JP6033674B2 - Heat supply control device, heat supply system, and heat supply control method - Google Patents

Heat supply control device, heat supply system, and heat supply control method Download PDF

Info

Publication number
JP6033674B2
JP6033674B2 JP2012286633A JP2012286633A JP6033674B2 JP 6033674 B2 JP6033674 B2 JP 6033674B2 JP 2012286633 A JP2012286633 A JP 2012286633A JP 2012286633 A JP2012286633 A JP 2012286633A JP 6033674 B2 JP6033674 B2 JP 6033674B2
Authority
JP
Japan
Prior art keywords
pump
power consumption
valve
heat supply
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012286633A
Other languages
Japanese (ja)
Other versions
JP2014129897A (en
Inventor
道樹 中野
道樹 中野
靖子 志賀
靖子 志賀
石田 隆張
隆張 石田
民則 冨田
民則 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industry and Control Solutions Co Ltd
Original Assignee
Hitachi Industry and Control Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industry and Control Solutions Co Ltd filed Critical Hitachi Industry and Control Solutions Co Ltd
Priority to JP2012286633A priority Critical patent/JP6033674B2/en
Publication of JP2014129897A publication Critical patent/JP2014129897A/en
Application granted granted Critical
Publication of JP6033674B2 publication Critical patent/JP6033674B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、複数の熱供給プラントにより生成された冷温水を複数の需要建物へ送水するポンプの回転数を制御し、最小の動力で各需要建物へ必要な量の冷温水を供給できる熱供給システム及びその制御方法に関する。   The present invention controls the number of rotations of a pump for supplying cold / hot water generated by a plurality of heat supply plants to a plurality of demand buildings, and can supply a necessary amount of cold / hot water to each demand building with a minimum power. The present invention relates to a system and a control method thereof.

従来の地域冷暖房装置等で冷温水を搬送する熱供給システムにおいて、特許文献1に記載の技術では、一つの場所(熱製造プラント)で製造した熱を搬送する際に、必要最小限の動力で複数の熱交換器に効率良く熱を送り届けることができる、送水制御システム及びその制御方法を提供している。具体的には、複数の熱交換器の中から最も循環揚程を要求するものを、予め設定しておいた差圧(最適差圧)と、実測されたバルブ+熱交換器の差圧を比較することで探索して特定し、その熱交換器に合わせてポンプの回転数をインバータ制御することで、必要最小限のポンプ吐出圧力にて熱を搬送できる送水制御システムを提供する。   In a conventional heat supply system that transports cold / hot water using a district heating / cooling device, etc., the technology described in Patent Document 1 uses the minimum necessary power when transporting heat produced in one place (heat production plant). The present invention provides a water supply control system and a control method thereof that can efficiently deliver heat to a plurality of heat exchangers. Specifically, among the heat exchangers that require the most circulating head, compare the preset differential pressure (optimum differential pressure) with the measured valve + heat exchanger differential pressure. Thus, a water supply control system capable of transporting heat with a minimum necessary pump discharge pressure is provided by searching and specifying the inverter and controlling the rotation speed of the pump according to the heat exchanger.

特開2011‐242057号公報JP 2011-242057 A

上記特許文献1に記載の技術によれば、熱供給プラントが一つである場合に、循環揚程を最も必要とする熱交換器を随時特定し、特定した熱交換器のバルブ開度が最大となるように供給プラントのポンプ回転数を制御する事で必要最小限のポンプ動力にて熱を搬送する。しかし、供給プラントが複数になった場合、全ての供給プラントのポンプが、特定された一つのバルブ開度に応じて回転数を増減させると、ポンプの消費電力特性が考慮されていないため、消費電力最小で熱を搬送する事が出来ない。   According to the technique described in Patent Document 1, when there is one heat supply plant, the heat exchanger that most requires the circulation head is identified as needed, and the valve opening of the identified heat exchanger is maximum. By controlling the pump rotation speed of the supply plant, heat is transferred with the minimum necessary pump power. However, when there are multiple supply plants, pumps of all supply plants increase or decrease the number of rotations according to the specified valve opening. Heat cannot be transferred with minimum power.

そこで本発明の目的は、複数プラント、複数需要家で構成されるシステムにおいて、各供給プラントのポンプの総消費電力を低減する熱供給システム及び方法を提供することにある。   Therefore, an object of the present invention is to provide a heat supply system and method for reducing the total power consumption of the pumps of each supply plant in a system composed of a plurality of plants and a plurality of consumers.

本発明は、冷温水などの熱媒体を生成する熱源機と該熱媒体を搬送するポンプを備えた複数の熱供給プラントから、空調機などの熱利用機器と熱交換器とプラントからの熱媒体の流量を調整するバルブとを備えた複数の需要家建物へ熱配管を通して熱媒体を送り、前記需要家建物が空調などに利用する熱供給システムにおいて、各需要家建物の熱需要を満たし、熱媒体を搬送するポンプの消費電力が最小となるようにポンプの回転数、流量を算出し、算出した流量と、ポンプの消費電力特性とを用いて、需要家建物にあるバルブの開度に応じて回転数を制御するポンプを選択する。   The present invention relates to a heat source device that generates a heat medium such as cold / hot water and a plurality of heat supply plants including a pump that conveys the heat medium, heat utilization equipment such as an air conditioner, a heat exchanger, and a heat medium from the plant. In a heat supply system that sends a heat medium through a heat pipe to a plurality of customer buildings equipped with valves for adjusting the flow rate of the air, and the customer buildings use for air conditioning, etc., satisfy the heat demand of each customer building, Calculate the rotation speed and flow rate of the pump so that the power consumption of the pump that transports the medium is minimized, and use the calculated flow rate and the power consumption characteristics of the pump according to the valve opening in the customer's building. Select the pump that controls the rotation speed.

本発明によれば,複数プラント、複数需要家で構成されるシステムにおいて、各供給プラントのポンプの総消費電力を低減する事が可能になる。   According to the present invention, in a system composed of a plurality of plants and a plurality of consumers, it becomes possible to reduce the total power consumption of the pumps of each supply plant.

本発明の実施形態に関する熱供給システムの全体構成を示す図である。It is a figure showing the whole heat supply system composition concerning an embodiment of the present invention. 配管網制御装置300の処理フロー図である。3 is a processing flow diagram of the piping network control device 300. FIG. ポンプ消費電力最小化処理S302の処理フロー図である。It is a processing flow figure of pump power consumption minimization processing S302. ポンプ・バルブ選択処理S303の処理フロー図である。FIG. 10 is a processing flowchart of pump / valve selection processing S303. ポンプの流量、回転数によって消費電力の変化量が変わる様子を示す図である。It is a figure which shows a mode that the variation | change_quantity of power consumption changes with the flow volume and rotation speed of a pump. ポンプ制御方式配信処理S304の処理フロー図である。It is a processing flow figure of pump control system distribution processing S304. ポンプ制御装置103の処理フロー図である。FIG. 5 is a process flow diagram of the pump control apparatus 103. バルブ制御装置211の処理フロー図である。FIG. 5 is a processing flowchart of the valve control device 211. ポンプ消費電力最小化処理S302の実施タイミングを制御する機能を備えた配管網制御装置300の処理フロー図である。FIG. 10 is a process flow diagram of the piping network control apparatus 300 having a function of controlling the execution timing of the pump power consumption minimization process S302. 時間に基づいて実施判定する処理S305の処理フロー図である。It is a process flow figure of processing S305 which carries out execution judgment based on time. 流量の変化に基づいて実施判定する処理S305の処理フロー図である。It is a process flow figure of processing S305 to carry out judging based on change of flow. 中央制御装置を備えた実施形態に関する熱供給システムの全体構成を示す図である。It is a figure showing the whole heat supply system composition about an embodiment provided with a central control unit.

以下,図面を参照しつつ、本発明実施のための最良の形態について説明する。
<第一の実施形態>
図1に熱供給システムの構成例を示す。このシステムは,冷凍機やボイラなどの熱源機を備えた複数の熱供給プラント100と、オフィスビルや商業施設や工場等の需要家建物200と、熱配管網制御装置300と、熱供給プラント100と需要家建物200を繋ぎ、冷水もしくは温水等の熱供給媒体を搬送するための熱配管網400と、有線もしくは無線による通信線500とを備えている。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
<First embodiment>
FIG. 1 shows a configuration example of the heat supply system. This system includes a plurality of heat supply plants 100 having heat source devices such as refrigerators and boilers, a customer building 200 such as an office building, a commercial facility or a factory, a heat pipe network controller 300, and a heat supply plant 100. And a customer building 200, and a heat pipe network 400 for conveying a heat supply medium such as cold water or hot water, and a wired or wireless communication line 500 are provided.

熱供給プラント100は、冷温水を生成するボイラや冷凍機等の熱源機101と、熱源機101により生成された熱供給媒体を、熱配管網400を通して各需要家建物へ搬送するためのポンプ102と、ポンプ102を制御するためのポンプ制御装置103とを備えている。ポンプ制御装置103の処理フローは、図7にて後述する。   The heat supply plant 100 includes a heat source device 101 such as a boiler or a refrigerator that generates cold / hot water, and a pump 102 for conveying the heat supply medium generated by the heat source device 101 to each customer building through the heat pipe network 400. And a pump control device 103 for controlling the pump 102. The processing flow of the pump control device 103 will be described later with reference to FIG.

需要家建物200は、空調などの熱利用機器201と、熱供給プラントから送られてきた熱供給媒体の熱を熱利用機器201で利用するために熱移動を行う熱交換器202と、熱交換器202の1次側の流量を調整するためのバルブ203と、熱交換器202の1次側出口の温度Tを計測する温度センサ204と、熱交換器202を介して得た熱量を熱利用機器201へ搬送するためのポンプ206と、熱利用機器201の必要とする熱量に合わせて熱交換器202の2次側の流量を調整するためのバルブ207と、熱利用機器201の入口温度Tsを計測する温度センサ208と、熱利用機器201の出口温度Trを計測する温度センサ209と、熱利用機器201への流量Fを計測する流量センサ210と、各温度センサや流量の値をもとにバルブ203を制御するバルブ制御装置211とを備えている。バルブ制御装置211の処理フローは、図8にて後述する。   The customer building 200 includes a heat utilization device 201 such as an air conditioner, a heat exchanger 202 that performs heat transfer in order to use the heat of the heat supply medium sent from the heat supply plant in the heat utilization device 201, and heat exchange. The valve 203 for adjusting the flow rate on the primary side of the heat exchanger 202, the temperature sensor 204 for measuring the temperature T at the outlet on the primary side of the heat exchanger 202, and the heat amount obtained through the heat exchanger 202 are used as heat A pump 206 for conveying to the device 201, a valve 207 for adjusting the flow rate on the secondary side of the heat exchanger 202 according to the amount of heat required by the heat utilization device 201, and an inlet temperature Ts of the heat utilization device 201 A temperature sensor 208 for measuring the temperature, a temperature sensor 209 for measuring the outlet temperature Tr of the heat utilization device 201, a flow sensor 210 for measuring the flow rate F to the heat utilization device 201, and the values of each temperature sensor and flow rate. And a valve control device 211 for controlling the valve 203. The processing flow of the valve control device 211 will be described later with reference to FIG.

配管網制御装置300は、各需要家建物のバルブ制御装置211を通して各種センサの計測値を収集し、各熱供給プラントに設置されたポンプ102の消費電力の総和が最小となるように、各ポンプ102の回転数や流量、各バルブ203の開度を算出する。その後、算出結果通りに制御するポンプと、需要家建物のバルブ203の開度に追従して回転数を変化させるポンプと、追従先の需要家建物のバルブ203とを特定し、ポンプ制御装置103へ制御信号を送る。配管網制御装置300の処理フローは、図2に後述する。   The piping network control device 300 collects the measurement values of various sensors through the valve control device 211 of each customer building, so that the total power consumption of the pumps 102 installed in each heat supply plant is minimized. The rotational speed and flow rate of 102 and the opening degree of each valve 203 are calculated. Thereafter, the pump that is controlled according to the calculation result, the pump that changes the rotation speed following the opening degree of the valve 203 of the consumer building, and the valve 203 of the consumer building that is the follow-up destination are identified, and the pump control device 103 Send control signal to. The processing flow of the piping network control device 300 will be described later with reference to FIG.

図2に、配管網制御装置300の処理フロー概要を示す。   FIG. 2 shows an outline of the processing flow of the piping network control apparatus 300.

処理S301の熱交換器1次側必要流量算出処理では、各需要家建物のバルブ制御装置211を介して収集した温度計測値Ts、Tr、流量計測値Fと、設計書などに記載の熱交換器202の温度変化情報をもとに、熱交換器1次側の必要流量を算出する。処理301では、先ずTsとTrの差と流量Fの積にもとづいて、熱利用機器の熱需要量を算出する。次に、熱利用機器の熱需要量を、熱交換器202の温度変化情報で割った商をもとに、熱交換器1次側の必要流量を算出する。熱交換器202の温度変化情報とは、熱交換器における1次側の入口温度と出口温度の差に関する情報で、仕様書等から事前に設定可能な値とする。   In the heat exchanger primary side required flow rate calculation process of process S301, the heat exchange described in the temperature measurement values Ts, Tr, flow rate measurement value F collected via the valve control device 211 of each consumer building and the design document etc. Based on the temperature change information of the heat exchanger 202, the required flow rate on the primary side of the heat exchanger is calculated. In the process 301, first, the heat demand amount of the heat utilizing device is calculated based on the product of the difference between Ts and Tr and the flow rate F. Next, the required flow rate on the primary side of the heat exchanger is calculated based on the quotient obtained by dividing the heat demand amount of the heat utilization device by the temperature change information of the heat exchanger 202. The temperature change information of the heat exchanger 202 is information on the difference between the primary side inlet temperature and the outlet temperature in the heat exchanger, and is a value that can be set in advance from a specification or the like.

処理S302のポンプ消費電力最小化処理では、処理S301で算出した各熱需要建物200の熱交換器202の1次側の必要流量を満たすための、各熱供給プラント100のポンプ102の消費電力の総和が最小となる各ポンプ102の回転数と流量、各需要家建物200のバルブ203の開度を算出する。処理S302の詳細フローは図3に後述する。   In the pump power consumption minimization process of process S302, the power consumption of the pump 102 of each heat supply plant 100 to satisfy the required flow rate on the primary side of the heat exchanger 202 of each heat demand building 200 calculated in process S301. The rotational speed and flow rate of each pump 102 that minimizes the sum, and the opening degree of the valve 203 of each customer building 200 are calculated. A detailed flow of the process S302 will be described later with reference to FIG.

処理S303のポンプ・バルブ選択処理では、処理S302で算出した各ポンプ102の回転数と、その際のポンプ102の流量、各需要家建物200のバルブ203の開度をもとに、算出した回転数通りに制御するポンプと、バルブ203の開度に合わせてポンプ102の回転数を制御するポンプ102とバルブ203の1対の組合せとを特定する。処理S303の詳細フローは図4に後述する。ポンプ消費電力最小化処理で算出したポンプの回転数を全てのポンプに適用し制御した場合、ポンプ消費電力最小化処理で用いる圧力損失式などに含まれるモデル誤差により、各需要家建物の熱交換器202の1次側に必要な流量を供給できない、もしくは必要最低限以上の消費電力で1次側に必要な流量を供給している場合がある。処理S303によりバルブの開度に応じてポンプの回転数を制御するポンプとバルブの組合せを選択し、他ポンプについてはポンプ消費電力最小化処理で算出したポンプ回転数となるように制御することで、ポンプ消費電力最小化処理で用いる圧力損失式などに含まれるモデル誤差を処理S303で選択したポンプが補い、ポンプの総消費動力を必要最小限に抑えつつ、各需要家建物が必要とする熱量を供給することができる。   In the pump / valve selection process of process S303, the calculated rotation based on the rotation speed of each pump 102 calculated in process S302, the flow rate of the pump 102 at that time, and the opening degree of the valve 203 of each customer building 200 A pump to be controlled in several ways and a combination of a pair of the pump 102 and the valve 203 that control the rotation speed of the pump 102 in accordance with the opening degree of the valve 203 are specified. A detailed flow of the process S303 will be described later with reference to FIG. When the pump rotation speed calculated in the pump power consumption minimization process is applied to all pumps and controlled, the heat exchange of each customer building is caused by the model error included in the pressure loss equation used in the pump power consumption minimization process. In some cases, the required flow rate cannot be supplied to the primary side of the vessel 202, or the required flow rate is supplied to the primary side with power consumption more than the minimum necessary. In step S303, a combination of a pump and a valve that controls the number of revolutions of the pump according to the opening of the valve is selected, and the other pumps are controlled to have the number of revolutions of the pump calculated in the pump power consumption minimization process. The model error included in the pressure loss equation used in the pump power consumption minimization process is compensated by the pump selected in process S303, and the total amount of power consumed by each customer building is reduced while minimizing the total power consumption of the pump. Can be supplied.

処理S304のポンプ制御処理では、各ポンプ制御装置103に対し制御指令を送信する。処理S304の詳細フローは図6に後述する。処理S301乃至処理304の処理を繰り返し実行することで、熱媒体を各熱供給プラントから各熱需要建物へ搬送する。   In the pump control process of process S304, a control command is transmitted to each pump control apparatus 103. A detailed flow of the process S304 will be described later with reference to FIG. By repeatedly executing the processing from processing S301 to processing 304, the heat medium is transferred from each heat supply plant to each heat demand building.

図3に、処理S302のポンプ消費電力最小化処理の処理フローを示す。本処理では、処理S301で算出した各需要家建物の熱交換器1次側の必要流量と、各熱供給プラントのポンプ102、熱源機103、熱供給プラントと需要家建物を繋ぐ熱配管400、各需要家建物のバルブ203、熱交換器202の設計書などに記載の各種特性情報とを入力とし、各需要家建物の熱交換器1次側の必要流量を満たし、かつ各熱供給プラントのポンプ102の総消費電力が最小となるための各ポンプ102の回転数と、各需要家建物のバルブ203のバルブ開度を算出する。算出するに当たり、各熱供給プラントのポンプ102の総消費電力Eを、各熱供給プラントのポンプ102の回転数wを変数とする関数f(w) とする。   FIG. 3 shows a process flow of the pump power consumption minimization process of process S302. In this process, the required flow rate of the heat exchanger primary side of each customer building calculated in process S301, the pump 102 of each heat supply plant, the heat source unit 103, the heat pipe 400 connecting the heat supply plant and the customer building, Various characteristic information described in the design documents of the valve 203 and heat exchanger 202 of each customer building is input, the required flow rate on the primary side of the heat exchanger of each customer building is satisfied, and each heat supply plant's The number of rotations of each pump 102 for minimizing the total power consumption of the pump 102 and the valve opening of the valve 203 of each customer building are calculated. In the calculation, the total power consumption E of the pumps 102 of each heat supply plant is set as a function f (w) having the rotation speed w of the pumps 102 of each heat supply plant as a variable.

Figure 0006033674
関数f(w) について、滑降シンプレックス法などの数値解析手法を用いて、各熱供給プラントのポンプ102の総消費電力Eが最小となる各熱供給プラントのポンプ102の回転数w を算出する。
以下、各熱供給プラントのポンプ102の回転数w を用いて各熱供給プラントのポンプ102の総消費電力Eを算出する処理及び、滑降シンプレックス法を用いたEを最小とする各熱供給プラントのポンプ102の回転数w を算出する処理について説明する。
処理S3021では、処理S3022で必要となる初期値として、各熱供給プラントのポンプ102の回転数の組合せを、ポンプ102の数+1以上作成する。例えば、各ポンプの定格回転数を基準に作成する。
処理S3022では、各熱供給プラントと各需要家建物を繋ぐ熱配管400、熱源機101、熱交換器202、バルブ203の圧力損失式と、各熱供給プラントのポンプ102の揚程曲線式と、熱配管400の分岐・合流点の流量保存式とから成る非線形連立方程式を解く事で、各熱供給プラントのポンプ102の流量、吐出圧力、各需要家建物のバルブ203の開度を算出する。なお、処理S3021で作成した初期値の数だけ非線形連立方程式を解き、各熱供給プラントのポンプ102の流量、吐出圧力、各需要家建物のバルブ203の開度を算出する。
熱配管400、熱源機101及び熱交換器202の圧力損失式は次式(数2)で与えられる。
Figure 0006033674
For the function f (w), the rotational speed w of the pump 102 of each heat supply plant that minimizes the total power consumption E of the pump 102 of each heat supply plant is calculated using a numerical analysis method such as the downhill simplex method.
Hereinafter, the process of calculating the total power consumption E of the pump 102 of each heat supply plant using the rotation speed w of the pump 102 of each heat supply plant, and each heat supply plant that minimizes E using the downhill simplex method A process for calculating the rotation speed w of the pump 102 will be described.
In the process S3021, as the initial value required in the process S3022, a combination of the rotation speeds of the pumps 102 of each heat supply plant is created by the number of the pumps +1 or more. For example, it creates based on the rated rotation speed of each pump.
In the process S3022, the heat pipe 400, the heat source device 101, the heat exchanger 202, the valve 203 pressure loss equation of each heat supply plant and each customer building, the lift curve equation of the pump 102 of each heat supply plant, and the heat By solving a nonlinear simultaneous equation consisting of a flow rate conserving equation at the branching / merging point of the pipe 400, the flow rate of the pump 102 in each heat supply plant, the discharge pressure, and the opening degree of the valve 203 in each customer building are calculated. Note that the nonlinear simultaneous equations are solved by the number of initial values created in the process S3021, and the flow rate and discharge pressure of the pump 102 of each heat supply plant and the opening degree of the valve 203 of each customer building are calculated.
The pressure loss equations for the heat pipe 400, the heat source device 101, and the heat exchanger 202 are given by the following equation (Equation 2).

Figure 0006033674
バルブの圧力損失式は次式(数3)で与えられる。
Figure 0006033674
The valve pressure loss equation is given by the following equation (Equation 3).

Figure 0006033674
ポンプの揚程曲線は次式(式4)で与えられる。
Figure 0006033674
The pump head curve is given by the following equation (Equation 4).

Figure 0006033674
熱配管の分岐点、合流点の流量保存式は次式(数5)で与えられる。
Figure 0006033674
The flow rate conservation formula at the branch point and junction of the thermal piping is given by the following formula (Equation 5).

Figure 0006033674
左辺第一項は、分岐・合流点における各熱配管からの流入量の合計であり、左辺第二項は、分岐・合流点における各熱配管からの流出量の合計である。
Figure 0006033674
The first term on the left side is the total amount of inflow from each thermal pipe at the branching / merging point, and the second term on the left side is the total amount of outflow from each thermal pipe at the branching / merging point.

熱交換器202が接続する分岐・合流点における流量保存式は次式(数6)で与えられる。   The flow rate conservation formula at the branching / merging point to which the heat exchanger 202 is connected is given by the following formula (Equation 6).

Figure 0006033674
ここで、左辺は、熱交換器202への流入量の合計であり、左辺Qdemandは処理S301で算出した熱交換器1次側の必要流量である。
Figure 0006033674
Here, the left side is the total amount of inflow into the heat exchanger 202, and the left side Qdemand is the required flow rate on the primary side of the heat exchanger calculated in step S301.

数2乃至数6、からなる連立方程式をニュートン法等の近似解放を用いて解く事で、各熱供給プラントのポンプ102の回転数w について、各熱供給プラントのポンプ102の流量と吐出圧力、各需要家建物のバルブ203のバルブ開度を算出する。   By solving simultaneous equations consisting of Equations 2 to 6 using approximate release such as Newton's method, the flow rate and discharge pressure of the pump 102 of each heat supply plant with respect to the rotational speed w of the pump 102 of each heat supply plant, The valve opening of the valve 203 of each customer building is calculated.

処理S3023では、処理S3022で用いた各ポンプの回転数w 、処理S3022で算出した各ポンプの流量、吐出圧力を用いてポンプの総消費エネルギーの値を算出する。処理S3021で作成した初期値の数だけ総消費エネルギーの値を算出する。ポンプの総消費エネルギー式は次式(数7)で与えられる。   In process S3023, the total energy consumption of the pump is calculated using the rotation speed w of each pump used in process S3022, the flow rate and discharge pressure of each pump calculated in process S3022. The total energy consumption value is calculated by the number of initial values created in step S3021. The total energy consumption formula of the pump is given by the following equation (Equation 7).

Figure 0006033674
ポンプ効率は次式(数8)で与えられる。
Figure 0006033674
The pump efficiency is given by the following equation (Equation 8).

Figure 0006033674
処理S3022、処理S3023により、各熱供給プラントのポンプ102の回転数w に対して、各熱供給プラントのポンプ102の総消費電力Eを算出できる。
処理S3024では、直前の処理3023で算出した総消費エネルギーの最小値と、前回の総消費エネルギーの最小値を比較し、差分が予め設定しておいた値以内の場合、処理を終了する。差分が予め設定しておいた値以上の場合、処理S3025に進む。処理S3025では、処理3026による処理の実施回数が予め設定しておいた回数以上実施されているかどうかを判定する。処理3026による処理の実施回数が予め設定しておいた回数以上の場合、処理を終了する。処理3026による処理の実施回数が予め設定しておいた回数以下の場合、処理3026に進む。処理3026では、処理3022で用いた各熱供給プラントのポンプ102の回転数の組合せを更新し、処理S3022に進む。各熱供給プラントのポンプ102の回転数の組合せの更新処理ロジックは、滑降シンプレックス法における手順に基づいて更新する。これらの処理により、Eを最小とする各熱供給プラントのポンプ102の回転数w を算出できる。
Figure 0006033674
By processing S3022 and S3023, the total power consumption E of the pump 102 of each heat supply plant can be calculated with respect to the rotation speed w of the pump 102 of each heat supply plant.
In the process S3024, the minimum value of the total energy consumption calculated in the immediately preceding process 3023 is compared with the previous minimum value of the total energy consumption, and if the difference is within a preset value, the process ends. If the difference is greater than or equal to a preset value, the process proceeds to step S3025. In process S3025, it is determined whether or not the number of executions of the process 3026 has been performed more than a preset number. If the number of executions of the process 3026 is greater than or equal to the preset number, the process ends. If the number of executions of the process 3026 is equal to or less than the preset number, the process 3026 is performed. In process 3026, the combination of the rotation speeds of the pumps 102 of each heat supply plant used in process 3022 is updated, and the process proceeds to process S3022. The update processing logic of the combination of the rotation speeds of the pumps 102 of each heat supply plant is updated based on the procedure in the downhill simplex method. By these processes, the rotation speed w of the pump 102 of each heat supply plant that minimizes E can be calculated.

図4に、処理S303のポンプ・バルブ選択処理の処理フローを示す。
処理S3031では、処理S302のポンプ消費電力最小化処理で算出した各需要家建物のバルブ203の中から、開度が最大であるバルブを選択する。
処理S3032では、各熱供給プラントのポンプ102について、性能情報と処理302の演算結果のポンプ流量を用いて、予め設定した所定の回転数増加分に対して消費電力の増加が小さいポンプを選択する。図5にポンプの流量によって回転数増加に対する消費電力の増加量が異なる様子を示す。パターン1は、ある需要量に対して処理S302のポンプ消費電力最小化処理で算出したポンプA及びポンプBの流量について、ポンプ回転数が増加した際のポンプ消費動力の変化を表す。パターン1では、ポンプBのほうがポンプ回転数増加に伴う消費電力増加が小さいため、処理S3031ではポンプBが選択される。パターン2は、パターン2とは異なる需要に対して処理S302のポンプ消費電力最小化処理で算出したポンプA及びポンプBの流量について、ポンプ回転数が増加した際のポンプ消費動力の変化を表す。パターン2では、ポンプAのほうがポンプ回転数増加に伴う消費電力増加が小さいため、処理S3031ではポンプAが選択される。このようにポンプ流量によって消費電力の増加量が異なるため、処理S302のポンプ消費電力最小化処理の結果に応じて適切なポンプを選択する処理S3031が必要となる。
FIG. 4 shows a process flow of the pump / valve selection process in process S303.
In the process S3031, the valve with the maximum opening is selected from the valves 203 of each customer building calculated in the pump power consumption minimization process in the process S302.
In the process S3032, for the pump 102 of each heat supply plant, a pump with a small increase in power consumption is selected with respect to a predetermined increase in the number of rotations using the performance information and the pump flow rate calculated in the process 302. . FIG. 5 shows a state in which the amount of increase in power consumption with respect to increase in the number of rotations varies depending on the flow rate of the pump. Pattern 1 represents a change in pump power consumption when the pump rotation speed is increased with respect to the flow rates of pump A and pump B calculated in the pump power consumption minimization process in process S302 for a certain demand amount. In pattern 1, the pump B has a smaller increase in power consumption due to the increase in pump rotation speed, and therefore the pump B is selected in step S3031. Pattern 2 represents a change in pump power consumption when the pump rotation speed is increased for the flow rates of pump A and pump B calculated in the pump power consumption minimization process in process S302 for a demand different from pattern 2. In pattern 2, the pump A has a smaller increase in power consumption due to the increase in pump rotation speed, so the pump A is selected in step S3031. As described above, since the amount of increase in power consumption varies depending on the pump flow rate, a process S3031 for selecting an appropriate pump according to the result of the pump power consumption minimization process in process S302 is required.

処理S3032にて回転数増加に対して消費電力の増加が小さいポンプを選択することで、ポンプ消費電力最小化処理結果と異なる回転数でポンプが動作することにより増加する消費電力を最小限に抑える。これにより、ポンプの総消費電力量の増加を最低限に抑えることができ、ポンプ消費電力最小化処理結果により近い総消費電力量で熱供給が可能になる。   By selecting a pump with a small increase in power consumption with respect to the increase in rotation speed in process S3032, the power consumption that increases due to the pump operating at a rotation speed different from the pump power consumption minimization processing result is minimized. . As a result, an increase in the total power consumption of the pump can be minimized, and heat can be supplied with a total power consumption closer to the pump power consumption minimization processing result.

図6に、処理S304のポンプ制御処理の処理フローを示す。
処理S3041では、処理S303により選択されたポンプ102を制御するポンプ制御装置103に、ポンプ選択通知と選択されたバルブの開度を送信する。
処理S3042では、処理S303では選択されなかったその他のポンプ102を制御する各ポンプ制御装置103に、処理S302により算出された各ポンプ102の回転数を送信する。
FIG. 6 shows a process flow of the pump control process in process S304.
In step S3041, a pump selection notification and the opening degree of the selected valve are transmitted to the pump control device 103 that controls the pump 102 selected in step S303.
In process S3042, the rotation speed of each pump 102 calculated in process S302 is transmitted to each pump control apparatus 103 that controls the other pumps 102 not selected in process S303.

図7に、ポンプ制御装置103の処理フローを示す。
処理S1031では、ポンプ制御装置103の制御対象であるポンプ102が処理S303のポンプ・バルブ選択処理で選択されたポンプであることを示すポンプ選択通知を、配管網制御装置300から受信しているかどうかを確認する。受信している場合、処理S1032へ進む。受信していない場合、処理S1035へ進む。処理S1032では、ポンプ選択通知と共に受信しているバルブ開度を、予め設定してあるバルブ開度(例えば90%や100%等)と比較する。受信したバルブ開度が予め設定してあるバルブ開度以上の場合は処理S1033へ進み制御対象のポンプ102の回転数を増加させる。受信したバルブ開度が予め設定してあるバルブ開度未満の場合は処理S1034へ進み制御対象のポンプ102の回転数を減少させる。処理1035では、配管網制御装置300より受信したポンプ回転数となるように制御対象となるポンプ102の回転数を制御する。
FIG. 7 shows a processing flow of the pump control device 103.
In process S1031, whether or not a pump selection notification indicating that the pump 102 to be controlled by the pump control apparatus 103 is a pump selected in the pump / valve selection process in process S303 is received from the piping network control apparatus 300 Confirm. If received, the process proceeds to step S1032. If not received, the process proceeds to step S1035. In the process S1032, the valve opening received together with the pump selection notification is compared with a preset valve opening (for example, 90%, 100%, etc.). If the received valve opening is greater than or equal to the preset valve opening, the process proceeds to step S1033 and the rotation speed of the pump 102 to be controlled is increased. If the received valve opening is less than the preset valve opening, the process proceeds to step S1034, and the rotational speed of the pump 102 to be controlled is decreased. In process 1035, the rotational speed of the pump 102 to be controlled is controlled so as to be the pump rotational speed received from the piping network control apparatus 300.

<第二の実施形態>
第一の実施形態では,図2において、処理S301から処理S304まで実行し、処理S301へ戻る処理フローを説明したが、第二の実施形態では、配管網制御装置300が処理S302のポンプ消費電力最小化処理を実施するタイミングを制御する機能を備える熱供給システムについて説明する。
<Second Embodiment>
In the first embodiment, the processing flow executed from processing S301 to processing S304 in FIG. 2 and returning to processing S301 has been described. However, in the second embodiment, the piping network control apparatus 300 performs pump power consumption in processing S302. A heat supply system having a function of controlling the timing for performing the minimization process will be described.

第二の実施形態における熱供給システムの構成例は、図1に示す第一の実施形態における熱供給システムの構成例と同じであるが、配管網制御装置300の処理フローが異なる。   The configuration example of the heat supply system in the second embodiment is the same as the configuration example of the heat supply system in the first embodiment shown in FIG. 1, but the processing flow of the piping network control device 300 is different.

以下、第一の実施形態の配管網制御装置300の処理との違いを中心に説明する。   Hereinafter, the difference from the processing of the piping network control device 300 of the first embodiment will be mainly described.

図9に第二の実施形態における配管網制御装置300の処理フロー概要を示す。処理S301では第一の実施例と同一の処理を行い、処理S305へ進む。処理S305ではポンプ消費電力最小化処理の実行判定を行い、実行可の場合は処理S302のポンプ消費電力最小化処理へ、実行不可の場合は処理S301へ戻る。処理S302以降の処理は、第一の実施例と同一の処理を行う。   FIG. 9 shows an outline of the processing flow of the piping network control device 300 in the second embodiment. In process S301, the same process as in the first embodiment is performed, and the process proceeds to process S305. In process S305, it is determined whether or not the pump power consumption minimization process is executed. If execution is possible, the process returns to pump power consumption minimization process in process S302, and if execution is impossible, the process returns to process S301. Processes after process S302 are the same as those in the first embodiment.

図10に第二の実施形態における処理S305の処理フローを示す。処理S30511で前回の処理S304のポンプ制御方式配信処理から事前に定めておいた所定の時間を経過したか判定する。経過していた場合、処理302へ進み(図中処理S30512)、経過していない場合、処理S301へ戻る(図中処理S30513)。処理S301の後に上記処理S30511から処理S30513までの処理を行うことで、処理S304から配信された制御方式を各熱供給プラントのポンプ102が実行するまでの時間を与え、制御系が安定する効果が期待できる。   FIG. 10 shows a processing flow of processing S305 in the second embodiment. In process S30511, it is determined whether a predetermined time set in advance from the pump control method distribution process in the previous process S304 has elapsed. If it has elapsed, the process proceeds to process 302 (process S30512 in the figure), and if it has not elapsed, the process returns to process S301 (process S30513 in the figure). By performing the processing from the processing S30511 to the processing S30513 after the processing S301, the control system distributed from the processing S304 is given time until the pump 102 of each heat supply plant executes, and the control system is stabilized. I can expect.

<第三の実施形態>
第二の実施形態では,図10において、所定時間経過後に処理S302のポンプ消費電力最小化処理を実行する処理フローを説明したが、第三の実施形態では、処理S305のポンプ消費電力最小化処理実行判定処理が異なる熱供給システムについて説明する。第三の実施形態における熱供給システムの構成例は、第二の実施形態における熱供給システムの構成例と同じであるが、処理S305の処理フローが異なる。以下、処理S305の処理との違いを中心に説明する。
<Third embodiment>
In the second embodiment, the processing flow for executing the pump power consumption minimizing process in step S302 after the elapse of a predetermined time has been described in FIG. 10, but in the third embodiment, the pump power consumption minimizing process in step S305 is performed. A heat supply system with different execution determination processing will be described. The configuration example of the heat supply system in the third embodiment is the same as the configuration example of the heat supply system in the second embodiment, but the process flow of process S305 is different. Hereinafter, the difference from the process S305 will be mainly described.

図11に第三の実施形態における処理S305の処理フローを示す。
処理S30521で、処理S301で算出した流量と、前回の処理S302で用いた処理S301が算出した流量との差分が事前設定値を超えている需要家建物が存在する、もしくは、各需要家建物の上記差分の総和が事前設定値を超えているかを判定。合致する場合、処理302へ進み(図中処理S30522)、合致していない場合、処理S301へ戻る(図中処理S30523)。
FIG. 11 shows a process flow of process S305 in the third embodiment.
In process S30521, there is a customer building where the difference between the flow rate calculated in process S301 and the flow rate calculated in process S301 used in the previous process S302 exceeds a preset value, or each customer building Determine whether the sum of the above differences exceeds the preset value. If they match, the process proceeds to process 302 (process S30522 in the figure). If they do not match, the process returns to process S301 (process S30523 in the figure).

処理S301の後に上記処理S30521から処理S30523までの処理を行うことで、需要家建物の微小な需要変動や、温度計208、温度計209、流量計210の計測誤差に伴うポンプの制御方式の頻繁な更新が低減され、制御系が安定する効果が期待できる。   By performing the processing from the above-described processing S30521 to processing S30523 after processing S301, frequent control of the pump due to minute demand fluctuations in the customer building and measurement errors of the thermometer 208, thermometer 209, and flow meter 210 Can be expected to reduce the number of updates and stabilize the control system.

<第四の実施形態>
第一から第三の実施形態では,ポンプ制御装置及びバルブ制御装置が各熱供給プラント、各需要家建物に分散配置された構成例について説明したが、第四の実施形態では、異なる構成例について説明する。
<Fourth embodiment>
In the first to third embodiments, the configuration example in which the pump control device and the valve control device are distributed and arranged in each heat supply plant and each customer building has been described. In the fourth embodiment, different configuration examples are provided. explain.

図12に、第四の実施形態における熱供給システムの構成例を示す。
中央制御装置600は、配管制御装置300と、ポンプ制御装置103と、バルブ制御装置211を備える。配管制御装置300は第一から第三の実施形態と同じ処理を実施する。ポンプ制御装置104は、第一から第三の実施形態と同じ機能を備えているが、各熱供給プラントのポンプ102を集中制御可能な点が異なる。バルブ制御装置212は、第一から第三の実施形態と同じ機能を備えているが、各需要家建物のバルブ203、バルブ207、1次側還り温度計204、2次側往き温度計208、2次側還り温度計209、流量計210、を集中制御可能な点が異なる。その他の各種処理は第一から第三の実施例と同一である。
In FIG. 12, the structural example of the heat supply system in 4th embodiment is shown.
The central control device 600 includes a pipe control device 300, a pump control device 103, and a valve control device 211. The pipe control device 300 performs the same processing as in the first to third embodiments. The pump control device 104 has the same functions as those of the first to third embodiments, except that the pump 102 of each heat supply plant can be centrally controlled. The valve control device 212 has the same functions as the first to third embodiments, but each customer building valve 203, valve 207, primary return thermometer 204, secondary forward thermometer 208, The difference is that the secondary return thermometer 209 and the flow meter 210 can be centrally controlled. Other various processes are the same as those in the first to third embodiments.

100:熱供給プラント、101:熱源機、102:ポンプ、103:ポンプ制御装置200:需要家建物、300:熱配管網制御装置、400:熱配管網、500:通信線 100: heat supply plant, 101: heat source machine, 102: pump, 103: pump control device 200: customer building, 300: heat piping network control device, 400: heat piping network, 500: communication line

Claims (7)

熱媒体を搬送するポンプと、当該ポンプからの熱媒体の流量を調整するバルブと、を制御する熱供給制御装置において、
前記バルブに接続される設備の熱需要を満たし、前記ポンプの消費電力が最小となるよう当該ポンプの回転数及び流量を算出するポンプ消費電力最小化処理部と、
前記算出した流量と、前記ポンプの消費電力特性と、を用いて、前記バルブの開度に応じて回転数を制御するポンプを選択するポンプ・バルブ選択処理部と、を備え、
前記ポンプ消費電力最小化処理部は、前記設備の熱交換器1次側必要流量を入力とし、
前記熱交換器1次側必要流量を満たしかつ総消費電力が最小となる各熱供給プラントのポンプ回転数を出力し、
前記ポンプ・バルブ選択処理部は、前記ポンプ消費電力最小化処理で求めたポンプ回転数、ポンプ流量、ポンプ吐出圧をもとに、ポンプ回転数の増加に対する消費電力の増加量が最も少ないポンプと、前記ポンプ消費電力最小化処理で求めた前記各需要家建物にある前記バルブの開度をもとに、最もバルブ開度が大きいバルブを選択すること
を特徴とする熱供給制御装置。
In a heat supply control device that controls a pump that conveys a heat medium and a valve that adjusts the flow rate of the heat medium from the pump,
A pump power consumption minimization processing unit that calculates the rotational speed and flow rate of the pump so as to satisfy the heat demand of the equipment connected to the valve and minimize the power consumption of the pump;
Using the calculated flow rate and the power consumption characteristics of the pump, and a pump / valve selection processing unit that selects a pump that controls the number of revolutions according to the opening of the valve ,
The pump power consumption minimization processing unit has as input the required flow rate on the primary side of the heat exchanger of the equipment,
Output the pump rotation speed of each heat supply plant that satisfies the required flow rate on the primary side of the heat exchanger and minimizes the total power consumption,
The pump / valve selection processing unit is a pump having the smallest increase in power consumption with respect to the increase in pump rotation speed based on the pump rotation speed, pump flow rate, and pump discharge pressure obtained in the pump power consumption minimization process. A valve having the largest valve opening is selected based on the opening of the valve in each customer building determined in the pump power consumption minimization process. apparatus.
請求項に記載の熱供給制御装置において、
前記ポンプ・バルブ選択処理部により選択したバルブの開度に応じて、前記ポンプ・バルブ選択処理部により選択したポンプの回転数を増減させ、その他の選択されていないポンプについては、前記ポンプ消費電力最小化処理が算出したポンプ回転数に従って制御する事を特徴とする熱供給制御装置。
The heat supply control device according to claim 1 ,
In accordance with the opening degree of the valve selected by the pump / valve selection processing unit, the number of rotations of the pump selected by the pump / valve selection processing unit is increased or decreased. A heat supply control device characterized in that control is performed according to the pump rotation speed calculated by the minimization process.
請求項に記載の熱供給制御装置であって、
前記ポンプ消費電力最小化処理部の実施タイミングを制御するポンプ消費電力最小化処理実施判定処理部をさらに備えることを特徴とする熱供給制御装置。
The heat supply control device according to claim 2 ,
A heat supply control device, further comprising: a pump power consumption minimization processing execution determination processing unit that controls execution timing of the pump power consumption minimization processing unit.
請求項に記載の熱供給制御装置であって,
前記ポンプ消費電力最小化処理実施判定機能は、前記ポンプ・バルブ選択処理の演算結果が各熱供給プラント、各需要家建物へ配信されてから所定の時間経過したかどうかを判定すること、を備えることを特徴とする熱供給制御装置。
The heat supply control device according to claim 3 ,
The pump power consumption minimization processing execution determination function includes determining whether a predetermined time has elapsed since the calculation result of the pump / valve selection processing is distributed to each heat supply plant and each customer building. The heat supply control apparatus characterized by the above-mentioned.
請求項に記載の熱供給制御装置であって,
前記ポンプ消費電力最小化処理実施判定機能は、前記設備の熱交換器の1次側必要流量について、前記ポンプ消費電力最小化処理部で用いた時点から判定時までの変化量が事前設定値を超えている需要家建物が存在する、もしくは、前記設備の前記変化量の総和が事前設定値を超えているかに基づいて判定すること、
を備えることを特徴とする熱供給制御装置。
The heat supply control device according to claim 3 ,
The pump power consumption minimization process execution determination function is configured such that the amount of change from the time point used in the pump power consumption minimization processing unit to the determination time is a preset value for the primary side required flow rate of the heat exchanger of the facility. Judging based on whether there is a customer building that exceeds or the sum of the amount of change of the equipment exceeds a preset value;
A heat supply control device comprising:
請求項1乃至のいずれか一項に記載の熱供給制御装置と、前記ポンプと、前記バルブと、を備えることを特徴とする熱供給システム。 A heat supply system comprising the heat supply control device according to any one of claims 1 to 5, the pump, and the valve. 熱媒体を搬送するポンプと、当該ポンプからの熱媒体の流量を調整するバルブと、当該ポンプ及びバルブを制御する熱供給制御装置とを用いた熱供給制御方法において、
前記バルブに接続される設備の熱需要を満たし、前記ポンプの消費電力が最小となるよう当該ポンプの回転数及び流量を算出するポンプ消費電力最小化ステップと、
前記算出した流量と、前記ポンプの消費電力特性と、を用いて、前記バルブの開度に応じて回転数を制御するポンプを選択するポンプ・バルブ選択ステップと、を備え、
前記ポンプ消費電力最小化ステップは、前記設備の熱交換器1次側必要流量を入力とし、
前記熱交換器1次側必要流量を満たしかつ総消費電力が最小となる各熱供給プラントのポンプ回転数を出力し、
前記ポンプ・バルブ選択ステップは、前記ポンプ消費電力最小化処理で求めたポンプ回転数、ポンプ流量、ポンプ吐出圧をもとに、ポンプ回転数の増加に対する消費電力の増加量が最も少ないポンプと、前記ポンプ消費電力最小化処理で求めた前記各需要家建物にある前記バルブの開度をもとに、最もバルブ開度が大きいバルブを選択すること
を特徴とする熱供給制御方法。
In a heat supply control method using a pump that conveys a heat medium, a valve that adjusts the flow rate of the heat medium from the pump, and a heat supply control device that controls the pump and the valve,
A pump power consumption minimizing step for calculating the rotation speed and flow rate of the pump so as to satisfy the heat demand of the equipment connected to the valve and to minimize the power consumption of the pump;
Using the calculated flow rate and the power consumption characteristics of the pump, and a pump / valve selection step of selecting a pump that controls the number of revolutions according to the opening of the valve ,
In the pump power consumption minimization step, the heat exchanger primary side required flow rate of the equipment is input,
Output the pump rotation speed of each heat supply plant that satisfies the required flow rate on the primary side of the heat exchanger and minimizes the total power consumption,
The pump / valve selection step includes a pump having the smallest increase in power consumption with respect to an increase in pump rotation speed based on the pump rotation speed, pump flow rate, and pump discharge pressure obtained in the pump power consumption minimization process, A heat supply control method, wherein a valve having the largest valve opening is selected based on the opening of the valve in each customer building obtained in the pump power consumption minimization process. .
JP2012286633A 2012-12-28 2012-12-28 Heat supply control device, heat supply system, and heat supply control method Expired - Fee Related JP6033674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012286633A JP6033674B2 (en) 2012-12-28 2012-12-28 Heat supply control device, heat supply system, and heat supply control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012286633A JP6033674B2 (en) 2012-12-28 2012-12-28 Heat supply control device, heat supply system, and heat supply control method

Publications (2)

Publication Number Publication Date
JP2014129897A JP2014129897A (en) 2014-07-10
JP6033674B2 true JP6033674B2 (en) 2016-11-30

Family

ID=51408427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012286633A Expired - Fee Related JP6033674B2 (en) 2012-12-28 2012-12-28 Heat supply control device, heat supply system, and heat supply control method

Country Status (1)

Country Link
JP (1) JP6033674B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6422710B2 (en) * 2014-09-22 2018-11-14 株式会社日立製作所 Operation control apparatus and operation control method for energy network
EP3165831A1 (en) * 2015-11-04 2017-05-10 E.ON Sverige AB A district thermal energy distribution system
JP6414829B2 (en) * 2016-07-20 2018-10-31 株式会社サンセイアールアンドディ Game machine
JP2018011679A (en) * 2016-07-20 2018-01-25 株式会社サンセイアールアンドディ Game machine
CN106440266B (en) * 2016-11-29 2019-05-28 广东美的暖通设备有限公司 A kind of air conditioner energy saving control method
CN115247872A (en) * 2022-07-27 2022-10-28 广东机场白云信息科技有限公司 Energy-saving control method and device for parallel chilled water pump sets and storage medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243718A (en) * 2008-03-28 2009-10-22 Osaka Gas Co Ltd Heat medium transporting system
JP5422366B2 (en) * 2009-12-21 2014-02-19 株式会社日立製作所 Coordinated control device and coordinated control method for heat source system

Also Published As

Publication number Publication date
JP2014129897A (en) 2014-07-10

Similar Documents

Publication Publication Date Title
JP6033674B2 (en) Heat supply control device, heat supply system, and heat supply control method
DK2726792T3 (en) Method and device for balancing a group of consumers in a fluidtransportsystem
CN101354170B (en) Air conditioner control system and method
EP2837898B1 (en) Air-conditioning system
Wang et al. Hydraulic resistance identification and optimal pressure control of district heating network
CN102597648B (en) Method for controlling a parallel operation of a multi-water heater
RU2014126365A (en) METHOD FOR REGULATING THE ROOM TEMPERATURE IN ONE OR A GROUP OF MULTIPLE ROOMS, AND ALSO A DEVICE FOR PERFORMING THE METHOD
DK2936003T3 (en) Method and devices for balancing a group of consumers in a fluid transport system
EP3488313B1 (en) Reduction of the return temperature in district heating and increasing of the return temperature in district cooling
JP5537253B2 (en) Water supply control system and control method thereof
JP6644559B2 (en) Heat source control system, control method and control device
KR101782592B1 (en) method for controlling Heating and hot water supply system
JP2013170753A (en) Refrigerator system
WO2012096265A1 (en) Heat source system, control method therfor, and program therefor
JP6434848B2 (en) Heat source control system
JP5840466B2 (en) Variable flow rate control device for heat source pump
JP5558202B2 (en) Water supply control system and control method thereof
EP3428547B1 (en) Heating system
EP3120209B1 (en) Retrofit smart components for use in a fluid transfer system
JP2017101907A (en) Air conditioning control device, air conditioning control method, air conditioning control program, and air conditioning control system
CN101598378B (en) Air conditioner control device and air conditioner control method
JP2009121722A (en) Water supply pressure control system and method
JP2018066549A (en) Heat accommodation management device, heat accommodation management program, and heat accommodation management method
RU2449340C1 (en) System of automatic selective control of heat consumption
JP2022533083A (en) How to operate the temperature controlled circulation system and the temperature controlled circulation system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161026

R150 Certificate of patent or registration of utility model

Ref document number: 6033674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees