JP4421983B2 - Air conditioning system. - Google Patents

Air conditioning system. Download PDF

Info

Publication number
JP4421983B2
JP4421983B2 JP2004270509A JP2004270509A JP4421983B2 JP 4421983 B2 JP4421983 B2 JP 4421983B2 JP 2004270509 A JP2004270509 A JP 2004270509A JP 2004270509 A JP2004270509 A JP 2004270509A JP 4421983 B2 JP4421983 B2 JP 4421983B2
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
air
cold
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004270509A
Other languages
Japanese (ja)
Other versions
JP2006084144A (en
Inventor
良彦 田中
研一 藤井
道知 大窪
陽 松尾
信弘 炭井
泰之 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinko Industries Ltd
Original Assignee
Sinko Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinko Industries Ltd filed Critical Sinko Industries Ltd
Priority to JP2004270509A priority Critical patent/JP4421983B2/en
Publication of JP2006084144A publication Critical patent/JP2006084144A/en
Application granted granted Critical
Publication of JP4421983B2 publication Critical patent/JP4421983B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、空気を調和する空調システムに係り、特に空調システムの制御対象である室温、給気温度などの制御対象を制御しつつ、熱源システムへの還水温度を一定値に制御して往還水温度差を所定値以上に維持することが可能な空調システムに関する。   The present invention relates to an air conditioning system that harmonizes air, and in particular, controls the return water temperature to a heat source system to a constant value while controlling the controlled objects such as room temperature and supply air temperature that are controlled objects of the air conditioning system. The present invention relates to an air conditioning system capable of maintaining a water temperature difference at a predetermined value or more.

従来より、地域熱供給設備では、熱源設備から送られた地域熱媒を需用家側に直接供給するために、ブリードイン方式が採用されている。このブリードイン方式では、需用者が利用した後の熱媒の一部を、混合弁などで送られてきた熱媒と混合して、需要家設備に供給する方式であるが、このブリードイン方式を水熱源型地域熱供給システムに適用する場合には、還水温度が変動することが知られている。また、個別熱源システムの場合でも同じことが知られている。   Conventionally, in a district heat supply facility, a bleed-in method has been adopted in order to directly supply a district heat medium sent from a heat source facility to a consumer side. In this bleed-in method, a part of the heat medium used by the customer is mixed with the heat medium sent by a mixing valve and supplied to the customer's equipment. It is known that the return water temperature fluctuates when the method is applied to a water heat source type district heat supply system. The same is also known for individual heat source systems.

このため、往還水温度差を一定にして、水熱源型空調システムの搬送動力を軽減するために、例えば、特許文献1に開示されるような空調システムが提案されており、この空調システムは、図2に示すように、検出器aにより熱交換器出口bから還水配管cに戻される還水温度を検出し、その還水温度に応じて、流量制御二方弁dにより、熱源システムから往水配管eを介して熱交換器fへ供給される往水量を操作し、同時に、検出器gにより、空調空間内の温度、空調空間への給気温度などの当該空調システムの制御対象量を検出し、その検出値に応じて、循環ポンプhにより、還水の一部を熱交換器入口fに供給することにより熱交換器内の循環流量の操作を行って往還水温度差を一定にしている。
特開平9−166346号公報
For this reason, in order to reduce the transport power of the water heat source type air conditioning system while keeping the temperature difference of the return water constant, for example, an air conditioning system as disclosed in Patent Document 1 has been proposed. As shown in FIG. 2, the detector a detects the return water temperature returned from the heat exchanger outlet b to the return water pipe c, and the flow control two-way valve d detects the return water temperature from the heat source system according to the return water temperature. Manipulates the amount of water supplied to the heat exchanger f via the water supply pipe e, and at the same time, the amount controlled by the air conditioning system such as the temperature in the air conditioned space and the supply air temperature to the air conditioned space by the detector g According to the detected value, the circulating pump h supplies a part of the return water to the heat exchanger inlet f, thereby operating the circulation flow rate in the heat exchanger to keep the difference in the temperature of the return water constant. I have to.
JP-A-9-166346

ところで、前記の従来の空調システムは装置は、一般に大型の熱交換器となるが、熱交換量が少ない場合には熱交換器に通水される水量が減少し、熱交換器内を通過する水速が遅くなり層流になると熱交換器の熱交換効率が低下するという不都合があった。また、往還水の制御が難しく、冷暖房能力のきめ細かな対応が困難であり、装置自体が複雑になり、保守が困難であるという不都合があった。
本発明は、このような従来システムの問題点に鑑みてなされたもので、往還水温度差を一定にするとともに、冷暖房能力のきめ細かな対応を容易とし、簡単な構成で設置や保守が簡単で、かつ、熱交換能力も高める空調システムを提供しようとするものである。
By the way, the conventional air conditioning system generally has a large heat exchanger. However, when the amount of heat exchange is small, the amount of water passed through the heat exchanger is reduced and passes through the heat exchanger. When the water speed becomes slow and laminar flow occurs, the heat exchange efficiency of the heat exchanger decreases. In addition, there are inconveniences that it is difficult to control the return water, and it is difficult to meticulously cope with the air conditioning capacity, the apparatus itself is complicated, and maintenance is difficult.
The present invention has been made in view of the problems of the conventional system as described above, and makes the temperature difference between the return water constant and facilitates the fine-tuned response of the cooling and heating capacity, and is easy to install and maintain with a simple configuration. In addition, the present invention intends to provide an air conditioning system that enhances heat exchange capability.

上記課題を解決するために、本発明は、熱源設備から往水配管により往水される冷温水を熱交換器により給気と熱交換して還水配管により熱源設備に還水しうる空調システムにおいて、前記熱交換器は独立して稼動する複数の熱交換器とし、これらの熱交換器のうち少なくとも一つの熱交換器は、熱交換器として稼動するとともに、熱交換量が少ない場合には冷温水の循環供給を止めて空気だけが通過するように形成し、他の少なくとも一つの熱交換器は、接続した還水配管の冷温水温度を検出し、該冷温水温度が所定温度となるように前記熱交換器に供給する冷温水の量を増減制御し、前記複数の熱交換器での稼働の場合よりも熱交換器内の流量を多くして層流を少なくし、前記複数の熱交換器内で冷温水の循環供給を止めた熱交換器がある場合には、通過した熱交換後の室内空気が所望温度となるように前記熱交換を行っている熱交換器を通過する空気量の比率を可変制御することを特徴とする空調システムである。 In order to solve the above-described problems, the present invention provides an air conditioning system capable of exchanging cold / hot water sent from a heat source facility through a feed water pipe with heat supply using a heat exchanger and returning the heat to the heat source equipment through a return water pipe. The heat exchanger is a plurality of heat exchangers that operate independently, and at least one of the heat exchangers operates as a heat exchanger and the amount of heat exchange is small. The circulation of cold / hot water is stopped so that only air passes, and at least one other heat exchanger detects the cold / warm water temperature of the connected return water pipe, and the cold / hot water temperature becomes a predetermined temperature. The amount of cold / hot water supplied to the heat exchanger is controlled so as to increase and decrease the laminar flow by increasing the flow rate in the heat exchanger than in the case of operation with the plurality of heat exchangers , stop meth heat exchanger there circulating supply of hot and cold water in the heat exchanger In this case, in the air conditioning system, characterized in that the indoor air after heat exchange has passed to variably control the ratio of air quantity you pass through the heat exchanger is performed the heat exchange to a desired temperature is there.

本発明によれば、熱水源から往水配管により往水される冷水または温水を熱交換器により給気と熱交換して、還水配管により熱水源に還水する空調システムにおいて、往還水温度差を一定にし、熱交換器を分割運転することにより水量は減少しても熱交換器内を通過する水速を遅くすることがなく熱交換効率は低下せず、また、最大熱交換能力が向上し、熱交換効率も高まる空調システムとなるという効果が得られる。また、複数の熱交換器の送風量の分割する割合を非等分にすることにより運転する熱交換器を適宜切換えることにより要求される冷暖房能力をきめ細かに対応することも可能となるという効果も得られる。   According to the present invention, in an air conditioning system in which cold water or hot water sent from a hot water source through the outgoing water pipe is heat-exchanged with the supply air by the heat exchanger and returned to the hot water source by the return water pipe, the outgoing water temperature By making the difference constant and splitting the heat exchanger, even if the amount of water decreases, the speed of water passing through the heat exchanger does not slow down, the heat exchange efficiency does not decrease, and the maximum heat exchange capacity is reduced. The effect is that the air conditioning system is improved and the heat exchange efficiency is increased. In addition, there is also an effect that it is possible to meticulously cope with the cooling / heating capacity required by appropriately switching the heat exchanger to be operated by dividing the ratio of dividing the air flow rate of the plurality of heat exchangers. can get.

本発明の好適な実施例を図面に沿って説明するが、図1は、実施例の全体の概略を示すもので、図1において、地域熱供給システム(セントラルヒーテング)あるいは個別熱源システムで熱源設備から送られる熱媒を直接あるいは熱交換器を介し、配備された往水配管1と還水配管2によって熱媒を各熱交換システムに供給するが、往水配管1と還水配管2に接続する複数の熱交換システムのうちの1つを図示している。
実施例においては、熱交換システムAはファンFにより外気OAや還気RAを吸い込んで、室内温度センサーS1により室内温度を検出して空気調和した空気SAを供給するに際して、制御手段TC1により供給装置Bで室内への供給量を制御して室内Rに供給する。
A preferred embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an overall outline of the embodiment. In FIG. 1, a heat source in a district heat supply system (central heating) or an individual heat source system is shown. The heat medium sent from the facility is supplied directly or via a heat exchanger to each heat exchange system through the installed forward water pipe 1 and return water pipe 2. 1 illustrates one of a plurality of connected heat exchange systems.
In the embodiment, when the heat exchange system A sucks the outside air OA and the return air RA by the fan F, detects the room temperature by the room temperature sensor S1 and supplies the air SA conditioned by the air, the control means TC1 supplies the supply device. The supply amount to the room is controlled by B and supplied to the room R.

熱交換システムAにおいて、外気OAや還気RAの空気の吸込み空気通路は2本の分岐流路91,92に分岐され、各空気分岐流路91,92毎に二つの熱交換器3、4が並列に設けられ、該熱交換器3、4を通過した空気は合流してファンFにより吐出口より送風し室内に供給されるが、各熱交換器3、4の上流にはダンパ5、6が設けられ、各熱交換器3、4には熱媒の流量を制御する流量制御弁7、8が設けられ、この流量制御弁7,8は還水接続配管21に設けた温度センサーS3の検出値に基づいて弁制御装置TC2により制御される。
ダンパ5,6は給気温度センサーS2の検出値によりダンパ制御装置ΣQでダンパ制御することにより給気温度を制御する。
往水1の温度(温度既知)と温度センサーS3の還水温度との温度差を算出し、温度差が所定以上であれば通常の運転となるが、温度差が所定以下であれば、次に説明するようにどちらかの熱交換器は熱交換せずに、単に空気分岐流路92を形成するだけである。なお、往水1の温度は通常既知であるが、必要であれば、往水配管1に接続する往水接続配管11に温度センサーを設けて、温度センサーS3の還水温度との温度差を検出してもよい。
In the heat exchange system A, the air intake air passage for the outside air OA and the return air RA is branched into two branch passages 91 and 92, and two heat exchangers 3 and 4 are provided for each of the air branch passages 91 and 92. Are provided in parallel, and the air that has passed through the heat exchangers 3 and 4 merges and is blown from the discharge port by the fan F and supplied to the room. 6, and each heat exchanger 3, 4 is provided with flow control valves 7, 8 for controlling the flow rate of the heat medium. The flow control valves 7, 8 are temperature sensors S 3 provided in the return water connection pipe 21. Based on the detected value, it is controlled by the valve control device TC2.
The dampers 5 and 6 control the supply air temperature by performing damper control with the damper control device ΣQ based on the detection value of the supply air temperature sensor S2.
The temperature difference between the temperature of the outgoing water 1 (temperature known) and the return water temperature of the temperature sensor S3 is calculated. If the temperature difference is greater than or equal to a predetermined value, normal operation is performed. As will be described, either of the heat exchangers does not exchange heat and merely forms the air branch channel 92. The temperature of the outgoing water 1 is normally known. If necessary, a temperature sensor is provided in the outgoing water connection pipe 11 connected to the outgoing water pipe 1, and the temperature difference from the return water temperature of the temperature sensor S3 is determined. It may be detected.

[動作]
以上の構成による空調システムについて、冷房時の場合を説明する。
(1)往水1(温度既知)と温度センサーS3の還水温度との温度差を算出し、温度差が所定以上である場合には、熱交換器3,4は通常稼働する。特に、真夏の日中のように高い冷房能力が要求さる場合は、熱交換器3,4はフル稼働することになる。
また、中位の冷房能力が要求さる場合は、例えば、一方の熱交換器3だけを稼働し他の熱交換器4の運転を停止するように制御する。即ち、流量制御弁8を閉状態にし、ダンパ6は開状態にする。このことにより、熱交換器3だけで効率の良い運転条件で稼働させることが可能となる。
[Operation]
About the air conditioning system by the above structure, the case at the time of cooling is demonstrated.
(1) The temperature difference between the outgoing water 1 (temperature known) and the return water temperature of the temperature sensor S3 is calculated. In particular, when high cooling capacity is required, such as during midsummer daytime, the heat exchangers 3 and 4 are fully operated.
Further, when a medium cooling capacity is required, for example, control is performed so that only one heat exchanger 3 is operated and the operation of the other heat exchanger 4 is stopped. That is, the flow control valve 8 is closed and the damper 6 is opened. As a result, it is possible to operate only with the heat exchanger 3 under efficient operating conditions.

(2)次ぎに、往水1(温度既知)と温度センサーS3の還水温度との温度差を算出し、温度差が所定以下である場合には、温度差が所定以上になるように作動するが、熱交換器4側は熱交換を行わない空気分岐流路92(本実施例の場合)を形成する。
これには、まず、流量制御弁8を閉状態にし、ダンパ6も開状態で、ダンパ5を空気が通過させる。そして、温度センサーS3によりが還水温度が所定値以上になるよう流量制御弁7が制御され熱交換器3側の流量は少なくなる。さらに、温度センサーS2によりダンパ5及び6が制御され熱交換器3と熱交換器4を通過する空気量の割合を変え給気温度を制御する。このとき、熱交換機3は単独運転となり、少なくとも、複数の熱交換器での運転のときよりも流量は多くなり、熱交換器3で層流になることは少なくなり、熱交換効率の低下も小さくなる。
この結果、熱交換器3の出口の還水の温度は充分に熱交換が行われ、往水1と還水との温度差は所定値或いは所定値以上となり、かつ、ファンFにより送風される風量は、冷温水の循環供給を止めて空気だけが通過した熱交換器からの風量が合流するので充分な総量が確保される。
(2) Next, the temperature difference between the incoming water 1 (temperature known) and the return water temperature of the temperature sensor S3 is calculated, and when the temperature difference is less than a predetermined value, the temperature difference is operated to be a predetermined value or more. However, on the heat exchanger 4 side, an air branch passage 92 (in the case of the present embodiment) that does not perform heat exchange is formed.
To this end, first, the flow control valve 8 is closed, the damper 6 is also open, and air is passed through the damper 5. Then, the flow rate control valve 7 is controlled by the temperature sensor S3 so that the return water temperature becomes a predetermined value or more, and the flow rate on the heat exchanger 3 side decreases. Further, the dampers 5 and 6 are controlled by the temperature sensor S2, and the ratio of the amount of air passing through the heat exchanger 3 and the heat exchanger 4 is changed to control the supply air temperature. At this time, the heat exchanger 3 is operated alone, and at least the flow rate is higher than that when operating with a plurality of heat exchangers, and the heat exchanger 3 is less likely to become a laminar flow, resulting in a decrease in heat exchange efficiency. Get smaller.
As a result, the temperature of the return water at the outlet of the heat exchanger 3 is sufficiently heat exchanged, the temperature difference between the outgoing water 1 and the return water becomes a predetermined value or a predetermined value or more, and is blown by the fan F. Since the air volume from the heat exchanger through which only air has passed and the circulation of cold / hot water is stopped is combined, a sufficient total volume is ensured.

以上のように、実施例においては、熱交換器の単体では熱交換量が少なくなり、往水と還水との温度差が所定値或いは所定値以上に制御することが困難になっても、熱源システムへの還水温度を常に所定値以上に維持することができ、且つ、高い冷房能力が要求さる場合でも、複数の熱交換器3,4は稼働することで対処できる。また、暖房時の場合は、往水と還水との温度が逆になるだけで、基本的な動作は同じである。
なお、本発明の特徴を損うものでなければ、上記の実施例に限定されるものでないことは勿論であり、実施例では2つの熱交換器の例で説明したが、複数であれば2台以上の熱交換器を用いても良いことは勿論である。
また、複数の熱交換器の送風量の分割する割合を等分ではなく、非等分にすることにより運転する熱交換器を適宜切換えることにより要求される冷暖房能力についてきめ細かく対応することができる。
As described above, in the embodiment, the heat exchanger alone reduces the amount of heat exchange, and even if it becomes difficult to control the temperature difference between the outgoing water and the return water to a predetermined value or a predetermined value or more, Even when the return water temperature to the heat source system can always be maintained at a predetermined value or higher and a high cooling capacity is required, the plurality of heat exchangers 3 and 4 can be coped with by operating. In the case of heating, the basic operation is the same except that the temperatures of the outgoing water and the return water are reversed.
It should be noted that the present invention is not limited to the above-described embodiment as long as the characteristics of the present invention are not impaired. In the embodiment, the example of two heat exchangers has been described. Of course, it is possible to use a heat exchanger more than a table.
Moreover, it is possible to meticulously cope with the cooling / heating capacity required by appropriately switching the heat exchanger to be operated by dividing the ratio of the blast volume of the plurality of heat exchangers into not equal parts.

本発明の実施例の系統図である。It is a systematic diagram of the Example of this invention. 従来の空調システムの系統図である。It is a systematic diagram of the conventional air conditioning system.

符号の説明Explanation of symbols

1…往水配管、11…往水接続配管、
2…還水配管、21…還水接続配管
3,4…熱交換器、5,6…ダンパ、7,8…流量制御弁、
91…空気分岐流路、92…空気分岐流路、
S1,S2,S3…温度センサー、TC1,TC2,ΣQ…制御装置
1 ... Outbound piping, 11 ... Outbound connection piping,
2 ... Return water piping, 21 ... Return water connection piping 3, 4 ... Heat exchanger, 5, 6 ... Damper, 7, 8 ... Flow control valve,
91 ... Air branch flow path, 92 ... Air branch flow path,
S1, S2, S3 ... Temperature sensor, TC1, TC2, ΣQ ... Control device

Claims (1)

熱源設備から往水配管により往水される冷温水を熱交換器により給気と熱交換して還水配管により熱源設備に還水しうる空調システムにおいて、
前記熱交換器は独立して稼動する複数の熱交換器とし、
これらの熱交換器のうち少なくとも一つの熱交換器は、熱交換器として稼動するとともに、熱交換量が少ない場合には冷温水の循環供給を止めて空気だけが通過するように形成し、
他の少なくとも一つの熱交換器は、接続した還水配管の冷温水温度を検出し、該冷温水温度が所定温度となるように前記熱交換器に供給する冷温水の量を増減制御し、前記複数の熱交換器での稼働の場合よりも熱交換器内の流量を多くして層流を少なくし、
前記複数の熱交換器内で冷温水の循環供給を止めた熱交換器がある場合には、通過した熱交換後の室内空気が所望温度となるように前記熱交換を行っている熱交換器を通過する空気量の比率を可変制御することを特徴とする空調システム。
In an air conditioning system that can exchange cold / hot water sent from the heat source equipment through the water supply pipe with the heat supply air and return it to the heat source equipment through the return water pipe,
The heat exchanger is a plurality of heat exchangers that operate independently,
At least one of these heat exchangers operates as a heat exchanger, and when the amount of heat exchange is small, it is formed so that only the air passes by stopping the circulation of cold / hot water,
At least one other heat exchanger detects the cold / hot water temperature of the connected return water pipe, and controls to increase / decrease the amount of cold / hot water supplied to the heat exchanger so that the cold / hot water temperature becomes a predetermined temperature, Increase the flow rate in the heat exchanger to reduce laminar flow than when operating with the plurality of heat exchangers,
Wherein when there circulating supply of hot and cold water is stopped meth heat exchanger in multiple in the heat exchanger, the heat exchange indoor air after heat exchange has passed is performing the heat exchange to a desired temperature air conditioning system, characterized by variably controlling the ratio of air quantity you pass through the vessel.
JP2004270509A 2004-09-16 2004-09-16 Air conditioning system. Expired - Fee Related JP4421983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004270509A JP4421983B2 (en) 2004-09-16 2004-09-16 Air conditioning system.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004270509A JP4421983B2 (en) 2004-09-16 2004-09-16 Air conditioning system.

Publications (2)

Publication Number Publication Date
JP2006084144A JP2006084144A (en) 2006-03-30
JP4421983B2 true JP4421983B2 (en) 2010-02-24

Family

ID=36162789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004270509A Expired - Fee Related JP4421983B2 (en) 2004-09-16 2004-09-16 Air conditioning system.

Country Status (1)

Country Link
JP (1) JP4421983B2 (en)

Also Published As

Publication number Publication date
JP2006084144A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
JP3997482B2 (en) Water source air conditioning system
CN204438340U (en) Heat exchanger coil and air conditioner
JP4694905B2 (en) Air conditioning system
JP3733371B2 (en) Temperature control system
JP4422124B2 (en) Air conditioning system
JP4477914B2 (en) Air conditioning system
JP3708660B2 (en) Liquid piping equipment for heat utilization
JP4421983B2 (en) Air conditioning system.
JP4939799B2 (en) Air conditioner
JP4367931B2 (en) Air conditioning system.
JPH07253227A (en) Air conditioner
JP2015007484A (en) Air conditioning system
JP7045860B2 (en) Air conditioning system
JP4097405B2 (en) Engine cooling method and apparatus and refrigeration apparatus
JP2003207190A (en) Air conditioning system
JP2004125316A (en) Control method for air conditioner, and air conditioner
KR100329472B1 (en) Multi-air conditioner for cooling and heating
JP2019120464A (en) Air conditioning system
JP2006084084A (en) Air conditioner and its operation method
KR102532551B1 (en) Integrated air conditioning system for ventilation and cooling
KR100318680B1 (en) Air-conditioning and combined air conditioning
KR20030023914A (en) heating and cooling system with hot water supplying by using heat-pump
CN215175579U (en) Heat storage module and multi-split system
JPH0484038A (en) Apparatus for air conditioning and method of operation
JPH0894206A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4421983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151211

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees