JP3987358B2 - Flow control system with split flow measurement - Google Patents

Flow control system with split flow measurement Download PDF

Info

Publication number
JP3987358B2
JP3987358B2 JP2002075101A JP2002075101A JP3987358B2 JP 3987358 B2 JP3987358 B2 JP 3987358B2 JP 2002075101 A JP2002075101 A JP 2002075101A JP 2002075101 A JP2002075101 A JP 2002075101A JP 3987358 B2 JP3987358 B2 JP 3987358B2
Authority
JP
Japan
Prior art keywords
pipe
load
hot water
cold
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002075101A
Other languages
Japanese (ja)
Other versions
JP2003269779A (en
Inventor
徹 合田
久士 齋藤
章一 仲井
一秀 鹿又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Dan Co Ltd
Original Assignee
Dai Dan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Dan Co Ltd filed Critical Dai Dan Co Ltd
Priority to JP2002075101A priority Critical patent/JP3987358B2/en
Publication of JP2003269779A publication Critical patent/JP2003269779A/en
Application granted granted Critical
Publication of JP3987358B2 publication Critical patent/JP3987358B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、建物の空調負荷状態の変動に応じて熱媒流量を可変制御し、経済的かつ省エネルギー効果の高い空調設備の制御を行う分流式流量測定による流量制御システムに関するものである。
【0002】
【従来の技術】
従来の一次・二次ポンプ方式による空調設備の流量制御システムにおいて、冷温水発生機やヒートポンプ等の熱源機によって作られた熱媒(冷水または温水)は、冷温水一次ポンプにより往一次ヘッダへ圧送された後、冷温水二次ポンプにより往二次ヘッダおよび送水管を経由して空調機へ圧送される。空調機に送られた冷水または温水は空調機内の搬送空気と熱交換をした後、還ヘッダおよび還水管を経由して再び熱源機に戻される。このようにして熱源機に搬送された空調負荷は、冷房時には冷却水回路の冷却水ポンプおよび冷却塔を介して外界へ排出される。このとき、冷温水一次ポンプによって搬送される冷水または温水の流量と、冷温水二次ポンプによって搬送される冷水または温水の流量が平衡すると、往一次ヘッダおよび還水管を連結するバイパス管の流量は0となる。前者の流量が後者の流量よりも大きい場合は、バイパス管には往一次ヘッダから還水管へ向かう流れが形成され、反対に後者の流量が前者の流量よりも大きい場合は、バイパス管には還水管から往一次ヘッダへ向かう流れが形成される。省エネルギーの観点からは、バイパス管流量が0となるような運転が望ましいため、流量制御装置においては、バイパス管内を流れる冷水または温水の状態(流量および流れ方向)を常時計測し、これに基づいて熱源側(熱源機)および負荷側(空調機)のエネルギー需給バランスを判断し、バイパス管流量=0を目標として冷温水一次ポンプの流量制御を行っている。
【0003】
他方、従来の一次ポンプ方式による空調設備の流量制御システムにおいて、冷温水ポンプは空調負荷の多寡に関係なく定格出力で運転されており、空調負荷に応じた送水圧力を維持し得る量の冷温水のみが負荷側へ供給されるとともに、余剰の冷温水はバイパス管を経由して負荷側と熱交換することなく熱源機に戻されていた。
【0004】
【発明が解決しようとする課題】
一次ポンプ・二次ポンプ方式による空調設備の流量制御システムにおいて、バイパス管には主に2つの重要な役割がある。1つは、空調負荷がある場合に、熱源側および負荷側のエネルギー需給バランスに関する情報を流量制御装置に提供することであり、もう1つは、空調負荷が低い場合に、熱源機がその安定稼働のために必要とする冷温水最低流量を常に確保できるようにすることである。大容量の熱源機が制御対象となる空調設備では、確保すべき冷温水最低流量が大きくなるため、それに伴って必然的にバイパス管径やバイパス管流量計の計測レンジも大きくなる。通常、流量計は、口径や計測レンジが大きくなるほど高価になるため、熱源機の容量が大きくなるほど、より高価な流量計を用いなければならず、流量制御システムの導入コストが嵩む要因となっていた。
【0005】
一方、一次ポンプ方式による空調設備の流量制御システムでは、負荷側流量に基づいて負荷側の空調負荷状態を判断しているが、処理する空調負荷が大きい空調設備ほど負荷側流量も大きくなるため、大規模な建物になるほど、より大口径の流量計を使用せざるを得ず、流量制御システムの導入コストが嵩む要因となっていた。
【0006】
さらに、良好な精度の流量計測値を得るためには、流量計が取り付けられる配管上の位置の前後にその口径に比例した長さの直管部を確保しなければならないが、特に大容量の熱源機が制御対象となる場合は、バイパス管や負荷側冷温水配管に大口径の流量計が設置できるよう、設計・施工段階において、適切な流量計の選定作業、配管ルートの確保や他機器の納まり等の煩雑な検討作業が必要であるという問題点があった。
【0007】
本発明は上記の事情に鑑みてなされたもので、より安価な設計・施工コストで導入し得るととともに、建物の空調負荷状態の変動に応じて熱媒流量を可変制御し、経済的かつ省エネルギー効果の高い熱源制御を行う分流式流量測定による流量制御システムを提供することを目的とする。
【0008】
【課題を解決するための手段】
上記の目的を達成するために本発明の分流式流量測定による流量制御システムは、空調負荷を処理する空調機を含む負荷側装置と、負荷側装置に冷水または温水よりなる熱媒を供給する冷温水発生機を含む熱源側装置および冷温水一次ポンプを含む熱源側熱媒搬送装置と、熱媒送り側管路および熱媒還り側管路を連結するバイパス管と、バイパス管の流量を調整するバイパス弁と、負荷側の熱媒管路の管径よりも小さな管径を有しこの熱媒管路の熱媒を分流させたのちこの熱媒管路に熱媒を合流させる負荷側分流管と、負荷側分流管の流量のみを測定する負荷側分流管流量計と、負荷側分流管の流量が所定値以上で空調負荷が高負荷状態となる場合はバイパス弁を全閉状態に制御するとともに空調機に供給される冷水または温水の量を冷温水一次ポンプの出力のみを変化させることにより可変制御し、負荷側分流管の流量が所定値未満で空調負荷が低負荷状態となる場合は冷温水発生機が冷温水流量不足に起因して異常停止することがないように、冷温水一次ポンプを所定の最低制御出力に制御するとともに空調機に供給される冷水または温水の量をバイパス弁の開度のみを変化させることにより可変制御する流量制御装置とを備えることを特徴とするものである。
【0011】
また本発明の分流式流量測定による流量制御システムは、空調負荷を処理する空調機を含む負荷側装置と、負荷側装置に冷水または温水よりなる熱媒を供給する冷温水発生機を含む熱源側装置および冷温水一次ポンプを含む熱源側熱媒搬送装置と、熱媒送り側管路および熱媒還り側管路を連結するバイパス管と、バイパス管の流量を調整するバイパス弁と、負荷側の熱媒管路の管径よりも小さな管径を有しこの熱媒管路の熱媒を分流させたのちこの熱媒管路に熱媒を合流させる負荷側分流管と、負荷側分流管の流量のみを測定する負荷側分流管流量計と、バイパス管の管径よりも小さな管径を有しバイパス管の熱媒を分流させたのちバイパス管に熱媒を合流させるバイパス分流管と、バイパス分流管の流量のみを測定するバイパス分流管流量計と、負荷側分流管の流量が所定値以上で空調負荷が高負荷状態となる場合はバイパス弁を全閉状態に制御するとともに空調機に供給される冷水または温水の量を冷温水一次ポンプの出力のみを変化させることにより可変制御し、負荷側分流管の流量が所定値未満で空調負荷が低負荷状態となる場合は冷温水発生機が冷温水流量不足に起因して異常停止することがないように、冷温水一次ポンプを所定の最低制御出力に制御するとともに空調機に供給される冷水または温水の量をバイパス弁の開度のみを変化させることにより可変制御する流量制御装置とを備えることを特徴とするものである。
【0012】
また本発明は、前記流量制御システムにおいて、負荷側分流管およびバイパス分流管の流量は同一口径の流量計によって計測され、この流量計は流量のみを計測することを特徴とするものである。
【0014】
【発明の実施の形態】
以下図面を参照して本発明の実施の形態例を詳細に説明する。
【0015】
(1)一次・二次ポンプ方式
図1は本発明の実施形態例に係る流量制御システム(一次・二次ポンプ方式)を示す構成説明図である。
【0016】
図1において、冷温水発生機11は複数台が並列して設けられ、それぞれに冷温水一次ポンプ12、冷却塔13、冷却水ポンプ14が対応して設けられる。冷温水一次ポンプ12および冷却水ポンプ14には、各々インバータINVが設けられる。15は空調機、16は空調機15を流れる冷温水の流量を制御する二方弁、17は冷温水二次ポンプである。18,19はそれぞれ冷温水発生機11からの冷水または温水を混合させる往一次ヘッダ、往二次ヘッダであり、20は冷温水発生機11へ戻る冷水または温水を混合させる還ヘッダである。バイパス管21は、往一次ヘッダ18および還水管10、または、往一次ヘッダ18および還ヘッダ20を連結するように設けられる。配管系はこのバイパス管21を境として、冷温水発生機11等の熱源機器が配置される熱源側と、空調機15等の負荷機器が配置される負荷側に区分される。バイパス分流管22の管径は例えば50A(呼び径=50mm)であり、バイパス管21と同一の管材で、かつ、バイパス管21の管径よりも小径のものが用いられる。そしてバイパス分流管22には、バイパス分流管22の流量および流れ方向を同時に測定するバイパス分流管流量計23が設けられる。バイパス分流管流量計23は、電磁流量計または超音波流量計とするのが好ましい。24は往二次ヘッダ19から空調機15へ冷水または温水を送る送水管である。
【0017】
この流量制御システムの通常制御動作は次のようになる。すなわち、冷温水発生機11によって作られた冷水または温水は、冷温水一次ポンプ12により往一次ヘッダ18へ圧送された後、冷温水二次ポンプ17により往二次ヘッダ19および送水管24を経由して空調機15へ圧送される。空調機15に送られた冷水または温水は、空調機15内の搬送空気と熱交換をした後、還ヘッダ20および還水管10を経由して再び冷温水発生機11に戻される。このようにして冷温水発生機11に搬送された空調負荷は、冷却水回路の冷却水ポンプ14および冷却塔13を介して外界へ排出される。このとき、冷温水一次ポンプ12によって搬送される冷水または温水の流量と、冷温水二次ポンプ17によって搬送される冷水または温水の流量が平衡するとバイパス分流管21の流量は0となる。前者の流量が後者の流量よりも大きい場合は、バイパス管21およびバイパス分流管22には往一次ヘッダ18から還水管10へ向かう流れが形成され、反対に後者の流量が前者の流量よりも大きい場合は、バイパス管21およびバイパス分流管22には還水管10から往一次ヘッダ18へ向かう流れが形成される。
【0018】
25は空調機15の負荷状態の変動に応じて冷温水一次ポンプ12や冷却水ポンプ14の最適な制御を行う流量制御装置である。流量制御装置25には、現在の運転状態や負荷状態を監視しデータとして取り込む状態入力部26と、冷温水一次ポンプ12や冷却水ポンプ14の制御信号を演算する流量制御演算部27と、冷温水一次ポンプ12や冷却水ポンプ14に対する制御信号を出力する制御出力部28が実装される。
【0019】
流量制御システムの流量制御は図2に示すフローチャートのように実施される。すなわち、状態入力部26において、各機器の運転状態や温度・流量等の負荷状態に関する信号が周期的に入力・データ変換され、メモリ内の所定アドレスに格納される。次に、流量制御演算部27では、状態入力部26からの入力信号に故障や異常を示すデータがなければ、バイパス分流管流量設定値を目標値とするPID制御によって最適な冷温水一次ポンプ12の制御出力が演算される。バイパス分流管流量設定値は略0、好ましくは、送水温度の安定性を考慮して往ヘッダ18から還ヘッダ20に向かう流れが若干生じる程度に設定される。ここで、冷却水ポンプ14の制御出力は、設計データを参照して冷温水一次ポンプ12の制御出力に関する一次式としてあらかじめ定義しておくことにより簡単に算出することができる。一方、状態入力部26からの入力信号に故障や異常を示すデータがある場合は、流量制御演算部27では、異常の状態に対応した異常時対応制御が実施される。なお、異常時対応制御には、例えば、冷温水送水(または還水)温度異常に対応する送水(または還水)温度補償制御、冷却水温度異常に対応する冷却水リミット制御、流量不足に起因する流量制御異常に対応する流量制御解除制御、断線等のセンサー異常に対応するセンサー異常時制御などがある。そして、流量制御演算部27によって演算された最新の制御出力は制御出力部28へ出力され、冷温水一次ポンプ12や冷却水ポンプ14に対する適切な制御信号が各機器に対して出力される。
【0020】
(2)一次ポンプ方式(その1)
図3は本発明の他の実施形態例に係る流量制御システム(一次ポンプ方式)を示す構成説明図である。
【0021】
図3において、冷温水発生機11は複数台が並列して設けられ、それぞれに冷温水一次ポンプ12、冷却塔13、冷却水ポンプ14が対応して設けられる。冷温水一次ポンプ12および冷却水ポンプ14には、各々インバータINVが設けられる。15は空調機、16は空調機15を流れる冷温水の流量を制御する二方弁である。31は冷温水発生機11からの冷水または温水を混合させる往ヘッダであり、20は冷温水発生機11へ戻る冷水または温水を混合させる還ヘッダである。バイパス管21は、往ヘッダ31および還水管10、または、往ヘッダ31および還ヘッダ20を連結するように設けられ、バイパス管路上にはバイパス管流量を調整するバイパス弁32が設けられる。配管系はこのバイパス管21を境として、冷温水発生機11等の熱源機器が配置される熱源側と、空調機15等の負荷機器が配置される負荷側に区分される。33,22はそれぞれ負荷側分流管、バイパス分流管である。バイパス分流管22の管径は例えば50A(呼び径=50mm)であり、バイパス管21と同一の管材で、かつ、バイパス管21の管径よりも小径のものが用いられる。そしてバイパス分流管22には、バイパス分流管22の流量のみを測定するバイパス分流管流量計34が設けられる。一次ポンプ方式の流量制御システムで用いるバイパス分流管流量計34は、流れ方向を測定できる必要がないため、このバイパス分流管流量計34には、電磁流量計や超音波流量計の他に、差圧式流量計や渦流量計などが利用できる。同様に、負荷側分流管33も負荷側冷温水配管と同一の管材で、かつ、負荷側冷温水配管の管径よりも小径のものが用いられ、負荷側分流管33の流量のみを測定する負荷側分流管流量計35が設けられる。負荷側分流管流量計35も、電磁流量計や超音波流量計の他に、差圧式流量計や渦流量計などが利用できる。さらに、負荷側分流管33の管径をバイパス分流管22の管径と同径すれば、負荷側分流管33およびバイパス分流管22の長さがともに等しくなり、負荷側分流管流量計35およびバイパス分流管流量計34として同一口径の流量計を使用することが可能となるので、設計・施工の効率化や省コスト化の面で好ましいものとなる。なお、36は負荷側送水圧を測定する送水圧力計である。
【0022】
一次ポンプ方式の流量制御システムが、前述の一次・二次ポンプ方式の流量制御システムと比較して構造的に大きく異なるのは、負荷側熱媒搬送装置としての冷温水二次ポンプを備えていないこと、および、バイパス管路上にバイパス弁32が設けられること、の2点である。
【0023】
この流量制御システムは、空調負荷が高負荷であるか低負荷であるかによって制御動作が異なる。
【0024】
空調負荷が高負荷状態となる場合、バイパス弁32は全閉状態に制御されるとともに、空調機15に供給される冷水または温水の量は冷温水一次ポンプ12の出力のみを変化させることにより可変制御される。すなわち、冷温水発生機11によって作られた冷水または温水は、冷温水一次ポンプ12により往ヘッダ31および送水管24を経由して空調機15へ圧送され、空調機15内の搬送空気と熱交換をした後、還ヘッダ20および還水管10を経由して再び冷温水発生機11に戻される。このようにして冷温水発生機11に搬送された空調負荷は、冷却水回路の冷却水ポンプ14および冷却塔13を介して外界へ排出される。
【0025】
一方、空調負荷が低負荷状態となる場合は、冷温水発生機11が冷温水流量不足に起因して異常停止することがないように、冷温水一次ポンプ12は所定の最低制御出力、例えば定格の50%出力に制御されるとともに、空調機15に供給される冷水または温水の量はバイパス弁32の開度のみを変化させることにより可変制御される。すなわち、冷温水発生機11によって作られた冷水または温水は、冷温水一次ポンプ12により往ヘッダ31および送水管24を経由して空調機15へ圧送され、同時に余剰の冷水または温水がバイパス管21へ送られる。空調機15に送られた冷水または温水は空調機15内の搬送空気と熱交換をした後、還ヘッダ20および還水管10を経由して再び冷温水発生機11に戻され、バイパス管21へ送られた冷水または温水は負荷側と熱交換することなく還ヘッダ20および還水管10を経由して再び冷温水発生機11に戻される。このようにして冷温水発生機11に搬送された空調負荷は、冷却水回路の冷却水ポンプ14および冷却塔13を介して外界へ排出される。
【0026】
37は空調機15の負荷状態の変動に応じて冷温水一次ポンプ12や冷却水ポンプ14やバイパス弁32の最適な制御を行う流量制御装置37である。流量制御装置37には、現在の運転状態や負荷状態を監視しデータとして取り込む状態入力部26と、空調機15の負荷状態が高負荷状態にあるか低負荷状態にあるかを判定する負荷状態判定部38と、高負荷時における冷温水一次ポンプ12や冷却水ポンプ14やバイパス弁32の制御信号を演算する高負荷制御演算部39と、低負荷時における冷温水一次ポンプ12や冷却水ポンプ14やバイパス弁32の制御信号を演算する低負荷制御演算部40と、冷温水一次ポンプ12や冷却水ポンプ14やバイパス弁32に対する制御信号を出力する制御出力部28が実装される。
【0027】
流量制御システムの流量制御は図4に示すフローチャートのように実施される。すなわち、状態入力部26において、各機器の運転状態や温度・流量等の負荷状態に関する信号が周期的に入力・データ変換され、メモリ内の所定アドレスに格納される。続いて負荷状態判定部38では、例えば状態入力部26を通じて取得した負荷側分流管流量と所定の判定基準値とを比較することにより、負荷側の負荷状態が高負荷であるか低負荷であるかが判定される。なお、所定の判定基準値には、運転中の冷温水発生機11の定格時送水量QMAXに、係数aおよび負荷側分流比b1を乗じた値を用いる。本実施例では、係数aは0.6である。また、負荷側分流比b1は、例えば、分流点から合流点までの配管経路における負荷側冷温水配管および負荷側分流管33の摩擦損失が等しいものとすれば、へーゼン・ウィリアム公式を用いることにより、次式で定義することができる。
【0028】
b1=(d/D2.63
ここで、dは負荷側分流管の管径、Dは負荷側分流管が設けられた負荷側冷温水配管(例えば還水管22)の管径である。
【0029】
負荷側分流管33の流量が所定値以上である場合は空調負荷が高負荷状態にあると見なし、送水圧力設定値を目標値とするPID制御によって最適な冷温水一次ポンプ12の制御出力が演算される。冷却水ポンプ14の制御出力は、設計データを参照して冷温水一次ポンプ12の制御出力に関する一次式としてあらかじめ定義しておくことにより簡単に算出することができる。なお、高負荷状態時では、バイパス弁32は全閉とする。ここで、送水圧力設定値は負荷側流量に関わらず一定(送水圧一定制御方式)としても良く、また、対象熱源システムのポンプ特性曲線や配管抵抗曲線に基づいて負荷側分流管33の流量と送水圧力設定値の関係式をあらかじめ二次式で定義しておき、取得した負荷側流量をこの関係式に代入することにより容易に求めるように(流量カスケード圧力制御方式)しても良い。
【0030】
一方、負荷側分流管33の流量が所定値を下回る場合は空調負荷が低負荷状態にあると見なし、バイパス分流管22の流量にバイパス分流比b2の逆数を乗じた値、および、負荷側分流管33の流量に負荷側分流比b1の逆数を乗じた値の合計値が流量設定値(目標値)となるように、最適なバイパス弁32の開度がPID制御により演算される。バイパス分流比b2は、次式で定義することができる。
【0031】
b2=(d/D2.63
ここで、dはバイパス分流管22の管径、Dはバイパス管21の管径である。なお、低負荷状態時では、冷温水一次ポンプ12の制御出力を所定の最低制御出力に固定する。これは、負荷状態に応じて無制限に冷温水一次ポンプ12の制御出力を下げると冷温水流量が不足し、冷温水発生機11が異常停止することを防止するためである。バイパス弁32は、負荷側で必要としない余剰の冷温水をバイパスする目的で操作される。
【0032】
高負荷制御演算部39または低負荷制御演算部40によって演算された最新の制御出力は制御出力部28へ出力され、冷温水一次ポンプ12や冷却水ポンプ14に対する適切な制御信号が各機器に対して出力される。なお、負荷変動に起因する高負荷状態と低負荷状態の間の状態遷移を考慮するため、負荷側が高負荷状態にあるときはバイパス弁32を確実に閉止する制御動作を、また、負荷側が低負荷状態にあるときは冷温水一次ポンプ12の制御出力を所定の最低制御出力に設定する操作を必要に応じて実施する。
【0033】
(3)一次ポンプ方式(その2)
図5は本発明の他の実施形態例に係る流量制御システム(一次ポンプ方式)を示す構成説明図である。なお、同図における図3と同様の部分については図3と同一の符号を付してその説明を省略する。
【0034】
図5において、41は負荷側末端送水圧を測定する実末端圧力計であり、図3の送水圧力計に代わって設けられる。また、42はバイパス管差圧を測定するバイパス管差圧計であり、図3のバイパス分流管およびバイパス分流管流量計に代わって設けられる。
【0035】
流量制御システムの流量制御は図6に示すフローチャートのように実施される。すなわち、状態入力部26において、各機器の運転状態や温度・流量等の負荷状態に関する信号が周期的に入力・データ変換され、メモリ内の所定アドレスに格納される。続いて負荷状態判定部38では、例えば状態入力部26を通じて取得した負荷側分流管33の流量と所定の判定基準値とを比較することにより、負荷側の負荷状態が高負荷であるか低負荷であるかが判定される。なお、所定の判定基準値には、前述のように、運転中の冷温水発生機11の定格時送水量QMAXに係数aおよび負荷側分流比b1を乗じた値を用いる。
【0036】
負荷側分流管33の流量が所定値以上である場合は空調負荷が高負荷状態にあると見なし、実末端送水圧力設定値を目標値とするPID制御によって最適な冷温水一次ポンプ12の制御出力が演算される。冷却水ポンプ14の制御出力は、設計データを参照して冷温水一次ポンプ12の制御出力に関する一次式としてあらかじめ定義しておくことにより簡単に算出することができる。なお、高負荷状態時では、バイパス弁32は全閉とする。
【0037】
一方、負荷側分流管33の流量が所定値を下回る場合は空調負荷が低負荷状態にあると見なし、バイパス管差圧が差圧設定値(目標値)となるように最適なバイパス弁開度がPID制御により演算される。なお、低負荷状態時では、冷温水一次ポンプ12の制御出力を所定の最低制御出力に固定する。これは、負荷状態に応じて無制限に冷温水一次ポンプ12の制御出力を下げると冷温水流量が不足し、冷温水発生機11が異常停止することを防止するためである。バイパス弁32は、負荷側で必要としない余剰の冷温水をバイパスする目的で操作される。
【0038】
高負荷制御演算部39または低負荷制御演算部40によって演算された最新の制御データは制御出力部28へ出力され、冷温水一次ポンプ12や冷却水ポンプ14に対する適切な制御信号が各機器に対して出力される。なお、負荷変動に起因する高負荷状態と低負荷状態の間の状態遷移を考慮するため、負荷側が高負荷状態にあるときはバイパス弁32を確実に閉止する制御動作を、また、負荷側が低負荷状態にあるときは冷温水一次ポンプ12の制御出力を所定の最低制御出力に設定する操作を必要に応じて実施する。
【0039】
なお、流量制御システムの実施態様は前述した実施形態例に限定されるものではなく、例えば、熱源側装置としてターボ冷凍機、吸収式冷凍機、ヒートポンプ等の熱源機を設けても良いし、水蓄熱槽や氷蓄熱槽を設けても良い。また、負荷側冷温水圧力を計測する手段として図3の送水圧力計や図5の実末端圧力計に代わり、負荷側の送水管および還水管間の差圧を測定する送還水管差圧計を設けても良いし、負荷側冷温水圧力として推定末端圧を利用する制御方式を採用しても良い。
【0040】
【発明の効果】
以上述べたように本発明によれば、流量計を備えた所定の小管径の分流管をバイパス管あるいは負荷側冷温水配管から分岐するように設け、この流量計測値に基づいて熱源機および冷温水搬送装置の状態判定や制御を行うようにするため、熱源機の規模によらず、分流管の長さや流量計の口径が一定となり、より安価な設計・施工コストで導入し得る流量制御システムを提供することができる。
【0041】
また、建物の空調負荷状態の変動に応じて熱媒流量を可変制御するため、経済的かつ省エネルギー効果の高い空調設備の制御を行う流量制御システムを提供することができる。
【図面の簡単な説明】
【図1】本発明の実施形態例に係る流量制御システム(一次・二次ポンプ方式)を示す構成説明図である。
【図2】本発明の実施形態例に係る流量制御システムの流量制御を示すフローチャートである。
【図3】本発明の他の実施形態例に係る流量制御システム(一次ポンプ方式)を示す構成説明図である。
【図4】本発明の他の実施形態例に係る流量制御システムの流量制御を示すフローチャートである。
【図5】本発明の他の実施形態例に係る流量制御システム(一次ポンプ方式)を示す構成説明図である。
【図6】本発明の他の実施形態例に係る流量制御システムの流量制御を示すフローチャートである。
【符号の説明】
11 冷温水発生機
15 空調機
18 往一次ヘッダ
20 還ヘッダ
21 バイパス管
22 バイパス分流管
23 バイパス分流管流量計
25 流量制御装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flow rate control system based on a shunt flow rate measurement that variably controls a heat medium flow rate according to a change in an air conditioning load state of a building and controls an air conditioning facility that is economical and has a high energy saving effect.
[0002]
[Prior art]
In the conventional flow control system for air-conditioning equipment using primary and secondary pumps, the heat medium (cold water or hot water) produced by a heat source device such as a cold / hot water generator or heat pump is pumped to the forward / first header by the cold / hot water primary pump. After that, it is pumped by a cold / hot water secondary pump to an air conditioner via a forward / secondary header and a water pipe. The cold water or hot water sent to the air conditioner exchanges heat with the carrier air in the air conditioner and then returns to the heat source machine again via the return header and the return water pipe. The air conditioning load transferred to the heat source device in this way is discharged to the outside through the cooling water pump and the cooling tower of the cooling water circuit during cooling. At this time, if the flow rate of cold water or hot water conveyed by the cold / hot water primary pump and the flow rate of cold water or hot water conveyed by the cold / hot water secondary pump are balanced, the flow rate of the bypass pipe connecting the forward / rear header and the return water pipe is 0. When the flow rate of the former is larger than the flow rate of the latter, a flow is formed in the bypass pipe from the primary header to the return water pipe. Conversely, when the flow rate of the latter is larger than the flow rate of the former, the return pipe is returned to the bypass pipe. A flow is formed from the water pipe toward the forward primary header. From the viewpoint of energy saving, it is desirable that the bypass pipe flow rate is zero. Therefore, in the flow rate control device, the state (flow rate and flow direction) of cold water or hot water flowing in the bypass pipe is constantly measured, and based on this The energy supply / demand balance of the heat source side (heat source unit) and the load side (air conditioner) is judged, and the flow rate control of the cold / hot water primary pump is performed with the bypass pipe flow rate = 0 as a target.
[0003]
On the other hand, in the conventional air conditioning facility flow control system using the primary pump system, the cold / hot water pump is operated at the rated output regardless of the air conditioning load, and the quantity of cold / hot water that can maintain the water supply pressure according to the air conditioning load. Only the hot water is supplied to the load side, and excess cold / hot water is returned to the heat source machine via the bypass pipe without heat exchange with the load side.
[0004]
[Problems to be solved by the invention]
In the flow control system of the air conditioning equipment by the primary pump / secondary pump system, the bypass pipe mainly has two important roles. One is to provide the flow control device with information on the energy supply and demand balance on the heat source side and the load side when there is an air conditioning load, and the other is that the heat source machine is stable when the air conditioning load is low. It is to be able to always secure the minimum flow of cold / hot water required for operation. In an air conditioning facility in which a large-capacity heat source device is controlled, the minimum cold / hot water flow rate to be secured increases, and accordingly, the bypass pipe diameter and the measurement range of the bypass pipe flow meter also increase. Normally, the flow meter becomes more expensive as the bore size or measurement range becomes larger. Therefore, the larger the capacity of the heat source device, the more expensive the flow meter must be used, which increases the introduction cost of the flow control system. It was.
[0005]
On the other hand, in the flow control system for air conditioning equipment using the primary pump method, the load side air conditioning load state is determined based on the load side flow rate. The larger the building, the more the flow meter with a larger diameter had to be used, and the introduction cost of the flow control system increased.
[0006]
Furthermore, in order to obtain a flow rate measurement value with good accuracy, it is necessary to secure a straight pipe part with a length proportional to the diameter before and after the position on the pipe where the flow meter is installed. When the heat source equipment is to be controlled, appropriate flow meter selection work, securing of piping route, other equipment, etc., can be installed at the design and construction stage so that a large-diameter flow meter can be installed in the bypass pipe and load side cold / hot water pipe There is a problem in that complicated examination work such as the payment of the cost is necessary.
[0007]
The present invention has been made in view of the above circumstances, and can be introduced at a lower cost of design and construction, and variably controls the flow rate of the heat medium according to fluctuations in the air-conditioning load state of the building. An object of the present invention is to provide a flow rate control system based on a shunt flow rate measurement that performs highly effective heat source control.
[0008]
[Means for Solving the Problems]
Flow control system according to shunt flowmeter of the present invention to achieve the above object, supplies a load side equipment including the air conditioner to handle the air conditioning load, a heating medium consisting of cold water or hot water to the load side device Adjust the flow rate of the bypass pipe and the heat source side device including the cold / hot water generator and the heat source side heat medium transport device including the cold / hot water primary pump, the bypass pipe connecting the heat medium feed side pipe and the heat medium return side pipe A bypass valve that has a smaller pipe diameter than the load-side heat medium pipe diameter, and after the heat medium in the heat medium pipe is divided, the load-side branch that joins the heat medium to the heat medium pipe line When the flow rate of the load-side shunt pipe exceeds the specified value and the air conditioning load is in a high load state, the bypass valve is controlled to be fully closed. The amount of cold or hot water supplied to the air conditioner Variable control is performed by changing only the output of the next pump, and when the flow rate of the load side shunt pipe is less than the predetermined value and the air conditioning load is in a low load state, the cold / hot water generator abnormally stops due to insufficient cold / hot water flow rate The flow control device controls the chilled / hot water primary pump to a predetermined minimum control output and variably controls the amount of chilled or warm water supplied to the air conditioner by changing only the opening degree of the bypass valve. it is characterized in further comprising and.
[0011]
Further, the flow rate control system based on the shunt flow measurement according to the present invention includes a load side device including an air conditioner for processing an air conditioning load, and a heat source side including a cold / hot water generator for supplying a heat medium made of cold water or hot water to the load side device. A heat source side heat medium transport device including a device and a cold / hot water primary pump, a bypass pipe connecting the heat medium feed side pipe and the heat medium return side pipe, a bypass valve for adjusting the flow rate of the bypass pipe, and a load side A load-side shunt pipe having a pipe diameter smaller than that of the heat-medium pipe line, and then splitting the heat-medium in the heat-medium pipe line and then joining the heat-medium into the heat-medium pipe line, and a load-side shunt pipe A load-side shunt pipe flow meter that measures only the flow rate, a bypass shunt pipe that has a pipe diameter smaller than that of the bypass pipe and that splits the heat medium in the bypass pipe and then joins the heat medium to the bypass pipe, and bypass Bypass shunt flow rate measuring only shunt flow rate When the flow rate of the load-side shunt pipe is higher than the predetermined value and the air conditioning load is in a high load state, the bypass valve is controlled to be fully closed and the amount of cold water or hot water supplied to the air conditioner is controlled by the If the flow control of the load-side shunt pipe is less than the specified value and the air conditioning load is in a low load state, the cold / hot water generator may stop abnormally due to insufficient cold / hot water flow rate. A flow control device that controls the cold / hot water primary pump to a predetermined minimum control output and variably controls the amount of cold water or hot water supplied to the air conditioner by changing only the opening of the bypass valve. It is characterized by this.
[0012]
Further, the present invention is characterized in that, in the flow rate control system, the flow rates of the load-side shunt pipe and the bypass shunt pipe are measured by a flow meter having the same diameter, and this flow meter measures only the flow rate.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings.
[0015]
(1) Primary / Secondary Pump System FIG. 1 is an explanatory diagram showing a flow control system (primary / secondary pump system) according to an embodiment of the present invention.
[0016]
In FIG. 1, a plurality of cold / hot water generators 11 are provided in parallel, and a cold / hot water primary pump 12, a cooling tower 13, and a cooling water pump 14 are provided corresponding to each. Each of the cold / hot water primary pump 12 and the cooling water pump 14 is provided with an inverter INV. Reference numeral 15 is an air conditioner, 16 is a two-way valve for controlling the flow rate of cold / hot water flowing through the air conditioner 15, and 17 is a cold / hot water secondary pump. Reference numerals 18 and 19 denote a forward header and a secondary header for mixing cold water or hot water from the cold / hot water generator 11, respectively, and reference numeral 20 denotes a return header for mixing cold water or hot water returning to the cold / hot water generator 11. The bypass pipe 21 is provided so as to connect the forward primary header 18 and the return water pipe 10 or the forward primary header 18 and the return header 20. The piping system is divided into a heat source side where a heat source device such as the cold / hot water generator 11 is arranged and a load side where a load device such as an air conditioner 15 is arranged with the bypass pipe 21 as a boundary. The bypass diversion pipe 22 has a pipe diameter of, for example, 50 A (nominal diameter = 50 mm), and is the same pipe material as the bypass pipe 21 and has a diameter smaller than that of the bypass pipe 21. The bypass shunt pipe 22 is provided with a bypass shunt pipe flow meter 23 that simultaneously measures the flow rate and the flow direction of the bypass shunt pipe 22. The bypass shunt pipe flow meter 23 is preferably an electromagnetic flow meter or an ultrasonic flow meter. Reference numeral 24 denotes a water pipe for sending cold water or hot water from the forward / secondary header 19 to the air conditioner 15.
[0017]
The normal control operation of this flow control system is as follows. That is, cold water or hot water produced by the cold / hot water generator 11 is pumped by the cold / hot water primary pump 12 to the forward / first header 18 and then passed by the cold / hot water secondary pump 17 via the forward / secondary header 19 and the water pipe 24. Then, it is pumped to the air conditioner 15. The cold water or hot water sent to the air conditioner 15 exchanges heat with the carrier air in the air conditioner 15 and then returns to the cold / hot water generator 11 again via the return header 20 and the return water pipe 10. The air conditioning load thus transported to the cold / hot water generator 11 is discharged to the outside through the cooling water pump 14 and the cooling tower 13 of the cooling water circuit. At this time, when the flow rate of cold water or hot water conveyed by the cold / hot water primary pump 12 and the flow rate of cold water or hot water conveyed by the cold / hot water secondary pump 17 are balanced, the flow rate of the bypass shunt pipe 21 becomes zero. When the former flow rate is larger than the latter flow rate, a flow from the forward primary header 18 to the return water pipe 10 is formed in the bypass pipe 21 and the bypass diversion pipe 22, and the latter flow rate is larger than the former flow rate. In this case, a flow from the return water pipe 10 toward the forward primary header 18 is formed in the bypass pipe 21 and the bypass diversion pipe 22.
[0018]
Reference numeral 25 denotes a flow rate control device that performs optimum control of the cold / hot water primary pump 12 and the cooling water pump 14 in accordance with fluctuations in the load state of the air conditioner 15. The flow control device 25 includes a state input unit 26 that monitors the current operation state and load state and captures the data as data, a flow rate control calculation unit 27 that calculates control signals for the cold / hot water primary pump 12 and the cooling water pump 14, A control output unit 28 that outputs control signals for the water primary pump 12 and the cooling water pump 14 is mounted.
[0019]
The flow rate control of the flow rate control system is performed as shown in the flowchart of FIG. That is, in the state input unit 26, signals relating to the operation state of each device and the load state such as temperature and flow rate are periodically input / data converted and stored at a predetermined address in the memory. Next, in the flow rate control calculation unit 27, if there is no data indicating failure or abnormality in the input signal from the state input unit 26, the optimum cold / hot water primary pump 12 by PID control with the bypass shunt pipe flow rate setting value as a target value. The control output is calculated. The bypass shunt pipe flow rate setting value is set to approximately 0, and preferably set to such an extent that a flow from the forward header 18 toward the return header 20 slightly occurs in consideration of the stability of the water supply temperature. Here, the control output of the cooling water pump 14 can be easily calculated by defining in advance as a primary expression related to the control output of the cold / hot water primary pump 12 with reference to the design data. On the other hand, when there is data indicating a failure or abnormality in the input signal from the state input unit 26, the flow rate control calculation unit 27 performs an abnormality response control corresponding to the abnormal state. In addition, abnormal-time response control includes, for example, water supply (or return water) temperature compensation control corresponding to cold / hot water supply (or return water) temperature abnormality, cooling water limit control corresponding to cooling water temperature abnormality, and insufficient flow rate. There are a flow control release control corresponding to a flow control abnormality to be performed, a sensor abnormality control corresponding to a sensor abnormality such as disconnection, and the like. Then, the latest control output calculated by the flow control calculation unit 27 is output to the control output unit 28, and appropriate control signals for the cold / hot water primary pump 12 and the cooling water pump 14 are output to each device.
[0020]
(2) Primary pump system (1)
FIG. 3 is a configuration explanatory view showing a flow rate control system (primary pump system) according to another embodiment of the present invention.
[0021]
In FIG. 3, a plurality of cold / hot water generators 11 are provided in parallel, and a cold / hot water primary pump 12, a cooling tower 13, and a cooling water pump 14 are provided correspondingly. Each of the cold / hot water primary pump 12 and the cooling water pump 14 is provided with an inverter INV. Reference numeral 15 is an air conditioner, and 16 is a two-way valve for controlling the flow rate of cold / hot water flowing through the air conditioner 15. 31 is a forward header for mixing cold water or hot water from the cold / hot water generator 11, and 20 is a return header for mixing cold water or hot water returning to the cold / hot water generator 11. The bypass pipe 21 is provided so as to connect the forward header 31 and the return water pipe 10, or the forward header 31 and the return header 20, and a bypass valve 32 for adjusting the bypass pipe flow rate is provided on the bypass pipe line. The piping system is divided into a heat source side where a heat source device such as the cold / hot water generator 11 is arranged and a load side where a load device such as an air conditioner 15 is arranged with the bypass pipe 21 as a boundary. Reference numerals 33 and 22 denote a load-side shunt pipe and a bypass shunt pipe, respectively. The bypass diversion pipe 22 has a pipe diameter of, for example, 50 A (nominal diameter = 50 mm), and is the same pipe material as the bypass pipe 21 and has a diameter smaller than that of the bypass pipe 21. The bypass shunt pipe 22 is provided with a bypass shunt pipe flow meter 34 that measures only the flow rate of the bypass shunt pipe 22. Since the bypass shunt pipe flow meter 34 used in the primary pump type flow control system does not need to be able to measure the flow direction, the bypass shunt pipe flow meter 34 includes a differential flow meter in addition to an electromagnetic flow meter and an ultrasonic flow meter. Pressure flow meter and vortex flow meter can be used. Similarly, the load-side branch pipe 33 is the same pipe material as the load-side cold / hot water pipe and has a smaller diameter than the load-side cold / hot water pipe, and only the flow rate of the load-side branch pipe 33 is measured. A load-side branch pipe flow meter 35 is provided. As the load-side branch pipe flow meter 35, a differential pressure type flow meter, a vortex flow meter, and the like can be used in addition to the electromagnetic flow meter and the ultrasonic flow meter. Further, if the pipe diameter of the load side branch pipe 33 is the same as the pipe diameter of the bypass branch pipe 22, the lengths of the load side branch pipe 33 and the bypass branch pipe 22 are equal, and the load side branch pipe flow meter 35 and Since a flow meter having the same diameter can be used as the bypass shunt pipe flow meter 34, it is preferable in terms of design and construction efficiency and cost saving. Reference numeral 36 denotes a water supply pressure gauge for measuring the load-side water supply pressure.
[0022]
The primary pump type flow control system is structurally significantly different from the primary / secondary pump type flow control system described above, because it does not have a cold / hot water secondary pump as a load-side heat transfer device. And that the bypass valve 32 is provided on the bypass pipe line.
[0023]
This flow control system has different control operations depending on whether the air conditioning load is high or low.
[0024]
When the air conditioning load is in a high load state, the bypass valve 32 is controlled to be fully closed, and the amount of cold water or hot water supplied to the air conditioner 15 is variable by changing only the output of the cold / hot water primary pump 12. Be controlled. That is, the cold water or hot water produced by the cold / hot water generator 11 is pumped by the cold / hot water primary pump 12 to the air conditioner 15 via the forward header 31 and the water supply pipe 24, and exchanges heat with the carrier air in the air conditioner 15. Then, it is returned to the cold / hot water generator 11 again via the return header 20 and the return water pipe 10. The air conditioning load thus transported to the cold / hot water generator 11 is discharged to the outside through the cooling water pump 14 and the cooling tower 13 of the cooling water circuit.
[0025]
On the other hand, when the air conditioning load is in a low load state, the cold / hot water primary pump 12 has a predetermined minimum control output, for example, a rating so that the cold / hot water generator 11 does not stop abnormally due to insufficient flow of the cold / hot water. The amount of cold water or hot water supplied to the air conditioner 15 is variably controlled by changing only the opening degree of the bypass valve 32. That is, the cold water or hot water produced by the cold / hot water generator 11 is pumped by the cold / hot water primary pump 12 to the air conditioner 15 via the forward header 31 and the water supply pipe 24, and at the same time, excess cold water or hot water is supplied to the bypass pipe 21. Sent to. The cold water or hot water sent to the air conditioner 15 exchanges heat with the carrier air in the air conditioner 15, and then returns to the cold / hot water generator 11 again via the return header 20 and the return water pipe 10, and to the bypass pipe 21. The sent cold water or hot water is returned again to the cold / hot water generator 11 via the return header 20 and the return water pipe 10 without exchanging heat with the load side. The air conditioning load thus transported to the cold / hot water generator 11 is discharged to the outside through the cooling water pump 14 and the cooling tower 13 of the cooling water circuit.
[0026]
Reference numeral 37 denotes a flow rate control device 37 that performs optimal control of the cold / hot water primary pump 12, the cooling water pump 14, and the bypass valve 32 in accordance with fluctuations in the load state of the air conditioner 15. The flow control device 37 includes a state input unit 26 that monitors and captures the current operating state and load state as data, and a load state that determines whether the load state of the air conditioner 15 is in a high load state or a low load state. A determination unit 38, a high load control calculation unit 39 for calculating control signals of the cold / hot water primary pump 12, the cooling water pump 14 and the bypass valve 32 at the time of high load, and a cold / hot water primary pump 12 and a cooling water pump at the time of low load 14 and the low load control calculation part 40 which calculates the control signal of the bypass valve 32, and the control output part 28 which outputs the control signal with respect to the cold / hot water primary pump 12, the cooling water pump 14, and the bypass valve 32 are mounted.
[0027]
The flow rate control of the flow rate control system is performed as shown in the flowchart of FIG. That is, in the state input unit 26, signals relating to the operation state of each device and the load state such as temperature and flow rate are periodically input / data converted and stored at a predetermined address in the memory. Subsequently, the load state determination unit 38 compares the load-side shunt flow rate acquired through the state input unit 26 with a predetermined determination reference value, for example, so that the load-side load state is high load or low load. Is determined. As the predetermined criterion value, a value obtained by multiplying the rated water supply amount Q MAX of the operating cold / hot water generator 11 by the coefficient a and the load-side diversion ratio b1 is used. In the present embodiment, the coefficient a is 0.6. For example, if the friction loss of the load-side cold / hot water pipe and the load-side diversion pipe 33 in the pipe path from the diversion point to the merge point is equal, use the Hazen-William formula. Can be defined by the following equation.
[0028]
b1 = (d L / D L ) 2.63
Here, d L is the pipe diameter of the pipe diameter on the load side distribution pipe, D L is the load-side hot and cold water pipe load distribution pipe is provided (e.g. Kaemizu tube 22).
[0029]
When the flow rate of the load-side branch pipe 33 is equal to or higher than a predetermined value, it is considered that the air conditioning load is in a high load state, and the optimum control output of the cold / hot water primary pump 12 is calculated by PID control with the water supply pressure setting value as a target value. Is done. The control output of the cooling water pump 14 can be easily calculated by defining in advance as a primary expression related to the control output of the cold / hot water primary pump 12 with reference to the design data. Note that the bypass valve 32 is fully closed during a high load state. Here, the water supply pressure set value may be constant regardless of the load-side flow rate (constant water supply pressure control method), and the flow rate of the load-side shunt pipe 33 is determined based on the pump characteristic curve and the pipe resistance curve of the target heat source system. A relational expression of the water supply pressure set value may be defined in advance by a quadratic expression, and the obtained load-side flow rate may be easily obtained by substituting it into this relational expression (flow rate cascade pressure control method).
[0030]
On the other hand, when the flow rate of the load-side shunt pipe 33 falls below a predetermined value, the air conditioning load is considered to be in a low load state, and the value obtained by multiplying the flow rate of the bypass shunt pipe 22 by the reciprocal of the bypass shunt ratio b2 The optimum opening degree of the bypass valve 32 is calculated by PID control so that a total value of values obtained by multiplying the flow rate of the pipe 33 by the reciprocal of the load-side diversion ratio b1 becomes a flow rate set value (target value). The bypass diversion ratio b2 can be defined by the following equation.
[0031]
b2 = (d B / D B ) 2.63
Here, d B is the tube diameter of the bypass diverter tube 22, D B is the pipe diameter of the bypass pipe 21. In the low load state, the control output of the cold / hot water primary pump 12 is fixed to a predetermined minimum control output. This is for preventing the cold / hot water generator 11 from abnormally stopping due to the flow of the cold / hot water being insufficient when the control output of the cold / hot water primary pump 12 is lowered indefinitely according to the load state. The bypass valve 32 is operated for the purpose of bypassing excess cold / hot water that is not required on the load side.
[0032]
The latest control output calculated by the high load control calculation unit 39 or the low load control calculation unit 40 is output to the control output unit 28, and appropriate control signals for the cold / hot water primary pump 12 and the cooling water pump 14 are sent to each device. Is output. In order to consider the state transition between the high load state and the low load state caused by the load fluctuation, when the load side is in the high load state, the control operation for reliably closing the bypass valve 32 is performed. When in a load state, an operation for setting the control output of the cold / hot water primary pump 12 to a predetermined minimum control output is performed as necessary.
[0033]
(3) Primary pump system (2)
FIG. 5 is a configuration explanatory view showing a flow rate control system (primary pump system) according to another embodiment of the present invention. Note that the same parts in FIG. 3 as those in FIG. 3 are denoted by the same reference numerals as those in FIG.
[0034]
In FIG. 5, reference numeral 41 denotes an actual terminal pressure gauge for measuring the load-side terminal water supply pressure, which is provided in place of the water supply pressure gauge of FIG. Reference numeral 42 denotes a bypass pipe differential pressure gauge for measuring the bypass pipe differential pressure, which is provided in place of the bypass shunt pipe and the bypass shunt pipe flow meter of FIG.
[0035]
The flow rate control of the flow rate control system is performed as shown in the flowchart of FIG. That is, in the state input unit 26, signals relating to the operation state of each device and the load state such as temperature and flow rate are periodically input / data converted and stored at a predetermined address in the memory. Subsequently, the load state determination unit 38 compares the flow rate of the load side branch pipe 33 acquired through the state input unit 26 with a predetermined determination reference value, for example, so that the load state on the load side is high load or low load. Is determined. As described above, a value obtained by multiplying the rated water supply amount Q MAX of the operating cold / hot water generator 11 by the coefficient a and the load-side diversion ratio b1 is used as the predetermined determination reference value.
[0036]
When the flow rate of the load-side branch pipe 33 is equal to or higher than a predetermined value, it is considered that the air conditioning load is in a high load state, and the optimum control output of the cold / hot water primary pump 12 by PID control with the actual terminal water supply pressure setting value as a target value. Is calculated. The control output of the cooling water pump 14 can be easily calculated by defining in advance as a primary expression related to the control output of the cold / hot water primary pump 12 with reference to the design data. Note that the bypass valve 32 is fully closed during a high load state.
[0037]
On the other hand, when the flow rate of the load-side branch pipe 33 is lower than the predetermined value, it is considered that the air conditioning load is in a low load state, and the optimum bypass valve opening is set so that the bypass pipe differential pressure becomes the differential pressure setting value (target value). Is calculated by PID control. In the low load state, the control output of the cold / hot water primary pump 12 is fixed to a predetermined minimum control output. This is for preventing the cold / hot water generator 11 from abnormally stopping due to the flow of the cold / hot water being insufficient when the control output of the cold / hot water primary pump 12 is lowered indefinitely according to the load state. The bypass valve 32 is operated for the purpose of bypassing excess cold / hot water that is not required on the load side.
[0038]
The latest control data calculated by the high load control calculation unit 39 or the low load control calculation unit 40 is output to the control output unit 28, and appropriate control signals for the cold / hot water primary pump 12 and the cooling water pump 14 are sent to each device. Is output. In order to consider the state transition between the high load state and the low load state caused by the load fluctuation, when the load side is in the high load state, the control operation for reliably closing the bypass valve 32 is performed. When in a load state, an operation for setting the control output of the cold / hot water primary pump 12 to a predetermined minimum control output is performed as necessary.
[0039]
The embodiment of the flow rate control system is not limited to the above-described embodiment example. For example, a heat source device such as a turbo refrigerator, an absorption refrigerator, or a heat pump may be provided as a heat source side device, You may provide a thermal storage tank and an ice thermal storage tank. In addition to the water pressure gauge shown in FIG. 3 and the actual end pressure gauge shown in FIG. 5, a return water pipe differential pressure gauge that measures the differential pressure between the load side water supply pipe and the return water pipe is provided as means for measuring the load side cold / hot water pressure. Alternatively, a control method using the estimated terminal pressure as the load-side cold / hot water pressure may be employed.
[0040]
【The invention's effect】
As described above, according to the present invention, a branch pipe having a predetermined small pipe diameter provided with a flow meter is provided so as to be branched from the bypass pipe or the load-side cold / hot water pipe, and based on this flow rate measurement value, Regardless of the size of the heat source equipment, the flow control that can be introduced at a cheaper design and construction cost because the length of the shunt pipe and the diameter of the flow meter are constant regardless of the scale of the heat source equipment so that the condition of the cold / hot water transfer device is determined and controlled. A system can be provided.
[0041]
In addition, since the heat medium flow rate is variably controlled according to fluctuations in the air conditioning load state of the building, it is possible to provide a flow rate control system that controls the air conditioning equipment that is economical and has a high energy saving effect.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a flow control system (primary / secondary pump system) according to an embodiment of the present invention.
FIG. 2 is a flowchart showing flow control of the flow control system according to the embodiment of the present invention.
FIG. 3 is a configuration explanatory view showing a flow rate control system (primary pump system) according to another embodiment of the present invention.
FIG. 4 is a flowchart showing flow control of a flow control system according to another embodiment of the present invention.
FIG. 5 is a configuration explanatory view showing a flow rate control system (primary pump system) according to another embodiment of the present invention.
FIG. 6 is a flowchart showing flow control of a flow control system according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Cold / hot water generator 15 Air conditioner 18 Outgoing primary header 20 Return header 21 Bypass pipe 22 Bypass shunt pipe 23 Bypass shunt pipe flow meter 25 Flow control device

Claims (3)

空調負荷を処理する空調機を含む負荷側装置と、
負荷側装置に冷水または温水よりなる熱媒を供給する冷温水発生機を含む熱源側装置および冷温水一次ポンプを含む熱源側熱媒搬送装置と、
熱媒送り側管路および熱媒還り側管路を連結するバイパス管と、
バイパス管の流量を調整するバイパス弁と、
負荷側の熱媒管路の管径よりも小さな管径を有しこの熱媒管路の熱媒を分流させたのちこの熱媒管路に熱媒を合流させる負荷側分流管と、
負荷側分流管の流量のみを測定する負荷側分流管流量計と、
負荷側分流管の流量が所定値以上で空調負荷が高負荷状態となる場合はバイパス弁を全閉状態に制御するとともに空調機に供給される冷水または温水の量を冷温水一次ポンプの出力のみを変化させることにより可変制御し、負荷側分流管の流量が所定値未満で空調負荷が低負荷状態となる場合は冷温水発生機が冷温水流量不足に起因して異常停止することがないように、冷温水一次ポンプを所定の最低制御出力に制御するとともに空調機に供給される冷水または温水の量をバイパス弁の開度のみを変化させることにより可変制御する流量制御装置と
を備えることを特徴とする分流式流量測定による流量制御システム。
A load-side device including an air conditioner for processing the air conditioning load;
A heat source side device including a cold / hot water generator for supplying a heat medium made of cold water or hot water to a load side device, and a heat source side heat medium conveying device including a cold / hot water primary pump ;
A bypass pipe connecting the heat medium feed side pipe and the heat medium return side pipe;
A bypass valve for adjusting the flow rate of the bypass pipe;
A load-side branch pipe that has a pipe diameter smaller than the diameter of the load-side heat medium pipe line and then divides the heat medium in the heat medium pipe line and then joins the heat medium to the heat medium pipe line;
A load-side shunt flow meter that measures only the flow rate of the load-side shunt pipe;
When the flow rate of the load-side shunt pipe exceeds the specified value and the air conditioning load is in a high load state, the bypass valve is controlled to be fully closed and the amount of cold water or hot water supplied to the air conditioner is only output from the cold / hot water primary pump When the flow rate of the load-side shunt pipe is less than the predetermined value and the air conditioning load is in a low load state, the cold / hot water generator will not stop abnormally due to insufficient cold / hot water flow rate. And a flow control device for controlling the cold / hot water primary pump to a predetermined minimum control output and variably controlling the amount of cold water or hot water supplied to the air conditioner by changing only the opening degree of the bypass valve. A flow rate control system based on a diverted flow rate measurement.
空調負荷を処理する空調機を含む負荷側装置と、
負荷側装置に冷水または温水よりなる熱媒を供給する冷温水発生機を含む熱源側装置および冷温水一次ポンプを含む熱源側熱媒搬送装置と、
熱媒送り側管路および熱媒還り側管路を連結するバイパス管と、
バイパス管の流量を調整するバイパス弁と、
負荷側の熱媒管路の管径よりも小さな管径を有しこの熱媒管路の熱媒を分流させたのちこの熱媒管路に熱媒を合流させる負荷側分流管と、
負荷側分流管の流量のみを測定する負荷側分流管流量計と、
バイパス管の管径よりも小さな管径を有しバイパス管の熱媒を分流させたのちバイパス管に熱媒を合流させるバイパス分流管と、
バイパス分流管の流量のみを測定するバイパス分流管流量計と、
負荷側分流管の流量が所定値以上で空調負荷が高負荷状態となる場合はバイパス弁を全閉状態に制御するとともに空調機に供給される冷水または温水の量を冷温水一次ポンプの出力のみを変化させることにより可変制御し、負荷側分流管の流量が所定値未満で空調負荷が低負荷状態となる場合は冷温水発生機が冷温水流量不足に起因して異常停止することがないように、冷温水一次ポンプを所定の最低制御出力に制御するとともに空調機に供給される冷水または温水の量をバイパス弁の開度のみを変化させることにより可変制御する流量制御装置と
を備えることを特徴とする分流式流量測定による流量制御システム。
A load-side device including an air conditioner for processing the air conditioning load;
A heat source side device including a cold / hot water generator for supplying a heat medium made of cold water or hot water to a load side device, and a heat source side heat medium conveying device including a cold / hot water primary pump ;
A bypass pipe connecting the heat medium feed side pipe and the heat medium return side pipe;
A bypass valve for adjusting the flow rate of the bypass pipe;
A load-side branch pipe that has a pipe diameter smaller than the diameter of the load-side heat medium pipe line and then divides the heat medium in the heat medium pipe line and then joins the heat medium to the heat medium pipe line;
A load-side shunt flow meter that measures only the flow rate of the load-side shunt pipe;
A bypass shunt pipe that has a pipe diameter smaller than the bypass pipe diameter and splits the heat medium of the bypass pipe and then joins the heat medium to the bypass pipe;
A bypass shunt pipe flow meter that measures only the flow rate of the bypass shunt pipe;
When the flow rate of the load-side shunt pipe exceeds the specified value and the air conditioning load is in a high load state, the bypass valve is controlled to be fully closed and the amount of cold water or hot water supplied to the air conditioner is only output from the cold / hot water primary pump When the flow rate of the load-side shunt pipe is less than the predetermined value and the air conditioning load is in a low load state, the cold / hot water generator will not stop abnormally due to insufficient cold / hot water flow rate. And a flow control device for controlling the cold / hot water primary pump to a predetermined minimum control output and variably controlling the amount of cold water or hot water supplied to the air conditioner by changing only the opening degree of the bypass valve. A flow rate control system based on a diverted flow rate measurement.
負荷側分流管およびバイパス分流管の流量は同一口径の流量計によって計測され、この流量計は流量のみを計測することを特徴とする請求項に記載の分流式流量測定による流量制御システム。The flow control system according to claim 2 , wherein flow rates of the load-side branch pipe and the bypass branch pipe are measured by a flow meter having the same diameter, and the flow meter measures only the flow rate.
JP2002075101A 2002-03-18 2002-03-18 Flow control system with split flow measurement Expired - Lifetime JP3987358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002075101A JP3987358B2 (en) 2002-03-18 2002-03-18 Flow control system with split flow measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002075101A JP3987358B2 (en) 2002-03-18 2002-03-18 Flow control system with split flow measurement

Publications (2)

Publication Number Publication Date
JP2003269779A JP2003269779A (en) 2003-09-25
JP3987358B2 true JP3987358B2 (en) 2007-10-10

Family

ID=29204300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002075101A Expired - Lifetime JP3987358B2 (en) 2002-03-18 2002-03-18 Flow control system with split flow measurement

Country Status (1)

Country Link
JP (1) JP3987358B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9414521B2 (en) 2012-02-28 2016-08-09 Mitsubishi Heavy Industries, Ltd. Heat source system and method of controlling flow rate of heating medium thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3828485B2 (en) * 2002-12-06 2006-10-04 株式会社三菱地所設計 Control device
JP5495499B2 (en) * 2008-02-27 2014-05-21 三菱重工業株式会社 Turbo refrigerator, refrigeration system, and control method thereof
JP5284295B2 (en) * 2010-01-28 2013-09-11 株式会社アレフネット Heat source control system and heat source control method
KR101548136B1 (en) 2014-03-31 2015-09-04 지멘스 주식회사 Cooling and heating air condition system, and control method thereof
CN106016623B (en) * 2016-06-18 2022-04-22 杭州滨创能源科技有限公司 Building air conditioner water wireless network distribution self-discipline intelligent power-saving controller and control method
CN110139531B (en) * 2018-02-02 2021-03-05 阿里巴巴集团控股有限公司 Flow guide system suitable for cooling equipment and cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9414521B2 (en) 2012-02-28 2016-08-09 Mitsubishi Heavy Industries, Ltd. Heat source system and method of controlling flow rate of heating medium thereof

Also Published As

Publication number Publication date
JP2003269779A (en) 2003-09-25

Similar Documents

Publication Publication Date Title
KR101003148B1 (en) Air conditioning control system and air conditioning control method
JP5501179B2 (en) Medium temperature source system with free cooling
JP5274222B2 (en) Heat source control system for air conditioning equipment
CN102308155A (en) Secondary pump type heat source system and secondary pump type heat source control method
JP5537253B2 (en) Water supply control system and control method thereof
JP3652974B2 (en) Primary pump heat source variable flow rate system
WO2012057263A1 (en) Heat source apparatus
JPH1163631A (en) Equipment for controlling temperature of supply water
JP3987358B2 (en) Flow control system with split flow measurement
JP6644559B2 (en) Heat source control system, control method and control device
JP5558202B2 (en) Water supply control system and control method thereof
JP2014129897A (en) Heat supply control device, heat supply system and heat supply control method
JP4600139B2 (en) Air conditioner and control method thereof
JP4440147B2 (en) Operation control method for two-pump heat source equipment
JP2007271120A (en) Heating medium conveyance system
JP2009019842A (en) Water delivery control system and water delivery control method
JP3550336B2 (en) Air conditioning system
CN114206058A (en) Temperature control system, communication equipment and temperature control method
JP3957309B2 (en) Operation control method for two-pump heat source equipment
JP6523798B2 (en) Heat source equipment and heat source equipment control method
JP6243644B2 (en) Free cooling system and free cooling method using the same
JP5806555B2 (en) Heat source machine control device and heat source machine control method
JP2003270006A (en) Flow branching type piping unit for measuring flow rate and air conditioning system using the same
JP3878039B2 (en) Piping system for flow control and its construction method
JP2012247113A (en) Air-conditioning piping system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070712

R150 Certificate of patent or registration of utility model

Ref document number: 3987358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term