JPH09166346A - Air conditioner, air conditioning system and controlling method thereof - Google Patents
Air conditioner, air conditioning system and controlling method thereofInfo
- Publication number
- JPH09166346A JPH09166346A JP7347334A JP34733495A JPH09166346A JP H09166346 A JPH09166346 A JP H09166346A JP 7347334 A JP7347334 A JP 7347334A JP 34733495 A JP34733495 A JP 34733495A JP H09166346 A JPH09166346 A JP H09166346A
- Authority
- JP
- Japan
- Prior art keywords
- water
- return water
- air
- temperature
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は空調機、空調システ
ムおよびその制御方法に係り、特に空調システムの制御
対象である室温、給気温度などの制御対象を制御しつ
つ、空調システムの還水温度を一定に制御することが可
能な空調システムに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, an air conditioning system and a control method therefor, and more particularly to controlling the temperature of the air conditioning system such as room temperature and supply air temperature while controlling the return water temperature of the air conditioning system. The present invention relates to an air-conditioning system capable of controlling the air conditioner constantly.
【0002】[0002]
【従来の技術】従来より、地域熱供給設備では、熱源設
備から送られた地域熱媒を需用家側に直接供給するため
に、ブリードイン方式が採用されている。このブリード
イン方式では、需用者が利用した後の熱媒の一部を、混
合弁などで送られてきた熱媒と混合して、需要家設備に
供給する方式である。かかるブリードイン方式を水熱源
型地域熱供給システムに適用する場合には、還水温度が
変動することが知られている。還水温度の変動を熱源設
備で吸収できない場合には、往水温度を高温側にシフト
させる原因となっている。従って、ブリードイン方式の
水熱源型地域熱供給システムでは、還水温度を検出し、
往水温度設定値のカスケード制御を行うことにより、還
水温度が一定になるようにシステム制御を行っている。2. Description of the Related Art Conventionally, in district heat supply equipment, a bleed-in system has been adopted in order to directly supply the district heat medium sent from the heat source equipment to the consumer side. In this bleed-in system, a part of the heat medium used by the consumer is mixed with the heat medium sent by a mixing valve or the like and supplied to the customer facility. It is known that the return water temperature fluctuates when the bleed-in system is applied to a water heat source type district heat supply system. When the fluctuation of the return water temperature cannot be absorbed by the heat source equipment, it causes the outgoing water temperature to shift to the high temperature side. Therefore, in the bleed-in type water heat source type district heat supply system, the return water temperature is detected,
By performing cascade control of the outgoing water temperature set value, system control is performed so that the return water temperature becomes constant.
【0003】また、空調機においても、風導内の送風温
度分布を均一化したり、空調機コイルの結露を防止する
ために、ブリードイン方式が採用されている。このブリ
ードイン方式では、空調機の熱交換器内の水循環流量を
一定に保持しつつ、往水量を操作して、給気温度や室温
などの制御対象量を制御している。Further, in air conditioners, the bleed-in system is adopted in order to make the air temperature distribution in the air guide uniform and to prevent dew condensation on the air conditioner coils. In this bleed-in system, while controlling the water circulation flow rate in the heat exchanger of the air conditioner at a constant level, the amount of outgoing water is manipulated to control the controlled object amount such as the supply air temperature and room temperature.
【0004】[0004]
【発明が解決しようとする課題】上記のようなブリード
イン方式では、送水温度(空調機などの負荷に供給され
る熱源水の温度)が一様に操作されるので、空調系統間
で熱負荷割合(設計最大熱負荷に対する現在の熱負荷)
にばらつきがある場合、熱負荷割合が大きな系統では負
荷が処理できない系統が発生するという問題があった。In the bleed-in system as described above, the temperature of the water supply (the temperature of the heat source water supplied to the load such as the air conditioner) is controlled uniformly, so that the heat load between the air conditioning systems is increased. Ratio (current heat load to design maximum heat load)
If there are variations, there is a problem that a system with a large heat load ratio cannot handle the load.
【0005】また、各建物の中央熱源受け入れ設備にお
いて、還水と地域熱供給往水を混合することになり、有
効エネルギーの低下を招き、個別建物内(需要家設備
内)の送水搬送動力を増大させるという問題があった。In addition, in the central heat source receiving facility of each building, the return water and the district heat supply and outgoing water are mixed, which leads to a decrease in effective energy, and the water transfer power in the individual building (in the customer facility) is used. There was a problem of increasing it.
【0006】本発明は、上記のような問題に鑑みてなさ
れたものであり、空調システムの制御対象である室温、
給気温度などの制御対象を制御しつつ、還水温度を一定
(すなわち、往還水温度差を一定)に制御することによ
り、搬送動力を低減し、有効エネルギーの利用率を向上
させることが可能な新規かつ改良された空調機、空調シ
ステムおよびその制御方法を提供することを目的として
いる。The present invention has been made in view of the above problems, and is the room temperature to be controlled by the air conditioning system,
By controlling the return water temperature to a constant value (that is, the forward and return water temperature difference is constant) while controlling the controlled object such as the supply air temperature, it is possible to reduce the transport power and improve the utilization rate of effective energy. Another object of the present invention is to provide a new and improved air conditioner, an air conditioning system and a control method thereof.
【0007】[0007]
【課題を解決するための手段】上記課題を解決するため
に、本発明の第1の観点によれば、熱源システムから往
水配管により往水される冷水または温水を熱交換器によ
り給気空気と熱交換して還水配管により熱源システムに
還水する空調システムの制御方法が提供される。この空
調システムの制御方法は、請求項1に記載のように、熱
交換器出口から還水配管に戻される還水温度を検出し
て、その還水温度に応じて、熱源システムから往水配管
を介して熱交換器へ供給される往水量を操作し、当該空
調システムの制御対象量を検出し、その検出値に応じ
て、還水の一部を熱交換器入口に供給することにより熱
交換器内の循環流量を操作して、制御対象量を目標値に
制御するとともに、熱源システムへの還水温度を一定値
に制御することを特徴としている。なお、この空調シス
テムにより制御される制御対象量は、請求項2に記載の
ように、空調空間内の温度および/または空調空間への
給気温度とすることが好ましい。In order to solve the above problems, according to a first aspect of the present invention, cold water or hot water that is flowed from a heat source system through a water flow pipe is supplied by a heat exchanger to supply air. There is provided a control method for an air conditioning system, which exchanges heat with and returns water to a heat source system through a return water pipe. According to the control method of this air conditioning system, as described in claim 1, the return water temperature returned from the heat exchanger outlet to the return water pipe is detected, and the return pipe from the heat source system is sent according to the return water temperature. The amount of outgoing water supplied to the heat exchanger via the heat exchanger is manipulated to detect the control target amount of the air conditioning system, and a part of the return water is supplied to the heat exchanger inlet according to the detected value. It is characterized in that the circulating flow rate in the exchanger is manipulated to control the amount to be controlled to a target value and the return water temperature to the heat source system to a constant value. The controlled object amount controlled by this air conditioning system is preferably the temperature in the air-conditioned space and / or the air supply temperature to the air-conditioned space, as described in claim 2.
【0008】また、本発明の第2の観点によれば、水対
空気熱交換器(102、202)を内蔵し、熱源から往
水配管(104、204)により往水される冷水または
温水を水対空気熱交換器(102、202)により給気
空気(SA)と熱交換して還水配管(106、206)
により熱源システムに還水する空調機が提供される。こ
の空調機は、請求項3に記載のように、往水配管(10
4、204)と水対空気熱交換器入口(102a、20
2a)を結ぶ往水分岐管(104a、204a)と、還
水配管(106、206)と水対空気熱交換器出口(1
02b、202a)とを結ぶ還水分岐管(106a、2
06b)とを連結して、還水の一部を往水に戻す循環路
(110、210)と、循環路(110、210)内の
流量を調整する循環流量操作手段(112、212)
と、水対空気熱交換器入口(102a、202a)への
往水流入量を操作する往水流入量操作手段(108、2
08)と、水対空気熱交換器出口(102b、202
b)からの還水温度を検出する還水温度検出手段(11
4、214)と、当該空調機の制御対象量を検出する制
御対象量検出手段(116、216)と、還水温度検出
手段(114、214)により検出された還水温度に応
じて往水流入量操作手段(108、208)を駆動し、
制御対象量検出手段(116、216)により検出され
た制御対象量に応じて循環流量操作手段(112、21
2)を駆動することにより、制御対象量を目標値に制御
するとともに、還水温度を設定値に制御する制御手段
(118a、118b、218a、218b)とを備え
たことを特徴としている。なお、往水流入量操作手段と
しては、請求項4に記載のように、往水分岐路(204
a)と循環路(210)との結合部に設置されて、往水
流入量と還水流入量との割合を操作する三方弁(20
8)を使用することもできる。Further, according to the second aspect of the present invention, the water-to-air heat exchanger (102, 202) is built in, and cold water or hot water which is sent from the heat source through the outgoing pipe (104, 204) is supplied. Water-to-air heat exchangers (102, 202) exchange heat with the supply air (SA) and return water piping (106, 206)
Provides an air conditioner that returns water to the heat source system. This air conditioner has, as described in claim 3, a water outflow pipe (10
4, 204) and water-to-air heat exchanger inlets (102a, 20)
2a) outgoing water branch pipes (104a, 204a), return water pipes (106, 206), and water-to-air heat exchanger outlet (1
02b, 202a) and a return water branch pipe (106a, 2)
06b) and a circulation path (110, 210) for returning a part of the return water to the outgoing water, and a circulation flow rate operation means (112, 212) for adjusting the flow rate in the circulation path (110, 210).
And an incoming water inflow amount operating means (108, 2) for operating an incoming water inflow amount into the water-to-air heat exchanger inlet (102a, 202a).
08) and water-to-air heat exchanger outlets (102b, 202)
Return water temperature detecting means (11) for detecting the return water temperature from b)
4, 214), control target amount detection means (116, 216) for detecting the control target amount of the air conditioner, and return water temperature detected by return water temperature detection means (114, 214). Drive the inflow amount operating means (108, 208),
Circulation flow rate operation means (112, 21) according to the controlled object amount detected by the controlled object amount detecting means (116, 216).
By driving 2), the control target amount is controlled to a target value, and the control means (118a, 118b, 218a, 218b) for controlling the return water temperature to a set value is provided. In addition, as the incoming water inflow amount operating means, as described in claim 4, the incoming water branch passage (204
A three-way valve (20) installed at the joint between a) and the circulation path (210) to control the ratio of the amount of incoming water and the amount of incoming return water.
8) can also be used.
【0009】また本発明の第3の観点によれば、水対空
気熱交換器(302、402)を内蔵し、熱源から往水
配管(304、404)により往水される冷水または温
水を水対空気熱交換器(302、402)により給気空
気(SA)と熱交換して還水配管(306、406)に
より熱源システムに還水する空調機が提供される。この
空調機は、請求項5に記載のように、往水配管(30
4、404)と水対空気熱交換器入口(302a、40
2a)を結ぶ往水分岐管(304a、404a)と、還
水配管(306、406)と水対空気熱交換器出口(3
02b、402b)とを結ぶ還水分岐管(306a、4
06a)とを連結して、還水の一部を往水に戻す循環路
(310、410)と、循環路(310、410)内の
流量を調整する循環流量操作手段(312、412)
と、水対空気熱交換器出口(302b、402b)から
の還水流出量を操作する還水流出量操作手段(308、
408)と、水対空気熱交換器出口(302b、402
b)からの還水温度を検出する還水温度検出手段(31
4、414)と、当該空調機の制御対象量を検出する制
御対象量検出手段(316、416)と、還水温度検出
手段(314、414)により検出された還水温度に応
じて還水流出量操作手段(308、408)を駆動し、
制御対象量検出手段(316、416)により検出され
た制御対象量に応じて循環流量操作手段(312、41
2)を駆動することにより、制御対象量を目標値に制御
するとともに、還水温度を一定に制御する制御手段(3
18a、318b、418a、418b)とを備えたこ
とを特徴としている。なお、還水流出量操作手段とし
て、請求項6に記載のように、還水分岐路(406a)
と循環路(410)との結合部に設置される三方弁(4
08)を使用することもできる。According to a third aspect of the present invention, the water-to-air heat exchanger (302, 402) is built in, and cold water or hot water which is sent from the heat source through the outgoing pipe (304, 404) is supplied as water. An air conditioner is provided that exchanges heat with the supply air (SA) by the air-to-air heat exchanger (302, 402) and returns the water to the heat source system by the return water pipe (306, 406). This air conditioner, as described in claim 5,
4, 404) and water-to-air heat exchanger inlets (302a, 40a)
2a) outgoing water branch pipes (304a, 404a), return water pipes (306, 406), and water-to-air heat exchanger outlet (3)
02b, 402b) and return water branch pipes (306a, 4)
06a), and a circulation path (310, 410) for returning a part of the return water to the outgoing water, and a circulation flow rate operation means (312, 412) for adjusting the flow rate in the circulation path (310, 410).
And a return water outflow amount operation means (308, for operating the return water outflow amount from the water-to-air heat exchanger outlets (302b, 402b).
408) and water to air heat exchanger outlets (302b, 402)
Return water temperature detecting means (31) for detecting the return water temperature from b)
4, 414), control target amount detecting means (316, 416) for detecting the control target amount of the air conditioner, and return water temperature according to the return water temperature detected by the return water temperature detecting means (314, 414). Drive the outflow amount operation means (308, 408),
Circulation flow rate operation means (312, 41) according to the controlled object amount detected by the controlled object amount detecting means (316, 416).
By controlling (2), the control amount (3) is controlled so that the controlled object amount is controlled to a target value and the return water temperature is controlled to be constant.
18a, 318b, 418a, 418b). In addition, as the return water outflow amount operating means, as described in claim 6, the return water branch passage (406a).
And three-way valve (4
08) can also be used.
【0010】なお、請求項8に示すように、上記第2お
よび第3の観点にかかる空調機において、循環路(11
0、210、310、410)内の流量に応じて、還水
温度設定値を操作することが好ましい。また、請求項9
に示すように、上記第2および第3の観点にかかる空調
機において、制御対象量として、空調空間内の温度、お
よび/または空調空間への給気温度を設定することが好
ましい。As described in claim 8, in the air conditioner according to the second and third aspects, the circulation path (11
0, 210, 310, 410) depending on the flow rate in the return water temperature set point. Claim 9
As shown in, in the air conditioner according to the second and third aspects, it is preferable to set the temperature in the air-conditioned space and / or the supply air temperature to the air-conditioned space as the control target amount.
【0011】また、本発明の第4の観点によれば、熱源
から冷水または温水を往水する主往水配管(502、6
02)と還水を熱源に戻す主還水配管(504、60
4)と、主往水配管(502、604)から分岐する分
岐往水配管(502a、602a)と主還水配管(50
4、604)から分岐する分岐還水配管(504a、6
04a)と、分岐往水配管(502a、602a)と分
岐還水配管(504a、604a)に対して並列に接続
された、水対熱交換器(508(1)…508(n)、
608(1)…608(n))を内蔵する複数の空調機
(506(1)…506(n)、606(1)…606
(n))とを備えた空調システムが提供される。この空
調システムは、請求項9に記載のように、接続されたす
べての空調機(506(1)…506(n)、606
(1)…606(n))よりも上流側の分岐往水配管
(502a、602a)と接続されたすべての空調機
(506(1)…506(n)、606(1)…606
(n))よりも下流側の分岐還水配管(502b、60
2b)とを連結して、還水の一部を往水に戻す循環路
(510、610)と、循環路(510、610)内の
流量を調整する循環流量操作手段(512、612)
と、分岐往水配管(502a、602a)への往水流入
量を操作する往水流入量操作手段(514、614)
と、分岐還水配管(504a、604a)の還水温度を
検出する還水温度検出手段(516、616)と、空調
機(506(1)…506(n)、606(1)…60
6(n))の制御対象量を検出する制御対象量検出手段
(518、618)と、還水温度検出手段(516、6
16)により検出された完遂温度に応じて往水流入量操
作手段(514、614)を駆動し、制御対象量検出手
段(518、618)により検出された制御対象量に応
じて循環流量操作手段(512、612)を駆動するこ
とにより、制御対象量を目標値に制御するとともに、還
水温度を設定値に制御する制御手段(520a、520
b、620a、620b)とを備えたことを特徴として
いる。なお、請求項10に記載のように、往水流入量操
作手段として、分岐往水分岐路(602a)と循環路
(610)との結合部に設置されて、往水流入量と還水
流入量との割合を操作する三方弁(614)を使用する
ことも可能である。According to a fourth aspect of the present invention, the main incoming / outgoing pipe (502, 6) for inflowing cold water or hot water from a heat source.
02) and the main return water piping (504, 60) that returns the return water to the heat source.
4), branch outgoing water piping (502a, 602a) branched from the main outgoing water piping (502, 604), and main return water piping (50)
4, 604) and branch return water piping (504a, 6)
04a), the water-to-heat exchangers (508 (1) ... 508 (n), which are connected in parallel to the branch outgoing water pipes (502a, 602a) and the branch return water pipes (504a, 604a).
A plurality of air conditioners (506 (1) ... 506 (n), 606 (1) ... 606 that incorporate 608 (1) ... 608 (n))
(N)) is provided. This air conditioning system comprises all connected air conditioners (506 (1) ... 506 (n), 606) as claimed in claim 9.
(1) ... 606 (n)) All the air conditioners (506 (1) ... 506 (n), 606 (1) ... 606 connected to the branch incoming and outgoing piping (502a, 602a) on the upstream side
(N)) downstream branch water return piping (502b, 60)
2b) and a circulation path (510, 610) for returning a part of the return water to the outgoing water, and a circulation flow rate operation means (512, 612) for adjusting the flow rate in the circulation path (510, 610).
And an incoming water inflow amount operating means (514, 614) for operating the incoming water inflow amount into the branch outgoing water pipes (502a, 602a).
, Return water temperature detecting means (516, 616) for detecting the return water temperature of the branch return water pipes (504a, 604a), and air conditioners (506 (1) ... 506 (n), 606 (1) ... 60
6 (n)) control target amount detecting means (518, 618) for detecting the control target amount, and return water temperature detecting means (516, 6).
16) drive the outgoing water inflow amount operating means (514, 614) according to the completion temperature detected by 16), and circulate flow rate operating means according to the controlled object amount detected by the controlled object amount detecting means (518, 618). By controlling (512, 612), the control means (520a, 520) for controlling the controlled object amount to the target value and controlling the return water temperature to the set value.
b, 620a, 620b). In addition, as described in claim 10, as the incoming water inflow amount operation means, it is installed at a joint portion of the branch outgoing water branch passage (602a) and the circulation passage (610), and the incoming water inflow amount and the return water inflow amount. It is also possible to use a three-way valve (614) that operates the ratio of
【0012】また、本発明の第5の観点によれば、熱源
から冷水または温水を往水する主往水配管(702、8
02)と還水を熱源に戻す主還水配管(704、80
4)と、主往水配管(702、804)から分岐する分
岐往水配管(702a、802a)と主還水配管(70
4、804)から分岐する分岐還水配管(704a、8
04a)と、分岐往水配管(702a、802a)と分
岐還水配管(704a、804a)に対して並列に接続
された、水対熱交換器(708(1)…708(n)、
808(1)…808(n))を内蔵する複数の空調機
(706(1)…706(n)、806(1)…806
(n))とを備えた空調システムが提供される。この空
調システムは、請求項11に記載のように、接続された
すべての空調機(706(1)…706(n)、806
(1)…806(n))よりも上流側の分岐往水配管
(702a、702a)と接続されたすべての空調機
(706(1)…706(n)、806(1)…806
(n))よりも下流側の分岐還水配管(702b、80
2b)とを連結して、還水の一部を往水に戻す循環路
(710、810)と、循環路(710、810)内の
流量を調整する循環流量操作手段(712、812)
と、分岐還水配管(704a、804a)の還水流出量
を操作する還水流出量操作手段(714、814)と、
分岐還水配管(704a、804a)の還水温度を検出
する還水温度検出手段(716、816)と、空調機
(706(1)…706(n)、806(1)…806
(n))の制御対象量を検出する制御対象量検出手段
(718、818)と、還水温度検出手段(716、8
16)により検出された完遂温度に応じて往水流入量操
作手段(714、814)を駆動し、制御対象量検出手
段(718、818)により検出された制御対象量に応
じて循環流量操作手段(712、812)を駆動するこ
とにより、制御対象量を目標値に制御するとともに、還
水温度を設定値に制御する制御手段(720a、720
b、820a、820b)とを備えたことを特徴として
いる。なお請求項12に記載のように、還水流出量操作
手段として、還水分岐路(802a)と循環路(81
0)との結合部に設置されて、往水流入量と還水流入量
との割合を操作する三方弁(814)を使用することも
可能である。Further, according to a fifth aspect of the present invention, main incoming water piping (702, 8) for incoming cold water or hot water from a heat source.
02) and the main return water pipe (704, 80) that returns the return water to the heat source.
4), branch outgoing water piping (702a, 802a) branched from the main outgoing water piping (702, 804), and main return water piping (70).
4, 804) branch return water piping (704a, 8)
04a) and the water-to-heat exchangers (708 (1) ... 708 (n), which are connected in parallel to the branch outgoing water pipes (702a, 802a) and the branch return water pipes (704a, 804a).
A plurality of air conditioners (706 (1) ... 706 (n), 806 (1) ... 806) incorporating 808 (1) ... 808 (n))
(N)) is provided. This air conditioning system comprises all connected air conditioners (706 (1) ... 706 (n), 806) as claimed in claim 11.
(1) ... 806 (n)) All the air conditioners (706 (1) ... 706 (n), 806 (1) ... 806 connected to the branch incoming and outgoing piping (702a, 702a) on the upstream side.
(N)) downstream branch water return piping (702b, 80)
2b) and a circulation path (710, 810) for returning a part of the return water to the outgoing water, and a circulation flow rate operation means (712, 812) for adjusting the flow rate in the circulation path (710, 810).
And return water outflow amount operation means (714, 814) for operating the return water outflow amount of the branch return water pipes (704a, 804a),
Return water temperature detection means (716, 816) for detecting the return water temperature of the branch return water pipes (704a, 804a) and air conditioners (706 (1) ... 706 (n), 806 (1) ... 806
(N)) control target amount detecting means (718, 818) for detecting the control target amount and return water temperature detecting means (716, 8)
16) driving the outflow water inflow amount operating means (714, 814) according to the completion temperature detected by 16), and circulating flow rate operating means according to the controlled object amount detected by the controlled object amount detecting means (718, 818) By controlling (712, 812), the control means (720a, 720) for controlling the controlled object amount to the target value and controlling the return water temperature to the set value.
b, 820a, 820b). Note that, as described in claim 12, the return water branch passage (802a) and the circulation passage (81) are used as the return water outflow amount operating means.
It is also possible to use a three-way valve (814) installed at the connection with 0) that controls the ratio of the inflow and the inflow of the outgoing water.
【0013】さらに、上記第4および第5の観点にかか
る空調システムにおいて、請求項13に記載のように、
各空調機の水対空気熱交換器に、定流量弁を取り付けて
も良い。あるいは、請求項14に記載のように、循環路
(510、610、710、810)内の流量に応じ
て、還水温度設定値を操作するように構成しても良い。
さらには、請求項15に記載のように、制御対象量とし
て、空調空間内の温度および/または空調空間への給気
温度を制御するように構成することができる。Further, in the air conditioning system according to the fourth and fifth aspects, as described in claim 13,
A constant flow valve may be attached to the water-to-air heat exchanger of each air conditioner. Alternatively, as described in claim 14, the return water temperature set value may be operated according to the flow rate in the circulation path (510, 610, 710, 810).
Furthermore, as described in claim 15, it is possible to control the temperature in the air-conditioned space and / or the air supply temperature to the air-conditioned space as the controlled object amount.
【0014】[0014]
【発明の実施の形態】以下に添付図面を参照しながら、
本発明にかかる空調機、空調システムおよびその制御方
法のいくつかの好適な実施の形態について詳細に説明す
る。BRIEF DESCRIPTION OF THE DRAWINGS FIG.
Some preferred embodiments of an air conditioner, an air conditioning system, and a control method thereof according to the present invention will be described in detail.
【0015】(第1の実施の形態)本発明の第1の実施
の形態は、本発明の基本的な制御原理に関すものであ
り、特に、熱源システムから往水配管により往水される
冷水または温水を熱交換器により給気空気と熱交換して
還水配管により熱源システムに還水する空調システムを
制御する方法に関するものである。(First Embodiment) The first embodiment of the present invention relates to the basic control principle of the present invention, and in particular, cold water that is flowed from a heat source system through a water flow pipe. Alternatively, the present invention relates to a method for controlling an air conditioning system in which hot water is heat-exchanged with supply air by a heat exchanger and returned to a heat source system by a return water pipe.
【0016】すなわち、この制御方法によれば、まず、
熱交換器出口から還水配管に戻される還水温度を検出し
て、その還水温度に応じて、熱源システムから往水配管
を介して熱交換器へ供給される往水量を操作する。同時
に、し、空調空間内の温度、空調空間への給気温度など
の当該空調システムの制御対象量を検出し、その検出値
に応じて、還水の一部を熱交換器入口に供給することに
より熱交換器内の循環流量の操作を行う。このように、
本発明の第1の実施の形態においては、空調空間内の温
度や空調空間への給気温度などの制御対象量を目標値に
制御するとともに、熱源システムへの還水温度を一定値
に制御することにより、搬送動力を軽減し、有効エネル
ギーの利用効率の向上が図れる。That is, according to this control method, first,
The return water temperature returned from the heat exchanger outlet to the return water pipe is detected, and the amount of outgoing water supplied from the heat source system to the heat exchanger via the outgoing water pipe is operated according to the returned water temperature. At the same time, the control target amount of the air-conditioning system such as the temperature in the air-conditioned space and the supply temperature to the air-conditioned space is detected, and a part of the return water is supplied to the heat exchanger inlet according to the detected value. Therefore, the circulation flow rate in the heat exchanger is controlled. in this way,
In the first embodiment of the present invention, the control target amount such as the temperature in the air-conditioned space and the air supply temperature to the air-conditioned space is controlled to a target value, and the return water temperature to the heat source system is controlled to a constant value. By doing so, it is possible to reduce the transport power and improve the utilization efficiency of effective energy.
【0017】次に、本発明の第1の実施の形態の動作原
理を説明する。熱交換量(Q)は、伝熱係数(k)、伝
熱面積(A)と流体間の温度差(Δt)により定まる。 Q=K・A・ΔtNext, the operating principle of the first embodiment of the present invention will be described. The heat exchange amount (Q) is determined by the heat transfer coefficient (k), the heat transfer area (A) and the temperature difference (Δt) between the fluids. Q = K ・ A ・ Δt
【0018】一般に、水対空気熱交換器では、伝熱面積
(A)は装置により定まる定数であり、水側の水量の操
作や水側と空気側の流量を操作することにより伝熱係数
と流体間の温度差を変え、熱交換量を制御している。具
体的には、水側の熱伝達率、空気側の熱伝達率、流体間
の温度差を変え、熱交換量を制御している。Generally, in a water-to-air heat exchanger, the heat transfer area (A) is a constant determined by the device, and the heat transfer coefficient and the heat transfer coefficient can be obtained by controlling the amount of water on the water side and the flow rates on the water side and the air side. The amount of heat exchange is controlled by changing the temperature difference between fluids. Specifically, the amount of heat exchange is controlled by changing the heat transfer coefficient on the water side, the heat transfer coefficient on the air side, and the temperature difference between the fluids.
【0019】熱交換量と還水温度の同時制御は、還水を
往水に還流させ熱交換器内の水側流速を変え、水側の熱
伝達率を操作することにより制御できる。すなわち、一
般に、水側の熱伝達率(hw)は、 hw=nu・λ/d=C・Rea・Prb C:定数 a:2/3〜0.8 b:1/3〜 で表すことができる。一方、流体間の温度差(Δt)
は、 Δt=(Δt1−Δt2)/ln(Δt1/Δt2) Δt1:熱交換器入口部の流体間の温度差 Δt2:熱交換器出口部の流体間の温度差 で表せる。Simultaneous control of the heat exchange amount and the return water temperature can be controlled by returning the return water to the outgoing water, changing the water side flow velocity in the heat exchanger, and operating the water side heat transfer coefficient. That is, in general, the heat transfer rate of the water side (hw) is, hw = n u · λ / d = C · Re a · Pr b C: constant a: 2 / 3~0.8 b: 1 / in 3 Can be represented. On the other hand, the temperature difference between fluids (Δt)
Can be expressed as Δt = (Δt 1 −Δt 2 ) / ln (Δt 1 / Δt 2 ) Δt 1 : Temperature difference between fluids at the inlet of the heat exchanger Δt 2 : Temperature difference between fluids at the outlet of the heat exchanger .
【0020】ここで、空気側条件(温度、流量)を同一
にして、還水を往水に還流させる場合の伝熱の効果を検
討してみる。単純化のため、還水温度は同じと仮定し、
還水から熱交換器入口に戻す水量の割合(rb)は、往
水量(Ws)、還水から熱交換器入口に戻す水量(Wr
r)とすると、 rb=Wrr/Ws である。Now, let us consider the effect of heat transfer when the returned water is returned to the outgoing water under the same air side conditions (temperature and flow rate). For simplicity, assume the return water temperature is the same,
The ratio (rb) of the amount of water returned from the returned water to the inlet of the heat exchanger is the amount of outgoing water (Ws), and the amount of water returned from the returned water to the inlet of the heat exchanger (Wr).
r), then rb = Wrr / Ws.
【0021】(1)水側の熱伝達率(hw) a) 還流のない場合 hw=λ/d・C・Ren a・Prb b) 還流する場合 hw=λ/d・C・((1+rb)・re)a・Prb (2)流体間の温度差(Δt) a) 還流のない場合 Δt=(Δt1−Δt2)/ln(Δt1/Δt2) Δt1:熱交換器空気入口部の流体間の温度差 Δt1=ta1−tw1 ta1:空気 tw1:水 Δt2:熱交換器空気出口部の流体間の温度差 Δt2=ta2−tw2 ta1:空気 tw1:水 b) 還流する場合 Δt=(Δt1-Δt2)/ln(Δt1/Δt2) = ((ta1-ta2)-(tw1-tw2 (1-rb/(1+rb)))) ln((ta1-(tw1+rb tw2)/(1+rb))/(ta2-tw2)) Δt1=ta1-(tw1+rb tw2)/(1+rb) Δt2=ta2-tw2 (Δt1-Δt2)=ta1-(tw1+rb tw2)/(1+rb)-ta2tw2 =(ta1-ta2)-(tw1-tw2 (1-rb/(1+rb))) と整理できる。(1) Heat transfer coefficient on the water side (hw) a) In the absence of reflux hw = λ / d · C · Re n a · Pr b b In the case of reflux hw = λ / d · C · (( 1 + rb) · re) a · Pr b (2) Temperature difference between fluids (Δt) a) Without reflux Δt = (Δt 1 −Δt 2 ) / ln (Δt 1 / Δt 2 ) Δt 1 : heat exchanger the temperature difference between the fluid of the air inlet portion Δt1 = ta1-tw1 ta1: air tw1: water Delta] t 2: temperature difference between the fluids in the heat exchanger air outlet Δt 2 = ta2-tw2 ta1: air tw1: water b) refluxing Δt = (Δt1-Δt2) / ln (Δt1 / Δt2) = ((ta1-ta2)-(tw1-tw2 (1-rb / (1 + rb)))) ln ((ta1- (tw1 + rb tw2) / (1 + rb)) / (ta2-tw2)) Δt1 = ta1- (tw1 + rb tw2) / (1 + rb) Δt2 = ta2-tw2 (Δt1-Δt2) = ta1- (tw1 + rb tw2 ) / (1 + rb) -ta2tw2 = (ta1-ta2)-(tw1-tw2 (1-rb / (1 + rb))).
【0022】このように、還水を往水側に還流させるこ
とにより、流体間の温度差は縮小する。結果として、熱
伝達率が上昇し、伝熱性能(熱交換量)が上昇する。し
たがって、本発明によれば、循環量を操作することによ
り熱交換量が操作できるので、往水流入量とは独立に還
水温度が制御できる。By thus returning the returned water to the outgoing side, the temperature difference between the fluids is reduced. As a result, the heat transfer rate increases, and the heat transfer performance (heat exchange amount) also increases. Therefore, according to the present invention, the heat exchange amount can be controlled by controlling the circulation amount, so that the return water temperature can be controlled independently of the outgoing water inflow amount.
【0023】(第2の実施の形態)図1および図2に
は、本発明にかかる空調機の第2の実施の形態が示され
ている。図示のように、この空調機100は、水対空気
熱交換器102と、給気ファン103を内蔵している。
熱源(不図示)から往水配管104により往水される冷
水または温水は、水対空気熱交換器102により、給気
空気SAと熱交換され、空調空間に温調された空気が供
給される。水対空気熱交換器102により熱交換された
還水は、還水配管106により熱源システムに戻され
る。なお図示の例では、往水配管104および還水配管
106に対して1台の空調機のみを設置しているが、複
数台の空調機を並列に接続し、各空調機に対して本実施
の形態を構成することも可能である。(Second Embodiment) FIGS. 1 and 2 show a second embodiment of an air conditioner according to the present invention. As shown, the air conditioner 100 has a water-to-air heat exchanger 102 and an air supply fan 103 built therein.
The cold water or hot water that flows in from the heat source (not shown) through the outgoing water pipe 104 is heat-exchanged with the supply air SA by the water-to-air heat exchanger 102, and the temperature-controlled air is supplied to the air-conditioned space. . The return water that has been heat-exchanged by the water-to-air heat exchanger 102 is returned to the heat source system by the return water pipe 106. In the illustrated example, only one air conditioner is installed for the outgoing water pipe 104 and the return water pipe 106, but a plurality of air conditioners are connected in parallel and the present embodiment is performed for each air conditioner. It is also possible to configure the form.
【0024】往水配管104の水対空気熱交換器102
の入口102a側には、水対空気熱交換器102への往
水流入量を操作することができる流量制御弁108が、
往水流入量操作手段として設けられている。この流量制
御弁108と水対空気熱交換器入口102aとの間に
は、第1分岐110aが設けられ、他方、水対空気熱交
換器出口102b側の還水配管106aには第2分岐1
10bが設けられ、これらの第1分岐110aと第2分
岐110bとの間に還水配管106a中の還水を往水配
管104aに戻す循環管路110が形成される。この循
環管路110中には循環流量操作手段として循環ポンプ
112が介装されている。なお、この循環ポンプ112
は、必ずしも循環管路110に介装する必要はなく、還
水を往水に戻すことができれば、例えば往水配管104
a中に設置しても良い。Water-to-air heat exchanger 102 in outgoing water pipe 104
A flow control valve 108 capable of controlling the amount of incoming water flowing into the water-to-air heat exchanger 102 is provided on the inlet 102a side of the
It is provided as a means for operating the amount of inflow of outgoing water. A first branch 110a is provided between the flow control valve 108 and the water-to-air heat exchanger inlet 102a, while the second branch 1 is provided in the return water pipe 106a on the water-to-air heat exchanger outlet 102b side.
10b is provided, and a circulation pipeline 110 for returning the return water in the return water pipe 106a to the outflow pipe 104a is formed between the first branch 110a and the second branch 110b. A circulation pump 112 is installed in the circulation line 110 as a circulation flow rate operating means. The circulation pump 112
Does not necessarily have to be provided in the circulation line 110, and if the return water can be returned to the outgoing water, for example, the incoming water pipe 104
It may be installed in a.
【0025】さらに、還水配管106aには、水対空気
熱交換器出口102b側の還水温度を検出するための還
水温度検出センサ114が設けられている。この還水温
度検出センサ114の検出値は、還水温度調整用制御器
118bに送られ、検出された還水温度に応じて流量制
御弁108を駆動することにより、還水温度が一定に制
御される。Further, the return water pipe 106a is provided with a return water temperature detection sensor 114 for detecting the return water temperature on the water-to-air heat exchanger outlet 102b side. The detected value of the return water temperature detection sensor 114 is sent to the return water temperature adjusting controller 118b, and the flow control valve 108 is driven according to the detected return water temperature to control the return water temperature to be constant. To be done.
【0026】また、空調空間には、当該空調機による制
御対象である室温や給気温度などの制御対象量を検出す
る制御対象量検出センサ116が設置されている。この
制御対象量検出センサ116の検出値は、制御対象量調
整用制御器118aに送られ、検出された制御対象量に
応じて循環ポンプ112を駆動することにより、制御対
象量を目標値に制御することができる。また、制御にあ
たっては、循環路110、210内の流量に応じて、制
御目標値である還水温度設定値を操作することにより、
より効率的に空調機の運転を行うことができる。Further, in the air-conditioned space, a control target amount detection sensor 116 for detecting a control target amount such as room temperature or supply air temperature which is a control target of the air conditioner is installed. The detection value of the control target amount detection sensor 116 is sent to the control target amount adjustment controller 118a, and the circulation pump 112 is driven according to the detected control target amount to control the control target amount to a target value. can do. Further, in the control, by operating the return water temperature set value which is the control target value according to the flow rate in the circulation paths 110 and 210,
The air conditioner can be operated more efficiently.
【0027】また、図1に示す実施の形態においては、
流量制御弁108として二方弁を使用していたが、往水
流入量操作手段としては、図2に示すように、往水分岐
路204aと循環路210との結合部に設置されて、往
水流入量と還水流入量との割合を操作する三方弁208
を使用することもできる。なお、図2に示す実施の形態
の基本的構成は、上記往水流入量操作手段の構成を除
き、図1に示すものと同様なので、同じ機能構成を有す
る部材については、下二桁に同一の参照番号を付するこ
とにより、重複説明を省略している。Further, in the embodiment shown in FIG. 1,
Although a two-way valve was used as the flow rate control valve 108, as the incoming water inflow amount operating means, as shown in FIG. 2, it is installed at a joint portion of the outgoing water branch passage 204a and the circulation passage 210, and the incoming water is introduced. Three-way valve 208 for controlling the ratio of the inflow amount and the return water inflow amount
Can also be used. Note that the basic configuration of the embodiment shown in FIG. 2 is the same as that shown in FIG. 1 except for the configuration of the above-mentioned outgoing water inflow amount operating means, so that members having the same functional configuration are the same in the last two digits. The duplicate description is omitted by giving the reference number of.
【0028】(第3の実施の形態)図3および図4に
は、本発明にかかる空調機の第3の実施の形態が示され
ている。第2の実施の形態においては、往水配管104
a、204a中に往水流入量操作手段108、208を
設けた構成を採用しているのに対して、この第3の実施
の形態においては、還水配管306a、406a中に還
水流出量操作手段308、408を配することにより、
同様の効果を得ることができるように構成している。な
お、これらの構成上の相違を除き、第2の実施の形態に
かかる構成と第3の実施の形態にかかる構成とは同様な
ので、同じ機能構成を有する部材については、下二桁に
同一の参照番号を付することにより重複説明を省略する
ことにする。ただし、図3に示す空調機は、図1に対応
して、還水流出量操作手段として流量制御型の二方弁3
08を使用した例であり、図4に示す空調機は、図2に
対応して、還水配管406aと循環路410との結合部
に三方弁408を配した構成を示している。(Third Embodiment) FIGS. 3 and 4 show an air conditioner according to a third embodiment of the present invention. In the second embodiment, the outflow pipe 104
In contrast to the configuration in which the outgoing water inflow amount operating means 108, 208 are provided in the a, 204a, in the third embodiment, the amount of the returned water outflow in the return water pipes 306a, 406a. By arranging the operating means 308, 408,
It is configured so that the same effect can be obtained. Since the configuration according to the second embodiment is the same as the configuration according to the third embodiment except for the difference in the configuration, members having the same functional configuration have the same last two digits. Duplicated description will be omitted by giving reference numbers. However, the air conditioner shown in FIG. 3 corresponds to FIG. 1, and is a flow control type two-way valve 3 as a return water outflow amount operating means.
The air conditioner shown in FIG. 4 corresponds to FIG. 2 in which a three-way valve 408 is arranged at the joint between the return water pipe 406a and the circulation path 410.
【0029】(第4の実施の形態)次に、図5および図
6を参照しながら本発明の第4の実施の形態にかかる空
調システムについて説明する。この空調システムは、不
図示の熱源から冷水または温水を往水する主往水配管5
02と還水を熱源に戻す主還水配管504とを備えてお
り、さらに主往水配管502および主還水配管504に
は、それぞれ分岐管、すなわち分岐往水配管502aと
分岐還水配管504aが設けられている。そして、分岐
往水配管502aと前記分岐還水配管504aに対し
て、複数台の空調機506(1)…506(n)(ただ
し、nは任意の整数)が並列に接続されている。各空調
機は、それぞれ、水対熱交換器508(1)…508
(n)(ただし、nは任意の整数)および給気ファン
(不図示)を内蔵している。さらに各空調機506
(1)…506(n)の水対空気熱交換器508(1)
…508(n)には、定流量弁が取り付けられており、
各熱交換器の循環流量を一定に保持することができる。
なお、図示の例では、一対の分岐管のみを配した構成を
示しているが、複数対の分岐管を並列に接続し、各分岐
管について、本実施の形態と同様に複数台の空調機を並
列に接続する構成を採用することもできる。(Fourth Embodiment) Next, an air conditioning system according to a fourth embodiment of the present invention will be described with reference to FIGS. This air conditioning system includes a main incoming / outgoing pipe 5 for passing cold water or hot water from a heat source (not shown).
02 and a main return water pipe 504 for returning the return water to the heat source. Further, the main outflow pipe 502 and the main return water pipe 504 are branched pipes, that is, a branch return water pipe 502a and a branch return water pipe 504a, respectively. Is provided. A plurality of air conditioners 506 (1) ... 506 (n) (where n is an arbitrary integer) are connected in parallel to the branch outgoing water pipe 502a and the branch return water pipe 504a. Each air conditioner has a water-to-heat exchanger 508 (1) ... 508.
(N) (where n is an arbitrary integer) and an air supply fan (not shown) are incorporated. Furthermore, each air conditioner 506
(1) ... 506 (n) water-to-air heat exchanger 508 (1)
A constant flow valve is attached to 508 (n),
The circulation flow rate of each heat exchanger can be kept constant.
Although the illustrated example shows a configuration in which only a pair of branch pipes are arranged, a plurality of pairs of branch pipes are connected in parallel, and for each branch pipe, a plurality of air conditioners are provided in the same manner as in the present embodiment. It is also possible to adopt a configuration in which are connected in parallel.
【0030】本実施の形態によれば、接続されたすべて
の空調機506(1)…506(n)よりも上流側(従
って、空調機506(1)よりも上流側)の分岐往水配
管502aと、接続されたすべての空調機506(1)
…506(n)よりも下流側(従って、空調機506
(1)よりも下流側)の分岐還水配管502bとを連結
して、還水の一部を往水に戻す循環路510が形成され
ている。そして、この循環路510内の流量を調整する
ための循環流量操作手段512として循環ポンプが介装
されている。さらに、分岐往水配管502aの上流側に
は、分岐往水配管502a内を流通する往水流入量を操
作する往水流入量操作手段として、流量制御弁514が
介装されている。According to the present embodiment, all branch air-conditioning pipes upstream of the connected air conditioners 506 (1) ... 506 (n) (thus upstream of the air conditioner 506 (1)). 502a and all connected air conditioners 506 (1)
... downstream of 506 (n) (hence, air conditioner 506
A circulation path 510 is formed by connecting a branch return water pipe 502b on the downstream side of (1) and returning a part of the return water to the outgoing water. A circulation pump is provided as a circulation flow rate operation means 512 for adjusting the flow rate in the circulation path 510. Further, a flow rate control valve 514 is provided on the upstream side of the branch incoming water pipe 502a as an incoming water inflow amount operating means for operating the amount of inflow water flowing through the inside of the branch outgoing water pipe 502a.
【0031】さらに、分岐還水配管506aには、各空
調機506(1)…506(n)からの還水温度を検出
するための還水温度検出センサ516が設けられてい
る。この還水温度検出センサ516の検出値は、還水温
度調整用制御器520bに送られ、検出された還水温度
に応じて流量制御弁514を駆動することにより、還水
温度が一定に制御される。Further, the branch return water pipe 506a is provided with a return water temperature detection sensor 516 for detecting the return water temperature from each of the air conditioners 506 (1) ... 506 (n). The detected value of the return water temperature detection sensor 516 is sent to the return water temperature adjustment controller 520b, and the return water temperature is controlled to be constant by driving the flow rate control valve 514 according to the detected return water temperature. To be done.
【0032】また、空調空間には、当該空調機506
(1)…506(n)による制御対象である室温や給気
温度などの制御対象量を検出する制御対象量検出センサ
518が設置されている。この制御対象量検出センサ5
16の検出値は、制御対象量調整用制御器520aに送
られ、検出された制御対象量に応じて循環ポンプ512
を駆動することにより、制御対象量を目標値に制御する
ことができる。また、制御にあたっては、循環路510
内の流量に応じて、制御目標値である還水温度設定値を
操作することにより、より効率的に空調機の運転を行う
ことができる。In the air-conditioned space, the air conditioner 506 is
(1) ... A control target amount detection sensor 518 that detects a control target amount such as room temperature or supply air temperature that is a control target according to 506 (n) is installed. This controlled object amount detection sensor 5
The detected value of 16 is sent to the controller 520a for adjusting the controlled object amount, and the circulation pump 512 is sent according to the detected controlled object amount.
It is possible to control the controlled object amount to a target value by driving. Further, in controlling, the circulation path 510
The air conditioner can be operated more efficiently by operating the return water temperature set value that is the control target value according to the internal flow rate.
【0033】また、図5に示す実施の形態においては、
流量制御弁514として二方弁を使用していたが、往水
流入量操作手段としては、図6に示すように、分岐往水
配管602aと循環路610との結合部に設置されて、
往水流入量と還水流入量との割合を操作する三方弁61
4を使用することもできる。なお、図6に示す実施の形
態の基本的構成は、上記往水流入量操作手段の構成を除
き、図5に示すものと同様なので、同じ機能構成を有す
る部材については、下二桁に同一の参照番号を付するこ
とにより、重複説明を省略している。Further, in the embodiment shown in FIG.
Although a two-way valve was used as the flow rate control valve 514, as the incoming water inflow amount operating means, as shown in FIG. 6, it is installed at the joint between the branch incoming water pipe 602a and the circulation path 610.
Three-way valve 61 for controlling the ratio of the inflow and outflow of incoming water
4 can also be used. Note that the basic configuration of the embodiment shown in FIG. 6 is the same as that shown in FIG. 5 except for the configuration of the above-mentioned outgoing water inflow amount operating means, and therefore, for members having the same functional configuration, the last two digits are the same. The duplicate description is omitted by giving the reference number of.
【0034】(第5の実施の形態)図7および図8に
は、本発明にかかる空調機の第5の実施の形態が示され
ている。第4の実施の形態においては、分岐往水配管5
02a、604a中に往水流入量操作手段514、61
4を設けた構成を採用しているのに対して、この第5の
実施の形態においては、分岐還水配管704a、804
a中に還水流出量操作手段714、814を配すること
により、同様の効果を得ることができるように構成して
いる。なお、これらの構成上の相違を除き、第4実施の
形態にかかる構成と第5の実施の形態にかかる構成とは
同様なので、同じ機能構成を有する部材については、下
二桁に同一の参照番号を付することにより重複説明を省
略することにする。ただし、図7に示す空調機は、図5
に対応して、還水流出量操作手段として流量制御型の二
方弁714を使用した例であり、図8に示す空調機は、
図6に対応して、還水配管804aと循環路810との
結合部に三方弁814を配した構成を示している。(Fifth Embodiment) FIGS. 7 and 8 show an air conditioner according to a fifth embodiment of the present invention. In the fourth embodiment, the branch outflow pipe 5
02a, 604a into the outflow inflow amount operating means 514, 61
4 has been adopted, the branch return water pipes 704a and 804 are used in the fifth embodiment.
By arranging the return water outflow amount operating means 714, 814 in a, the same effect can be obtained. The configuration according to the fourth embodiment is the same as the configuration according to the fifth embodiment except for these differences in configuration, and therefore, for members having the same functional configuration, the same reference numerals are used in the last two digits. A duplicate description will be omitted by assigning a number. However, the air conditioner shown in FIG.
In response to the above, the flow control type two-way valve 714 is used as the return water outflow operation means, and the air conditioner shown in FIG.
Corresponding to FIG. 6, a configuration is shown in which a three-way valve 814 is arranged at the joint between the return water pipe 804a and the circulation path 810.
【0035】以上、添付図面を参照しながら、本発明に
かかる空調機、空調システムおよびその制御方法の好適
な実施の形態について説明したが、本発明はかかる例に
限定されない。当業者であれば、特許請求の範囲に記載
された技術的思想の範疇内において、各種の変更および
修正に想到することが可能であり、それらについても本
発明の技術的範囲に属するものと了解される。The preferred embodiments of the air conditioner, the air conditioning system and the control method thereof according to the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to these examples. It is understood that those skilled in the art can think of various changes and modifications within the scope of the technical idea described in the claims, and these also belong to the technical scope of the present invention. To be done.
【0036】[0036]
【発明の効果】以上説明したように、本発明によれば、
空調空間内の温度や空調空間への給気温度などの制御対
象量を目標値に制御するとともに、熱源システムへの還
水温度を一定値に制御することにより、次のような優れ
た効果を奏することができる。 (1)往還水温度差の縮小は相対的に送水量の増大につ
ながるので搬送動力の浪費になるが、本発明によれば、
還水温度を一定(すなわち、往還水温度差を一定)にす
ることが可能なので、搬送動力が低減する。 (2)本発明は各種熱源システムに適用することが可能
であるが、特に、蓄熱槽方式の熱源システムでは、往還
水温度差が縮小した場合、還水槽側に往水槽側に近い温
度領域が生じ、蓄熱槽内の蓄熱が有効に利用できない。
しかし、本発明により、還水温度を一定に保持し、往還
水温度差を拡大すれば、蓄熱の有効利用を図ることがで
きる。一方、水槽内に往還水温度差の大きい領域がある
場合、熱源システムによって冷却または加熱しても、所
定の往水温度に到達しない場合が生じる。 (3)さらに、地域熱供給システムでは、往還水温度差
が縮小すると、循環水量が増加し、搬送動力の浪費にな
る。しかし、本発明により、還水温度を一定(すなわ
ち、往還水温度差を一定)に制御することにより搬送動
力を低減できる。As described above, according to the present invention,
By controlling the controlled quantity such as the temperature in the air-conditioned space and the air supply temperature to the air-conditioned space to the target value, and controlling the return water temperature to the heat source system to a constant value, the following excellent effects are achieved. Can play. (1) The reduction of the difference in the temperature of the water flowing back and forth leads to a relative increase in the amount of water to be sent, thus wasting the power for carrying, but according to the present invention,
Since it is possible to keep the return water temperature constant (that is, the return water temperature difference is constant), the transport power is reduced. (2) The present invention can be applied to various heat source systems. In particular, in the heat source system of the heat storage tank, when the difference in temperature of return water is reduced, a temperature region close to the side of the return water tank is provided on the side of the return water tank. Occurs, and the heat storage in the heat storage tank cannot be effectively used.
However, according to the present invention, if the return water temperature is kept constant and the return water temperature difference is widened, it is possible to effectively utilize the heat storage. On the other hand, when there is an area with a large difference in the return water temperature in the water tank, the temperature may not reach the predetermined forward water temperature even if it is cooled or heated by the heat source system. (3) Furthermore, in the district heat supply system, when the difference in temperature of the return water is reduced, the amount of circulating water is increased, and the transportation power is wasted. However, according to the present invention, the transport power can be reduced by controlling the return water temperature to be constant (that is, the forward and return water temperature difference is constant).
【図1】本発明を空調機に適用した第2の実施の形態の
概略を示すシステム構成図である。FIG. 1 is a system configuration diagram showing an outline of a second embodiment in which the present invention is applied to an air conditioner.
【図2】図1に示す第2の実施の形態の変形例を示すシ
ステム構成図である。FIG. 2 is a system configuration diagram showing a modification of the second embodiment shown in FIG.
【図3】本発明を空調機に適用した第3の実施の形態の
概略を示すシステム構成図である。FIG. 3 is a system configuration diagram showing an outline of a third embodiment in which the present invention is applied to an air conditioner.
【図4】図3に示す第3の実施の形態の変形例を示すシ
ステム構成図である。FIG. 4 is a system configuration diagram showing a modification of the third embodiment shown in FIG.
【図5】本発明を空調機に適用した第4の実施の形態の
概略を示すシステム構成図である。FIG. 5 is a system configuration diagram showing an outline of a fourth embodiment in which the present invention is applied to an air conditioner.
【図6】図5に示す第4の実施の形態の変形例を示すシ
ステム構成図である。FIG. 6 is a system configuration diagram showing a modified example of the fourth embodiment shown in FIG.
【図7】本発明を空調機に適用した第5の実施の形態の
概略を示すシステム構成図である。FIG. 7 is a system configuration diagram showing an outline of a fifth embodiment in which the present invention is applied to an air conditioner.
【図8】図7に示す第5の実施の形態の変形例を示すシ
ステム構成図である。FIG. 8 is a system configuration diagram showing a modification of the fifth embodiment shown in FIG. 7.
【符号の説明】 102 水対空気熱交換器 103 給気ファン 104(104a) 往水配管 106(106a) 還水配管 108 往水流入量制御手段 110 循環路 112 循環ポンプ 114 還水温度検出手段 116 制御量検出手段 118a、118b 制御器[Explanation of reference numerals] 102 water-to-air heat exchanger 103 air supply fan 104 (104a) outgoing water pipe 106 (106a) return water pipe 108 outgoing water inflow control means 110 circulation path 112 circulation pump 114 return water temperature detection means 116 Control amount detecting means 118a, 118b Controller
Claims (15)
れる冷水または温水を熱交換器により給気空気と熱交換
して還水配管により熱源システムに還水する空調システ
ムにおいて、 熱交換器出口から還水配管に戻される還水温度を検出し
て、その還水温度に応じて、熱源システムから往水配管
を介して熱交換器へ供給される往水量を操作し、 当該空調システムの制御対象量を検出し、その検出値に
応じて、還水の一部を熱交換器入口に供給することによ
り熱交換器内の循環流量を操作して、 制御対象量を目標値に制御するとともに、熱源システム
への還水温度を一定値に制御することを特徴とする、空
調システムの制御方法。1. An air-conditioning system in which cold water or hot water that has flowed out of a heat source system through an outflow pipe exchanges heat with supply air by a heat exchanger and returns to the heat source system through a return water pipe. From the heat source system to the heat exchanger through the outgoing water pipe to detect the temperature of the returned water returned to the heat exchanger from the heat source system to control the air conditioning system. The target amount is detected, and according to the detected value, a part of the return water is supplied to the heat exchanger inlet to operate the circulation flow rate in the heat exchanger to control the controlled amount to the target value. A method for controlling an air conditioning system, characterized in that the return water temperature to the heat source system is controlled to a constant value.
よび/または空調空間への給気温度であることを特徴と
する、請求項1に記載の空調システムの制御方法。2. The method for controlling an air conditioning system according to claim 1, wherein the control target amount is a temperature in the air conditioned space and / or a supply air temperature to the air conditioned space.
内蔵し、熱源システムから往水配管(104、204)
により往水される冷水または温水を前記水対空気熱交換
器(102、202)により給気空気(SA)と熱交換
して還水配管(106、206)により熱源システムに
還水する空調機において、 往水配管(104、204)と前記水対空気熱交換器入
口(102a、202a)を結ぶ往水分岐管(104
a、204a)と、還水配管(106、206)と前記
水対空気熱交換器出口(102b、202b)とを結ぶ
還水分岐管(106a、206a)とを連結して、還水
の一部を往水に戻す循環路(110、210)と、 前記循環路(110、210)内の流量を調整する循環
流量操作手段(112、212)と、 前記水対空気熱交換器入口(102a、202a)への
往水流入量を操作する往水流入量操作手段(108、2
08)と、 前記水対空気熱交換器出口(102b、202b)から
の還水温度を検出する還水温度検出手段(114、21
4)と、 当該空調機の制御対象量を検出する制御対象量検出手段
(116、216)と、 前記還水温度検出手段(114、214)により検出さ
れた還水温度に応じて前記往水流入量操作手段(10
8、208)を駆動し、前記制御対象量検出手段(11
6、216)により検出された制御対象量に応じて前記
循環流量操作手段(112、212)を駆動することに
より、前記制御対象量を目標値に制御するとともに、前
記還水温度を設定値に制御する制御手段(118a、1
18b、218a、218b)とを備えたことを特徴と
する、空調機。3. A water-to-air heat exchanger (102, 202) is built in, and a water supply pipe (104, 204) is connected from the heat source system.
An air conditioner for exchanging heat between the cold water or the hot water sent by the heat exchanger with the supply air (SA) by the water-to-air heat exchanger (102, 202) and returning it to the heat source system by the return water pipe (106, 206). In, the incoming water branch pipe (104 connecting the outgoing water pipe (104, 204) and the water-to-air heat exchanger inlet (102a, 202a)
a, 204a) and a return water branch pipe (106a, 206a) that connects the return water pipe (106, 206) and the water-to-air heat exchanger outlet (102b, 202b) to each other. Circulation path (110, 210) for returning the part to the outgoing water, circulation flow rate operation means (112, 212) for adjusting the flow rate in the circulation path (110, 210), and the water-to-air heat exchanger inlet (102a) , 202a) for controlling the amount of incoming water flowing into the incoming water.
08) and return water temperature detecting means (114, 21) for detecting the return water temperature from the water-to-air heat exchanger outlets (102b, 202b).
4), control target amount detecting means (116, 216) for detecting the control target amount of the air conditioner, and the outgoing water according to the return water temperature detected by the return water temperature detecting means (114, 214). Inflow amount operation means (10
8, 208) to drive the control target amount detecting means (11
6, 216) by driving the circulation flow rate operating means (112, 212) according to the controlled object amount detected by the control target amount, and controlling the controlled object amount to a target value and setting the return water temperature to a set value. Control means for controlling (118a, 1
18b, 218a, 218b).
岐路(204a)と前記循環路(210)との結合部に
設置されて、往水流入量と還水流入量との割合を操作す
る三方弁(208)であることを特徴とする、請求項3
に記載の空調機。4. The outgoing water inflow amount operating means is installed at a connecting portion between the outgoing water branch passage (204a) and the circulation passage (210) to adjust a ratio between the incoming water inflow amount and the return water inflow amount. 4. An operating three-way valve (208), characterized in that it is a three-way valve (208).
An air conditioner according to claim 1.
内蔵し、熱源から往水配管(304、404)により往
水される冷水または温水を前記水対空気熱交換器(30
2、402)により給気空気(SA)と熱交換して還水
配管(306、406)により熱源システムに還水する
空調機において、 往水配管(304、404)と前記水対空気熱交換器入
口(302a、402a)を結ぶ往水分岐管(304
a、404a)と、還水配管(306、406)と前記
水対空気熱交換器出口(302b、402b)とを結ぶ
還水分岐管(306a、406a)とを連結して、還水
の一部を往水に戻す循環路(310、410)と、 前記循環路(310、410)内の流量を調整する循環
流量操作手段(312、412)と、 前記水対空気熱交換器出口(302b、402b)から
の還水流出量を操作する還水流出量操作手段(308、
408)と、 前記水対空気熱交換器出口(302b、402b)から
の還水温度を検出する還水温度検出手段(314、41
4)と、 当該空調機の制御対象量を検出する制御対象量検出手段
(316、416)と、 前記還水温度検出手段(314、414)により検出さ
れた還水温度に応じて前記還水流出量操作手段(30
8、408)を駆動し、前記制御対象量検出手段(31
6、416)により検出された制御対象量に応じて前記
循環流量操作手段(312、412)を駆動することに
より、前記制御対象量を目標値に制御するとともに、前
記還水温度を一定に制御する制御手段(318a、31
8b、418a、418b)とを備えたことを特徴とす
る、空調機。5. A water-to-air heat exchanger (302, 402) is built-in, and cold water or hot water that is sent from a heat source through outgoing water pipes (304, 404) is supplied to the water-to-air heat exchanger (30).
In the air conditioner in which heat is exchanged with the supply air (SA) by the air supply pipe (402, 402) and is returned to the heat source system by the return water pipe (306, 406), the water-to-air heat exchange with the outgoing pipe (304, 404). Outgoing water branch pipe (304) connecting the inlets (302a, 402a)
a, 404a) and a return water branch pipe (306a, 406a) that connects the return water pipe (306, 406) and the water-to-air heat exchanger outlet (302b, 402b) to each other. Circulation path (310, 410) for returning the part to the outgoing water, circulation flow rate operation means (312, 412) for adjusting the flow rate in the circulation path (310, 410), and the water-to-air heat exchanger outlet (302b) , 402b) for controlling the amount of return water outflow from the unit (308,
408) and return water temperature detecting means (314, 41) for detecting the return water temperature from the water-to-air heat exchanger outlets (302b, 402b).
4), control target amount detecting means (316, 416) for detecting the control target amount of the air conditioner, and the return water according to the return water temperature detected by the return water temperature detecting means (314, 414). Outflow amount operation means (30
8, 408) to drive the controlled object amount detecting means (31
6, 416) by controlling the circulating flow rate operating means (312, 412) in accordance with the control target amount detected by the control target amount, while controlling the control target amount to a target value and controlling the return water temperature to be constant. Control means (318a, 31
8b, 418a, 418b).
岐路(406a)と前記循環路(410)との結合部に
設置される三方弁(408)であることを特徴とする、
請求項6に記載の空調機。6. The return water outflow amount operation means is a three-way valve (408) installed at a joint between the return water branch passage (406a) and the circulation passage (410),
The air conditioner according to claim 6.
410)内の流量に応じて、前記還水温度設定値が操作
されることを特徴とする、請求項3〜6のいずれかに記
載の空調機。7. The circuit (110, 210, 310,
The air conditioner according to any one of claims 3 to 6, wherein the return water temperature set value is manipulated according to the flow rate in 410).
よび/または空調空間への給気温度であることを特徴と
する、請求項3〜7のいずれかに記載の空調機。8. The air conditioner according to claim 3, wherein the control target amount is a temperature in the air-conditioned space and / or a supply air temperature to the air-conditioned space.
水配管(502、602)と還水を熱源に戻す主還水配
管(504、604)と、前記主往水配管(502、6
04)から分岐する分岐往水配管(502a、602
a)と前記主還水配管(504、604)から分岐する
分岐還水配管(504a、604a)と、前記分岐往水
配管(502a、602a)と前記分岐還水配管(50
4a、604a)に対して並列に接続された、水対熱交
換器(508(1)…508(n)、608(1)…6
08(n))を内蔵する複数の空調機(506(1)…
506(n)、606(1)…606(n))とを備え
た空調システムにおいて、 接続されたすべての空調機(506(1)…506
(n)、606(1)…606(n))よりも上流側の
前記分岐往水配管(502a、602a)と接続された
すべての空調機(506(1)…506(n)、606
(1)…606(n))よりも下流側の前記分岐還水配
管(502b、602b)とを連結して、還水の一部を
往水に戻す循環路(510、610)と、 前記循環路(510、610)内の流量を調整する循環
流量操作手段(512、612)と、 前記分岐往水配管(502a、602a)への往水流入
量を操作する往水流入量操作手段(514、614)
と、 前記分岐還水配管(504a、604a)の還水温度を
検出する還水温度検出手段(516、616)と、 前記空調機(506(1)…506(n)、606
(1)…606(n))の制御対象量を検出する制御対
象量検出手段(518、618)と、 前記還水温度検出手段(516、616)により検出さ
れた完遂温度に応じて前記往水流入量操作手段(51
4、614)を駆動し、前記制御対象量検出手段(51
8、618)により検出された制御対象量に応じて前記
循環流量操作手段(512、612)を駆動することに
より、前記制御対象量を目標値に制御するとともに、前
記還水温度を設定値に制御する制御手段(520a、5
20b、620a、620b)とを備えたことを特徴と
する、空調システム。9. A main outflow pipe (502, 602) for inflowing cold water or hot water from a heat source, a main return water pipe (504, 604) for returning return water to a heat source, and the main outflow pipe (502, 6).
04) branch outflow piping (502a, 602)
a) and branch return water pipes (504a, 604a) branched from the main return water pipes (504, 604), the branch outgoing water pipes (502a, 602a), and the branch return water pipe (50).
4a, 604a) connected in parallel to the water-to-heat exchanger (508 (1) ... 508 (n), 608 (1) ... 6)
08 (n)) with a plurality of air conditioners (506 (1) ...
506 (n), 606 (1) ... 606 (n)), all connected air conditioners (506 (1) ... 506
(N), 606 (1) ... 606 (n), all the air conditioners (506 (1) ... 506 (n), 606 connected to the branch outflow pipes (502a, 602a) on the upstream side.
(1) ... A circulation path (510, 610) that connects the branch return water pipes (502b, 602b) on the downstream side of 606 (n) and returns a part of the return water to the outgoing water, Circulation flow rate operation means (512, 612) for adjusting the flow rate in the circulation paths (510, 610), and incoming water flow rate operation means (for controlling the incoming water flow rate into the branch incoming water pipes (502a, 602a) ( 514, 614)
And return water temperature detecting means (516, 616) for detecting the return water temperature of the branch return water pipes (504a, 604a), and the air conditioners (506 (1) ... 506 (n), 606)
(1) ... 606 (n)) control target amount detecting means (518, 618) for detecting the control target amount, and the forward temperature according to the completion temperature detected by the return water temperature detecting means (516, 616). Water inflow amount operating means (51
4, 614) to drive the control target amount detecting means (51
By driving the circulation flow rate operating means (512, 612) according to the control target amount detected by the control target amount (8, 618), the control target amount is controlled to a target value and the return water temperature is set to a set value. Control means (520a, 5) for controlling
20b, 620a, 620b).
往水分岐路(602a)と前記循環路(610)との結
合部に設置されて、往水流入量と還水流入量との割合を
操作する三方弁(614)であることを特徴とする、請
求項9に記載の空調機。10. The outgoing water inflow amount operation means is installed at a connecting portion between the branched outgoing water branch passage (602a) and the circulation path (610), and a ratio between the incoming water inflow amount and the return water inflow amount. Air conditioner according to claim 9, characterized in that it is a three-way valve (614) for operating the.
往水配管(702、802)と還水を熱源に戻す主還水
配管(704、804)と、前記主往水配管(702、
804)から分岐する分岐往水配管(702a、802
a)と前記主還水配管(704、804)から分岐する
分岐還水配管(704a、804a)と、前記分岐往水
配管(702a、802a)と前記分岐還水配管(70
4a、804a)に対して並列に接続された、水対熱交
換器(708(1)…708(n)、808(1)…8
08(n))を内蔵する複数の空調機(706(1)…
706(n)、806(1)…806(n))とを備え
た空調システムにおいて、 接続されたすべての空調機(706(1)…706
(n)、806(1)…806(n))よりも上流側の
前記分岐往水配管(702a、702a)と接続された
すべての空調機(706(1)…706(n)、806
(1)…806(n))よりも下流側の前記分岐還水配
管(702b、802b)とを連結して、還水の一部を
往水に戻す循環路(710、810)と、 前記循環路(710、810)内の流量を調整する循環
流量操作手段(712、812)と、 前記分岐還水配管(704a、804a)の還水流出量
を操作する還水流出量操作手段(714、814)と、 前記分岐還水配管(704a、804a)の還水温度を
検出する還水温度検出手段(716、816)と、 前記空調機(706(1)…706(n)、806
(1)…806(n))の制御対象量を検出する制御対
象量検出手段(718、818)と、 前記還水温度検出手段(716、816)により検出さ
れた完遂温度に応じて前記往水流入量操作手段(71
4、814)を駆動し、前記制御対象量検出手段(71
8、818)により検出された制御対象量に応じて前記
循環流量操作手段(712、812)を駆動することに
より、前記制御対象量を目標値に制御するとともに、前
記還水温度を設定値に制御する制御手段(720a、7
20b、820a、820b)とを備えたことを特徴と
する、空調システム。11. A main outflow pipe (702, 802) for inflowing cold water or hot water from a heat source, a main return water pipe (704, 804) for returning return water to a heat source, and the main outflow pipe (702,
Branch outgoing water piping (702a, 802) branching from 804)
a) and branch return water pipes (704a, 804a) branched from the main return water pipes (704, 804), the branch outgoing water pipes (702a, 802a), and the branch return water pipe (70).
4a, 804a) connected in parallel to the water-to-heat exchanger (708 (1) ... 708 (n), 808 (1) ... 8
08 (n)) with a plurality of air conditioners (706 (1) ...
706 (n), 806 (1) ... 806 (n)), all connected air conditioners (706 (1) ... 706
(N), 806 (1) ... 806 (n), all the air conditioners (706 (1) ... 706 (n), 806) connected to the branch outgoing water pipes (702a, 702a) upstream
(1) ... Circulation paths (710, 810) that connect the branch return water pipes (702b, 802b) on the downstream side of 806 (n)) to return a part of the return water to the outgoing water; Circulation flow rate operation means (712, 812) for adjusting the flow rate in the circulation paths (710, 810), and return water outflow amount operation means (714) for operating the return water outflow rate of the branch return water piping (704a, 804a). , 814), return water temperature detecting means (716, 816) for detecting the return water temperature of the branch return water pipes (704a, 804a), and the air conditioners (706 (1) ... 706 (n), 806).
(1) ... 806 (n)) control target amount detecting means (718, 818) for detecting the control target amount, and the forward temperature according to the completion temperature detected by the return water temperature detecting means (716, 816). Water inflow amount operation means (71
4, 814) to drive the controlled object amount detecting means (71
By driving the circulating flow rate operation means (712, 812) according to the control target amount detected by the control target amount (8, 818), the control target amount is controlled to a target value, and the return water temperature is set to a set value. Control means for controlling (720a, 7
20b, 820a, 820b).
分岐路(802a)と前記循環路(810)との結合部
に設置されて、往水流入量と還水流入量との割合を操作
する三方弁(814)であることを特徴とする、請求項
11に記載の空調システム。12. The return water outflow amount operation means is installed at a connecting portion between the return water branch passage (802a) and the circulation passage (810), and calculates a ratio of the outflow water inflow amount and the return water inflow amount. 12. Air conditioning system according to claim 11, characterized in that it is a three-way valve (814) operated.
は、定流量弁が取り付けられていることを特徴とする、
請求項9〜12に記載の空調システム。13. A constant flow valve is attached to the water-to-air heat exchanger of each air conditioner,
The air conditioning system according to claim 9.
0、810)内の流量に応じて、前記還水温度設定値が
操作されることを特徴とする、請求項9〜13に記載の
空調機。14. The circuit (510, 610, 71)
The air conditioner according to any one of claims 9 to 13, characterized in that the return water temperature set value is manipulated in accordance with the flow rate in (0, 810).
および/または空調空間への給気温度であることを特徴
とする、請求項9〜13のいずれかに記載の空調システ
ムの制御方法。15. The control method for an air conditioning system according to claim 9, wherein the control target amount is a temperature in the air-conditioned space and / or a supply air temperature to the air-conditioned space. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34733495A JP3583536B2 (en) | 1995-12-14 | 1995-12-14 | Air conditioner, air conditioning system and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34733495A JP3583536B2 (en) | 1995-12-14 | 1995-12-14 | Air conditioner, air conditioning system and control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09166346A true JPH09166346A (en) | 1997-06-24 |
JP3583536B2 JP3583536B2 (en) | 2004-11-04 |
Family
ID=18389526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34733495A Expired - Fee Related JP3583536B2 (en) | 1995-12-14 | 1995-12-14 | Air conditioner, air conditioning system and control method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3583536B2 (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000274785A (en) * | 1999-03-19 | 2000-10-06 | Ntt Power & Building Facilities Inc | Air conditioning system |
JP2001304614A (en) * | 2000-04-24 | 2001-10-31 | Kimura Kohki Co Ltd | Air-conditioning system |
JP2005291652A (en) * | 2004-04-02 | 2005-10-20 | Shin Nippon Air Technol Co Ltd | Air conditioning method and air conditioner |
JP2006084142A (en) * | 2004-09-16 | 2006-03-30 | Mitsubishi Jisho Sekkei Inc | Air conditioning system |
JP2008020168A (en) * | 2006-07-14 | 2008-01-31 | Mitsubishi Jisho Sekkei Inc | Air conditioning system |
JP2011169588A (en) * | 2011-06-06 | 2011-09-01 | Toshiba Corp | Air conditioning optimal control system |
JP2011242057A (en) * | 2010-05-18 | 2011-12-01 | Tokyo Gas Co Ltd | Water supply control system and control method of the same |
WO2012020494A1 (en) * | 2010-08-12 | 2012-02-16 | 富士電機株式会社 | Localized cooling system, control device thereof, and program |
WO2012020493A1 (en) * | 2010-08-12 | 2012-02-16 | 富士電機株式会社 | Local cooling system |
JP2012047412A (en) * | 2010-08-27 | 2012-03-08 | Yamatake Corp | Air conditioning control system, and air conditioning control method |
CN102607146A (en) * | 2012-04-06 | 2012-07-25 | 谭仲禧 | Central air-conditioning system and control method thereof |
JP2012247113A (en) * | 2011-05-26 | 2012-12-13 | Sanki Eng Co Ltd | Air-conditioning piping system |
WO2013116695A1 (en) * | 2012-02-02 | 2013-08-08 | Semco, Llc | Chilled beam pump module, system, and method |
US8556187B1 (en) * | 2007-11-28 | 2013-10-15 | Coil Control, LLC | System and method for operating a cooling loop |
JP2013245861A (en) * | 2012-05-25 | 2013-12-09 | Ntt Facilities Inc | Water-cooled air conditioning system |
CN105091264A (en) * | 2015-09-07 | 2015-11-25 | 珠海格力电器股份有限公司 | Pressure balance adjusting system, adjusting method and air conditioning unit with pressure balance adjusting system |
CN105222230A (en) * | 2015-10-16 | 2016-01-06 | 珠海格力电器股份有限公司 | Inter-row air conditioner, pressure regulating method of inter-row air conditioner and inter-row air conditioning system |
JP2020159671A (en) * | 2019-03-28 | 2020-10-01 | 新菱冷熱工業株式会社 | Radiation air conditioning system and control method therefor |
CN113983534A (en) * | 2021-10-26 | 2022-01-28 | 安徽埃夫利舍建筑技术有限公司 | Intelligent temperature control condensation-prevention two-combined-supply system |
CN114110933A (en) * | 2021-10-29 | 2022-03-01 | 珠海格力电器股份有限公司 | Control method of air source heat pump unit system and air source heat pump unit system |
EP3966506A4 (en) * | 2019-05-05 | 2023-01-11 | Chilled Beam Controls, LLC | System and apparatus for conditioning of indoor air |
US11747030B2 (en) | 2021-03-12 | 2023-09-05 | Semco Llc | Multi-zone chilled beam system and method with pump module |
US12044421B2 (en) | 2016-06-08 | 2024-07-23 | Semco Llc | Air conditioning with recovery wheel, dehumidification wheel, cooling coil, and secondary direct-expansion circuit |
-
1995
- 1995-12-14 JP JP34733495A patent/JP3583536B2/en not_active Expired - Fee Related
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000274785A (en) * | 1999-03-19 | 2000-10-06 | Ntt Power & Building Facilities Inc | Air conditioning system |
JP2001304614A (en) * | 2000-04-24 | 2001-10-31 | Kimura Kohki Co Ltd | Air-conditioning system |
JP2005291652A (en) * | 2004-04-02 | 2005-10-20 | Shin Nippon Air Technol Co Ltd | Air conditioning method and air conditioner |
JP4521860B2 (en) * | 2004-04-02 | 2010-08-11 | 新日本空調株式会社 | Air conditioning method and air conditioner |
JP2006084142A (en) * | 2004-09-16 | 2006-03-30 | Mitsubishi Jisho Sekkei Inc | Air conditioning system |
JP2008020168A (en) * | 2006-07-14 | 2008-01-31 | Mitsubishi Jisho Sekkei Inc | Air conditioning system |
US8556187B1 (en) * | 2007-11-28 | 2013-10-15 | Coil Control, LLC | System and method for operating a cooling loop |
JP2011242057A (en) * | 2010-05-18 | 2011-12-01 | Tokyo Gas Co Ltd | Water supply control system and control method of the same |
WO2012020493A1 (en) * | 2010-08-12 | 2012-02-16 | 富士電機株式会社 | Local cooling system |
WO2012020494A1 (en) * | 2010-08-12 | 2012-02-16 | 富士電機株式会社 | Localized cooling system, control device thereof, and program |
JP2012047412A (en) * | 2010-08-27 | 2012-03-08 | Yamatake Corp | Air conditioning control system, and air conditioning control method |
JP2012247113A (en) * | 2011-05-26 | 2012-12-13 | Sanki Eng Co Ltd | Air-conditioning piping system |
JP2011169588A (en) * | 2011-06-06 | 2011-09-01 | Toshiba Corp | Air conditioning optimal control system |
US10060638B2 (en) | 2012-02-02 | 2018-08-28 | Semco Llc | Chilled beam pump module, system, and method |
WO2013116695A1 (en) * | 2012-02-02 | 2013-08-08 | Semco, Llc | Chilled beam pump module, system, and method |
US9625222B2 (en) | 2012-02-02 | 2017-04-18 | Semco Llc | Chilled beam pump module, system, and method |
US11092347B2 (en) | 2012-02-02 | 2021-08-17 | Semco Llc | Chilled beam module, system, and method |
US9845983B2 (en) | 2012-04-06 | 2017-12-19 | Zhongxi Tan | Central air-conditioning system and control method thereof |
CN102607146A (en) * | 2012-04-06 | 2012-07-25 | 谭仲禧 | Central air-conditioning system and control method thereof |
WO2013149507A1 (en) * | 2012-04-06 | 2013-10-10 | Tan Zhongxi | Central air conditioning system and control method therefor |
JP2013245861A (en) * | 2012-05-25 | 2013-12-09 | Ntt Facilities Inc | Water-cooled air conditioning system |
CN105091264A (en) * | 2015-09-07 | 2015-11-25 | 珠海格力电器股份有限公司 | Pressure balance adjusting system, adjusting method and air conditioning unit with pressure balance adjusting system |
CN105222230A (en) * | 2015-10-16 | 2016-01-06 | 珠海格力电器股份有限公司 | Inter-row air conditioner, pressure regulating method of inter-row air conditioner and inter-row air conditioning system |
US12044421B2 (en) | 2016-06-08 | 2024-07-23 | Semco Llc | Air conditioning with recovery wheel, dehumidification wheel, cooling coil, and secondary direct-expansion circuit |
JP2020159671A (en) * | 2019-03-28 | 2020-10-01 | 新菱冷熱工業株式会社 | Radiation air conditioning system and control method therefor |
EP3966506A4 (en) * | 2019-05-05 | 2023-01-11 | Chilled Beam Controls, LLC | System and apparatus for conditioning of indoor air |
US11768006B2 (en) | 2019-05-05 | 2023-09-26 | Ft Energy Controls, Llc | System and apparatus for conditioning of indoor air |
US11747030B2 (en) | 2021-03-12 | 2023-09-05 | Semco Llc | Multi-zone chilled beam system and method with pump module |
CN113983534A (en) * | 2021-10-26 | 2022-01-28 | 安徽埃夫利舍建筑技术有限公司 | Intelligent temperature control condensation-prevention two-combined-supply system |
CN114110933A (en) * | 2021-10-29 | 2022-03-01 | 珠海格力电器股份有限公司 | Control method of air source heat pump unit system and air source heat pump unit system |
CN114110933B (en) * | 2021-10-29 | 2023-08-01 | 珠海格力电器股份有限公司 | Control method of air source heat pump unit system and air source heat pump unit system |
Also Published As
Publication number | Publication date |
---|---|
JP3583536B2 (en) | 2004-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3583536B2 (en) | Air conditioner, air conditioning system and control method thereof | |
US7913501B2 (en) | Water-cooled air conditioning system using condenser water regeneration for precise air reheat in dehumidifying mode | |
US10551078B2 (en) | Methods and apparatus for latent heat extraction | |
RU2100709C1 (en) | Air-conditioning unit for habitable spaces | |
US20220010985A1 (en) | Methods and apparatus for latent heat extraction | |
US5361601A (en) | Air conditioner | |
JP3733371B2 (en) | Temperature control system | |
JP3708660B2 (en) | Liquid piping equipment for heat utilization | |
JP4422124B2 (en) | Air conditioning system | |
JPH07253227A (en) | Air conditioner | |
JP3309282B2 (en) | Design method of air conditioning system with heat storage tank | |
JP2001065929A (en) | Air conditioner | |
CN218599856U (en) | Air conditioner water heater | |
CN215951575U9 (en) | Heat exchange system | |
CN220417487U (en) | Air conditioning system | |
JP2006084084A (en) | Air conditioner and its operation method | |
US20210215406A1 (en) | Auxiliary heat source, air conditioning system with auxiliary heat source, and method therefor | |
JPH0531451Y2 (en) | ||
JP2506874Y2 (en) | Air conditioner | |
JP2954256B2 (en) | Nuclear power plant hot water system | |
JP2004037030A (en) | Air conditioning equipment | |
JP4421983B2 (en) | Air conditioning system. | |
JPS6138061Y2 (en) | ||
JPH0410525Y2 (en) | ||
JP3357827B2 (en) | Floor heating system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040127 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040325 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040330 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040727 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040729 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080806 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090806 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090806 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100806 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100806 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110806 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110806 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120806 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120806 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130806 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130806 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S802 | Written request for registration of partial abandonment of right |
Free format text: JAPANESE INTERMEDIATE CODE: R311802 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130806 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |