揚程を支配する熱交換器を正確に特定できないことが起き得る。   In the water supply control device and method described in Patent Document 1, the heat exchanger at the physical end is a heat exchanger that controls the pump head. However, if there is a heat exchanger with a large heat demand on the way, it is not considered that the heat exchanger can be a heat exchanger that dominates the pump head, so a heat exchanger that dominates the pump head Things that cannot be accurately identified can occur.

また、前記特許文献2に記載の送水圧制御システムは、負荷機器に取り付けられたコントロールバルブの差圧と、想定した負荷機器の差圧を合算し、最も小さい負荷機器の差圧にあわせて、ポンプの送水圧を制御する。この方法では、最も循環揚程を必要とする負荷機器を一意に決定できない。すなわち、コントロールバルブの差圧+負荷機器の差圧が同じ値でも、コントロールバルブが絞られている場合は、バルブの差圧が「大」、負荷機器の差圧が「小」、コントロールバルブが開いている場合は、バルブの差圧が「小」、負荷機器の差圧が「大」となり得る。従って、この技術では、末端に位置する負荷機器の制御バルブをさらに開き、ポンプの吐出圧を低減できるにもかかわらず、バルブが絞られたまま定常状態に陥る可能性がある。   In addition, the water pressure control system described in Patent Document 2 adds the differential pressure of the control valve attached to the load device and the assumed differential pressure of the load device, and according to the smallest differential pressure of the load device, Control the pumping water pressure. With this method, the load equipment that requires the most circulating head cannot be uniquely determined. That is, if the control valve is throttled even if the differential pressure of the control valve + the differential pressure of the load device is the same value, the differential pressure of the valve is “large”, the differential pressure of the load device is “small”, and the control valve is When open, the differential pressure of the valve can be “small” and the differential pressure of the load device can be “large”. Therefore, in this technique, although the control valve of the load device located at the end can be further opened and the discharge pressure of the pump can be reduced, there is a possibility that the valve remains in a steady state while being throttled.

本発明は、このような問題に鑑みてなされたものであって、その目的とするところは、複数の熱交換器の中から最も循環揚程を要求するものを、予め設定しておいた差圧(最適差圧)と、実測されたバルブ+熱交換器の差圧を比較することで探索して特定し、その熱交換器に合わせてポンプの回転数をインバータ制御することで、必要最小限のポンプ吐出圧力にて熱を搬送できる送水制御システムを提供することにある。   The present invention has been made in view of such problems, and the object of the present invention is to set a differential pressure that has been set in advance to the one that requires the most circulating head from among a plurality of heat exchangers. (Optimal differential pressure) and the measured differential pressure of the valve + heat exchanger are searched for and specified, and the number of revolutions of the pump is controlled by the inverter according to the heat exchanger. It is providing the water-feeding control system which can convey heat with the pump discharge pressure of.

前記目的を達成すべく、本発明に係る送水制御システムは、熱源機により生成された1次側冷温水を複数の熱交換器に送水し、該熱交換器を介して1次側冷温水の熱エネルギーを2次側冷温水に伝達して複数の熱利用機器に供給する送水制御システムであって、熱源機と複数の熱交換器との間に1次側冷温水を循環させる1次側ポンプと、該1次側ポンプの回転数を制御するインバータと、1次側冷温水を複数の熱交換器のそれぞれへ送水する管路の流量を調整する複数の1次側流量調整弁と、複数の熱交換器の流入管路及び流出管路における1次側冷温水の入出圧力を検出する圧力センサと、該圧力センサの圧力データに基づいて複数の1次側流量調整弁の開度を調整する制御装置とを備え、複数の熱交換器と複数の熱利用機器との間に2次側冷温水を送水する複数の2次側ポンプと、2次側冷温水の流量をそれぞれ測定する複数の流量センサと、複数の熱交換器に流入する2次側冷温水の温度と流出する2次側冷温水の温度を測定する複数の温度センサとをさらに備え、前記制御装置は、各流量センサの出力及び各温度センサのデータより、最も循環揚程を必要としている熱需要家を特定し、特定された熱需要家のデータに基づいて1次側ポンプの回転数をインバータで制御することを特徴としている。   In order to achieve the above object, a water supply control system according to the present invention supplies primary side cold / warm water generated by a heat source device to a plurality of heat exchangers, and the primary side cold / warm water passes through the heat exchanger. A water supply control system for transferring thermal energy to secondary side cold / hot water and supplying it to a plurality of heat utilization devices, wherein the primary side cold / hot water is circulated between a heat source device and a plurality of heat exchangers. A pump, an inverter for controlling the rotational speed of the primary pump, and a plurality of primary flow rate adjusting valves for adjusting the flow rate of pipes for supplying the primary side cold / hot water to each of the plurality of heat exchangers; A pressure sensor for detecting the inlet / outlet pressure of the primary side cold / hot water in the inlet and outlet pipes of the plurality of heat exchangers, and the opening degree of the plurality of primary side flow control valves based on the pressure data of the pressure sensor And a control device for adjusting, between the plurality of heat exchangers and the plurality of heat utilization devices. A plurality of secondary pumps for feeding the side cold / hot water, a plurality of flow sensors for measuring the flow rate of the secondary cold / hot water, and the temperature of the secondary cold / warm water flowing into the plurality of heat exchangers 2 A plurality of temperature sensors for measuring the temperature of the secondary side cold / hot water, and the control device identifies a heat consumer most requiring a circulation head from the output of each flow sensor and the data of each temperature sensor; The rotation speed of the primary pump is controlled by an inverter based on the data of the specified heat consumer.

前記のごとく構成された本発明の送水制御システムは、各流量センサの出力及び前記各温度センサのデータより、最も循環揚程を必要としている熱需要家を特定し、特定された熱需要家のデータに基づいて1次側ポンプの回転数をインバータで制御するため、熱需要に合わせて必要最小限の動力で1次側冷温水を複数の熱需要家に送水することができる。   The water supply control system of the present invention configured as described above specifies the heat consumer most requiring the circulation head from the output of each flow sensor and the data of each temperature sensor, and the data of the specified heat consumer Since the rotation speed of the primary side pump is controlled by the inverter based on the above, the primary side cold / hot water can be sent to a plurality of heat consumers with the minimum necessary power according to the heat demand.

また、本発明に係る送水制御システムの好ましい具体的な態様としては、前記制御装置は、前記各熱交換器の2次側における各熱利用機器の熱需要量を算出し、算出された熱需要量より各熱交換器に適正な1次側冷温水の流量を算出し、該流量に基づいてバルブ開度が全開であった場合の各熱交換器に適正な差圧(以下、「最適差圧」と表記)を算出し、該最適差圧と実際の差圧との差から最も循環揚程を必要としている熱需要家を特定することを特徴としている。   Moreover, as a preferable specific aspect of the water supply control system according to the present invention, the control device calculates a heat demand amount of each heat utilization device on the secondary side of each heat exchanger, and calculates the calculated heat demand. The flow rate of primary cold / hot water appropriate for each heat exchanger is calculated from the amount, and the appropriate differential pressure (hereinafter referred to as “optimal difference” for each heat exchanger when the valve opening is fully open based on the flow rate. And the heat consumer most requiring the circulation head is identified from the difference between the optimum differential pressure and the actual differential pressure.

この構成によれば、各熱需要家の2次側冷温水の流量と、各熱交換器に流入する冷温水の温度、及び各熱交換器から流出する冷温水の温度により各熱需要家の必要とする熱エネルギー(熱需要量)を算出し、この熱需要量より各熱交換器に適正な1次側冷温水の流量を算出し、該流量に基づいて各熱交換器に適正な最適差圧を算出し、該最適差圧と実際の差圧との差より最も循環揚程の要る需要家を特定して、1次側ポンプの回転数をインバータで制御するため、熱需要に合わせて必要最小限の動力で送水することができる。   According to this configuration, the flow of secondary cold / hot water of each heat consumer, the temperature of cold / warm water flowing into each heat exchanger, and the temperature of cold / warm water flowing out of each heat exchanger, Calculate the required heat energy (heat demand), calculate the appropriate primary-side cold / hot water flow rate for each heat exchanger from this heat demand amount, and optimize the appropriate heat exchanger based on the flow rate Calculates the differential pressure, identifies the consumer who requires the most circulation head from the difference between the optimum differential pressure and the actual differential pressure, and controls the rotation speed of the primary pump with an inverter. The water can be sent with the minimum necessary power.

さらに、本発明に係る送水制御システムの好ましい具体的な他の態様としては、前記制御装置は、前記複数の熱需要家の最適差圧と実際の差圧とのそれぞれの差を比較し、前記差圧と最適差圧の差が最も小さい熱交換器を備える熱需要家を最も循環揚程を必要としている熱需要家と特定し、その熱交換器における差圧が最適差圧以上のとき1次側ポンプの回転数をインバータで減少させることを特徴としている。この構成によれば、最も循環揚程を必要としていると特定された熱需要家の最適差圧と実際の差圧との差を比較し、実際の差圧が最適差圧以上のとき1次側ポンプの回転数を減少させ、実際の差圧が最適差圧未満のとき1次側ポンプの回転数を増加することで、熱需要家が要求する循環揚程に適したポンプ制御を行なうことができる。   Furthermore, as another preferable specific aspect of the water supply control system according to the present invention, the control device compares the difference between the optimum differential pressure and the actual differential pressure of the plurality of heat consumers, and When a heat consumer having a heat exchanger with the smallest difference between the differential pressure and the optimum differential pressure is identified as a heat consumer requiring the most circulation head, and the differential pressure in the heat exchanger is greater than or equal to the optimum differential pressure, the primary It is characterized in that the rotation speed of the side pump is reduced by an inverter. According to this configuration, the difference between the optimum differential pressure and the actual differential pressure of the heat consumer identified as requiring the most circulating head is compared, and when the actual differential pressure is greater than or equal to the optimum differential pressure, the primary side By reducing the number of rotations of the pump and increasing the number of rotations of the primary pump when the actual differential pressure is less than the optimum differential pressure, it is possible to perform pump control suitable for the circulation head required by the heat consumer. .

また、本発明の送水制御システムでは、制御装置は、算出された各熱交換器に適正な1次側冷温水の流量に基づいて最適差圧をマップより算出することが好ましい。このように構成することで、最適差圧を容易に算出することができ、マップを変更することで制御のチューニングを容易に行なうことができる。   Moreover, in the water supply control system of this invention, it is preferable that a control apparatus calculates optimal differential pressure | voltage from a map based on the flow volume of primary side cold / warm water appropriate for each calculated heat exchanger. With this configuration, the optimum differential pressure can be easily calculated, and control tuning can be easily performed by changing the map.

本発明の送水制御システムは、各1次側冷温水の熱源機への還り温度を測定する温度センサ及び弁制御装置をさらに備え、該弁制御装置は、温度センサの還り温度と設定値とを比較し、冷水搬送時には前記還り温度が設定値以上のときには流量調整弁の開度を増加させ、前記還り温度が設定値未満のときには前記流量調整弁の開度を減少させるように制御し、温水搬送時にはその逆の制御を行うことを特徴としている。この構成によれば、最も循環揚程を必要としていると特定された熱需要家に応じたポンプ制御を行いつつ、他の需要家は熱交換器の冷温水の入出口温度差を確保することができ、省エネルギーを達成することができる。   The water supply control system of the present invention further includes a temperature sensor and a valve control device for measuring a return temperature of each primary side cold / warm water to the heat source unit, and the valve control device uses the return temperature of the temperature sensor and a set value. In comparison, when the return temperature is higher than a set value during cold water conveyance, the opening of the flow rate adjustment valve is increased, and when the return temperature is lower than the set value, the opening of the flow rate adjustment valve is decreased. The reverse control is performed at the time of conveyance. According to this configuration, while performing pump control according to the heat consumer identified as requiring the most circulating head, other customers can ensure the temperature difference between the inlet and outlet of the cold / hot water of the heat exchanger. And energy saving can be achieved.

また、本発明の送水制御システムは、各1次側冷温水の熱交換器へ入る往き温度と、熱交換器から出る還り温度を測定する温度センサ及び弁制御装置をさらに備え、弁制御装置は、温度センサの往き温度と還り温度との往還温度差と設定値とを比較し、前記往還温度差が設定値以上のときには流量調整弁の開度を増加させるように制御するように構成すると好ましい。この構成によれば、1次側冷温水の熱交換器へ入る往き温度が想定から外れた場合でも対応可能な制御システムへと発展することができる。   The water supply control system according to the present invention further includes a temperature sensor and a valve control device for measuring a forward temperature entering the heat exchanger of each primary side cold / hot water and a return temperature coming out of the heat exchanger, and the valve control device includes: It is preferable to compare the return temperature difference between the return temperature and the return temperature of the temperature sensor with the set value, and to control to increase the opening of the flow rate adjusting valve when the return temperature difference is equal to or greater than the set value. . According to this structure, it can develop into the control system which can respond even when the going temperature which enters into the heat exchanger of primary side cold / hot water deviates from assumption.

本発明に係る送水制御システムの制御方法は、熱源機により生成された1次側冷温水を回転数制御できるポンプにより複数の熱交換器に送水し、該熱交換器を介して1次側冷温水の熱エネルギーを2次側冷温水に伝達して複数の熱利用機器に供給する送水制御システムの制御方法であって、熱交換器の2次側において、2次側冷温水の流入温度、流出温度、及び流量より各熱需要家の熱需要量(要求熱エネルギー)を算出し、算出された熱需要量より1次側の熱交換器に必要な1次側冷温水の流量を算出し、算出された1次側冷温水の流量より各熱交換器に最適な1次側最適差圧を算出し、複数の熱交換器の1次側に流入流出する1次側差圧を測定し、測定された各熱交換器の1次側差圧と、1次側最適差圧とに基づいて最も循環揚程の要求の大きい熱需要家を特定し、特定された熱需要家の1次側冷温水の流量を調整する流量調整弁を全開または弁開度を所定値に開いたあとポンプの回転数を変化させて1次側ポンプの回転数を変更することを特徴としている。   The control method of the water supply control system according to the present invention is such that the primary side cold / warm water generated by the heat source unit is fed to a plurality of heat exchangers by a pump capable of controlling the number of revolutions, and the primary side cold / warm water is passed through the heat exchanger. A control method of a water supply control system that transmits thermal energy of water to secondary side cold / hot water and supplies it to a plurality of heat utilization devices, wherein the inflow temperature of secondary side cold / warm water on the secondary side of the heat exchanger, Calculate the heat demand (required heat energy) of each heat consumer from the outflow temperature and flow rate, and calculate the primary cold / hot water flow rate required for the primary heat exchanger from the calculated heat demand. The optimal primary side differential pressure for each heat exchanger is calculated from the calculated primary side cold / hot water flow, and the primary side differential pressure flowing into and out of the primary side of the plurality of heat exchangers is measured. Based on the measured primary side differential pressure and primary side optimum differential pressure of each heat exchanger, the most required circulating head Specify a large heat consumer, fully open the flow rate adjustment valve that adjusts the flow rate of the primary side cold / hot water of the identified heat consumer, or open the valve opening to a predetermined value and then change the pump speed to 1 It is characterized by changing the rotation speed of the secondary pump.

各熱交換器に最適な1次側最適差圧を算出する工程は、マップを用いて行なうことが好ましく、熱交換器の1次側冷温水の差圧が1次側最適差圧以上のときにポンプの回転数を減少させることが好ましい。さらに、送水制御システムの制御方法は、最も循環揚程の要求が大きいと特定された熱需要家以外の熱需要家に対する工程として、前記1次側冷温水の還り温度が設定値以上のときに前記流量調整弁の開度を増加させ、設定値未満のとき流量調整弁の開度を減少させるように制御することを特徴としている。また、各熱交換器の1次側冷温水の往還温度差が設定値以上のときに1次側冷温水の流量を調整する流量調整弁の開度を増加させ、前記往還温度差が設定値未満のときには前記流量調整弁の開度を減少させるように制御してもよい。   The step of calculating the optimum primary side differential pressure optimum for each heat exchanger is preferably performed using a map, and when the primary side cold / hot water differential pressure of the heat exchanger is equal to or greater than the primary side optimum differential pressure. It is preferable to reduce the rotational speed of the pump. Furthermore, the control method of the water supply control system is a process for a heat consumer other than the heat consumer identified as having the greatest demand for the circulation head, when the return temperature of the primary side cold / hot water is equal to or higher than a set value. Control is performed such that the opening degree of the flow rate adjusting valve is increased and the opening degree of the flow rate adjusting valve is decreased when it is less than the set value. In addition, when the return temperature difference of the primary side cold / hot water of each heat exchanger is greater than or equal to the set value, the opening degree of the flow adjustment valve that adjusts the flow rate of the primary side cold / warm water is increased, and the return temperature difference becomes the set value. When it is less than the range, the flow rate adjustment valve may be controlled to decrease the opening.

このように構成された制御方法によれば、各熱需要家の要求する循環揚程を把握し、その中から最も循環揚程を要求する熱需要家に合わせて1次側冷温水のポンプ吐出圧を調整するため、需要家が要求する循環揚程に合わせて必要最小限の動力で1次側冷温水を送水することができる。   According to the control method configured as described above, the circulation head required by each heat consumer is grasped, and the pump discharge pressure of the primary side cold / hot water is adjusted in accordance with the heat consumer most requiring the circulation head from among them. In order to adjust, primary side cold / hot water can be sent with the minimum necessary power according to the circulation head which a consumer demands.

本発明の送水制御システム及びその制御方法は、一つの場所(熱製造プラント)で製造した熱を搬送する際に、必要最小限の動力で複数の熱交換器に効率良く熱を送り届けることができる。また、配管系の末端圧制御の精度を高めるための煩雑なチューニングが不要となり、容易に省エネルギーを達成することができる。さらに、熱交換器の1次側と2次側で熱交換量が急激に変化した場合でも制御系が不安定になることを防止できる。   The water supply control system and the control method thereof according to the present invention can efficiently deliver heat to a plurality of heat exchangers with the minimum necessary power when transporting the heat produced in one place (heat production plant). . Further, complicated tuning for increasing the accuracy of the terminal pressure control of the piping system becomes unnecessary, and energy saving can be easily achieved. Furthermore, it is possible to prevent the control system from becoming unstable even when the heat exchange amount changes suddenly between the primary side and the secondary side of the heat exchanger.

本発明に係る送水制御システムの一実施形態の要部構成を示すブロック図。The block diagram which shows the principal part structure of one Embodiment of the water supply control system which concerns on this invention. 図1の送水制御システムの冷温水を送水するポンプを制御すると共に、冷温水の流量を調整する流量調整弁を制御する動作を示す冷水搬送時のフローチャート。The flowchart at the time of the cold water conveyance which shows the operation | movement which controls the flow rate adjustment valve which controls the pump which supplies the cold / hot water of the water supply control system of FIG. 図1の送水制御システムの冷温水を送水するポンプを制御すると共に、冷温水の流量を調整する流量調整弁を制御する動作を示す温水搬送時のフローチャート。The flowchart at the time of the hot water conveyance which shows the operation | movement which controls the flow rate adjustment valve which controls the pump which supplies the cold / hot water of the water supply control system of FIG. 本発明に係る送水制御システムの他の実施形態の要部構成を示すブロック図。The block diagram which shows the principal part structure of other embodiment of the water supply control system which concerns on this invention. 図4の送水制御システムの冷温水を送水するポンプを制御すると共に、冷温水の流量を調整する流量調整弁を制御する動作を示すフローチャート。The flowchart which shows the operation | movement which controls the flow rate adjustment valve which adjusts the flow volume of cold / hot water while controlling the pump which supplies cold / hot water of the water supply control system of FIG.

以下、本発明に係る送水制御システム及びその制御方法の一実施形態を図面に基づき詳細に説明する。図1のブロック図は、本実施形態に係る送水制御システムの概略構成を示しており、図2のフローチャートは、図1の送水制御システムの冷温水を送水するポンプの回転数を増減させる制御を示すと共に、流量調整弁を開閉して1次側冷温水の流量を調整する制御を示している。   Hereinafter, an embodiment of a water supply control system and a control method thereof according to the present invention will be described in detail with reference to the drawings. The block diagram of FIG. 1 shows a schematic configuration of a water supply control system according to the present embodiment, and the flowchart of FIG. 2 performs control to increase or decrease the rotation speed of a pump that supplies cold / hot water of the water supply control system of FIG. In addition, control for adjusting the flow rate of the primary side cold / hot water by opening and closing the flow rate adjustment valve is shown.

図1において、本実施形態の送水制御システムは、地域冷暖房装置等で熱を搬送する冷温水の送水に最適な送水制御システムであり、熱源機1により生成された1次側冷温水を複数の熱需要家A,B…の負荷機器である熱交換器2A,2B…に送出し、該熱交換器を介して1次側冷温水の熱エネルギーを2次側冷温水に伝達し複数の熱利用機器3A,3B…に供給する送水制御システムである。熱利用機器とは、例えば空気調和機があり、複数の熱利用機器に熱エネルギーを送るときには往路導管5aの端部に往路ヘッダー(図示せず)を接続し、還路導管5bの端部に還路ヘッダー(図示せず)を接続して冷温水を分配することが好ましい。1次側冷温水は冷房用のときは7℃程度、暖房用のときは50℃程度に設定されることが多い。   In FIG. 1, the water supply control system of the present embodiment is a water supply control system that is optimal for water supply of cold / hot water that conveys heat by a district cooling / heating device or the like, and a plurality of primary-side cold / hot water generated by the heat source device 1 Are sent to the heat exchangers 2A, 2B, ..., which are the load devices of the heat consumers A, B ..., and the heat energy of the primary side cold / warm water is transmitted to the secondary side cold / hot water via the heat exchanger, and a plurality of heat It is a water supply control system supplied to utilization apparatus 3A, 3B .... The heat utilization device is, for example, an air conditioner. When heat energy is sent to a plurality of heat utilization devices, a forward header (not shown) is connected to the end of the forward conduit 5a, and the return conduit 5b is connected to the end of the return conduit 5b. It is preferable to connect the return path header (not shown) and distribute cold / hot water. The primary side cold / warm water is often set to about 7 ° C. for cooling and about 50 ° C. for heating.

1次側の冷温水は熱源機1から導管4を通して各熱需要家の熱交換器2A,2B…に送水され、熱源機1に戻る構成となっている。導管4の往路4a、及び分岐された往路4cには流量調整弁V1,V2が設置され、熱交換器2A,2B…への1次側冷温水の流量を調整している。熱交換器2A,2B…は、1次側冷温水の熱エネルギーを2次側冷温水に伝達するものである。   The primary-side cold / hot water is sent from the heat source unit 1 through the conduit 4 to the heat exchangers 2A, 2B... Of each heat consumer and returned to the heat source unit 1. Flow control valves V1, V2 are installed in the forward path 4a of the conduit 4 and the branched forward path 4c to adjust the flow rate of the primary side cold / hot water to the heat exchangers 2A, 2B. The heat exchangers 2A, 2B,... Transmit the heat energy of the primary side cold / warm water to the secondary side cold / warm water.

2次側冷温水は熱需要家ごとの複数の熱交換器2A,2B…と、これに接続された複数の熱利用機器3A,3B…とを導管5,6を通して循環する構成となっている。1次側の導管4は往路4aと分岐された往路4c、還路4bと分岐された還路4dとを備えており、熱交換器2Aの2次側の導管5も往路5aと還路5bとを備えており、熱交換器2Bの2次側の導管6も往路6aと還路6bとを備えている。   The secondary cold / hot water circulates through a plurality of heat exchangers 2A, 2B... For each heat consumer and a plurality of heat utilization devices 3A, 3B. . The primary side conduit 4 includes an outward route 4a and a branched outward route 4c, and a return route 4b and a branched return route 4d. The secondary side conduit 5 of the heat exchanger 2A is also connected to the outward route 5a and the return route 5b. The secondary side conduit 6 of the heat exchanger 2B also includes an outward path 6a and a return path 6b.

本実施形態の送水制御システムは、熱源機1と、この熱源機で生成された1次側冷温水を搬送するポンプ7と、ポンプ7の回転数を制御するインバータ7a、及びインバータを制御するインバータ制御装置8で共通の熱プラントを構成し、複数の熱需要家は導管4の流量調整弁V1,V2より下流側と規定され、熱プラントと複数の熱需要家A,B…との間を往路と還路からなる導管4で接続して構成される。   The water supply control system of the present embodiment includes a heat source unit 1, a pump 7 that conveys primary cold / hot water generated by the heat source unit, an inverter 7a that controls the rotational speed of the pump 7, and an inverter that controls the inverter. The control device 8 constitutes a common heat plant, and the plurality of heat consumers are defined as downstream of the flow rate adjusting valves V1, V2 of the conduit 4, and between the heat plant and the plurality of heat consumers A, B. It is configured by connecting with a conduit 4 comprising an outward path and a return path.

また、本実施形態の制御装置8は、インバータ制御装置8aと、弁制御装置8bとから構成されている。インバータ制御装置8aは、各種のセンサから入力されるデータに基づいてポンプ7のインバータ7aへの周波数を変更してポンプの回転を制御し、弁制御装置8bは同様に各種センサからのデータに基づいて流量調整弁V1,V2の開度を調整するものである。   Further, the control device 8 of this embodiment includes an inverter control device 8a and a valve control device 8b. The inverter control device 8a controls the rotation of the pump by changing the frequency to the inverter 7a of the pump 7 based on data input from various sensors, and the valve control device 8b is similarly based on the data from various sensors. Thus, the opening degree of the flow rate adjusting valves V1, V2 is adjusted.

熱需要家ごとの導管構成は、基本的には同じであるので、第1の熱需要家Aについて詳細に説明する。1次側の導管4の往路4aには1次側のポンプ7が設置される。ポンプ7はインバータ7aが付属され、インバータ制御装置8からの信号により周波数を変更することでその回転数を変更し、ポンプの送水能力を変更できる構成となっている。ポンプ7と熱交換器2Aとの間に、1次側の冷温水の流量を調整するための流量調整弁V1が設置されている。そして、インバータ制御装置8aでは熱交換量に応じた最適差圧(バルブ開度全開の場合のバルブ入口と熱交換器出口の差圧)を演算する。   Since the conduit configuration for each heat consumer is basically the same, the first heat consumer A will be described in detail. A primary pump 7 is installed in the forward path 4 a of the primary side conduit 4. The pump 7 is provided with an inverter 7a, and has a configuration in which the rotation speed can be changed by changing the frequency by a signal from the inverter control device 8, and the water supply capacity of the pump can be changed. Between the pump 7 and the heat exchanger 2A, a flow rate adjustment valve V1 for adjusting the flow rate of the cold water on the primary side is installed. Then, the inverter control device 8a calculates the optimum differential pressure (differential pressure between the valve inlet and the heat exchanger outlet when the valve opening is fully opened) according to the heat exchange amount.

そして、1次側の導管4の往路4aと還路4bの間には、差圧センサ10が設置されている。差圧センサ10は往路4aの圧力P1と、還路4bの圧力P2との差圧ΔP12を測定するものであり、差圧センサのデータは制御装置8に入力されている。差圧センサ10で計測された実測値とインバータ制御装置8aにて演算された最適差圧を比較することで最も循環揚程を要求する熱交換器を特定する。すなわち、熱交換器2A,2B…ごとに最適差圧と実測差圧を比較し、最適差圧と実測差圧の差の最も小さい熱交換器が、最も循環揚程を必要とする熱交換器であると判断する。また、還路4bには温度センサTaが設置されており、この温度センサは熱交換器2Aから流出する1次側冷温水の温度を測定するものである。この温度センサTaの出力は制御装置8に入力されている。弁制御装置8bは温度センサTaの出力に基づいて流量調整弁V1の開度を調整する構成となっている。   A differential pressure sensor 10 is installed between the forward path 4a and the return path 4b of the primary side conduit 4. The differential pressure sensor 10 measures a differential pressure ΔP12 between the pressure P1 of the forward path 4a and the pressure P2 of the return path 4b, and data of the differential pressure sensor is input to the control device 8. By comparing the actual measurement value measured by the differential pressure sensor 10 with the optimum differential pressure calculated by the inverter control device 8a, the heat exchanger that most requires the circulation head is specified. That is, the optimum differential pressure and the measured differential pressure are compared for each of the heat exchangers 2A, 2B..., And the heat exchanger having the smallest difference between the optimum differential pressure and the measured differential pressure is the heat exchanger that requires the most circulating head. Judge that there is. In addition, a temperature sensor Ta is installed in the return path 4b, and this temperature sensor measures the temperature of the primary side cold / warm water flowing out of the heat exchanger 2A. The output of the temperature sensor Ta is input to the control device 8. The valve control device 8b is configured to adjust the opening degree of the flow rate adjusting valve V1 based on the output of the temperature sensor Ta.

熱交換器2Aの2次側では、往路5aと還路5bとを有する導管5が接続され、往路5aと還路5bとの末端には熱利用機器3Aが接続されている。往路5aの途中には2次側ポンプ12が設置されており、このポンプにより熱交換器2Aと熱利用機器3Aとの間に2次側冷温水を循環させる構成となっている。往路導管5aと還路導管5bとの間に調整弁V3が設置され、調整弁V3と熱交換器2Aとの間の還路に調整弁V4が設置されている。   On the secondary side of the heat exchanger 2A, a conduit 5 having an outward path 5a and a return path 5b is connected, and a heat utilization device 3A is connected to the ends of the outward path 5a and the return path 5b. A secondary pump 12 is installed in the middle of the forward path 5a, and the secondary cold / hot water is circulated between the heat exchanger 2A and the heat utilization device 3A by this pump. A regulating valve V3 is installed between the forward conduit 5a and the return conduit 5b, and a regulating valve V4 is installed in the return channel between the regulating valve V3 and the heat exchanger 2A.

また、往路導管の2次側ポンプ12の下流には流量センサF1が設置され、2次側冷温水の熱交換器2Aから流出する側と、熱交換器2Aに流入する側に、それぞれ温度センサT1,T2が設置されている。温度センサT1が熱交換器2Aから出る2次側冷温水の温度を測定し、温度センサT2が熱交換器2Aに入る2次側冷温水の温度を測定する。流量センサF1、温度センサT1,T2の出力は制御装置8に入力されている。この構成により、制御装置8は差圧センサ10、温度センサTa、温度センサT1,T2、流量センサF1の出力に基づいてポンプ7のインバータ7aへ供給する周波数を算出し、インバータ制御装置8aが1次側冷温水のポンプ7の回転数を増減する制御を行い、1次側冷温水のポンプ7の能力を制御する構成となっている。   Further, a flow rate sensor F1 is installed downstream of the secondary side pump 12 of the forward conduit, and the temperature sensors are respectively provided on the side flowing out from the heat exchanger 2A of the secondary side cold / hot water and the side flowing into the heat exchanger 2A. T1 and T2 are installed. The temperature sensor T1 measures the temperature of the secondary side cold / hot water exiting from the heat exchanger 2A, and the temperature sensor T2 measures the temperature of the secondary side cold / warm water entering the heat exchanger 2A. The outputs of the flow sensor F1 and the temperature sensors T1 and T2 are input to the control device 8. With this configuration, the control device 8 calculates the frequency to be supplied to the inverter 7a of the pump 7 based on the outputs of the differential pressure sensor 10, the temperature sensor Ta, the temperature sensors T1 and T2, and the flow rate sensor F1, and the inverter control device 8a is 1. Control is performed to increase / decrease the number of rotations of the pump 7 of the secondary side cold / hot water, and the capacity of the pump 7 of the primary side cold / hot water is controlled.

2番目の熱需要家Bについては、基本的には1番目の熱需要家Aと同等の構成であり、分岐された往路4c、還路4dが熱交換器2Bに接続され、導管4の往路4cと還路4dの間には、差圧センサ11が設置されている。差圧センサ11は往路4cの圧力P1と、還路4dの圧力P2との差圧ΔP12を測定するものであり、差圧センサの出力はインバータ制御装置8に入力されている。また、還路4dには温度センサTbが設置されており、この温度センサは熱交換器2Bから流出する1次側冷温水の温度を測定するものである。この温度センサTbの出力は制御装置8に入力されている。弁制御装置8bは温度センサTbの出力に基づいて流量調整弁V2の開度を調整する構成となっている。   The second heat consumer B has basically the same structure as the first heat consumer A, and the branched forward path 4 c and return path 4 d are connected to the heat exchanger 2 B, and the forward path of the conduit 4. A differential pressure sensor 11 is installed between 4c and the return path 4d. The differential pressure sensor 11 measures a differential pressure ΔP12 between the pressure P1 of the forward path 4c and the pressure P2 of the return path 4d, and the output of the differential pressure sensor is input to the inverter control device 8. Further, a temperature sensor Tb is installed in the return path 4d, and this temperature sensor measures the temperature of the primary side cold / hot water flowing out from the heat exchanger 2B. The output of the temperature sensor Tb is input to the control device 8. The valve control device 8b is configured to adjust the opening of the flow rate adjustment valve V2 based on the output of the temperature sensor Tb.

2番目の熱需要家Bの熱交換器2Bの2次側では、往路6aと還路6bとを有する導管6が接続され、往路6aと還路6bとの末端には空調機等の熱利用機器3Bが接続されている。往路6aの途中には2次側ポンプ13が設置されており、このポンプにより熱交換器2Bと熱利用機器3Bとの間に2次側冷温水を循環させる構成となっている。往路導管6aと還路導管6bとの間に調整弁V5が設置され、調整弁V5と熱交換器2Bとの間の還路に調整弁V6が設置されている。   On the secondary side of the heat exchanger 2B of the second heat consumer B, a conduit 6 having an outward path 6a and a return path 6b is connected, and heat terminals such as an air conditioner are used at the ends of the outward path 6a and the return path 6b. Device 3B is connected. A secondary pump 13 is installed in the middle of the forward path 6a, and the secondary cold / hot water is circulated between the heat exchanger 2B and the heat utilization device 3B by this pump. A regulating valve V5 is installed between the forward conduit 6a and the return conduit 6b, and a regulating valve V6 is installed in the return channel between the regulating valve V5 and the heat exchanger 2B.

また、往路導管の2次側ポンプ13の下流には流量センサF2が設置され、2次側冷温水の熱交換器2Bから流出する側と、熱交換器2Bに流入する側に、それぞれ温度センサT3,T4が設置されている。温度センサT3が熱交換器2Bから出る2次側冷温水の温度を測定し、温度センサT4が熱交換器2Bに入る2次側冷温水の温度を測定する。流量センサF2、温度センサT3,T4の出力は制御装置8に入力されている。この構成により、制御装置8は差圧センサ11、温度センサTb、温度センサT3,T4、流量センサF2の出力に基づいてポンプ7のインバータ7aへ供給する周波数を算出し、インバータ制御装置8aが1次側冷温水のポンプ7の回転数を増減する制御を行い、1次側冷温水のポンプ7の圧力を制御する構成となっている。   Further, a flow rate sensor F2 is installed downstream of the secondary side pump 13 of the forward conduit, and the temperature sensors are respectively provided on the side flowing out from the heat exchanger 2B of the secondary side cold / hot water and the side flowing into the heat exchanger 2B. T3 and T4 are installed. The temperature sensor T3 measures the temperature of the secondary side cold / hot water exiting from the heat exchanger 2B, and the temperature sensor T4 measures the temperature of the secondary side cold / warm water entering the heat exchanger 2B. Outputs from the flow sensor F2 and the temperature sensors T3 and T4 are input to the control device 8. With this configuration, the control device 8 calculates the frequency to be supplied to the inverter 7a of the pump 7 based on the outputs of the differential pressure sensor 11, the temperature sensor Tb, the temperature sensors T3 and T4, and the flow rate sensor F2, and the inverter control device 8a is 1. Control is performed to increase / decrease the rotation speed of the pump 7 of the secondary side cold / hot water, and the pressure of the pump 7 of the primary side cold / hot water is controlled.

このように構成された本実施形態の送水制御システムの制御方法について、図2の冷水搬送時のフローチャートを参照して説明する。制御装置8は、ステップS1で各熱熱需要家の受入2次側における熱需要量を算出する。すなわち、熱交換器2Aの2次側における2次側冷温水の流量を流量計で測定し、2次側冷温水の熱交換器から出る出口温度を温度センサで測定し、2次側冷温水の熱交換器へ入る入口温度を温度センサで測定し、2つの温度センサの温度差と流量に基づいて各熱需要家の熱需要量を算出する。   A control method of the water supply control system of the present embodiment configured as described above will be described with reference to the flowchart of FIG. The control device 8 calculates the amount of heat demand on the receiving secondary side of each thermal heat consumer in step S1. That is, the flow rate of the secondary side cold / hot water on the secondary side of the heat exchanger 2A is measured with a flow meter, the outlet temperature from the secondary side cold / warm water heat exchanger is measured with a temperature sensor, and the secondary side cold / hot water is measured. The temperature at the entrance to the heat exchanger is measured with a temperature sensor, and the heat demand of each heat consumer is calculated based on the temperature difference and flow rate of the two temperature sensors.

このあと、ステップS1で算出した各熱需要家の熱需要量に基づいて、ステップS2で各熱交換器の適正な1次側冷温水の流量(Fs)を算出する。また、ステップS3では、ステップS2で算出した1次側冷温水の流量から、マップMを用いて各熱交換器の適正な1次側差圧(最適差圧ΔPs)を算出する。マップMを用いることで、算出が容易に行え、マップを修正することで制御のチューニングが容易に行える。また、マップを用いることで、熱交換量の過渡的な変動が発生した際に制御系が不安定になることを防止できる。   Thereafter, based on the heat demand of each heat consumer calculated in step S1, an appropriate primary side cold / hot water flow rate (Fs) of each heat exchanger is calculated in step S2. In step S3, an appropriate primary differential pressure (optimal differential pressure ΔPs) of each heat exchanger is calculated from the flow rate of the primary cold / hot water calculated in step S2 using the map M. Calculation can be easily performed by using the map M, and control tuning can be easily performed by correcting the map. Moreover, by using the map, it is possible to prevent the control system from becoming unstable when a transient change in the heat exchange amount occurs.

一方、熱交換器の1次側では、各熱交換器の実際の1次側往還差圧(ΔP12)を取得する。すなわち、ステップS4で、熱交換器に流入する1次側冷温水の入口圧力P1と、熱交換器から流出する1次側冷温水の出口圧力P2より実際の差圧(ΔP12)を求める。そして、ステップS5では、ステップS3で算出した最適差圧ΔPsと、ステップS4で取得した1次側往還差圧ΔP12との差より、最も循環揚程の要る熱需要家を特定する。すなわち、複数の熱需要家の内、最適差圧ΔPsと1次側往還差圧ΔP12との差の小さい需要家を最も循環揚程を要求する需要家として特定する。   On the other hand, on the primary side of the heat exchanger, the actual primary side return pressure (ΔP12) of each heat exchanger is acquired. That is, in step S4, an actual differential pressure (ΔP12) is obtained from the inlet pressure P1 of the primary side cold / hot water flowing into the heat exchanger and the outlet pressure P2 of the primary side cold / warm water flowing out of the heat exchanger. In step S5, the heat consumer requiring the most circulation head is specified from the difference between the optimum differential pressure ΔPs calculated in step S3 and the primary-side return differential pressure ΔP12 acquired in step S4. That is, among the plurality of heat consumers, a consumer having a small difference between the optimum differential pressure ΔPs and the primary side return differential pressure ΔP12 is specified as the customer requiring the most circulation head.

そして、特定された熱需要家に対して、ステップS6で流量調整弁の開度を所定値に開く、あるいは開度を全開する。この工程で、流量調整弁の開度を所定値に開くとは、予め設定されたステップだけ開くことであり、全開にすることでポンプの消費電力を最小にすることができるが、急激な変化による制御の不安定を防止するために、段階的に開くように選択している。このあと、ステップS7で各熱交換器1次側往還差圧ΔP12が目標値である最適差圧ΔPs以上かを判断し、以上である場合はステップS8でポンプインバータの周波数を減少させ、スタートに戻る。また、各熱交換器1次側往還差圧ΔP12が目標値である最適差圧ΔPs未満である場合はステップS9でポンプインバータの周波数を増加させ、スタートに戻る。   And with respect to the specified heat consumer, the opening degree of a flow regulating valve is opened to a predetermined value at Step S6, or the opening degree is fully opened. In this process, opening the flow rate adjustment valve to a predetermined value means opening only a preset step, and by fully opening it, the power consumption of the pump can be minimized, but a rapid change In order to prevent the instability of the control due to, it has been selected to open in stages. Thereafter, in step S7, it is determined whether each heat exchanger primary-side return differential pressure ΔP12 is equal to or higher than the optimum differential pressure ΔPs, which is a target value. If so, the frequency of the pump inverter is decreased in step S8 to start the operation. Return. On the other hand, when each heat exchanger primary-side return differential pressure ΔP12 is less than the target value optimum differential pressure ΔPs, the frequency of the pump inverter is increased in step S9, and the process returns to the start.

このように、複数の熱需要家の内、最も循環揚程を要求する需要家を最適差圧ΔPsと1次側往還差圧ΔP12との差から特定し、この需要家に合わせて1次側冷温水を搬送するポンプの揚程をインバータで制御するため、必要最小限の動力で効率良く1次側冷温水を搬送することができる。   In this way, among the plurality of heat consumers, the consumer that most requires the circulation head is identified from the difference between the optimum differential pressure ΔPs and the primary side return differential pressure ΔP12, and the primary side cold temperature is matched to this consumer. Since the head of the pump that transports the water is controlled by the inverter, the primary side cold / warm water can be transported efficiently with the minimum necessary power.

また、ステップS5で特定された熱需要家でない、その他の熱需要家については、ステップS10で、各熱交換器1次側冷水の還り温度を設定値と比較する。冷水の設定値とは、通常5〜10℃程度に設定する。1次側冷水の還り温度が設定値以上の場合はステップS11で流量調整弁の開度を予め設定しておいたステップで増加させる制御を行い、1次側冷水の流量を増加させ、スタートに戻る。1次側冷水の還り温度が設定値未満であるときは、ステップS12で流量調整弁の開度を予め設定しておいたステップで減少させる制御を行い、1次側冷水の流量を減少させ、スタートに戻る。ステップS11,S12の流量調整弁の開度を増減する制御は、ステップ的に行われ、そのステップの大きさは、配管経路の長さや配管経路が保有する水量により調整する。   Moreover, about the other heat consumers which are not the heat consumers specified by step S5, the return temperature of each heat exchanger primary side cold water is compared with a setting value by step S10. The set value of cold water is usually set to about 5 to 10 ° C. If the return temperature of the primary side chilled water is equal to or higher than the set value, in step S11, control is performed to increase the opening of the flow rate adjustment valve in a preset step, and the flow rate of the primary side chilled water is increased to start. Return. When the return temperature of the primary side chilled water is lower than the set value, control is performed to reduce the opening of the flow rate adjusting valve in a step set in advance in step S12, and the flow rate of the primary side chilled water is decreased. Return to start. The control of increasing or decreasing the opening degree of the flow rate adjusting valve in steps S11 and S12 is performed step by step, and the size of the step is adjusted by the length of the piping path and the amount of water held by the piping path.

つぎに、本実施形態の送水制御システムの温水搬送時の制御方法について、図3のフローチャートを参照して説明する。前記した図2のフローチャートの説明と同じステップS1〜S9の説明については省略する。温水の場合は、ステップS15〜S17で冷水とは逆の流量調整弁の操作となる。すなわち、ステップS5で、最も循環揚程の要る熱需要家として特定された以外の熱需要家に対して、ステップS15で、各熱交換器1次側温水の還り温度を設定値と比較する。温水の設定値とは、一般に50℃程度に設定することが多い。   Next, a control method during hot water transfer of the water supply control system of the present embodiment will be described with reference to the flowchart of FIG. The description of the same steps S1 to S9 as the description of the flowchart of FIG. In the case of warm water, the flow rate adjustment valve is operated in reverse to the cold water in steps S15 to S17. That is, in step S5, the return temperature of each heat exchanger primary-side hot water is compared with the set value in step S15 for heat consumers other than those specified as heat consumers requiring the most circulating head. In general, the set value of hot water is often set to about 50 ° C.

1次側温水の還り温度が設定値以上の場合はステップS16で流量調整弁の開度を予め設定しておいたステップで減少させる制御を行い、1次側温水の流量を減少させ、スタートに戻る。1次側温水の還り温度が設定値未満であるときは、ステップS17で流量調整弁の開度を予め設定しておいたステップで増加させる制御を行い、1次側温水の流量を増加させ、スタートに戻る。この流量調整弁の開度を増減する制御もステップ的に行われ、そのステップの大きさは、配管経路の長さや配管経路が保有する水量により調整する。このように流量調整弁の開度を増減して冷水や温水の流量を制御し、最も循環揚程を必要としていると特定された熱需要家に応じたポンプ制御を行いつつ、他の需要家は熱交換器の冷水や温水の入出口温度差を確保することができる。その結果、省エネルギーを達成することができる。   When the return temperature of the primary side hot water is equal to or higher than the set value, in step S16, control is performed to decrease the opening of the flow rate adjustment valve in a preset step, and the flow rate of the primary side hot water is reduced to start. Return. When the return temperature of the primary-side hot water is lower than the set value, control is performed to increase the opening of the flow rate adjustment valve in a step set in advance in step S17, and the flow rate of the primary-side hot water is increased. Return to start. Control for increasing or decreasing the opening degree of the flow rate adjusting valve is also performed stepwise, and the magnitude of the step is adjusted by the length of the piping path and the amount of water held by the piping path. While controlling the flow rate of cold water and hot water by increasing and decreasing the opening of the flow rate adjustment valve in this way, while performing pump control according to the heat customer identified as requiring the most circulating head, other customers It is possible to ensure the temperature difference between the inlet and outlet of the cold water and hot water of the heat exchanger. As a result, energy saving can be achieved.

前記の実施形態では、差圧センサを用いて1次側冷温水の入口圧力と出口圧力との差圧を直接測定する例を示したが、往路4aに入口圧力を測定する圧力センサを設置し、還路4bに出口圧力を測定する圧力センサを設置し、制御装置で両圧力センサの出力から差圧を演算するように構成してもよい。   In the above embodiment, an example is shown in which the differential pressure between the inlet pressure and the outlet pressure of the primary side cold / hot water is directly measured using a differential pressure sensor. However, a pressure sensor for measuring the inlet pressure is installed in the forward path 4a. Alternatively, a pressure sensor that measures the outlet pressure may be installed in the return path 4b, and the controller may be configured to calculate the differential pressure from the outputs of both pressure sensors.

つぎに、本発明に係る送水制御システム及びその制御方法の他の実施形態を図4,5に基づき詳細に説明する。図4のブロック図は、本実施形態に係る送水制御システムの概略構成を示しており、図5のフローチャートは、図4の送水制御システムの冷温水を送水するポンプの回転数を増減させる制御を示すと共に、流量調整弁を開閉して1次側冷温水の流量を調整する制御を示している。この実施形態は、前記した実施形態に対して、熱交換器へ入る1次側冷温水の往き温度と、熱交換器から出る還り温度を測定するように構成したことを特徴としている。なお、前記して実施形態と実質的に同等の構成については、同じ参照符号を付して詳細な説明は省略する。   Next, another embodiment of the water supply control system and the control method thereof according to the present invention will be described in detail with reference to FIGS. The block diagram of FIG. 4 shows a schematic configuration of the water supply control system according to the present embodiment, and the flowchart of FIG. 5 performs control to increase or decrease the rotational speed of the pump that supplies the cold / hot water of the water supply control system of FIG. In addition, control for adjusting the flow rate of the primary side cold / hot water by opening and closing the flow rate adjustment valve is shown. This embodiment is characterized in that, compared to the above-described embodiment, it is configured to measure the outgoing temperature of the primary side cold / hot water entering the heat exchanger and the return temperature coming out of the heat exchanger. In addition, about the structure substantially equivalent to embodiment mentioned above, the same referential mark is attached | subjected and detailed description is abbreviate | omitted.

図4において、熱交換器2A,2B…に1次側冷温水を循環させる往路4a,4cには温度センサTa1,Tb1が設置され、還路4b,4dには温度センサTa2,Tb2が設置されている。往路の温度センサは熱交換器に入る1次側冷温水の往き温度を測定するものであり、還路の温度センサは熱交換器から出る1次側冷温水の還り温度を測定するものである。これらの4つの温度センサの測定データは制御装置8に入力され、インバータ7aの制御、流量調整弁V1,V2の制御に用いられる。その他の構成は、実質的に前記の実施形態と同様の構成となっている。   In FIG. 4, temperature sensors Ta1 and Tb1 are installed in the forward paths 4a and 4c for circulating the primary side cold / hot water to the heat exchangers 2A, 2B, and temperature sensors Ta2 and Tb2 are installed in the return paths 4b and 4d. ing. The outgoing temperature sensor measures the outgoing temperature of the primary cold / hot water entering the heat exchanger, and the return temperature sensor measures the return temperature of the primary cold / hot water coming out of the heat exchanger. . The measurement data of these four temperature sensors are input to the control device 8 and used for control of the inverter 7a and control of the flow rate adjusting valves V1, V2. Other configurations are substantially the same as those of the above-described embodiment.

このように構成された本実施形態の動作について、図5を参照して以下に説明する。ステップS1からステップS9までの流れは前記の実施形態と同様であり、説明は省略する。ステップ5で、最も循環揚程の要る熱需要家として特定された以外の熱需要家に対して、ステップS20では、例えば熱需要家Aでは往路4aに設置された温度センサTa1と、還路4bに設置された温度センサTa2との計測データを用いて、往き還りの温度差である往還温度差を算出し、往還温度差と予め設定しておいた設定値とを比較する。このあと、往還温度差が設定値以上のときステップS21で弁開度を増加させ、1次側冷温水の流量を増加させ、設定値未満のときステップS22で弁開度を減少させ、1次側冷温水の流量を減少させる。このようにして各熱交換器における往還温度差を算出し、各熱交換器の往還温度差を設定値と比較し、往還温度差が設定値以上のときステップS21で流量調整弁V1,V2の開度を増加させ、往還温度差が設定値未満のときステップS22で流量調整弁V1,V2の開度を減少させ、1次側冷温水の流量を調整する。   The operation of the present embodiment configured as described above will be described below with reference to FIG. The flow from step S1 to step S9 is the same as that of the above-described embodiment, and the description is omitted. In step S20, for example, in heat consumer A, for example, in heat customer A, the temperature sensor Ta1 installed in the outward path 4a and the return path 4b are compared with the heat consumer other than that specified as the heat consumer requiring the most circulating head in step 5. Using the measurement data with the temperature sensor Ta2 installed in the vehicle, a return temperature difference, which is a return temperature difference, is calculated, and the return temperature difference is compared with a preset set value. Thereafter, when the return temperature difference is greater than or equal to the set value, the valve opening is increased in step S21, and the primary cold / hot water flow rate is increased. When the difference is less than the set value, the valve opening is decreased in step S22. Reduce the flow rate of the side cold / hot water. Thus, the return temperature difference in each heat exchanger is calculated, the return temperature difference of each heat exchanger is compared with the set value, and when the return temperature difference is equal to or larger than the set value, the flow rate adjusting valves V1, V2 are set in step S21. When the opening degree is increased and the return temperature difference is less than the set value, the opening degree of the flow rate adjusting valves V1, V2 is decreased in step S22 to adjust the flow rate of the primary side cold / hot water.

このように構成した本実施形態では、通常は熱交換器に入る1次側冷温水の往き温度は一定になるように設定されているが、熱源機1から供給される冷温水の温度が通常の温度範囲と異なる場合でも、計測された熱交換器の熱需要量と、予め用意された熱需要量に応じたマップにより、制御装置にて最適差圧を演算することから、熱交換器に入る1次側冷温水の温度の影響を受けずに、安定した制御が可能となる。   In this embodiment configured as described above, the outgoing temperature of the primary side cold / warm water entering the heat exchanger is normally set to be constant, but the temperature of the cold / warm water supplied from the heat source unit 1 is normal. Even if it is different from the temperature range of the heat exchanger, the controller calculates the optimum differential pressure using the map according to the heat demand of the measured heat exchanger and the heat demand prepared in advance. Stable control is possible without being affected by the temperature of the primary cold / hot water entering.

以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、熱源機として1つの熱源機の例を示したが、複数の熱源機を用いて構成してもよい。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, although the example of one heat source machine was shown as a heat source machine, you may comprise using a plurality of heat source machines.

また、複数の熱需要家の例として、2つの熱需要家の例を示したが、3つ以上の熱需要家の場合でも適用できることは勿論である。さらに、本発明は、例えば、1棟の建物において、1つの熱源機から生成された冷温水を建物内のフロアごとの熱需要家に搬送する例にも適用できるものである。熱エネルギーを搬送する熱媒として冷温水の例を示したが、他の媒体を用いることもできる。さらに、熱交換器の熱需要量の算出に当たっては、2次側における計測結果に基づいて算出する例を説明したが、2次側の計測に代えて、1次側で計測した値を用いて、同様に熱交換器の熱需要量を算出するように構成してもよい。   Moreover, although the example of two heat consumers was shown as an example of a some heat consumer, of course, it can apply also in the case of three or more heat consumers. Furthermore, this invention is applicable also to the example which conveys the cold / hot water produced | generated from one heat-source equipment to the heat consumer for every floor in a building, for example in one building. Although the example of cold / hot water was shown as a heat medium which conveys heat energy, another medium can also be used. Furthermore, in calculating the heat demand of the heat exchanger, an example of calculating based on the measurement result on the secondary side has been described, but using the value measured on the primary side instead of the measurement on the secondary side Similarly, the heat demand amount of the heat exchanger may be calculated.

本発明の活用例として、この送水制御システムを用いて必要最小限の動力で熱交換器1次側の冷温水の搬送ができ、地域冷暖房装置や建物内の冷暖房装置の熱媒としての冷温水の搬送の用途にも適用できる。   As an example of use of the present invention, this water supply control system can be used to carry cold / hot water on the primary side of the heat exchanger with the minimum necessary power, and cold / hot water as a heat medium for a district cooling / heating device or a cooling / heating device in a building. It can also be applied to the purpose of transport.

1:熱源機、2A,2B…:熱交換器(負荷機器)、3A,3B…:熱利用機器、4:1次側導管、4a,4c:往路、4b,4d:還路、5,6:2次側導管、5a,6a:往路、5b,6b:還路、7:1次側ポンプ、7a:インバータ、8:制御装置、8a:インバータ制御装置、8b:弁制御装置、10,11:差圧センサ、12,13:2次側ポンプ、A,B,C…:熱需要家、V1,V2:流量調整弁、F1,F2:流量センサ、T1,T2,T3,T4:温度センサ、Ta,Tb,Ta1,Ta2,Tb1,Tb2:温度センサ   1: Heat source machine, 2A, 2B ...: Heat exchanger (load equipment), 3A, 3B ...: Heat utilization equipment, 4: Primary side conduit, 4a, 4c: Outward path, 4b, 4d: Return path, 5, 6 : Secondary side conduit, 5a, 6a: forward path, 5b, 6b: return path, 7: primary side pump, 7a: inverter, 8: control device, 8a: inverter control device, 8b: valve control device, 10, 11 : Differential pressure sensor, 12, 13: secondary pump, A, B, C ...: heat consumers, V1, V2: flow rate adjusting valve, F1, F2: flow rate sensor, T1, T2, T3, T4: temperature sensor , Ta, Tb, Ta1, Ta2, Tb1, Tb2: Temperature sensor

Claims (11)

熱源機により生成された1次側冷温水を複数の熱交換器に送水し、該熱交換器を介して1次側冷温水の熱エネルギーを2次側冷温水に伝達して複数の熱利用機器に供給する送水制御システムであって、
前記熱源機と複数の熱交換器との間に1次側冷温水を循環させる1次側ポンプと、該1次側ポンプの回転数を制御するインバータと、1次側冷温水を前記複数の熱交換器のそれぞれへ送水する管路の流量を調整する複数の1次側流量調整弁と、前記複数の熱交換器の流入管路及び流出管路における1次側冷温水の入出圧力を検出する圧力センサと、該圧力センサの圧力データに基づいて前記複数の1次側流量調整弁の開度を調整する制御装置とを備え、
前記複数の熱交換器と複数の熱利用機器との間に2次側冷温水を送水する複数の2次側ポンプと、2次側冷温水の流量をそれぞれ測定する複数の流量センサと、前記複数の熱交換器に流入する2次側冷温水の温度と流出する2次側冷温水の温度を測定する複数の温度センサとをさらに備え、
前記制御装置は、前記各流量センサの出力及び前記各温度センサのデータより、最も循環揚程を必要としている熱需要家を特定し、特定された熱需要家のデータに基づいて1次側ポンプの回転数をインバータで制御することを特徴とする送水制御システム。
The primary side cold / warm water generated by the heat source device is sent to a plurality of heat exchangers, and the heat energy of the primary side cold / warm water is transmitted to the secondary side cold / warm water via the heat exchanger to use a plurality of heats. A water supply control system for supplying equipment,
A primary-side pump that circulates primary-side cold / hot water between the heat source unit and the plurality of heat exchangers, an inverter that controls the rotation speed of the primary-side pump, and primary-side cold / hot water are supplied to the plurality of A plurality of primary-side flow rate adjusting valves that adjust the flow rate of the pipes that supply water to each of the heat exchangers, and the inlet / outlet pressures of the primary-side cold / hot water in the inlet and outlet pipes of the plurality of heat exchangers are detected. A pressure sensor, and a control device that adjusts the opening of the plurality of primary-side flow rate adjustment valves based on pressure data of the pressure sensor,
A plurality of secondary pumps for feeding secondary side cold / hot water between the plurality of heat exchangers and a plurality of heat utilization devices, a plurality of flow sensors for measuring the flow rates of the secondary side cold / warm water, A plurality of temperature sensors for measuring the temperature of the secondary side cold / hot water flowing into the plurality of heat exchangers and the temperature of the secondary side cold / hot water flowing out;
The control device identifies a heat consumer that needs the most circulation head from the output of each flow sensor and the data of each temperature sensor, and based on the identified heat consumer data, A water supply control system characterized in that the rotation speed is controlled by an inverter.
前記制御装置は、前記各熱交換器の2次側における前記各熱利用機器の熱需要量を算出し、算出された熱需要量より各熱交換器に適正な1次側冷温水の流量を算出し、該流量に基づいて各熱交換器に適正な最適差圧を算出し、該最適差圧と実際の差圧との差より最も循環揚程を必要としている熱需要家を特定することを特徴とする請求項1に記載の送水制御システム。   The control device calculates a heat demand of each heat utilization device on the secondary side of each heat exchanger, and calculates an appropriate flow rate of primary side cold / hot water to each heat exchanger from the calculated heat demand. Calculating the optimum differential pressure appropriate for each heat exchanger based on the flow rate, and identifying the heat consumer that most needs the circulation head from the difference between the optimum differential pressure and the actual differential pressure. The water supply control system according to claim 1, wherein 前記制御装置は、前記複数の熱需要家の最適差圧と実際の差圧とのそれぞれの差を比較し、前記差圧と最適差圧の差が最も小さい熱交換器を備える熱需要家を最も循環揚程を必要としている熱需要家と特定し、その熱交換器における前記差圧が最適差圧以上のとき1次側ポンプの回転数をインバータで減少させることを特徴とする請求項2に記載の送水制御システム。   The control device compares a difference between an optimum differential pressure and an actual differential pressure of the plurality of heat consumers, and provides a heat consumer including a heat exchanger having a smallest difference between the differential pressure and the optimum differential pressure. 3. The heat consumer who needs the most circulating head is specified, and when the differential pressure in the heat exchanger is equal to or higher than the optimum differential pressure, the rotation speed of the primary pump is reduced by an inverter. The water supply control system described. 前記制御装置は、算出された各熱交換器に適正な1次側冷温水の流量に基づいて前記最適差圧をマップより算出することを特徴とする請求項2又は3に記載の送水制御システム。   The water supply control system according to claim 2 or 3, wherein the control device calculates the optimum differential pressure from a map based on a flow rate of primary side cold / hot water appropriate for each calculated heat exchanger. . 前記送水制御システムは、各1次側冷温水の熱源機への還り温度を測定する温度センサ及び弁制御装置をさらに備え、
該弁制御装置は、前記温度センサの還り温度と設定値とを比較し、冷水搬送時には前記還り温度が設定値以上のときには前記流量調整弁の開度を増加させ、前記還り温度が設定値未満のときには前記流量調整弁の開度を減少させるように制御し、温水搬送時にはその逆の制御を行うことを特徴とする請求項1から4のいずれかに記載の送水制御システム。
The water supply control system further includes a temperature sensor and a valve control device for measuring a return temperature of each primary side cold / hot water to the heat source unit,
The valve control device compares the return temperature of the temperature sensor with a set value, and increases the opening of the flow rate adjustment valve when the return temperature is equal to or higher than the set value during chilled water conveyance, and the return temperature is less than the set value. 5. The water supply control system according to claim 1, wherein the control is performed so that the opening degree of the flow rate adjusting valve is decreased at the time of the flow, and the reverse control is performed at the time of the hot water transfer.
前記送水制御システムは、各1次側冷温水の熱交換器へ入る往き温度と、熱交換器から出る還り温度を測定する温度センサ及び弁制御装置をさらに備え、
該弁制御装置は、前記温度センサの往き温度と還り温度との往還温度差と、設定値とを比較し、前記往還温度差が設定値以上のときには前記流量調整弁の開度を増加させるように制御することを特徴とする請求項1から4のいずれかに記載の送水制御システム。
The water supply control system further includes a temperature sensor and a valve control device for measuring a temperature going into the heat exchanger of each primary side cold / hot water and a return temperature coming out of the heat exchanger,
The valve control device compares the return temperature difference between the return temperature and the return temperature of the temperature sensor with a set value, and increases the opening of the flow control valve when the return temperature difference is equal to or greater than the set value. It controls to water supply control system in any one of Claim 1 to 4 characterized by the above-mentioned.
熱源機により生成された1次側冷温水を回転数制御できるポンプにより複数の熱交換器に送水し、該熱交換器を介して1次側冷温水の熱エネルギーを2次側冷温水に伝達して複数の熱利用機器に供給する送水制御システムの制御方法であって、
前記熱交換器の2次側において、2次側冷温水の流入温度、流出温度、及び流量より各熱熱需要家の熱需要量を算出し、
前記算出された熱需要量より1次側の熱交換器に必要な1次側冷温水の流量を算出し、
前記算出された1次側冷温水の流量より各熱交換器に最適な1次側最適差圧を算出し、
前記複数の熱交換器の1次側に流入流出する1次側差圧を測定し、
測定された各熱交換器の1次側差圧と、前記1次側最適差圧とに基づいて最も循環揚程の要求の大きい熱需要家を特定し、
特定された熱需要家の1次側冷温水の流量を調整する流量調整弁を全開または弁開度を所定値に開いたあと前記ポンプの回転数を変化させて1次側ポンプの回転数を変更することを特徴とする送水制御システムの制御方法。
The primary side cold / warm water generated by the heat source unit is sent to a plurality of heat exchangers by a pump capable of controlling the rotation speed, and the heat energy of the primary side cold / warm water is transmitted to the secondary side cold / warm water via the heat exchanger. And a control method of a water supply control system that supplies a plurality of heat utilization devices,
On the secondary side of the heat exchanger, the heat demand of each thermal heat consumer is calculated from the inflow temperature, outflow temperature, and flow rate of the secondary side cold / hot water,
From the calculated heat demand, calculate the flow rate of the primary side cold / hot water required for the primary side heat exchanger,
From the calculated flow rate of the primary side cold / hot water, the optimum primary side differential pressure optimum for each heat exchanger is calculated,
Measuring a primary differential pressure flowing into and out of a primary side of the plurality of heat exchangers;
Based on the measured primary-side differential pressure of each heat exchanger and the primary-side optimum differential pressure, the heat consumer with the greatest demand for the circulation head is identified,
The flow rate adjustment valve for adjusting the flow rate of the primary side cold / hot water of the specified heat consumer is fully opened or the valve opening degree is opened to a predetermined value, and then the rotation speed of the primary side pump is changed by changing the rotation speed of the pump. A control method of a water supply control system, characterized by changing.
前記各熱交換器に最適な1次側最適差圧を算出する工程は、マップを用いて行なうことを特徴とする請求項7に記載の送水制御システムの制御方法。   The method for controlling a water supply control system according to claim 7, wherein the step of calculating the optimum primary differential pressure optimum for each heat exchanger is performed using a map. 前記1次側差圧が1次側最適差圧以上のときに前記ポンプの回転数を減少させることを特徴とする請求項7又は8に記載の送水制御システムの制御方法。   The control method of the water supply control system according to claim 7 or 8, wherein the rotational speed of the pump is decreased when the primary-side differential pressure is equal to or greater than the primary-side optimum differential pressure. 前記送水制御システムの制御方法は、最も循環揚程の要求が大きいと特定された熱需要家以外の熱需要家に対する工程として、前記1次側冷温水の還り温度が設定値以上のときに前記流量調整弁の開度を増加させ、前記還り温度が設定値未満のときには前記流量調整弁の開度を減少させるように制御することを特徴とする請求項7から9のいずれかに記載の送水制御システムの制御方法。   The control method of the water supply control system includes the flow rate when the return temperature of the primary side cold / hot water is equal to or higher than a set value as a process for heat consumers other than the heat consumer identified as having the highest demand for the circulation head. The water supply control according to any one of claims 7 to 9, wherein the opening of the regulating valve is increased and the opening of the flow regulating valve is decreased when the return temperature is lower than a set value. How to control the system. 前記送水制御システムの制御方法は、最も循環揚程の要求が大きいと特定された熱需要家以外の熱需要家に対する工程として、前記1次側冷温水の往還温度差が設定値以上のときに前記流量調整弁の開度を増加させ、前記往還温度差が設定値未満のときには前記流量調整弁の開度を減少させるように制御することを特徴とする請求項7から9のいずれかに記載の送水制御システムの制御方法。   The control method of the water supply control system is a process for a heat consumer other than the heat consumer specified as having the largest demand for the circulating head, when the return temperature difference of the primary side cold / hot water is a set value or more. 10. The control according to claim 7, wherein the opening degree of the flow rate adjusting valve is increased, and the opening degree of the flow rate adjusting valve is controlled to be decreased when the return temperature difference is less than a set value. Control method of water supply control system.
JP2010114389A 2010-05-18 2010-05-18 Water supply control system and control method thereof Active JP5558202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010114389A JP5558202B2 (en) 2010-05-18 2010-05-18 Water supply control system and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010114389A JP5558202B2 (en) 2010-05-18 2010-05-18 Water supply control system and control method thereof

Publications (2)

Publication Number Publication Date
JP2011242057A true JP2011242057A (en) 2011-12-01
JP5558202B2 JP5558202B2 (en) 2014-07-23

Family

ID=45408901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010114389A Active JP5558202B2 (en) 2010-05-18 2010-05-18 Water supply control system and control method thereof

Country Status (1)

Country Link
JP (1) JP5558202B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105020774A (en) * 2015-07-31 2015-11-04 新智能源系统控制有限责任公司 Building energy-saving control system for multiple energy supply stations
CN107588500A (en) * 2017-08-17 2018-01-16 太原大四方节能环保有限公司 A kind of heating system adaptively becomes pressure difference variable-flow regulation and control method
CN108036464A (en) * 2017-08-17 2018-05-15 太原大四方节能环保有限公司 A kind of adaptive dynamic refrigeration duty regulation and control method of central air conditioner system
CN113048550A (en) * 2021-03-25 2021-06-29 华能国际电力股份有限公司大连电厂 Primary side optimization control method and system for central heating system
CN114754432A (en) * 2022-04-26 2022-07-15 西安科技大学 Chilled water supply regulation and control method and system based on cooling capacity change

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323605A (en) * 1993-05-18 1994-11-25 Daikin Ind Ltd Computing equipment of discrete operation cost of air-conditioning equipment
JPH09166346A (en) * 1995-12-14 1997-06-24 Takasago Thermal Eng Co Ltd Air conditioner, air conditioning system and controlling method thereof
JP2004293844A (en) * 2003-03-26 2004-10-21 Hitachi Plant Eng & Constr Co Ltd Air conditioning equipment
JP2006284141A (en) * 2005-04-04 2006-10-19 Tokyo Gas Co Ltd Heating device and cooling device
JP2008151438A (en) * 2006-12-19 2008-07-03 Yamatake Corp Air-conditioning equipment operation control device and method
JP2008224182A (en) * 2007-03-15 2008-09-25 Shin Nippon Air Technol Co Ltd Operation control method of one pump system heat source facility
JP2009030821A (en) * 2007-07-24 2009-02-12 Yamatake Corp Water supply control system and water supply control method
JP2009121722A (en) * 2007-11-13 2009-06-04 Yamatake Corp Water supply pressure control system and method
JP2010054075A (en) * 2008-08-26 2010-03-11 Takasago Thermal Eng Co Ltd Cooling system for electronic communication device room

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323605A (en) * 1993-05-18 1994-11-25 Daikin Ind Ltd Computing equipment of discrete operation cost of air-conditioning equipment
JPH09166346A (en) * 1995-12-14 1997-06-24 Takasago Thermal Eng Co Ltd Air conditioner, air conditioning system and controlling method thereof
JP2004293844A (en) * 2003-03-26 2004-10-21 Hitachi Plant Eng & Constr Co Ltd Air conditioning equipment
JP2006284141A (en) * 2005-04-04 2006-10-19 Tokyo Gas Co Ltd Heating device and cooling device
JP2008151438A (en) * 2006-12-19 2008-07-03 Yamatake Corp Air-conditioning equipment operation control device and method
JP2008224182A (en) * 2007-03-15 2008-09-25 Shin Nippon Air Technol Co Ltd Operation control method of one pump system heat source facility
JP2009030821A (en) * 2007-07-24 2009-02-12 Yamatake Corp Water supply control system and water supply control method
JP2009121722A (en) * 2007-11-13 2009-06-04 Yamatake Corp Water supply pressure control system and method
JP2010054075A (en) * 2008-08-26 2010-03-11 Takasago Thermal Eng Co Ltd Cooling system for electronic communication device room

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105020774A (en) * 2015-07-31 2015-11-04 新智能源系统控制有限责任公司 Building energy-saving control system for multiple energy supply stations
CN105020774B (en) * 2015-07-31 2017-09-26 新智能源系统控制有限责任公司 Suitable for the building energy conservation control system at many energy supply stations
CN107588500A (en) * 2017-08-17 2018-01-16 太原大四方节能环保有限公司 A kind of heating system adaptively becomes pressure difference variable-flow regulation and control method
CN108036464A (en) * 2017-08-17 2018-05-15 太原大四方节能环保有限公司 A kind of adaptive dynamic refrigeration duty regulation and control method of central air conditioner system
CN113048550A (en) * 2021-03-25 2021-06-29 华能国际电力股份有限公司大连电厂 Primary side optimization control method and system for central heating system
CN114754432A (en) * 2022-04-26 2022-07-15 西安科技大学 Chilled water supply regulation and control method and system based on cooling capacity change

Also Published As

Publication number Publication date
JP5558202B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5537253B2 (en) Water supply control system and control method thereof
DK2726792T3 (en) Method and device for balancing a group of consumers in a fluidtransportsystem
JP5905077B2 (en) Air conditioning system
JP5558202B2 (en) Water supply control system and control method thereof
DK2936003T3 (en) Method and devices for balancing a group of consumers in a fluid transport system
EP3637006B1 (en) Heat source system
JP2009030821A (en) Water supply control system and water supply control method
JP4981530B2 (en) HEAT SOURCE SYSTEM FLOW CONTROL DEVICE AND HEAT SOURCE SYSTEM FLOW CONTROL METHOD
CN108463672B (en) Method for controlling a centrifugal pump and associated pump system
JP3652974B2 (en) Primary pump heat source variable flow rate system
JP6033674B2 (en) Heat supply control device, heat supply system, and heat supply control method
US20190024995A1 (en) Supply circuit for a heat exchange medium for a consumer, industrial plant and method for operating them
US20160353614A1 (en) Cooling apparatus, cooling method, and data processing system
JP6434848B2 (en) Heat source control system
JP2017129340A (en) Heat source control system, control method and control device
JP4600139B2 (en) Air conditioner and control method thereof
JP6685602B2 (en) Air conditioning system
JP2007271120A (en) Heating medium conveyance system
JP3987358B2 (en) Flow control system with split flow measurement
US9061390B2 (en) Production line system
JP5806555B2 (en) Heat source machine control device and heat source machine control method
JP6832732B2 (en) Refrigeration system
JP7332274B2 (en) heat source system
JP4984302B2 (en) Water pressure control system and water pressure control method
JP2009121722A (en) Water supply pressure control system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140604

R150 Certificate of patent or registration of utility model

Ref document number: 5558202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250