JP4647469B2 - Operation method of air conditioning equipment - Google Patents

Operation method of air conditioning equipment Download PDF

Info

Publication number
JP4647469B2
JP4647469B2 JP2005338062A JP2005338062A JP4647469B2 JP 4647469 B2 JP4647469 B2 JP 4647469B2 JP 2005338062 A JP2005338062 A JP 2005338062A JP 2005338062 A JP2005338062 A JP 2005338062A JP 4647469 B2 JP4647469 B2 JP 4647469B2
Authority
JP
Japan
Prior art keywords
air conditioning
cold water
air
air conditioner
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005338062A
Other languages
Japanese (ja)
Other versions
JP2007147094A (en
Inventor
敏彦 石沢
泰男 井口
貴司 志村
邦夫 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Air Technologies Co Ltd
Original Assignee
Shin Nippon Air Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Air Technologies Co Ltd filed Critical Shin Nippon Air Technologies Co Ltd
Priority to JP2005338062A priority Critical patent/JP4647469B2/en
Publication of JP2007147094A publication Critical patent/JP2007147094A/en
Application granted granted Critical
Publication of JP4647469B2 publication Critical patent/JP4647469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、空気調和設備の運転方法に係り、中央熱源機(たとえば冷凍機)から複数の空気調和機に並列的に冷水を循環供給する空気調和設備の運転方法に関する。   The present invention relates to an operation method for an air conditioner, and more particularly to an operation method for an air conditioner that circulates and supplies cold water from a central heat source (for example, a refrigerator) to a plurality of air conditioners in parallel.

建物の冷房負荷は、外気温度、外気湿度、日射、月日、曜日、時刻、建物利用状況、在室人員、取り入れ外気量、空調方式、自動制御方式などが影響を与えるもので、一日の負荷パターンを正確に予測して、最適な冷水温度を設定することは容易なことではない。過去の運転記録や、外気温度日射などの天気予報などのデータから経験的に選択するほかない。   The cooling load on the building is affected by outside temperature, outside humidity, solar radiation, date, day of the week, time of day, building usage, occupancy in the room, intake air volume, air conditioning system, automatic control system, etc. It is not easy to accurately predict the load pattern and set the optimum cold water temperature. There is no choice but to empirically select from past driving records and data such as weather forecasts such as outside temperature solar radiation.

そして、一日の負荷パターンを正確に予測するためには、各部温度・水量・風量・圧力などのデータの計量・計測・演算および計測データの蓄積と計算ソフトの開発が必要であると同時に、自動制御装置とは別に各部状態量を計量計測する装置を設備する必要があり、設備費および計算ソフトの開発投資が必要になる。   And in order to accurately predict the daily load pattern, it is necessary to measure, measure, calculate data such as temperature, water volume, air volume, pressure, etc., accumulate measurement data, and develop calculation software. In addition to the automatic control device, it is necessary to install a device for measuring and measuring the state quantities of each part, which requires equipment costs and investment in development of calculation software.

特開平2003−28488号(特許文献1)には、中央熱源機から複数の空気調和機に並列的に冷水を循環供給する空気調和設備において、並列流路内にポンプを設け、空調負荷に応じて、そのモータをインバータ回転数制御する方法が開示されている。
特開平2003−28488号公報
In JP-A-2003-28488 (Patent Document 1), in an air conditioning facility that circulates and supplies cold water from a central heat source unit to a plurality of air conditioners in parallel, a pump is provided in the parallel flow path, and the air conditioning load is adjusted. Thus, a method for controlling the rotation speed of the motor by an inverter is disclosed.
JP-A-2003-28488

特許文献1の方法は優れた方法であるものの、モータをインバータ回転数制御するのみでは、全体のシステム効率が必ずしも十分でなく、中央熱源機からの冷水温度との相関を考慮すべき事項である。   Although the method of Patent Document 1 is an excellent method, the overall system efficiency is not always sufficient only by controlling the motor rotation speed of the inverter, and the correlation with the cold water temperature from the central heat source machine should be taken into consideration. .

したがって、本発明の主たる課題は、簡易な計測と演算により、経時的に必要充分な冷水温度の設定及び変更を行い、中央熱源機の成績係数を高め、中央熱源機動力と冷水搬送動力の合計消費動力の低減を図ることにある。もって、きわめて優れた省エネルギー手法を提供することにある。   Therefore, the main problem of the present invention is to set and change the chilled water temperature necessary and sufficient over time by simple measurement and calculation, to increase the coefficient of performance of the central heat source machine, the total of the central heat source machine power and the cold water conveyance power The purpose is to reduce power consumption. Therefore, it is to provide an extremely excellent energy saving method.

上記課題を解決した本発明は次記のとおりである。
<請求項1項記載の発明>
中央熱源機から複数の空気調和機に並列的に冷水を循環供給する空気調和設備であって、
前記各空気調和機の並列流路に冷水を通すポンプを設け、
対象の空気調和領域における空調負荷検出手段の信号に基づき、インバータ制御により個別空気調和機を通る冷水の流量制御を行うモータを、対応する前記ポンプに付設し、
経時ごと、前記インバータの出力を演算装置に取り込み、次記(A)式により空気調和機群全体の空調全負荷率 1k を求めるとともに、
(1)予め設定した1日における経時期間の空調負荷変化率を使用して、次経時期間における空調全負荷率R 1k を予測し
(2)予測した空調全負荷率 1k に基づいて冷水の温度設定を行い、その温度設定となるように前記中央熱源機を運転し、
(3)当該次経時期間内において、個別のインバータの出力の最大値が上限値に達する場合に前記中央熱源機からの冷水温度を下げ、下限値に達する場合に前記中央熱源機からの冷水温度を上げる運転を行い、
上記(1)〜(3)を経時期間ごと行う、
ことを特徴とする空気調和設備の運転方法。

Figure 0004647469
ここに、
1k :経時期間kにおける空調全負荷率
0i 、Q 0j :個別ポンプi、jの設計水量
zki :個別ポンプiの経時期間kにおけるインバータ出力
z0i :個別ポンプiの定格出力 The present invention that has solved the above problems is as follows.
<Invention of Claim 1>
An air conditioner that circulates and supplies cold water from a central heat source unit to a plurality of air conditioners in parallel.
Provide a pump for passing cold water through the parallel flow path of each air conditioner,
Based on the signal of the air conditioning load detection means in the target air conditioning region, a motor for controlling the flow rate of cold water passing through the individual air conditioner by inverter control is attached to the corresponding pump,
Every time, the output of the inverter is taken into the arithmetic unit, and the air conditioning total load ratio R 1k of the entire air conditioner group is obtained by the following equation (A).
(1) Predicting the air conditioning total load ratio R 1k in the next aging period using the air conditioning load change rate of the aging period in one day set in advance,
(2) The temperature of the cold water is set based on the predicted air conditioning total load factor R 1k , and the central heat source unit is operated so that the temperature is set,
(3) During the next aging period, when the maximum value of the output of each individual inverter reaches the upper limit value, the chilled water temperature from the central heat source unit is lowered, and when the maximum value reaches the lower limit value, the chilled water temperature from the central heat source unit Drive to raise
The above (1) to (3) are performed every time period.
A method of operating an air conditioner characterized by that.

Figure 0004647469
here,
R 1k : Air-conditioning total load factor over time period k
Q 0i , Q 0j : Design water volume of individual pumps i and j
H zki : Inverter output of individual pump i over time period k
H z0i : Rated output of individual pump i

(作用効果)
本発明では、個別のポンプの動力の流量制御によって消費動力の低減を図るのみならず、中央熱源機からの冷水温度を経時的に変化させる。中央熱源機が冷凍機である場合、冷水温度を上げれば必要な冷凍機動力は大きな割合で低下する。他方で、冷水温度を上げることに伴って、個別ポンプの動力が嵩む。しかし、個別ポンプの総動力の増大量に比較して、冷凍機動力の低下量の方が小さくなることが知見され、もって、個別ポンプの総動力と冷凍機動力との和は、冷水温度を上げることに伴って低下する。その結果、より大きな省エネルギーを達成できるのである。
(Function and effect)
In the present invention, not only the power consumption is reduced by controlling the flow rate of the power of the individual pumps, but also the temperature of the cold water from the central heat source machine is changed over time. When the central heat source machine is a refrigerator, the required refrigerator power decreases at a large rate if the cold water temperature is raised. On the other hand, the power of the individual pumps increases as the cold water temperature increases. However, it has been found that the amount of decrease in the chiller power is smaller than the increase in the total power of the individual pump, and therefore the sum of the total power of the individual pump and the chiller power is the chilled water temperature. Decreases with increasing. As a result, greater energy savings can be achieved.

<請求項2項記載の発明>
中央熱源機から複数の空気調和機に並列的に冷水を循環供給する空気調和設備であって、
前記各空気調和機の並列流路に冷水を通すポンプを設け、
対象の空気調和領域における空調負荷検出手段の信号に基づき、個別空気調和機を通る冷水の流量を弁開度により制御する流量調整自動弁を設け、
経時ごと、前記各流量調整自動弁の開度信号を演算装置に取り込み、次記(B)式により空気調和機群全体の空調全負荷率 2k を求めるとともに、
(1)予め設定した1日における経時期間の空調負荷変化率を使用して、次経時期間における空調全負荷率R 2k を予測し、
(2)予測した空調全負荷率 2k に基づいて冷水の温度設定を行い、その温度設定となるように前記中央熱源機を運転し、
(3)当該次経時期間内において、個別の自動弁の開度信号の最大値が上限値に達する場合に前記中央熱源機からの冷水温度を下げ、下限値に達する場合に前記中央熱源機からの冷水温度を上げる運転を行い、
上記(1)〜(3)を経時期間ごと行う、
ことを特徴とする空気調和設備の運転方法。

Figure 0004647469
ここに、
2k :経時期間kにおける空調全負荷率
0i 、Q 0j :個別ポンプi、jの設計水量
rki :個別空調機 iの経時期間 k における自動制御弁開度 <Invention of Claim 2>
An air conditioner that circulates and supplies cold water from a central heat source unit to a plurality of air conditioners in parallel.
Provide a pump for passing cold water through the parallel flow path of each air conditioner,
Based on the signal of the air conditioning load detection means in the target air conditioning region, a flow rate adjusting automatic valve that controls the flow rate of cold water passing through the individual air conditioner by the valve opening degree is provided,
As time passes, the opening signal of each flow rate adjusting automatic valve is taken into the arithmetic unit, and the air conditioning total load ratio R 2k of the entire air conditioner group is obtained by the following equation (B).
(1) Predicting the air conditioning total load ratio R 2k in the next aging period using the air conditioning load change rate of the aging period in one day set in advance ,
(2) The temperature of the cold water is set based on the predicted air conditioning total load factor R 2k , and the central heat source machine is operated so that the temperature is set,
(3) Within the next aging period, when the maximum value of the opening signal of the individual automatic valve reaches the upper limit value, the chilled water temperature from the central heat source device is lowered, and when the lower limit value is reached, the central heat source device To raise the cold water temperature of the
The above (1) to (3) are performed every time period.
A method of operating an air conditioner characterized by that.

Figure 0004647469
here,
R 2k : Total load factor of air conditioning over time period k
Q 0i , Q 0j : Design water volume of individual pumps i and j
V rki : Automatic control valve opening of individual air conditioner i over time period k

(作用効果)
請求項2の発明における個別空気調和機を通る冷水の流量を弁開度により制御する流量調整自動弁を設ける方式においても、請求項1と同じ原理により、より大きな省エネルギーを達成できる。
(Function and effect)
Even in the method of providing a flow rate adjusting automatic valve that controls the flow rate of cold water passing through the individual air conditioner according to the invention of the second aspect by the valve opening, greater energy saving can be achieved by the same principle as the first aspect.

本発明によれば、中央熱源機の成績係数を高め、中央熱源機動力と冷水搬送動力の合計消費動力の低減を図ることができる。この効果は、図4のグラフからも明らかである。   ADVANTAGE OF THE INVENTION According to this invention, the coefficient of performance of a central heat source machine can be raised, and reduction of the total consumption power of a central heat source machine power and cold water conveyance power can be aimed at. This effect is also apparent from the graph of FIG.

以下本発明の実施形態を挙げてさらに詳説する。
<第1の実施の形態:請求項1>
図1は、第1の発明に係る実施の形態を示したもので、建物内に多数の空気調和機AHU−1〜AHU−Nが設けられ、中央熱源機1(たとえば冷凍機またはヒートポンプが用いられ、以下「冷凍機」である場合について説明する。)1からに並列的に冷水を循環供給する構成となっている。
Hereinafter, the present invention will be described in further detail with reference to embodiments.
<First Embodiment: Claim 1>
FIG. 1 shows an embodiment according to the first invention. A large number of air conditioners AHU-1 to AHU-N are provided in a building, and a central heat source machine 1 (for example, a refrigerator or a heat pump is used). In the following description, the case of a “refrigerator” will be described.) 1 is configured to circulate and supply cold water in parallel.

すなわち、冷凍機1から冷水が往ヘッダー2Aを介して往管路3を通り、分岐管路41〜4Nに分岐し、分岐管路41〜4Nからの冷水の戻りは、還管路5を通り、還ヘッダー2Bを介して冷凍機1に戻る構成である。   That is, cold water from the refrigerator 1 passes through the forward line 3 via the forward header 2A and branches to the branch lines 41 to 4N, and the return of the cold water from the branch lines 41 to 4N passes through the return line 5. The configuration returns to the refrigerator 1 via the return header 2B.

冷凍機1にはバイパス管路2Cが設けられ、必要時において、ポンプ2Dにより、冷水を往ヘッダー2Aから還ヘッダー2Bに戻すように構成されている。ポンプ2Dにはインバータ制御器INVrが付設されている。   The refrigerator 1 is provided with a bypass pipe 2C, and is configured to return cold water from the forward header 2A to the return header 2B by a pump 2D when necessary. An inverter controller INVr is attached to the pump 2D.

一方、各空気調和機AHU−1〜AHU−Nの並列(分岐)流路41〜4Nに冷水を通すポンプP1〜Pnが設けられている。図示例では、ポンプP1〜Pnが空気調和機AHU−1〜AHU−Nの入側に設けられているが、出側に設けることも可能である。 On the other hand, pumps P 1 to P n for passing cold water through parallel (branch) flow paths 41 to 4N of the air conditioners AHU-1 to AHU-N are provided. In the illustrated example, the pumps P 1 to P n are provided on the inlet side of the air conditioners AHU- 1 to AHU-N, but may be provided on the outlet side.

ポンプP1〜Pnには、インバータ制御器INV1〜INVnにより回転数制御が行われるモータ(図示せず)が付設されている。 The pumps P 1 to P n are provided with motors (not shown) whose rotational speed is controlled by inverter controllers INV 1 to INV n .

他方、各空気調和機AHU−1〜AHU−Nの対象の空気調和領域には、空調負荷検出手段S1〜Sn、たとえば調和空気温度検出器が設けられ、その温度の信号と、目標温度との温度差に応じて、インバータ制御器INV1〜INVnからの制御信号によりポンプP1〜Pnが必要な回転数をもって動作するように構成してある。 On the other hand, in the air conditioning area of interest of each of the air conditioners AHU-1~AHU-N, the air-conditioning load detecting means S 1 to S n, e.g. the conditioned air temperature detector is provided, and the signal of the temperature, the target temperature The pumps P 1 to P n are configured to operate at a necessary number of revolutions by a control signal from the inverter controllers INV 1 to INV n according to the temperature difference between them.

符号6は、還管路5に設けられた冷水還り温度検出器である。そして、その温度信号は演算装置10に取り込むようにしてある。さらに、インバータ制御器INV1〜INVnからの出力(周波数)信号も演算装置10に取り込むようにしてある。 Reference numeral 6 denotes a cold water return temperature detector provided in the return pipe 5. The temperature signal is taken into the arithmetic unit 10. Further, output (frequency) signals from the inverter controllers INV 1 to INV n are also taken into the arithmetic unit 10.

演算装置10では、次記の演算を行い、制御信号を冷凍機1及びポンプ2Dのインバータ制御器INVrに与える。冷凍機1では当該制御信号を受けて冷水温度の上昇又は降下を行う。その際に、冷水還り温度検出器6からの現冷水還り温度を踏まえて制御信号が冷凍機1に与えられる。   The arithmetic device 10 performs the following calculation and gives a control signal to the refrigerator 1 and the inverter controller INVr of the pump 2D. The refrigerator 1 increases or decreases the chilled water temperature in response to the control signal. At that time, a control signal is given to the refrigerator 1 based on the current cold water return temperature from the cold water return temperature detector 6.

演算装置10での演算及び制御信号の出力形態例を、他の図面をも参照しながら説明する。   An example of the output form of calculation and control signals in the arithmetic device 10 will be described with reference to other drawings.

まず、運転立ち上がり時には、冷水温度を定格冷水温度(たとえば7℃)または暫定の仮予測値(暫定冷水温度)により運転を開始する(ステップS1)。   First, at the start of operation, the operation is started at the rated cold water temperature (for example, 7 ° C.) or a provisional temporary predicted value (temporary cold water temperature) (step S1).

経時ごと、たとえば、1日の冷房が必要な7時〜20時までの時間を1時間単位を基準としてたとえば毎正時ごと、インバータ制御器INV1〜INVnからの出力信号をそれぞれ演算装置10に取り込む。これに基づき、前記(A)式により空気調和機群全体の空調全負荷率を求める(S2)。 Each time, for example, the time from 7 o'clock to 20 o'clock that requires one day of cooling, the output signals from the inverter controllers INV 1 to INV n are respectively output from the inverter controllers INV 1 to INV n on the basis of an hour unit. Into. Based on this, the air-conditioning total load factor of the whole air conditioner group is calculated | required by said (A) formula (S2).

そして、予め、過去の外気温度、外気湿度、日射、月日、曜日、時刻、建物利用状況、在室人員、取り入れ外気量などの要因に基づき、建物全体の冷房負荷変化をシミュレーションして、たとえば表1及び図2の冷房負荷変化を求めておく。その際に、同冷房負荷変化から表2の示す経時期間(たとえば1時間単位の)空調負荷変化率(この場合、冷房負荷変化率)を求めておく。 And based on factors such as past outside air temperature, outside air humidity, solar radiation, date, day of the week, time, building usage status, occupancy in the room, intake outside air volume, etc., the cooling load change of the entire building is simulated, for example, The cooling load change of Table 1 and FIG. 2 is calculated | required. At that time, an air conditioning load change rate (in this case, a cooling load change rate ) shown in Table 2 is obtained from the cooling load change .

そして、ある時間での空気調和機群全体の空調全負荷率(この場合、冷房全負荷率)に基づき次記の運転を行う。
(1)前経時期間における空調全負荷率に対して、予め設定した1日における経時期間の空調負荷変化率に応じて、次経時期間における空調全負荷率の予測を行う(S3)。たとえば、10時での空調全負荷率が84kcal/hr・m2であったとき、11時〜12時の経時期間においては、「1.07」の空調負荷変化率を乗算する必要があるから、11時〜12時の経時期間における空調全負荷率が89kcal/hr・m2予測する。
(2)このように予測した空調全負荷率に基づいて冷水の温度設定を行い、その温度設定となるように冷凍機1を運転する。たとえば、表3に示すように、冷房全負荷率に応じた最適冷水温度の設定値を定めておき(S4)、その冷房全負荷率に応じた最適冷水温度となるように冷凍機1を運転する(S5)。
(3)当該次経時期間(たとえば11時〜12時)内において、個別のインバータINV1〜INVnの出力の最大値が上限値、たとえば100%に達する場合(S6)には、冷凍機1からの冷水温度をたとえば1℃下げ、下限値、たとえば80%に達する場合には(S7)、冷凍機1からの冷水温度をたとえば1℃上げる運転を行う。
上記(1)〜(3)を経時期間(たとえば1時間単位)で行う(S8及びS9)。
Then, the following operation is performed based on the air conditioning total load factor of the entire air conditioner group at a certain time (in this case, the cooling total load factor).
(1) With respect to the air conditioning total load rate in the previous time period, the air conditioning total load rate in the next time period is predicted according to the preset air conditioning load change rate in the time period in one day (S3). For example, when the total air-conditioning load rate at 10 o'clock is 84 kcal / hr · m 2 , it is necessary to multiply the air-conditioning load change rate of “1.07” in the time period from 11:00 to 12:00. The total load factor of the air conditioning during the time period from 11:00 to 12:00 is predicted to be 89 kcal / hr · m 2 .
(2) The temperature of cold water is set based on the air-conditioning total load factor predicted as described above, and the refrigerator 1 is operated so as to be the temperature setting. For example, as shown in Table 3, the set value of the optimum chilled water temperature corresponding to the cooling total load factor is determined (S4), and the refrigerator 1 is operated so as to obtain the optimum chilled water temperature corresponding to the cooling total load factor. (S5).
(3) If the maximum value of the outputs of the individual inverters INV 1 to INV n reaches an upper limit value, for example, 100% within the next time-lapse period (for example, 11:00 to 12:00) (S6), the refrigerator 1 When the temperature of the chilled water is lowered by 1 ° C., for example, and reaches the lower limit, for example, 80% (S7), the operation is performed to raise the temperature of the chilled water from the refrigerator 1 by 1 ° C., for example.
The above (1) to (3) are performed for a time period (for example, in units of one hour) (S8 and S9).

Figure 0004647469
Figure 0004647469

Figure 0004647469
Figure 0004647469

Figure 0004647469
Figure 0004647469

ここで、一旦設定した冷水の温度(最適冷水温度)がハンチングすることは望ましくないので、たとえば20〜30分の期間は、冷水温度設定値の修正を行わないようにするのが望ましい。
かかる運転を行うことで、大幅な省エネルギーを達成できる。
Here, since it is not desirable that the temperature of the cold water set once (optimum cold water temperature) is hunted, for example, it is desirable not to correct the cold water temperature set value during a period of 20 to 30 minutes.
By performing such operation, significant energy saving can be achieved.

すなわち、図4には、冷水送水温度設定値と、冷凍機ポンプの所要動力及び個別ポンプの所要動力の関係を示す。横軸に冷水送水温度設定値、縦軸に冷凍機ポンプの所要動力及び個別ポンプの所要動力を示す。冷凍機の所要動力を示す曲線と個別ポンプの所要動力を示す曲線が交差していないので冷凍機ポンプの所要動力の合計を示す曲線は単調減少の曲線となり冷水送水温度設定値が最高のとき、冷凍機ポンプの所要動力の合計が最小となることを示している。   That is, FIG. 4 shows the relationship between the cold water supply temperature set value, the required power of the refrigerator pump, and the required power of the individual pump. The horizontal axis shows the chilled water feed temperature set value, and the vertical axis shows the required power of the refrigerator pump and the required power of the individual pumps. Since the curve indicating the required power of the refrigerator and the curve indicating the required power of the individual pump do not intersect, the curve indicating the total required power of the refrigerator pump is a monotonically decreasing curve when the chilled water feed temperature setting value is the highest. It shows that the total required power of the refrigerator pump is minimized.

したがって、本発明に従って、冷水送水温度設定値を逐次修正することで、大幅な省エネルギーを達成できるのである。   Therefore, according to the present invention, significant energy saving can be achieved by sequentially correcting the cold water supply temperature set value.

<第2の実施の形態:請求項2>
図5は、第2の発明に係る実施の形態を示したものである。主たる相違点は、対象の空気調和領域における空調負荷検出手段の信号に基づき、個別空気調和機を通る冷水の流量を弁開度により制御する流量調整自動弁V1〜Vnを設けたものである。
<Second Embodiment: Claim 2>
FIG. 5 shows an embodiment according to the second invention. The main difference is that automatic flow rate adjusting valves V 1 to V n that control the flow rate of cold water passing through the individual air conditioner based on the valve opening based on the signal of the air conditioning load detection means in the target air conditioning region are provided. is there.

冷凍機1のバイパス管路2Cには流量調整自動弁Vrが設けられ、必要時において、冷水を往ヘッダー2Aから還ヘッダー2Bに戻すように構成されている。 The bypass line 2C of the refrigerating machine 1 is provided with flow rate adjusting automatic valve V r, during necessary, is configured to return the header 2B changing the cold water from the forward header 2A.

一方、各空気調和機AHU−1〜AHU−Nの並列(分岐)流路41〜4Nに冷水を通す流量調整自動弁V1〜Vnが設けられている。図示例では、流量調整自動弁V1〜Vnが空気調和機AHU−1〜AHU−Nの入側に設けられているが、出側に設けることも可能である。 On the other hand, flow rate adjusting automatic valves V 1 to V n for passing cold water through parallel (branch) flow paths 41 to 4N of the air conditioners AHU-1 to AHU-N are provided. In the illustrated example, the flow rate adjusting automatic valves V 1 to V n are provided on the inlet side of the air conditioners AHU- 1 to AHU-N, but may be provided on the outlet side.

流量調整自動弁V1〜Vnは、対象の空気調和領域における空調負荷検出手段の信号に基づき、個別空気調和機を通る冷水の流量を弁開度により制御する。 The flow rate adjusting automatic valves V 1 to V n control the flow rate of the cold water passing through the individual air conditioner based on the valve opening based on the signal of the air conditioning load detecting means in the target air conditioning region.

冷凍機1には一次冷水ポンプ21が設けられ、往ヘッダー2Aの出側に二次冷水ポンプ22が設けられている。   The refrigerator 1 is provided with a primary chilled water pump 21, and a secondary chilled water pump 22 is provided on the outlet side of the forward header 2A.

そして、流量調整自動弁V1〜Vnからの弁開度信号を演算装置10に取り込むようにしてある。 The valve opening signals from the flow rate adjusting automatic valves V 1 to V n are taken into the arithmetic unit 10.

演算装置10では、次記の演算を行い、制御信号を冷凍機1及び流量調整自動弁V1〜Vn及び流量調整自動弁Vrに与える。冷凍機1では当該制御信号を受けて冷水温度の上昇又は降下を行う。その際に、冷水還り温度検出器6からの現冷水還り温度を踏まえて制御信号が冷凍機1に与えられる。 The arithmetic unit 10 performs calculation of the following reporting, gives a control signal to the refrigerator 1 and a flow regulating automatic valves V 1 ~V n and the flow rate adjusting automatic valves V r. The refrigerator 1 increases or decreases the chilled water temperature in response to the control signal. At that time, a control signal is given to the refrigerator 1 based on the current cold water return temperature from the cold water return temperature detector 6.

すなわち、第1の実施の形態と同様に、経時ごと、たとえば、1日の冷房が必要な7時〜20時までの時間を1時間単位を基準として、インバータ制御器INV1〜INVnからの出力信号をそれぞれ演算装置10に取り込む。これに基づき、前記(B)式により空気調和機群全体の空調全負荷率を求める。 That is, in the same manner as in the first embodiment, every time, for example, the time from 7 o'clock to 20 o'clock that requires one day of cooling is determined from the inverter controllers INV 1 to INV n on the basis of an hour unit. Each output signal is taken into the arithmetic unit 10. Based on this, the air-conditioning total load factor of the whole air conditioner group is calculated | required by said (B) Formula.

ここで、運転立ち上がり時には、冷水温度を定格冷水温度(たとえば7℃)または暫定の仮予測値により運転を開始する。   Here, at the start of the operation, the operation is started at the rated cold water temperature (for example, 7 ° C.) or a provisional provisional predicted value.

そして、過去の外気温度、外気湿度、日射、月日、曜日、時刻、建物利用状況、在室人員、取り入れ外気量などの要因に基づき、建物全体の冷房負荷変化をシュミレーションして、たとえば表1及び図2の冷房負荷変化を求めておく。その際に、同冷房負荷変化から表2の示す経時期間(たとえば1時間単位の)空調負荷変化率を求めておく。   Then, based on factors such as past outside air temperature, outside air humidity, solar radiation, date, day of the week, time of day, building usage status, occupancy in the room, intake air volume, etc., the cooling load change of the entire building is simulated. And the cooling load change of FIG. 2 is calculated | required. At that time, the change rate of the air conditioning load shown in Table 2 (for example, in units of one hour) shown in Table 2 is obtained from the cooling load change.

そして、ある時間での空気調和機群全体の空調全負荷率に基づき次記の運転を行う。
(1)前経時期間における空調全負荷率に対して、予め設定した1日における経時期間の空調負荷変化率に応じて、次経時期間における空調全負荷率の予測を行う。たとえば、10時での空調全負荷率が84kcal/hr・m2であったとき、11時〜12時の経時期間においては、「1.07」の空調負荷変化率を乗算する必要があるから、11時〜12時の経時期間における空調全負荷率が89kcal/hr・m2とする。
(2)このように予測した空調全負荷率に基づいて冷水の温度設定を行い、その温度設定となるように冷凍機1を運転する。たとえば、表3に示すように、冷房全負荷率に応じた最適冷水温度の設定値を定めておき、その冷房全負荷率に応じた最適冷水温度となるように冷凍機1を運転する。
(3)当該次経時期間(たとえば11時〜12時)内において、個別のインバータINV1〜INVnの出力の最大値が上限値、たとえば100%に達する場合には、冷凍機1からの冷水温度をたとえば1℃下げ、下限値、たとえば80%に達する場合に冷凍機1からの冷水温度をたとえば1℃上げる運転を行う。
上記(1)〜(3)を経時期間(たとえば1時間単位)で行う。
And the following operation | movement is performed based on the air-conditioning total load factor of the whole air conditioner group in a certain time.
(1) The air-conditioning total load rate in the next time period is predicted according to the air-conditioning load change rate of the time-dependent period in one day set in advance with respect to the air-conditioning total load rate in the previous time-lapse period. For example, when the total air-conditioning load rate at 10 o'clock is 84 kcal / hr · m 2 , it is necessary to multiply the air-conditioning load change rate of “1.07” in the time period from 11:00 to 12:00. The total air-conditioning load factor in the time period from 11:00 to 12:00 is 89 kcal / hr · m 2 .
(2) The temperature of cold water is set based on the air-conditioning total load factor predicted as described above, and the refrigerator 1 is operated so as to be the temperature setting. For example, as shown in Table 3, a set value of the optimum chilled water temperature corresponding to the cooling total load factor is determined, and the refrigerator 1 is operated so as to obtain the optimum chilled water temperature corresponding to the cooling total load factor.
(3) If the maximum value of the outputs of the individual inverters INV 1 to INV n reaches an upper limit value, for example, 100% within the next time period (for example, 11:00 to 12:00), the chilled water from the refrigerator 1 For example, when the temperature is lowered by 1 ° C. and reaches a lower limit value, for example, 80%, the temperature of the chilled water from the refrigerator 1 is increased by 1 ° C., for example.
The above (1) to (3) are performed in a time period (for example, in units of one hour).

この場合においても、一旦設定した冷水の温度(最適冷水温度)がハンチングすることは望ましくないので、たとえば20〜30分の期間は、冷水温度設定値の修正を行わないようにするのが望ましい。
かかる運転を行うことで、大幅な省エネルギーを達成できる。
Even in this case, it is not desirable that the temperature of the chilled water that has been set (optimum chilled water temperature) is hunted. Therefore, for example, it is desirable not to correct the chilled water temperature setting value during a period of 20 to 30 minutes.
By performing such operation, significant energy saving can be achieved.

なお、ヒートポンプにより冬季において空調を行う場合は、温水温度の上下が夏季冷房の場合と逆にして、本発明の思想をそのまま転用できることは明らかである。   In addition, when air conditioning is performed in winter using a heat pump, it is clear that the idea of the present invention can be used as it is, with the hot water temperature being changed upside down in the case of summer cooling.

第1の実施の形態におけるシステム構成図である。It is a system configuration figure in a 1st embodiment. 冷房負荷の経時変化グラフである。It is a time-dependent change graph of a cooling load. 第1の実施の形態における運転フロー図である。It is an operation | movement flowchart in 1st Embodiment. 冷水送水温度と消費動力の相関グラフである。It is a correlation graph of cold-water supply temperature and consumption power. 第2の実施の形態におけるシステム構成図である。It is a system configuration figure in a 2nd embodiment. 第2の実施の形態における運転フロー図である。It is an operation | movement flowchart in 2nd Embodiment.

1…中央熱源機(冷凍機)、2A…往ヘッダー、2B…還ヘッダー、3…往管路3、41〜4N…分岐管路、5…還管路、6…冷水還り温度検出器、10…演算装置、21…一次冷水ポンプ、22…二次冷水ポンプ、AHU−1〜AHU−N…空気調和機、P1〜Pn…ポンプ、INV1〜INVn…インバータ制御器、V1〜Vn…流量調整自動弁。 DESCRIPTION OF SYMBOLS 1 ... Central heat source machine (refrigerator), 2A ... Out header, 2B ... Return header, 3 ... Out pipe 3, 41-4N ... Branch pipe, 5 ... Return pipe, 6 ... Cold water return temperature detector, 10 ... arithmetic unit, 21 ... primary chilled water pumps, 22 ... secondary chilled water pumps, AHU-1~AHU-n ... air conditioner, P 1 to P n ... pump, INV 1 INV n ... inverter controller, V 1 ~ V n ... Automatic flow adjustment valve.

Claims (2)

中央熱源機から複数の空気調和機に並列的に冷水を循環供給する空気調和設備であって、
前記各空気調和機の並列流路に冷水を通すポンプを設け、
対象の空気調和領域における空調負荷検出手段の信号に基づき、インバータ制御により個別空気調和機を通る冷水の流量制御を行うモータを、対応する前記ポンプに付設し、
経時ごと、前記インバータの出力を演算装置に取り込み、次記(A)式により空気調和機群全体の空調全負荷率 1k を求めるとともに、
(1)予め設定した1日における経時期間の空調負荷変化率を使用して、次経時期間における空調全負荷率R 1k を予測し
(2)予測した空調全負荷率 1k に基づいて冷水の温度設定を行い、その温度設定となるように前記中央熱源機を運転し、
(3)当該次経時期間内において、個別のインバータの出力の最大値が上限値に達する場合に前記中央熱源機からの冷水温度を下げ、下限値に達する場合に前記中央熱源機からの冷水温度を上げる運転を行い、
上記(1)〜(3)を経時期間ごと行う、
ことを特徴とする空気調和設備の運転方法。

Figure 0004647469
ここに、
1k :経時期間kにおける空調全負荷率
0i 、Q 0j :個別ポンプi、jの設計水量
zki :個別ポンプiの経時期間kにおけるインバータ出力
z0i :個別ポンプiの定格出力
An air conditioner that circulates and supplies cold water from a central heat source unit to a plurality of air conditioners in parallel.
Provide a pump for passing cold water through the parallel flow path of each air conditioner,
Based on the signal of the air conditioning load detection means in the target air conditioning region, a motor for controlling the flow rate of cold water passing through the individual air conditioner by inverter control is attached to the corresponding pump,
Every time, the output of the inverter is taken into the arithmetic unit, and the air conditioning total load ratio R 1k of the entire air conditioner group is obtained by the following equation (A).
(1) Predicting the air conditioning total load ratio R 1k in the next aging period using the air conditioning load change rate of the aging period in one day set in advance,
(2) The temperature of the cold water is set based on the predicted air conditioning total load factor R 1k , and the central heat source unit is operated so that the temperature is set,
(3) During the next aging period, when the maximum value of the output of each individual inverter reaches the upper limit, the chilled water temperature from the central heat source unit is lowered, and when the maximum value reaches the lower limit, the chilled water temperature from the central heat source unit Drive to raise
The above (1) to (3) are performed every time period.
A method of operating an air conditioner characterized by the above.

Figure 0004647469
here,
R 1k : Air-conditioning total load factor over time period k
Q 0i , Q 0j : Design water volume of individual pumps i and j
H zki : Inverter output of individual pump i over time period k
H z0i : Rated output of individual pump i
中央熱源機から複数の空気調和機に並列的に冷水を循環供給する空気調和設備であって、
前記各空気調和機の並列流路に冷水を通すポンプを設け、
対象の空気調和領域における空調負荷検出手段の信号に基づき、個別空気調和機を通る冷水の流量を弁開度により制御する流量調整自動弁を設け、
経時ごと、前記各流量調整自動弁の開度信号を演算装置に取り込み、次記(B)式により空気調和機群全体の空調全負荷率 2k を求めるとともに、
(1)予め設定した1日における経時期間の空調負荷変化率を使用して、次経時期間における空調全負荷率R 2k を予測し、
(2)予測した空調全負荷率 2k に基づいて冷水の温度設定を行い、その温度設定となるように前記中央熱源機を運転し、
(3)当該次経時期間内において、個別の自動弁の開度信号の最大値が上限値に達する場合に前記中央熱源機からの冷水温度を下げ、下限値に達する場合に前記中央熱源機からの冷水温度を上げる運転を行い、
上記(1)〜(3)を経時期間ごと行う、
ことを特徴とする空気調和設備の運転方法。

Figure 0004647469
ここに、
2k :経時期間kにおける空調全負荷率
0i 、Q 0j :個別ポンプi、jの設計水量
rki :個別空調機 iの経時期間 k における自動制御弁開度
An air conditioner that circulates and supplies cold water from a central heat source unit to a plurality of air conditioners in parallel.
Provide a pump for passing cold water through the parallel flow path of each air conditioner,
Based on the signal of the air conditioning load detection means in the target air conditioning region, a flow rate adjusting automatic valve that controls the flow rate of cold water passing through the individual air conditioner by the valve opening degree is provided,
As time passes, the opening signal of each flow rate adjusting automatic valve is taken into the arithmetic unit, and the air conditioning total load ratio R 2k of the entire air conditioner group is obtained by the following equation (B).
(1) Predicting the air conditioning total load ratio R 2k in the next aging period using the air conditioning load change rate of the aging period in one day set in advance ,
(2) The temperature of the cold water is set based on the predicted air conditioning total load factor R 2k , and the central heat source machine is operated so that the temperature is set,
(3) Within the next aging period, when the maximum value of the opening signal of the individual automatic valve reaches the upper limit value, the chilled water temperature from the central heat source device is lowered, and when the lower limit value is reached, the central heat source device To raise the cold water temperature of the
The above (1) to (3) are performed every time period.
A method of operating an air conditioner characterized by that.

Figure 0004647469
here,
R 2k : Total load factor of air conditioning over time period k
Q 0i , Q 0j : Design water volume of individual pumps i and j
V rki : Automatic control valve opening of individual air conditioner i over time period k
JP2005338062A 2005-11-24 2005-11-24 Operation method of air conditioning equipment Active JP4647469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005338062A JP4647469B2 (en) 2005-11-24 2005-11-24 Operation method of air conditioning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005338062A JP4647469B2 (en) 2005-11-24 2005-11-24 Operation method of air conditioning equipment

Publications (2)

Publication Number Publication Date
JP2007147094A JP2007147094A (en) 2007-06-14
JP4647469B2 true JP4647469B2 (en) 2011-03-09

Family

ID=38208715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005338062A Active JP4647469B2 (en) 2005-11-24 2005-11-24 Operation method of air conditioning equipment

Country Status (1)

Country Link
JP (1) JP4647469B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9797614B2 (en) 2010-02-24 2017-10-24 Mitsubishi Electric Corporation Air conditioning system
JP5538191B2 (en) * 2010-11-22 2014-07-02 三菱電機株式会社 Cold / hot water system and pump control method for cold / hot water system
JP6324707B2 (en) 2013-11-13 2018-05-16 三菱重工サーマルシステムズ株式会社 Heat source machine and control method thereof
CN108489011B (en) * 2018-03-20 2020-06-26 广东美的暖通设备有限公司 Operation control method and device, air-conditioning water machine system and storage medium
CN111795486B (en) * 2019-04-03 2022-03-11 群光电能科技股份有限公司 Control method of air conditioning system
CN113124531A (en) * 2019-12-30 2021-07-16 青岛海尔空调电子有限公司 Control method for automatically switching operation modes of water chilling unit
CN117419422B (en) * 2023-12-18 2024-03-26 深圳市前海能源科技发展有限公司 Energy efficiency calculation method of regional cooling system and related equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122145A (en) * 1984-07-11 1986-01-30 Yazaki Corp Method of controlling air conditioning
JP2003028488A (en) * 2001-07-13 2003-01-29 Kinden Corp Carrying power reduction system in air conditioning facility
JP2004053127A (en) * 2002-07-19 2004-02-19 Hitachi Plant Eng & Constr Co Ltd Air conditioner and its control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122145A (en) * 1984-07-11 1986-01-30 Yazaki Corp Method of controlling air conditioning
JP2003028488A (en) * 2001-07-13 2003-01-29 Kinden Corp Carrying power reduction system in air conditioning facility
JP2004053127A (en) * 2002-07-19 2004-02-19 Hitachi Plant Eng & Constr Co Ltd Air conditioner and its control method

Also Published As

Publication number Publication date
JP2007147094A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP4647469B2 (en) Operation method of air conditioning equipment
JP4435533B2 (en) Heat source system and control device
US9562701B2 (en) Temperature control system and air conditioning system
JP4505363B2 (en) Control method of cold / hot water in air conditioning system
JP5312674B2 (en) Air conditioning system and control method of air conditioning system
EP2693133A1 (en) Heat source system and number-of-machines control method for heat source system
JP4422572B2 (en) Cold / hot water control method for cold / hot heat source machine
EP2508806B1 (en) Heat pump system and heat pump unit controlling method
JP6716238B2 (en) Refrigerating and air-conditioning device, control device, and computer program
KR20090010888A (en) Air conditioning control device and air conditioning control method
JP6681896B2 (en) Refrigeration system
CN112344453B (en) Air conditioner and air conditioner flow valve control method
JP2013170753A (en) Refrigerator system
JP4523461B2 (en) Operation control method for 1-pump heat source equipment
JP2007127321A (en) Cold water load factor controller for refrigerator
Cervera-Vázquez et al. In situ optimization methodology for the water circulation pumps frequency of ground source heat pump systems: Analysis for multistage heat pump units
WO2012096265A1 (en) Heat source system, control method therfor, and program therefor
KR20160051596A (en) Air-conditioning system
JP4440147B2 (en) Operation control method for two-pump heat source equipment
JP7506487B2 (en) Heat source device control device
Cervera-Vázquez et al. Optimal control and operation of a GSHP system for heating and cooling in an office building
JP2006177568A (en) Unit number control device of refrigerator and cool heat supply system
JP5062555B2 (en) Energy saving air conditioning control system
JP2014126234A (en) Heat load processing system
JP3854586B2 (en) Heat source system, control method of heat source system, heat source, and control method of heat source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4647469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250