JP2006177568A - Unit number control device of refrigerator and cool heat supply system - Google Patents

Unit number control device of refrigerator and cool heat supply system Download PDF

Info

Publication number
JP2006177568A
JP2006177568A JP2004368631A JP2004368631A JP2006177568A JP 2006177568 A JP2006177568 A JP 2006177568A JP 2004368631 A JP2004368631 A JP 2004368631A JP 2004368631 A JP2004368631 A JP 2004368631A JP 2006177568 A JP2006177568 A JP 2006177568A
Authority
JP
Japan
Prior art keywords
refrigerator
refrigerators
cooling water
cooling
number control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004368631A
Other languages
Japanese (ja)
Other versions
JP4513545B2 (en
Inventor
Tatsuro Fujii
達郎 藤居
Hironari Kikuchi
宏成 菊池
Yasushi Tomita
泰志 冨田
Masaaki Sakauchi
正明 坂内
Hiroshi Kushima
大資 久島
Kenichi Kuwabara
健一 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004368631A priority Critical patent/JP4513545B2/en
Publication of JP2006177568A publication Critical patent/JP2006177568A/en
Application granted granted Critical
Publication of JP4513545B2 publication Critical patent/JP4513545B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve saving energy and reduction of the operation cost by setting a required minimum refrigerator operation unit number when a cooling water temperature is lowered in winter or in the intermediate time in a unit number control device of a refrigerator operated throughout the year. <P>SOLUTION: A unit number of the refrigerator is varied in accordance with a measured result of a refrigeration load, and a varying standard of the operation unit number is varied by the cooling water temperature. The refrigeration load as the unit number variation standard is varied to the direction which is larger as the cooling water temperature is lowered. Thereby, refrigerator performance increase effect by lowering of the cooling water temperature in the winter or in the intermediate time can be utilized, and the required minimum operation unit number can be set, and operation time of auxiliaries such as the refrigerator, a cooling tower, or a cooling water pump can be reduced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数台の冷凍機を用いた冷熱供給システム及びこの冷熱供給システムに用いられる冷凍機の台数制御装置に関するものである。   The present invention relates to a cold energy supply system using a plurality of refrigerators and a number control device for refrigerators used in the cold energy supply system.

従来、冷凍機などの熱源機の運転台数制御方法として、稼動中の熱源機の100%能力に対する現在の発生能力のパーセンテージをチェックし、稼動中の全ての熱源機が100%能力で運転されていた場合、前記熱源機の運転台数を増段させるための増段要求を出す一方、稼動中の全ての熱源機の現在発揮している能力の和を求め、この和が所定の値よりも小さい場合、前記熱源機の運転台数を減段させるための減段要求を出すものがある(例えば、特許文献1参照)。   Conventionally, as a method of controlling the number of operating heat source units such as refrigerators, the current generation capacity percentage relative to the 100% capacity of the operating heat source unit is checked, and all the operating heat source units are operated at 100% capacity. In this case, a stage increase request for increasing the number of operating heat source units is issued, while the sum of the currently exhibited capabilities of all the heat source units in operation is obtained, and this sum is smaller than a predetermined value. In some cases, there is one that issues a step-down request for reducing the number of operating heat source units (see, for example, Patent Document 1).

本従来技術では、負荷機器からの還水温度が過剰、すなわち熱源機が冷凍機である場合には還水温度が設定値以下である場合、前記熱源機の運転台数を強制的に減段するようにしている。また、負荷機器への往水温度の不足、すなわち熱源機が冷凍機である場合には往水温度が設定値以上である場合にのみ、前記熱源機の運転台数の増段を許容するようにしている。   In this prior art, when the return water temperature from the load device is excessive, that is, when the heat source device is a refrigerator, the number of operating heat source devices is forcibly reduced if the return water temperature is lower than a set value. I am doing so. In addition, an increase in the number of operating heat source units is allowed only when the temperature of the outbound water to the load equipment is insufficient, i.e., when the heat source unit is a refrigerator, the outbound water temperature is equal to or higher than a set value. ing.

このように本従来技術では、熱源機の運転台数を増減させるための入力情報として、稼動中の熱源機の発生能力およびこれらの和、さらに負荷機器からの還水温度または負荷機器への往水温度を用いている。   As described above, in this prior art, as input information for increasing / decreasing the number of operating heat source units, the generation capacity of the heat source units in operation and their sum, the return water temperature from the load device, or the outgoing water to the load device Temperature is used.

特許第3306612号公報Japanese Patent No. 3306612

従来の冷凍機の台数制御装置では、上記特許文献1に記載されるように、台数制御の入力として各冷凍機の発生能力と、冷水供給側と負荷側を循環する冷水の温度を用いている。ところで、ターボ冷凍機などの電動式冷凍機や吸収式冷凍機では、冷凍機に供給される冷却水温度が定格値から低下すると、最大発生能力が増大する特性がある。このため、これらの冷凍機は冷却水温度が低下する中間期あるいは冬期には定格能力を超える冷却負荷を賄うことが可能であるが、上記従来技術ではこの点に配慮していないため、これらの時期において不必要に運転台数を増加させて運転動力の浪費を招いていた。   In the conventional refrigerator control device, as described in Patent Document 1, the generation capacity of each refrigerator and the temperature of the chilled water circulating between the chilled water supply side and the load side are used as the input of the number control. . By the way, an electric refrigerator such as a turbo refrigerator or an absorption refrigerator has a characteristic that the maximum generation capacity is increased when the temperature of the cooling water supplied to the refrigerator is lowered from the rated value. For this reason, these refrigerators can cover the cooling load exceeding the rated capacity in the intermediate period or winter season when the cooling water temperature decreases, but the above-mentioned conventional technology does not consider this point. Unnecessarily increasing the number of units in operation during the period was a waste of driving power.

冷凍機の台数制御による運転台数の増減は、冷凍機のみならず冷凍機に付帯する冷水ポンプ、冷却水ポンプおよび冷却塔の運転台数にも対応しており、これらすべての運転台数による消費動力の差は大きい。   The increase / decrease in the number of operating units by controlling the number of refrigerators corresponds not only to the refrigerators but also to the number of operating cold water pumps, cooling water pumps and cooling towers attached to the refrigerators. The difference is big.

本発明の目的は、冷却水温度が低下する中間期あるいは冬期における冷凍機運転台数を、冷却水温度の低下に伴う冷凍機の能力増大を反映した必要最低限の台数とすることにより、冷凍機の台数制御装置を用いた冷熱供給システムの運転動力およびコストを削減し、さらに、省エネルギー並びにCO2排出量の削減に寄与することである。   The object of the present invention is to set the number of refrigerators in the intermediate period or winter season when the cooling water temperature is lowered to the minimum necessary number reflecting the increase in the capacity of the refrigerator accompanying the decrease in the cooling water temperature. This is to reduce the driving power and cost of the cooling and heating system using the number control device, and to contribute to energy saving and CO2 emission reduction.

上記目的を達成するために、本発明に係る冷凍機の台数制御装置では、冷凍機の運転台数を、冷却負荷に関連した物理量と、各冷凍機に通水される冷却水の温度によって決定する。   In order to achieve the above object, in the number control device for refrigerators according to the present invention, the number of refrigerators to be operated is determined by the physical quantity related to the cooling load and the temperature of the cooling water passed through each refrigerator. .

また本発明に係る冷凍機の台数制御装置は、冷凍機の運転台数を、冷却負荷に関連した物理量によって変更し、前記冷凍機の運転台数を変更する基準を各冷凍機に通水される冷却水の温度によって変更する。さらに、この変更基準は、冷却水温度が低下した場合に、運転台数変更の基準値を増加させる方向に変更する。   Further, the number control device for refrigerators according to the present invention changes the number of operating refrigerators according to a physical quantity related to a cooling load, and allows the reference for changing the number of operating refrigerators to be passed to each refrigerator. Change according to water temperature. Furthermore, this change reference is changed in a direction in which the reference value for changing the number of operating units is increased when the cooling water temperature is lowered.

また上記課題を解決するために本発明に係る冷凍機の台数制御装置では、上記冷却負荷に関連した物理量として、冷却負荷設備における交換熱量を用いて時々刻々の冷却負荷の変動を正確に捉えて適確な台数制御を行うか、あるいは冷却負荷設備に通水される冷水流量のみを用いた簡単な構成としている。   Further, in order to solve the above problems, in the number control device for a refrigerator according to the present invention, the physical quantity related to the cooling load is used to accurately grasp the variation of the cooling load every moment using the exchange heat quantity in the cooling load equipment. It has a simple configuration that uses only the appropriate number control or uses only the chilled water flow rate that is passed through the cooling load facility.

さらに上記課題を解決するために本発明に係る冷熱供給システムでは、以上に述べたような台数制御装置を備えたものである。   Furthermore, in order to solve the above-described problems, the cold energy supply system according to the present invention includes the number control device as described above.

また本発明に係る冷熱供給システムは、上記課題を解決するための構成として、複数台の水冷式の冷凍機と、該冷凍機の各々に対応して設けられた冷水ポンプおよび冷却水ポンプと、前記冷凍機の運転台数を冷却負荷の状態によって増減させる台数制御装置を備えると共に、前記各冷凍機のうち少なくとも1台に供給される冷却水の温度を測定する温度センサを設け、この温度センサからの出力を前記台数制御装置に接続したものである。   Moreover, the cooling power supply system according to the present invention includes a plurality of water-cooled refrigerators, a cold water pump and a cooling water pump provided corresponding to each of the refrigerators, as a configuration for solving the above problems, A temperature sensor for measuring the temperature of the cooling water supplied to at least one of the refrigerators is provided, and a temperature sensor is provided for increasing or decreasing the number of operating refrigerators depending on the state of the cooling load. Are connected to the number control device.

本発明により、冷却水温度の変化を台数制御に反映させると共に、冷却水温度が低下した場合における冷凍機の能力増大の効果を有効に利用することが可能となり、年間を通した運転動力およびコストを削減し、もって、省エネルギー並びにCO2排出量の削減に寄与することが可能となる。   According to the present invention, it is possible to reflect the change in the cooling water temperature in the unit control, and to effectively use the effect of increasing the capacity of the refrigerator when the cooling water temperature is lowered. Therefore, it is possible to contribute to energy saving and CO2 emission reduction.

本発明の一実施例を図1、図2、図3を用いて説明する。図1は本発明による冷熱供給システムの全体図である。また、図2は本発明による冷凍機の台数制御装置における台数制御方法を、冷却水温度定格時(a)と冷却水温度低下時(b)について示した図である。さらに、図3は本発明の根拠である冷却水温度の定格値から低温側への偏差と冷凍機の最大冷凍能力との関係を、ターボ冷凍機のサイクルシミュレーション結果から求めた図である。   An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an overall view of a cold energy supply system according to the present invention. FIG. 2 is a diagram showing the number control method in the number control device for refrigerators according to the present invention when the cooling water temperature is rated (a) and when the cooling water temperature is lowered (b). Further, FIG. 3 is a diagram in which the relationship between the deviation of the cooling water temperature from the rated value of the cooling water temperature, which is the basis of the present invention, to the low temperature side and the maximum refrigeration capacity of the refrigerator is obtained from the cycle simulation result of the turbo refrigerator.

図1に示すように冷熱供給システムは、冷熱を発生する冷凍機R1、R2、R3、これらの各冷凍機に冷水を送る冷水ポンプP11、P21、P31と、各冷凍機の停止時に冷水ラインを遮断する冷水バルブV1、V2、V3と、各冷凍機に図示しない冷却塔から冷却水を供給する冷却水ポンプP12、P22、P32と、供給される冷却水の温度を計測する冷却水温度センサT1、T2、T3と、冷水ヘッダ20および25、冷却負荷30に供給される冷水の流量および温度を計測する冷水流量センサF、冷水温度センサT4およびT5、冷凍機の運転台数を決定する台数制御装置40によって構成されている。なお、上述の冷却塔は各冷凍機に対応して1台ずつ設けてある。   As shown in FIG. 1, the cold energy supply system includes refrigerators R1, R2, and R3 that generate cold, cold water pumps P11, P21, and P31 that send cold water to each of these refrigerators, and a cold water line when each refrigerator is stopped. Cooling water valves V1, V2, V3 to be shut off, cooling water pumps P12, P22, P32 for supplying cooling water from a cooling tower (not shown) to each refrigerator, and a cooling water temperature sensor T1 for measuring the temperature of the supplied cooling water , T2, T3, chilled water headers 20 and 25, chilled water flow rate sensor F for measuring the flow rate and temperature of chilled water supplied to the cooling load 30, chilled water temperature sensors T4 and T5, and a unit control device for determining the number of operating refrigerators 40. One cooling tower is provided for each refrigerator.

冷熱供給システムの運転時は、台数制御装置は冷水流量センサF、冷水温度センサT4およびT5からの信号と、冷却水温度センサT1、T2、T3からの信号によって冷凍機の運転台数を決定し、R1、R2、R3の各冷凍機に運転信号または停止信号を出力する。   During the operation of the cold heat supply system, the number control device determines the number of refrigerators to be operated based on the signals from the cold water flow rate sensor F, the cold water temperature sensors T4 and T5, and the signals from the cooling water temperature sensors T1, T2, and T3. An operation signal or a stop signal is output to each of the refrigerators R1, R2, and R3.

ここで、運転信号または停止信号を受信した際の冷凍機の各冷凍機の動作を、冷凍機R1を例として説明する。冷凍機R1において運転信号を受信すると、冷凍機本体の運転を開始すると共に冷水ポンプP11、冷却水ポンプP12、さらに冷却水ポンプP12が冷却水配管を介して接続された図示しない冷却塔の運転を開始し、冷水バルブV1を開いて冷水を冷水ヘッダ20、冷凍負荷30に供給する。   Here, the operation of each refrigerator of the refrigerator when receiving the operation signal or the stop signal will be described using the refrigerator R1 as an example. When the operation signal is received in the refrigerator R1, the operation of the refrigerator main body is started and the cooling water pump P11, the cooling water pump P12, and further the cooling water pump P12 connected to the cooling tower (not shown) are connected via the cooling water pipe. The cold water valve V <b> 1 is opened to supply cold water to the cold water header 20 and the refrigeration load 30.

また、冷凍機R1において停止信号を受信すると、冷凍機本体の運転を停止すると共に冷水ポンプP11、冷却水ポンプP12、さらに冷却水ポンプP12が冷却水配管を介して接続された図示しない冷却塔の運転を停止して、冷水バルブV1を閉じて冷凍負荷30等への冷水の供給を停止する。   In addition, when the stop signal is received in the refrigerator R1, the operation of the refrigerator main body is stopped and the cooling water pump P11, the cooling water pump P12, and the cooling water pump P12 are connected to the cooling tower (not shown) connected via the cooling water pipe. The operation is stopped, the cold water valve V1 is closed, and the supply of cold water to the refrigeration load 30 or the like is stopped.

冷凍負荷30に供給された冷水は、冷凍負荷に冷熱を供給して温度上昇し、冷水流量センサF、冷水ヘッダ25を介して再び冷水ポンプP11、P21、P31の吸込側に導かれる。このとき冷凍機R1が運転中である場合は、冷水ポンプP11の吸込側に導かれた冷水が、再び冷凍機R1で冷却されて冷凍負荷30に送られる。   The cold water supplied to the refrigeration load 30 is supplied with cold heat to the refrigeration load to rise in temperature, and is led again to the suction side of the chilled water pumps P11, P21, and P31 via the chilled water flow rate sensor F and the chilled water header 25. At this time, when the refrigerator R1 is in operation, the cold water led to the suction side of the cold water pump P11 is cooled again by the refrigerator R1 and sent to the refrigeration load 30.

次に、台数制御装置40における台数制御方法について図2および図3を用いて説明する。台数制御装置40は、冷凍負荷30に関連した物理量から交換熱量Qを演算し、その結果によって冷凍機の運転台数を設定するものである。冷凍機負荷に関連した物理量とは、冷水流量センサFによって計測された冷水流量Vw、冷水温度センサT4によって計測された負荷系入口冷水温度Twi、冷水温度センサT5によって計測された負荷系出口冷水温度Twoである。それらを用いて交換熱量Qが数1によって算出される。
Q=Vw×ρw×cpw×(Two−Twi) ……(数1)
但し、ρwは冷水の密度、cpwは冷水の比熱容量である。
Next, the number control method in the number control device 40 will be described with reference to FIGS. The number control device 40 calculates the exchange heat quantity Q from the physical quantity related to the refrigeration load 30, and sets the number of operating refrigerators based on the result. The physical quantities related to the refrigerator load are the chilled water flow rate Vw measured by the chilled water flow rate sensor F, the load system inlet chilled water temperature Twi measured by the chilled water temperature sensor T4, and the load system outlet chilled water temperature measured by the chilled water temperature sensor T5. Two. Using these, the exchange heat quantity Q is calculated by the equation (1).
Q = Vw × ρw × cpw × (Two−Twi) (Equation 1)
Where ρw is the density of cold water and cpw is the specific heat capacity of cold water.

なお、本実施例における冷凍負荷30は冷凍負荷量の増減に伴って内部の冷水系統の抵抗が変化するものである。従って、冷水流量センサFによって検出される冷水流量も、冷凍負荷量の増減と共に変化する。   Note that the refrigeration load 30 in the present embodiment is such that the resistance of the internal chilled water system changes as the refrigeration load amount increases or decreases. Accordingly, the chilled water flow rate detected by the chilled water flow rate sensor F also changes as the refrigeration load amount increases or decreases.

一般に、複数台の冷凍機の台数制御は図2(a)に示す方法で行われる。図2は横軸に算出された冷凍負荷の交換熱量Q、縦軸に冷凍機の運転台数を取って冷凍機の運転台数の変更基準L1、L2、L3、L4を示したものである。   In general, the number control of a plurality of refrigerators is performed by the method shown in FIG. FIG. 2 shows the change standards L1, L2, L3, and L4 of the number of operating refrigerators by taking the exchange heat quantity Q of the refrigeration load calculated on the horizontal axis and the operating number of refrigerators on the vertical axis.

冷熱供給システムの起動時等、冷凍負荷が大きく基準値L4を超えている場合は冷凍機の運転台数は3台となる。同じく起動時等においてL2以上でL4以下のときは2台運転となる。さらに、L2以下のときは1台運転となる。3台で運転している状態で、交換熱量が減少して基準値L3よりも小さくなると、冷凍機の運転台数は2台に変更される。その後、交換熱量がさらに減少して基準値L1よりも小さくなると、冷凍機の運転台数は1台となる。2台運転時に反対に交換熱量が再び増加してL4よりも大きくなると運転台数は3台になる。運転台数が1台の時に交換熱量が増加して基準値L2よりも大きくなると運転台数は2台となる。以上のように、運転台数を増加する場合と減少させる場合とでは、基準となる冷凍負荷が異なる値に設定されている。   When the refrigeration load is large and exceeds the reference value L4, such as when starting the cold supply system, the number of operating refrigerators is three. Similarly, at the time of start-up or the like, when L2 or more and L4 or less, two units are operated. Furthermore, when it is L2 or less, one unit is operated. If the exchange heat quantity decreases and becomes smaller than the reference value L3 while operating with three units, the number of operating refrigerators is changed to two. Thereafter, when the exchange heat quantity further decreases and becomes smaller than the reference value L1, the number of operating refrigerators is one. On the contrary, when the two units are operated, if the exchange heat quantity increases again and becomes larger than L4, the number of units operated becomes three units. When the number of operating units is one and the amount of exchange heat increases and becomes larger than the reference value L2, the number of operating units is two. As described above, the reference refrigeration load is set to a different value depending on whether the number of operating units is increased or decreased.

本実施例では、台数制御装置40は上述の冷水流量F、負荷系入口冷水温度T4、負荷系出口冷水温度T5に加えて、冷却水温度センサT1、T2、T3によって計測された冷却水温度を用いて冷凍機の運転台数を演算する。この演算には、T1、T2、T3のうち、運転中の冷凍機に対応する冷却水の検出温度を用い、複数台の冷凍機が運転中の場合には、運転中の冷凍機に対応する冷却水温度のうちで最も大きい値のものを用いる。   In this embodiment, the number control device 40 adds the cooling water temperature measured by the cooling water temperature sensors T1, T2, T3 in addition to the above-described cooling water flow rate F, the load system inlet cold water temperature T4, and the load system outlet cold water temperature T5. Use to calculate the number of operating refrigerators. For this calculation, the detected temperature of the cooling water corresponding to the operating chiller among T1, T2, and T3 is used, and when a plurality of chillers are operating, it corresponds to the operating chiller. Use the highest cooling water temperature.

台数制御装置40は、冷却水温度Tsが定格値T0、例えば32℃の場合は図2(a)の通りに、予め定められた基準値L1〜L4に従って冷凍機の台数制御を行う。なお本実施例では冷凍負荷L1〜L4の値をそれぞれ80%、90%、160%、180%としている。そして、冷却水温度が定格値から外れて低くなった場合は、冷却水温度Tsが定格値から低い側への偏差ΔTcw=T0−Tsを用い、基準値L1〜L4を数2によって基準値L1’〜L4’に修正する。この修正は、冷却水温度を所定のタイミング(例えば30分間隔)で定格値より低い温度になっているか否かを検出して、定格値以下のとき、各基準値を数2によって求めて、変更するものである。
L1’=L1×(1+kΔTcw)
L2’=L2×(1+kΔTcw)
L3’=L3×(1+kΔTcw)
L4’=L4×(1+kΔTcw) ……(数2)
但し、kは定数である。
The number control device 40 controls the number of refrigerators according to predetermined reference values L1 to L4 as shown in FIG. 2A when the coolant temperature Ts is a rated value T0, for example, 32 ° C. In this embodiment, the values of the refrigeration loads L1 to L4 are 80%, 90%, 160%, and 180%, respectively. When the cooling water temperature deviates from the rated value and becomes low, the deviation ΔTcw = T0−Ts where the cooling water temperature Ts is lower than the rated value is used, and the reference values L1 to L4 are expressed by the equation 2 as the reference value L1. Correct to '~ L4'. This correction detects whether or not the cooling water temperature is lower than the rated value at a predetermined timing (for example, at an interval of 30 minutes). To change.
L1 ′ = L1 × (1 + kΔTcw)
L2 ′ = L2 × (1 + kΔTcw)
L3 ′ = L3 × (1 + kΔTcw)
L4 ′ = L4 × (1 + kΔTcw) (Equation 2)
However, k is a constant.

従って、冷却水温度が低下してΔTcwが増加すると、台数制御方法は図2(b)のように修正される。このとき冷凍機の運転台数は、以下に示すように、図2(a)の場合よりも少ない台数で運転される時間が多くなる。   Accordingly, when the cooling water temperature is lowered and ΔTcw is increased, the number control method is corrected as shown in FIG. At this time, as shown below, the number of operating refrigerators increases the time during which the refrigerator is operated with a smaller number than in the case of FIG.

冷凍機が3台で運転されているときに冷凍負荷30での交換熱量が減少すると、図2(a)では基準値L3に達したところで冷凍機の台数を2台に減少させるのに対し、本実施例で用いる図2(b)ではL3よりも大きいL3’に達したところで台数を減少させるので図2(a)の場合よりも早く運転台数が減少する。従って、冷凍機が3台で運転される時間が短縮され、2台で運転される時間が増加する。   When the amount of heat exchanged at the refrigeration load 30 decreases when the refrigerator is operated with three units, the number of refrigerators is reduced to two when the reference value L3 is reached in FIG. In FIG. 2B used in the present embodiment, the number of units is reduced when reaching L3 ′ larger than L3, so the number of operating units decreases earlier than in the case of FIG. Accordingly, the time required for operating the three refrigerators is shortened, and the time required for operating the two refrigerators is increased.

また、冷凍機が2台で運転されているときに冷凍負荷30での交換熱量が増加すると、図2(a)では基準値L4に達したところで冷凍機の台数を3台に増加させるのに対し、本実施例で用いる図2(b)ではL4よりも大きいL4’に達したところで台数を増加させるので、図2(a)の場合よりも遅く運転台数が増加する。この場合も同様に、冷凍機が3台で運転される時間が短縮され、2台で運転される時間が増加する。   In addition, when the amount of exchange heat at the refrigeration load 30 increases when the refrigerator is operated with two units, in FIG. 2A, when the reference value L4 is reached, the number of refrigerators is increased to three. On the other hand, in FIG. 2B used in the present embodiment, the number of units is increased when L4 ′ larger than L4 is reached, so that the number of operating units increases later than in the case of FIG. In this case as well, the time for operating the three refrigerators is shortened, and the time for operating the two refrigerators is increased.

さらに冷凍機の運転台数を2台と1台との間で切り替える際にも同様の動作が行われるため、冷凍機が2台で運転される時間が短縮され、1台で運転される時間が増加する。   Further, since the same operation is performed when switching the number of operating refrigerators between two and one, the time required for operating the two refrigerators is shortened, and the time required for operating the one refrigerator is reduced. To increase.

次に、数2で示した修正を行った場合に冷熱供給システムの冷凍能力が不足とならないことを図3を用いて説明する。図3は、ターボ冷凍機への冷却水温度の定格値から低下する側への温度偏差に対するターボ冷凍機の最大冷凍能力を、冷却水の温度偏差がゼロの場合を基準として示したものである。図中のプロットはターボ冷凍機のサイクルシミュレーションによる解析結果であり、実線は、ターボ冷凍機の最大冷凍能力が温度偏差1℃当り1%増加するとした場合である。   Next, it will be described with reference to FIG. 3 that the refrigeration capacity of the cold energy supply system does not become insufficient when the correction shown in Equation 2 is performed. FIG. 3 shows the maximum refrigeration capacity of the centrifugal chiller with respect to the temperature deviation from the rated value of the cooling water temperature to the centrifugal chiller to the side where the cooling water temperature decreases, with reference to the case where the temperature deviation of the cooling water is zero. . The plot in the figure is the analysis result by the cycle simulation of the centrifugal chiller, and the solid line is the case where the maximum refrigeration capacity of the centrifugal chiller is increased by 1% per 1 ° C. temperature deviation.

図3に示すように、ターボ冷凍機の最大冷凍能力は冷却水の温度偏差とともに増加し、その増加の割合は温度偏差1℃当り1%とした場合よりも大きくなっている。従って図3で対象とした機種を冷凍機として用いる場合は、数2における定数kの値を0.01(1%/℃)とすることによって、基準値L1’〜L4’を用いても冷熱供給能力は満足される。   As shown in FIG. 3, the maximum refrigeration capacity of the centrifugal chiller increases with the temperature deviation of the cooling water, and the rate of increase is larger than when the temperature deviation is 1% per 1 ° C. Therefore, when the model targeted in FIG. 3 is used as a refrigerator, the value of the constant k in Equation 2 is set to 0.01 (1% / ° C.), so that it is possible to cool even if the reference values L1 ′ to L4 ′ are used. Supply capability is satisfied.

例えば、冷却水温度の定格値が32℃、運転時の冷却水温度が22℃の場合は数2におけるΔTcwは10℃となり、k=0.01であるから基準値L1’〜L4’はそれぞれL1〜L4を1.1倍した値となる。このとき、冷凍機の最大冷凍能力は図3から定格値の1.1倍以上となるため、台数変更の基準値をそれぞれ1.1倍しても冷凍機の能力が不足とならない。   For example, when the rated value of the cooling water temperature is 32 ° C. and the cooling water temperature during operation is 22 ° C., ΔTcw in Equation 2 is 10 ° C., and k = 0.01, so the reference values L1 ′ to L4 ′ are respectively L1 to L4 are multiplied by 1.1. At this time, since the maximum refrigeration capacity of the refrigerator is 1.1 times or more of the rated value from FIG. 3, the capacity of the refrigerator does not become insufficient even if the reference value for changing the number is multiplied by 1.1.

逆に、冷却水温度が基準値より高くなった場合は、ΔTcwはマイナスの値となり、基準値は低い方向に変更される。   On the contrary, when the cooling water temperature becomes higher than the reference value, ΔTcw becomes a negative value, and the reference value is changed to a lower direction.

このように本実施例では、交換熱量の演算結果に基づく精度の高い台数制御を行うことができ、さらに図3に示した冷却水温度低下時の冷凍機の能力増大を活用して常時必要最小限の運転台数を設定することができるため、図2(a)の運転パターンで基準値L1〜L4を固定して台数制御を行う場合に対して省エネルギーを図ることが可能となる。なお前述のように、冷凍機の発停と同時に各冷凍機に対応した冷水ポンプ、冷却水ポンプおよび冷却塔が発停するため、この省エネルギー効果は非常に大きいものとなる。   As described above, in this embodiment, the number control with high accuracy can be performed based on the calculation result of the exchange heat quantity, and the minimum necessary amount is always obtained by utilizing the increase in the capacity of the refrigerator when the cooling water temperature decreases as shown in FIG. Since a limited number of operating units can be set, it is possible to save energy compared to the case where the reference values L1 to L4 are fixed and the number of units is controlled in the operating pattern of FIG. As described above, since the chilled water pump, the cooling water pump and the cooling tower corresponding to each chiller are started and stopped simultaneously with the start and stop of the chiller, this energy saving effect is very large.

なお、本実施例では台数変更の基準値L1〜L4が冷凍負荷30における交換熱量Qに対して定められているが、冷凍負荷30を流れる冷水流量は冷凍負荷量すなわち交換熱量と共に変化する特性(例えば、冷凍負荷30が半分の負荷になると冷水流量も半分程度に少なくなる)があるため、これらの基準値は冷水流量センサFによって計測される冷水流量に対して定めてもよい。この場合は、数1で示した演算が不要になると共に、冷水温度センサT4、T5が故障した場合に台数制御への影響がないという利点がある。即ち、この場合の冷凍負荷に関連する物理量は冷水流量のみとなる。   In the present embodiment, the reference values L1 to L4 for changing the number of units are determined for the exchange heat quantity Q in the refrigeration load 30, but the flow rate of chilled water flowing through the refrigeration load 30 varies with the refrigeration load quantity, that is, the exchange heat quantity ( For example, when the refrigeration load 30 is a half load, the chilled water flow rate is reduced to about half). Therefore, these reference values may be determined with respect to the chilled water flow rate measured by the chilled water flow rate sensor F. In this case, there is an advantage that the calculation shown in Equation 1 is not necessary and there is no influence on the number control when the chilled water temperature sensors T4 and T5 fail. That is, the physical quantity related to the refrigeration load in this case is only the cold water flow rate.

また図4に示すように、台数制御装置40において冷水流量と負荷側交換熱量との両方から運転台数を演算し、これらの大きい方の台数を設定として実際の運転台数としてもよい。この場合には、交換熱量の演算結果に基づく精度の高い台数制御を行うことができ、冷水温度センサT4、T5が故障した場合にも冷水流量によって台数制御が行われるため、信頼性の高い冷熱の供給が可能となる。この場合の冷凍負荷に関連する物理量としては冷水流量と負荷入口冷水温度と負荷出口冷水温度のみを用いることとなる。   Further, as shown in FIG. 4, the number control device 40 may calculate the number of operating units from both the cold water flow rate and the load-side exchange heat amount, and set the larger number as the actual operating number. In this case, it is possible to control the number of units with high accuracy based on the calculation result of the exchange heat amount, and even when the chilled water temperature sensors T4 and T5 break down, the number of units is controlled based on the chilled water flow rate. Can be supplied. In this case, only the chilled water flow rate, the load inlet chilled water temperature, and the load outlet chilled water temperature are used as physical quantities related to the refrigeration load.

以上の実施例においては、台数制御の基準値L1〜L4を冷却水温度によって修正、変更しているが、これは冷却水温度の支配要因である外気温度または湿度としてもよい。この場合は、冷却水温度変化の要因となる外気条件の変動を直接台数制御に反映することができるため、冷却水温度の変化に先行して台数制御の基準値を変更することができる。従って、特に外気温度および冷却水温度の上昇時に冷凍能力の不足を回避できるという利点がある。また冷凍機が空冷式である場合にも外気条件による台数制御基準値の変更が有効である。   In the above embodiment, the reference values L1 to L4 for the number control are corrected and changed according to the cooling water temperature, but this may be the outside air temperature or humidity that is the controlling factor of the cooling water temperature. In this case, since the change in the outside air condition that causes the cooling water temperature change can be directly reflected in the number control, the reference value for the number control can be changed prior to the change in the cooling water temperature. Therefore, there is an advantage that a lack of refrigerating capacity can be avoided particularly when the outside air temperature and the cooling water temperature are increased. Even when the refrigerator is air-cooled, it is effective to change the unit control reference value according to the outside air condition.

本発明の一実施例に係わる冷熱供給システムの構成図である。It is a block diagram of the cold-power supply system concerning one Example of this invention. 本発明における台数制御基準の変更方法を表す図である。It is a figure showing the change method of the unit control reference in this invention. 冷却水温度低下時の冷凍機最大能力を表す図である。It is a figure showing the freezer maximum capacity at the time of cooling water temperature fall. 本発明の他の実施例に係わる台数制御方法を表す図である。It is a figure showing the number control method concerning the other Example of this invention.

符号の説明Explanation of symbols

R1、R2、R3…冷凍機、P11、P21、P31…冷水ポンプ、P12、P22、P32…冷却水ポンプ、V1、V2、V3…冷水バルブ、T1、T2、T3…冷却水温度センサ、T4、T5…冷水温度センサ、F…冷水流量センサ、20、25…冷水ヘッダ、30…冷却負荷、40…台数制御装置、L1〜L4…冷却水温度定格時における運転台数変更の基準値、L1‘〜L4’…冷却水温度低下時における運転台数変更の基準値。
R1, R2, R3 ... Refrigerator, P11, P21, P31 ... Cold water pump, P12, P22, P32 ... Cooling water pump, V1, V2, V3 ... Cold water valve, T1, T2, T3 ... Cooling water temperature sensor, T4, T5 ... Chilled water temperature sensor, F ... Chilled water flow sensor, 20, 25 ... Chilled water header, 30 ... Cooling load, 40 ... Number control device, L1-L4 ... Reference value for changing the number of operating units when cooling water temperature is rated, L1 '- L4 '... A reference value for changing the number of operating units when the cooling water temperature drops.

Claims (11)

水冷式の冷凍機の台数制御装置において、前記冷凍機の運転台数を、冷却負荷に関連した物理量と、各冷凍機に通水される冷却水の温度によって決定することを特徴とする冷凍機の台数制御装置。   In the number control device for water-cooled refrigerators, the operating number of the refrigerators is determined by a physical quantity related to a cooling load and a temperature of cooling water passed through each refrigerator. Number control device. 複数台の冷凍機の運転台数を、冷却負荷に関連した物理量と、各冷凍機に通水される冷却水の温度によって変更する冷凍機の台数制御装置であって、前記冷凍機の運転台数を変更する基準値を前記冷却水の温度によって変更することを特徴とする冷凍機の台数制御装置。   A number control unit for a refrigerator that changes the number of operating units of a plurality of refrigerators according to a physical quantity related to a cooling load and a temperature of cooling water that is passed through each refrigerator. A number control device for a refrigerator, wherein a reference value to be changed is changed according to a temperature of the cooling water. 請求項2に記載の冷凍機の台数制御装置において、
前記冷凍機の運転台数の基準値の変更は、前記冷却水の温度が定格値から低下した方向への偏差に比例して、前記基準値を増加させる方向に変更することを特徴とする冷凍機の台数制御装置。
In the number control apparatus of the refrigerator of Claim 2,
The change of the reference value of the number of operating units of the refrigerator is changed to a direction in which the reference value is increased in proportion to a deviation in a direction in which the temperature of the cooling water decreases from the rated value. Unit control device.
請求項1から3のいずれかに記載の冷凍機の台数制御装置において、
前記冷却水の温度は、運転中の冷凍機のいずれかにおける冷却水の入口温度であることを特徴とする冷凍機の台数制御装置。
In the number control apparatus of the refrigerator in any one of Claim 1 to 3,
The apparatus for controlling the number of refrigerators, wherein the temperature of the cooling water is an inlet temperature of cooling water in any of the operating refrigerators.
請求項4に記載の冷凍機の台数制御装置において、
台数制御に用いられる冷却水温度の計測対象とする冷凍機は、台数制御における優先順位が最上位の冷凍機であることを特徴とする冷凍機の台数制御装置。
In the number control apparatus of the refrigerator of Claim 4,
A refrigerator control device for a refrigerator, wherein a refrigerator to be measured for cooling water temperature used for number control is a refrigerator having the highest priority in the number control.
請求項2に記載の冷凍機の台数制御装置において、
前記冷凍機の運転台数の基準値の変更を、冷却水温度に代えて外気の温度または湿度を用いて行うことを特徴とする冷凍機の台数制御装置。
In the number control apparatus of the refrigerator of Claim 2,
The reference number of the number of operating refrigerators is changed by using the temperature or humidity of the outside air instead of the cooling water temperature.
請求項1から6のいずれかに記載の冷凍機の台数制御装置において、前記冷却負荷に関連した物理量は、冷却負荷設備における交換熱量であることを特徴とする冷凍機の台数制御装置。   The number control device for a refrigerator according to any one of claims 1 to 6, wherein the physical quantity related to the cooling load is an exchange heat amount in the cooling load facility. 請求項1から6のいずれかに記載の冷凍機の台数制御装置において、前記冷却負荷に関連した物理量は、冷却負荷設備に通水される冷水流量であることを特徴とする冷凍機の台数制御装置。   The number control apparatus for a refrigerator according to any one of claims 1 to 6, wherein the physical quantity related to the cooling load is a flow rate of cold water passed through the cooling load facility. apparatus. 請求項1から6のいずれかに記載の冷凍機の台数制御装置において、前記冷却負荷に関連した物理量は、冷却負荷設備に通水される冷水流量および冷却負荷設備における交換熱量であり、前記冷水流量と前記交換熱量から運転台数をそれぞれ決定し、これらの大きい方の台数を、実際の運転台数として設定することを特徴とする冷凍機の台数制御装置。   The number control apparatus of the refrigerators in any one of Claim 1 to 6 WHEREIN: The physical quantity relevant to the said cooling load is the cold water flow volume passed through to a cooling load installation, and the exchange heat amount in a cooling load installation, The said cold water A number control unit for a refrigerator, wherein the number of operating units is determined from the flow rate and the exchange heat quantity, and the larger number of these units is set as the actual number of operating units. 複数台の水冷式の冷凍機と、前記冷凍機の運転台数を変更することにより冷却能力を調節する台数制御装置を備えた冷熱供給システムにおいて、
前記台数制御装置は、前記複数台の冷凍機の運転台数を決める基準値を、前記複数台の冷凍機に通水される冷却水の温度に基づいて変更することを特徴とする冷熱供給システム。
In a cooling / heating supply system comprising a plurality of water-cooled refrigerators and a number control device for adjusting the cooling capacity by changing the number of operating refrigerators,
The number control device changes a reference value for determining the number of operating units of the plurality of refrigerators based on a temperature of cooling water passed through the plurality of refrigerators.
複数台の水冷式の冷凍機と、前記冷凍機の各々に対応して設けられた冷水ポンプおよび冷却水ポンプと、前記冷凍機の運転台数を冷却負荷の状態によって増減させる台数制御装置を備えた冷熱供給システムにおいて、
前記各冷凍機のうち少なくとも1台に供給される冷却水の温度を測定する温度センサを設け、前記温度センサからの出力を前記台数制御装置に入力し前記温度センサの検出値に基づいて台数変更の基準値を変更することを特徴とする冷熱供給システム。
A plurality of water-cooled refrigerators, a chilled water pump and a cooling water pump provided corresponding to each of the refrigerators, and a number control device that increases or decreases the number of operating the refrigerators depending on the state of the cooling load. In the cold energy supply system,
A temperature sensor for measuring the temperature of cooling water supplied to at least one of the refrigerators is provided, and the output from the temperature sensor is input to the number control device and the number of units is changed based on the detection value of the temperature sensor. The cooling / heating supply system characterized by changing the reference value of
JP2004368631A 2004-12-21 2004-12-21 Refrigeration unit control system and cooling supply system Active JP4513545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004368631A JP4513545B2 (en) 2004-12-21 2004-12-21 Refrigeration unit control system and cooling supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004368631A JP4513545B2 (en) 2004-12-21 2004-12-21 Refrigeration unit control system and cooling supply system

Publications (2)

Publication Number Publication Date
JP2006177568A true JP2006177568A (en) 2006-07-06
JP4513545B2 JP4513545B2 (en) 2010-07-28

Family

ID=36731830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004368631A Active JP4513545B2 (en) 2004-12-21 2004-12-21 Refrigeration unit control system and cooling supply system

Country Status (1)

Country Link
JP (1) JP4513545B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241210A (en) * 2007-03-28 2008-10-09 Taikisha Ltd Heat source machine control device and heat source machine control method
JP2008292043A (en) * 2007-05-23 2008-12-04 Hitachi Plant Technologies Ltd Air conditioning system
JP2011021855A (en) * 2009-07-17 2011-02-03 Toyo Netsu Kogyo Kk Control method of refrigerator
WO2012017912A1 (en) * 2010-08-06 2012-02-09 三菱重工業株式会社 Refrigerator controller
CN102472519A (en) * 2009-11-13 2012-05-23 三菱重工业株式会社 Heat source system
JP2012145263A (en) * 2011-01-11 2012-08-02 Hitachi Plant Technologies Ltd Heat source system, control method therefor, and program therefor
CN107202398A (en) * 2017-05-16 2017-09-26 珠海格力电器股份有限公司 Central air-conditioning water system control method and device and storable medium
JP2021188759A (en) * 2020-05-26 2021-12-13 東京瓦斯株式会社 Freezer system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6434848B2 (en) * 2015-03-31 2018-12-05 三機工業株式会社 Heat source control system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300163A (en) * 1997-04-28 1998-11-13 Mitsubishi Electric Corp Method for operating air conditioner and air conditioner
JP3306612B2 (en) * 1995-03-24 2002-07-24 株式会社山武 How to control the number of operating heat source units
JP2003294290A (en) * 2002-04-02 2003-10-15 Yamatake Corp Unit number control device of heat source and unit number control method
JP2004144411A (en) * 2002-10-25 2004-05-20 Ebara Corp Air conditioning equipment
JP2004278884A (en) * 2003-03-14 2004-10-07 Mitsubishi Jisho Sekkei Inc Control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3306612B2 (en) * 1995-03-24 2002-07-24 株式会社山武 How to control the number of operating heat source units
JPH10300163A (en) * 1997-04-28 1998-11-13 Mitsubishi Electric Corp Method for operating air conditioner and air conditioner
JP2003294290A (en) * 2002-04-02 2003-10-15 Yamatake Corp Unit number control device of heat source and unit number control method
JP2004144411A (en) * 2002-10-25 2004-05-20 Ebara Corp Air conditioning equipment
JP2004278884A (en) * 2003-03-14 2004-10-07 Mitsubishi Jisho Sekkei Inc Control device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241210A (en) * 2007-03-28 2008-10-09 Taikisha Ltd Heat source machine control device and heat source machine control method
JP2008292043A (en) * 2007-05-23 2008-12-04 Hitachi Plant Technologies Ltd Air conditioning system
JP2011021855A (en) * 2009-07-17 2011-02-03 Toyo Netsu Kogyo Kk Control method of refrigerator
CN102472519A (en) * 2009-11-13 2012-05-23 三菱重工业株式会社 Heat source system
CN102472519B (en) * 2009-11-13 2014-07-30 三菱重工业株式会社 Heat source system
KR101496532B1 (en) * 2010-08-06 2015-02-26 미츠비시 쥬고교 가부시키가이샤 Refrigerator controller
CN102971589A (en) * 2010-08-06 2013-03-13 三菱重工业株式会社 Refrigerator controller
JP2012037141A (en) * 2010-08-06 2012-02-23 Mitsubishi Heavy Ind Ltd Refrigerator controller
WO2012017912A1 (en) * 2010-08-06 2012-02-09 三菱重工業株式会社 Refrigerator controller
JP2012145263A (en) * 2011-01-11 2012-08-02 Hitachi Plant Technologies Ltd Heat source system, control method therefor, and program therefor
CN107202398A (en) * 2017-05-16 2017-09-26 珠海格力电器股份有限公司 Central air-conditioning water system control method and device and storable medium
CN107202398B (en) * 2017-05-16 2019-07-26 珠海格力电器股份有限公司 Central air-conditioning water system control method and device and readable storage medium
JP2021188759A (en) * 2020-05-26 2021-12-13 東京瓦斯株式会社 Freezer system
JP7407070B2 (en) 2020-05-26 2023-12-28 東京瓦斯株式会社 Refrigerator system

Also Published As

Publication number Publication date
JP4513545B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
JP4435533B2 (en) Heat source system and control device
JP4594276B2 (en) Cold / hot water control method for cold / hot heat source machine and air conditioning system used therefor
JP5234435B2 (en) Cold cooling source device, cooling system and cooling method for free cooling
CN109631376B (en) Screw type water chilling unit and control method and system thereof
JP2007240131A (en) Optimization control of heat source unit and accessory
JP2006038379A (en) Cold and hot water control method of cold and hot heat source machine
JP4513545B2 (en) Refrigeration unit control system and cooling supply system
JP2007127321A (en) Cold water load factor controller for refrigerator
JP2009299972A (en) Heat source equipment control method and system
JP6029363B2 (en) Heat source system
JP2009063290A (en) Cold water circulating system
WO2024193645A1 (en) Control method and system for air conditioner, air conditioner, and storage medium
CN116505141A (en) Thermal management control system for energy storage battery and control method thereof
JP2009115452A (en) Cold water circulating system
JP2016121861A (en) Snow ice utilization air conditioning system and control device thereof
JP2010025466A (en) Heat source system
CN204478354U (en) A kind of ice-storage air-conditioning control system
JP2007147094A (en) Method of operating air conditioning equipment
JP4569661B2 (en) Cold water circulation system
CN112178873A (en) Adjusting and controlling method of water chilling unit and water chilling unit
CN204943789U (en) cooling water energy-saving control system
JP2011226680A (en) Cooling water producing facility
JP2011226684A (en) Cooling water producing device, and method of controlling the same
CN100445668C (en) Energy-saving refrigerator set
CN114320835B (en) Centralized series cooling system of electric drive compressor unit and multi-target loop control method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100503

R151 Written notification of patent or utility model registration

Ref document number: 4513545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3