JP2006071151A - Storage type hot water supply heating device - Google Patents

Storage type hot water supply heating device Download PDF

Info

Publication number
JP2006071151A
JP2006071151A JP2004253424A JP2004253424A JP2006071151A JP 2006071151 A JP2006071151 A JP 2006071151A JP 2004253424 A JP2004253424 A JP 2004253424A JP 2004253424 A JP2004253424 A JP 2004253424A JP 2006071151 A JP2006071151 A JP 2006071151A
Authority
JP
Japan
Prior art keywords
hot water
brine
water storage
heating circuit
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004253424A
Other languages
Japanese (ja)
Other versions
JP4238801B2 (en
Inventor
Hidemine Murahashi
秀峰 村端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004253424A priority Critical patent/JP4238801B2/en
Publication of JP2006071151A publication Critical patent/JP2006071151A/en
Application granted granted Critical
Publication of JP4238801B2 publication Critical patent/JP4238801B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Abstract

<P>PROBLEM TO BE SOLVED: To improve the COP of a heat pump heat source machine 1a by lowering a boiling temperature therein when high temperature water in a hot water storage tank 7 is not used for heating operation. <P>SOLUTION: A hot water supply heating circuit K1 and a brine heating circuit K2 are connected to each other on the upstream side of a water-brine heat exchanger 8. Thus, hot water boiled by the heat pump heat source machine 1a can be supplied directly to the heating side, not via the hot water storage tank 7 (namely, independently of the hot water stored in the hot water storage tank 7) and it can be boiled at a lower temperature (40-60°C or so) required for heating operation, improving the COP of the heat pump heat source machine 1a. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ヒートポンプ熱源機を用いて給湯用水を沸き上げ、貯湯タンクに溜めながら給湯を行うと共に、貯湯タンク内の湯を用いてブラインを加熱し、その加熱されたブラインを暖房器に循環させて暖房や乾燥などを行う貯湯式給湯暖房装置に関するものである。   The present invention boils hot water supply water using a heat pump heat source device, supplies hot water while accumulating in a hot water storage tank, heats the brine using hot water in the hot water storage tank, and circulates the heated brine to the heater. The present invention relates to a hot water storage hot water heater that performs heating and drying.

図11は、従来の給湯式給湯暖房装置1の全体構成を示す模式図である。従来の装置では、一般的に図11に示すような回路で給湯暖房が行われている。まず、給湯用の高温水を貯湯する貯湯タンク7と、冷媒圧縮機2・冷媒水熱交換器3・膨張弁4および冷媒空気熱交換器5を有する冷媒回路Rを備えたヒートポンプ熱源機1aとが有り、給湯水加熱回路K1にて貯湯タンク7の下部から取り出した低温水をヒートポンプ熱源機1aによって沸き上げ、その沸き上げた高温水を貯湯タンク7の上部に戻して貯えると共に、その高温水を用いて給湯を行っている。   FIG. 11 is a schematic diagram showing an overall configuration of a conventional hot water supply type hot water supply / room heating device 1. In a conventional apparatus, hot water supply / heating is generally performed in a circuit as shown in FIG. First, a hot water storage tank 7 for storing hot water for hot water supply, a heat pump heat source machine 1a having a refrigerant circuit R having a refrigerant compressor 2, a refrigerant water heat exchanger 3, an expansion valve 4 and a refrigerant air heat exchanger 5, The low temperature water taken out from the lower part of the hot water storage tank 7 by the hot water supply heating circuit K1 is boiled by the heat pump heat source unit 1a, and the high temperature water thus boiled is returned to the upper part of the hot water storage tank 7 and stored. Hot water is supplied using

また8は、高温水を1次側8aに流通させて2次側8bのブラインを加熱する水ブライン熱交換器であり、ブライン加熱回路K2にて貯湯タンク7の上部から取り出した高温水を水ブライン熱交換器8に流通させた後、貯湯タンク7の下部に戻している。そして、ブライン循環回路Bjにて水ブライン熱交換器8でて加熱されたブラインを暖房器10との間で循環させて暖房や乾燥などを行っている。   Reference numeral 8 denotes a water brine heat exchanger for circulating high temperature water to the primary side 8a to heat the brine on the secondary side 8b. The high temperature water taken out from the upper part of the hot water storage tank 7 by the brine heating circuit K2 is water. After being circulated through the brine heat exchanger 8, it is returned to the lower part of the hot water storage tank 7. The brine heated by the water brine heat exchanger 8 in the brine circulation circuit Bj is circulated between the heater 10 and heating or drying is performed.

尚、制御装置30は、給湯および冷媒回路R・給湯水加熱回路K1・ブライン加熱回路K2・ブライン循環回路Bjの循環を制御するものである。また、その他の説明しない符号は、後述する本発明の実施形態での符号と対応しているため、ここでの説明は省略する。   The control device 30 controls the circulation of the hot water supply and refrigerant circuit R, the hot water supply heating circuit K1, the brine heating circuit K2, and the brine circulation circuit Bj. Other reference numerals not described correspond to the reference numerals in the embodiments of the present invention described later, and a description thereof is omitted here.

図12は、ヒートポンプ熱源機1aにおける沸き上げ温度と成績係数(以下、COPと略す)との関係を示すグラフである。このグラフから分かるように、沸き上げ温度を低くした方がCOPを向上することができる。また、近年の床暖房装置などは高効率となってきていることもあり、暖房だけであればあまり高い温度の湯を必要としない。   FIG. 12 is a graph showing the relationship between the boiling temperature and the coefficient of performance (hereinafter abbreviated as COP) in the heat pump heat source apparatus 1a. As can be seen from this graph, COP can be improved by lowering the boiling temperature. In addition, recent floor heaters and the like have become highly efficient, and hot water at a high temperature is not required for heating alone.

しかしながら、上記の構成では給湯用の高温水を貯湯タンクの上部に貯め、暖房に使用する熱源水も貯湯タンクの上部から持ってくる構造であるため、ヒートポンプ熱源機では常に高い温度で沸き上げる必要があり、ヒートポンプ熱源機のCOPを向上させるには限界があった。   However, in the above configuration, hot water for hot water supply is stored in the upper part of the hot water storage tank, and the heat source water used for heating is also brought from the upper part of the hot water storage tank. There was a limit to improving the COP of the heat pump heat source machine.

本発明は、上記従来に鑑みて成されたものであり、その目的は、貯湯タンク内の高温水を暖房に使用しない場合は、ヒートポンプ熱源機での沸き上げ温度を低くしてCOPを向上させることのできる貯湯式給湯暖房装置を提供することにある。   The present invention has been made in view of the above prior art, and its purpose is to improve the COP by lowering the boiling temperature in the heat pump heat source machine when the high-temperature water in the hot water storage tank is not used for heating. An object of the present invention is to provide a hot water storage type hot water supply / heating device that can handle the above.

本発明は上記目的を達成するために、請求項1ないし請求項12に記載の技術的手段を採用する。すなわち、請求項1に記載の発明では、給湯用の高温水を貯湯する貯湯タンク(7)と、冷媒圧縮機(2)・冷媒水熱交換器(3)・冷媒減圧手段(4)および冷媒空気熱交換器(5)を有する冷媒回路(R)を備えたヒートポンプ熱源機(1a)と、貯湯タンク(7)の下部から取り出した低温水をヒートポンプ熱源機(1a)によって沸き上げ、その沸き上げた高温水を貯湯タンク(7)の上部に戻す給湯水加熱回路(K1)と、高温水を1次側に流通させて2次側のブラインを加熱する水ブライン熱交換器(8)と、貯湯タンク(7)の上部から取り出した高温水を水ブライン熱交換器(8)に流通させた後、貯湯タンク(7)の下部に戻すブライン加熱回路(K2)と、水ブライン熱交換器(8)にて加熱されたブラインを暖房器(10)との間で循環させるブライン循環回路(Bj)とを備えた貯湯式給湯暖房装置において、
水ブライン熱交換器(8)よりも上流側において給湯水加熱回路(K1)とブライン加熱回路(K2)とを接続したことを特徴としている。
In order to achieve the above object, the present invention employs technical means described in claims 1 to 12. That is, in the invention described in claim 1, a hot water storage tank (7) for storing hot water for hot water supply, a refrigerant compressor (2), a refrigerant water heat exchanger (3), a refrigerant pressure reducing means (4), and a refrigerant Heat pump heat source machine (1a) having a refrigerant circuit (R) having an air heat exchanger (5) and low-temperature water taken out from the lower part of the hot water storage tank (7) are boiled by the heat pump heat source machine (1a) A hot water supply heating circuit (K1) for returning the raised high temperature water to the upper part of the hot water storage tank (7), a water brine heat exchanger (8) for circulating the high temperature water to the primary side and heating the secondary side brine, A brine heating circuit (K2) for returning the hot water taken out from the upper part of the hot water storage tank (7) to the lower part of the hot water tank (7) after circulating the high temperature water to the water brine heat exchanger (8), and the water brine heat exchanger The brine heated in (8) is heated by a heater ( In the hot-water storage type hot water heating apparatus and a brine circulation circuit (Bj) for circulating between 0)
The hot water heating circuit (K1) and the brine heating circuit (K2) are connected upstream of the water brine heat exchanger (8).

この請求項1に記載の発明によれば、貯湯タンク(7)を介さないで(つまり、貯湯タンク内の貯湯と関係なく)直接ヒートポンプ熱源機(1a)で沸き上げた温水を暖房側へ供給することができるようになり、暖房で必要とする低い温度(40℃〜60℃程度)で沸き上げることができるようになることから、ヒートポンプ熱源機(1a)のCOPを向上させることができる。   According to the first aspect of the present invention, hot water boiled directly by the heat pump heat source (1a) is supplied to the heating side without going through the hot water storage tank (7) (that is, regardless of the hot water storage in the hot water storage tank). Since it becomes possible to boil at a low temperature (about 40 ° C. to 60 ° C.) required for heating, the COP of the heat pump heat source unit (1a) can be improved.

また、請求項2に記載の発明では、給湯水加熱回路(K1)で沸き上げた温水がブライン加熱回路(K2)へと循環する流量を調整する第1の流量調整手段(14)を有することを特徴としている。この請求項2に記載の発明によれば、ヒートポンプ熱源機(1a)から貯湯タンク(7)へ高温水を貯湯するときに不要なブライン加熱回路(K2)側に高温水が流れたり、貯湯タンク(7)の高温水をブライン加熱回路(K2)に流しているときにヒートポンプ熱源機(1a)側から冷水を吸引したりすることを防ぐことができる。   Further, in the invention described in claim 2, the first flow rate adjusting means (14) for adjusting the flow rate of the hot water boiled up in the hot water supply heating circuit (K1) is circulated to the brine heating circuit (K2). It is characterized by. According to the second aspect of the present invention, when hot water is stored from the heat pump heat source unit (1a) to the hot water storage tank (7), the hot water flows to the side of the brine heating circuit (K2), which is unnecessary, or the hot water storage tank. It is possible to prevent cold water from being sucked from the heat pump heat source unit (1a) side when the high-temperature water of (7) is flowing into the brine heating circuit (K2).

また、請求項3に記載の発明では、第1の流量調整手段(14)と上流側のヒートポンプ熱源機(1a)との間の給湯水加熱回路(K1)と貯湯タンク(7)の上部とを連通させたバイパス流路(15)、もしくは第1の流量調整手段(14)と下流側の水ブライン熱交換器(8)との間のブライン加熱回路(K2)と貯湯タンク(7)の上部とを連通させたバイパス流路(15)のいずれかを設けたことを特徴としている。   In the invention according to claim 3, the hot water supply heating circuit (K1) between the first flow rate adjusting means (14) and the upstream heat pump heat source machine (1a) and the upper part of the hot water storage tank (7) Of the brine heating circuit (K2) and the hot water storage tank (7) between the bypass flow path (15) communicated with each other, or the first flow rate adjusting means (14) and the downstream water brine heat exchanger (8). One of the bypass flow paths (15) communicating with the upper part is provided.

この請求項3に記載の発明によれば、給湯水加熱回路(K1)とブライン加熱回路(K2)とで流量に差を設けても、その流量差をバイパス流路(15)で吸収することができる。例えば給湯水加熱回路(K1)の流量>ブライン加熱回路(K2)の流量であれば、その流量差分をバイパス流路(15)から貯湯タンク(7)の上部へ貯湯しながら暖房を行うこともでき、給湯水加熱回路(K1)の流量<ブライン加熱回路(K2)の流量であればその流量差分、貯湯タンク(7)の上部からバイパス流路(15)を介して高温水を補充しながら暖房を行うこともできるようになる。   According to the third aspect of the present invention, even if there is a difference in flow rate between the hot water heating circuit (K1) and the brine heating circuit (K2), the flow rate difference is absorbed by the bypass flow path (15). Can do. For example, if the flow rate of the hot water supply heating circuit (K1)> the flow rate of the brine heating circuit (K2), heating may be performed while storing the difference in flow rate from the bypass channel (15) to the upper part of the hot water storage tank (7). If the flow rate of the hot water supply heating circuit (K1) <the flow rate of the brine heating circuit (K2), the flow rate difference, while replenishing hot water from the upper part of the hot water storage tank (7) via the bypass channel (15) Heating can also be performed.

また、請求項4に記載の発明では、給湯水加熱回路(K1)とブライン加熱回路(K2)とを接続した部位(A)と上流側のヒートポンプ熱源機(1a)との間の給湯水加熱回路(K1)から貯湯タンク(7)の中間部(7g)へ分岐させた分岐流路(16)を設けると共に、その分岐部に沸き上げ流路切換手段(17)を配設し、制御手段(30)は状況に応じて沸き上げ流路切換手段(17)を制御することを特徴としている。この請求項4に記載の発明によれば、ヒートポンプ熱源機(1a)が低温で沸き上げているときで暖房での使用温水量が少ない場合など、過剰となった低温沸き上げ温水を中温水として貯湯タンク(7)の中間部(7g)に溜めることができる。   Moreover, in invention of Claim 4, the hot water heating between the site | part (A) which connected the hot water heating circuit (K1) and the brine heating circuit (K2), and the upstream heat pump heat source machine (1a) is carried out. A branch passage (16) branched from the circuit (K1) to the intermediate portion (7g) of the hot water storage tank (7) is provided, and a boiling passage switching means (17) is provided at the branch portion to control means. (30) is characterized by controlling the heating flow path switching means (17) according to the situation. According to the fourth aspect of the present invention, when the heat pump heat source device (1a) is boiling at a low temperature and the amount of hot water used for heating is small, excess low-temperature boiling hot water is used as medium-temperature water. It can be stored in the intermediate part (7g) of the hot water storage tank (7).

また、請求項5に記載の発明では、中温水取り出し経路(18)と、中温水取り出し経路(18)から取り出した中温水と貯湯タンク(7)の上部から取り出した高温水とを混合して給湯設定温度よりも所定温度以上高い温度に調節する中温水混合手段(12)とを有し、中温水混合手段(12)から流出する温水と給水路から供給される低温水とを低温水混合手段(13)にて混合して給湯設定温度に調節する貯湯式給湯暖房装置において、分岐流路(16)を中温水取り出し経路(18)に接続したことを特徴としている。   Further, in the invention according to claim 5, the intermediate temperature water extraction path (18), the intermediate temperature water extracted from the intermediate temperature water extraction path (18) and the high temperature water extracted from the upper part of the hot water storage tank (7) are mixed. Medium temperature water mixing means (12) for adjusting the temperature to a temperature higher than a preset hot water supply temperature by a predetermined temperature or more, and mixing low temperature water with warm water flowing out from the medium temperature water mixing means (12) and low temperature water supplied from the water supply channel In the hot water storage type hot water supply and heating apparatus that is mixed by means (13) and adjusted to the hot water supply set temperature, the branch flow path (16) is connected to the intermediate hot water extraction path (18).

この請求項5に記載の発明によれば、周知の中温水取り出しがあるものにおいてはその中温水取り出し経路(18)を用いて中温水の注入も行うようにするものである。配管経路を兼用した構成となるため貯湯タンク(7)の接続孔を増やすこともなく、簡易でコストを抑えることができる。また、貯湯タンク(7)の放熱ロスも抑えることができる。   According to the fifth aspect of the present invention, in the case where there is a known medium-temperature water extraction, the medium-temperature water is also injected using the medium-temperature water extraction path (18). Since it becomes the structure which shared the piping path | route, it does not increase the connection hole of a hot water storage tank (7), and can suppress cost easily. Moreover, the heat loss of the hot water storage tank (7) can also be suppressed.

また、請求項6に記載の発明では、給湯水加熱回路(K1)とブライン加熱回路(K2)とを接続した部位(A)よりも上流側において、ヒートポンプ熱源機(1a)との間の給湯水加熱回路(K1)から分岐させた分岐流路(16)と、分岐流路(16)に流入する温水の流量と部位(A)側へと流れる温水の流量とを調整する第2の流量調整手段(19)とを有することを特徴としている。この請求項6に記載の発明によれば、第2の流量調整手段(19)で暖房へ回す温水量と貯湯タンク(7)内へ注入する温水量とを調整することができる。   Moreover, in invention of Claim 6, in the upstream from the site | part (A) which connected the hot-water supply water heating circuit (K1) and the brine heating circuit (K2), the hot-water supply between heat pump heat-source equipment (1a) A second flow rate for adjusting the branch flow channel (16) branched from the water heating circuit (K1), the flow rate of the hot water flowing into the branch flow channel (16), and the flow rate of the hot water flowing toward the site (A). And adjusting means (19). According to the sixth aspect of the present invention, it is possible to adjust the amount of hot water turned to heating and the amount of hot water injected into the hot water storage tank (7) by the second flow rate adjusting means (19).

また、請求項7に記載の発明では、分岐流路(16)と貯湯タンク(7)の中間部(7g)とを接続する第1流路(31)と、分岐流路(16)と貯湯タンク(7)の下方部(7i)とを接続する第2流路(32)とを有し、第2の流量調整手段(19)は、分岐流路(16)から第1流路(31)へと流入する温水の流量および分岐流路(16)から第2の流路(31)へと流入する温水の流量を調整することを特徴としている。この請求項7に記載の発明によれば、貯湯タンク(7)内の残湯状況に応じて、中温水の注入位置を変えることができる。   In the invention according to claim 7, the first flow path (31) connecting the branch flow path (16) and the intermediate portion (7g) of the hot water storage tank (7), the branch flow path (16) and the hot water storage. A second flow path (32) connecting the lower part (7i) of the tank (7), and the second flow rate adjusting means (19) is connected to the first flow path (31) from the branch flow path (16). ) And the flow rate of the hot water flowing from the branch flow path (16) to the second flow path (31). According to the seventh aspect of the present invention, the injection position of the intermediate temperature water can be changed according to the state of the remaining hot water in the hot water storage tank (7).

また、請求項8に記載の発明では、ヒートポンプ熱源機(1a)から貯湯タンク(7)へ貯湯する場合のヒートポンプ熱源機(1a)での沸き上げ熱量に対し、ヒートポンプ熱源機(1a)から直接ブライン加熱回路(K2)へ温水を供給する場合のヒートポンプ熱源機(1a)での沸き上げ熱量を低く制御することを特徴としている。この請求項8に記載の発明によれば、給湯および暖房への利用が両方可能な貯湯タンク(7)内への蓄熱する沸き上げ熱量は高くし、直接ブライン加熱回路(K2)へヒートポンプ熱源機(1a)からの湯を供給する場合は、暖房に消費される熱量程度に低くすることで、貯湯タンク(7)内へ無駄な熱量を入れることなく、残湯による二度沸かしによるCOP低下を防ぐ事ができる。   Moreover, in invention of Claim 8, it is directly from a heat pump heat source machine (1a) with respect to the amount of boiling heat in a heat pump heat source machine (1a) in the case of storing hot water from a heat pump heat source machine (1a) to a hot water storage tank (7). It is characterized in that the amount of heating heat in the heat pump heat source unit (1a) when hot water is supplied to the brine heating circuit (K2) is controlled to be low. According to the eighth aspect of the present invention, the amount of boiling heat to be stored in the hot water storage tank (7) that can be used for both hot water supply and heating is increased, and the heat pump heat source device is directly supplied to the brine heating circuit (K2). When supplying hot water from (1a), the amount of heat consumed for heating is reduced to about the amount of heat consumed, so that the amount of heat is not wasted into the hot water storage tank (7) and the COP is lowered by boiling twice with the remaining hot water. It can be prevented.

また、請求項9に記載の発明では、給湯用の高温水を貯湯する貯湯タンク(7)と、冷媒圧縮機(2)・冷媒水熱交換器(3)・冷媒減圧手段(4)および冷媒空気熱交換器(5)を有する冷媒回路(R)を備えたヒートポンプ熱源機(1a)と、貯湯タンク(7)の下部から取り出した低温水をヒートポンプ熱源機(1a)によって沸き上げ、その沸き上げた高温水を貯湯タンク(7)の上部に戻す給湯水加熱回路(K1)と、高温水を1次側に流通させて2次側のブラインを加熱する水ブライン熱交換器(8)と、貯湯タンク(7)の上部から取り出した高温水を水ブライン熱交換器(8)に流通させた後、貯湯タンク(7)の下部に戻すブライン加熱回路(K2)と、水ブライン熱交換器(8)にて加熱されたブラインを暖房器(10)との間で循環させるブライン循環回路(Bj)と、冷媒回路(R)・前記給湯水加熱回路(K1)・前記ブライン加熱回路(K2)および前記ブライン循環回路(Bj)の循環を制御する制御手段(30)とを備えた貯湯式給湯暖房装置において、
貯湯タンク(7)の下部側にて給湯水加熱回路(K1)とブライン加熱回路(K2)とを接続して連通させたバイパス流路(20)を設けると共に、制御手段(30)は、状況に応じてブライン加熱回路(K2)で熱交換を終えた温水をバイパス流路(20)を介して給湯水加熱回路(K1)へ循環させることを特徴としている。
Further, in the invention described in claim 9, a hot water storage tank (7) for storing hot water for hot water supply, a refrigerant compressor (2), a refrigerant water heat exchanger (3), a refrigerant pressure reducing means (4), and a refrigerant Heat pump heat source machine (1a) having a refrigerant circuit (R) having an air heat exchanger (5) and low-temperature water taken out from the lower part of the hot water storage tank (7) are boiled by the heat pump heat source machine (1a) A hot water supply heating circuit (K1) for returning the raised high temperature water to the upper part of the hot water storage tank (7), a water brine heat exchanger (8) for circulating the high temperature water to the primary side and heating the secondary side brine, A brine heating circuit (K2) for returning the hot water taken out from the upper part of the hot water storage tank (7) to the lower part of the hot water tank (7) after circulating the high temperature water to the water brine heat exchanger (8), and the water brine heat exchanger The brine heated in (8) is heated to a heater (10 And a control circuit for controlling circulation of the refrigerant circuit (R), the hot water heating circuit (K1), the brine heating circuit (K2), and the brine circulation circuit (Bj). In the hot water storage type hot water supply and heating device comprising means (30),
A bypass channel (20) is provided on the lower side of the hot water storage tank (7) by connecting the hot water heating circuit (K1) and the brine heating circuit (K2) to communicate with each other, and the control means (30) Accordingly, the hot water after the heat exchange in the brine heating circuit (K2) is circulated to the hot water supply heating circuit (K1) through the bypass channel (20).

この請求項9に記載の発明によれば、貯湯タンク(7)内に不要な中温水を注入することが防げるため、残湯を増やしたり2度沸かししたりすることによるCOPの悪化を防ぐことができる。   According to the ninth aspect of the invention, since it is possible to prevent unnecessary medium temperature water from being poured into the hot water storage tank (7), it is possible to prevent deterioration of COP caused by increasing the remaining hot water or boiling twice. Can do.

また、請求項10に記載の発明では、バイパス流路(20)のいずれか一端側、もしくは両端の接続部に流量調節手段(21)を配設すると共に、制御手段(30)は状況に応じて流量調節手段(21)を制御することを特徴としている。この請求項10に記載の発明によれば、貯湯タンク(7)の下部に不要な中温水が流入したり、貯湯タンク(7)の下部から不要に冷水を吸引したりすることを防ぐことができる。   In the invention according to claim 10, the flow rate adjusting means (21) is disposed at one end side of the bypass flow path (20) or the connecting portion at both ends, and the control means (30) is in accordance with the situation. Then, the flow rate adjusting means (21) is controlled. According to the tenth aspect of the present invention, it is possible to prevent unnecessary middle temperature water from flowing into the lower part of the hot water storage tank (7) and unnecessary suction of cold water from the lower part of the hot water storage tank (7). it can.

また、請求項11に記載の発明では、給湯水加熱回路(K1)とブライン加熱回路(K2)とを接続して連通させた部位(B)を設けると共に、部位(B)に流量調節手段(21)を配設し、制御手段(30)は状況に応じて流量調節手段(21)を制御することを特徴としている。この請求項11に記載の発明によれば、構成が簡素になることよりコストを抑えることができる。   In the invention according to claim 11, a part (B) in which the hot water heating circuit (K1) and the brine heating circuit (K2) are connected and communicated is provided, and a flow rate adjusting means ( 21), and the control means (30) controls the flow rate adjusting means (21) according to the situation. According to the eleventh aspect of the present invention, the cost can be reduced by simplifying the configuration.

また、請求項12に記載の発明では、ブライン加熱回路(K2)から給湯水加熱回路(K1)へ温水を供給する場合のヒートポンプ熱源機(1a)での沸き上げ熱量は、貯湯タンク(7)へ蓄熱する場合のヒートポンプ熱源機(1a)での沸き上げ熱量よりも低く制御することを特徴としている。この請求項12に記載の発明によれば、暖房で消費される熱量以上の熱量を貯湯タンク(7)へ蓄熱することが少なくなるため、残湯によるCOP低下を防ぐことができる。ちなみに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。   In the invention according to claim 12, when the hot water is supplied from the brine heating circuit (K2) to the hot water supply heating circuit (K1), the amount of heat generated by the heat pump heat source (1a) is the hot water storage tank (7). It is characterized by being controlled to be lower than the amount of heat of boiling in the heat pump heat source machine (1a) when storing heat. According to the twelfth aspect of the present invention, the amount of heat that is greater than or equal to the amount of heat consumed by heating is less likely to be stored in the hot water storage tank (7). Incidentally, the reference numerals in parentheses of the above means are examples showing the correspondence with the specific means described in the embodiments described later.

(第1実施形態)
以下、本発明の実施の形態について図面を用いて詳細に説明する。図1は、本発明の第1実施形態における貯湯式給湯暖房装置1の全体構成を示す模式図である。本実施形態での貯湯式給湯暖房装置1は、超臨界ヒートポンプサイクルを用いて給湯用水を高温(本実施形態では約90℃)に加熱して貯湯しながら給湯を行うと共に、加熱した温水を用いて熱交換媒体となる不凍液などのブラインを中間温度(本実施形態では40〜60℃)に加熱して、そのブラインを住居内の暖房、例えば床暖房などに利用するものである。
(First embodiment)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram illustrating an overall configuration of a hot water storage type hot water supply / room heating device 1 according to a first embodiment of the present invention. The hot water storage hot water heater 1 in the present embodiment uses hot water while heating hot water while heating and storing hot water to a high temperature (about 90 ° C. in the present embodiment) using a supercritical heat pump cycle. Then, a brine such as an antifreeze liquid serving as a heat exchange medium is heated to an intermediate temperature (40 to 60 ° C. in this embodiment), and the brine is used for heating in a house, for example, floor heating.

尚、超臨界ヒートポンプサイクルとは、高圧側の冷媒圧力が冷媒の臨界圧力以上となるヒートポンプサイクルを言い、例えば二酸化炭素・エチレン・エタン・酸化窒素などを冷媒とするヒートポンプサイクルである。給湯装置1は大きく分けて、主に後述する冷凍サイクル機器が収納されたヒートポンプ熱源機1aと、主に貯湯タンク7が収納されたタンクユニット1bと、当実施例の場合は床暖房ユニット1cとよりなる。   The supercritical heat pump cycle refers to a heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant. For example, the heat pump cycle uses carbon dioxide, ethylene, ethane, nitrogen oxide or the like as the refrigerant. The hot water supply apparatus 1 is roughly divided into a heat pump heat source machine 1a in which mainly refrigeration cycle equipment, which will be described later, is housed, a tank unit 1b in which mainly a hot water storage tank 7 is housed, and a floor heating unit 1c in this embodiment. It becomes more.

また、ヒートポンプ熱源機1a内は、大きく分けてヒートポンプサイクルの冷媒回路Rと、給湯関係の給湯水加熱回路K1とで構成されている。まず冷媒回路Rは、冷媒を圧縮する冷媒圧縮機2と、給湯用水の加熱手段である冷媒水熱交換器3と、冷媒減圧手段である膨張弁4と、大気から吸熱するための冷媒空気熱交換器5とを環状に接続して構成され、冷媒として臨界温度の低い二酸化炭素(CO)が封入されている。 The heat pump heat source unit 1a is roughly divided into a refrigerant circuit R for a heat pump cycle and a hot water supply heating circuit K1 for hot water supply. First, the refrigerant circuit R includes a refrigerant compressor 2 that compresses refrigerant, a refrigerant water heat exchanger 3 that is a heating means for hot water supply, an expansion valve 4 that is a refrigerant decompression means, and refrigerant air heat that absorbs heat from the atmosphere. The exchanger 5 is connected in a ring shape, and carbon dioxide (CO 2 ) having a low critical temperature is enclosed as a refrigerant.

冷媒圧縮機2は、内蔵する駆動モータと、吸引したガス冷媒を臨界圧力以上の高圧にまで昇圧して吐出する高圧圧縮部とで構成しており、これらが密閉容器内に収納されている。そして、装置全体の制御手段である制御装置30により通電制御される。冷媒水熱交換器3は、高圧圧縮部で昇圧された高温高圧のガス冷媒と給湯用水とを熱交換して給湯用水を加熱するもので、高圧冷媒通路3aに隣接して給湯水通路3bが設けられ、その高圧冷媒通路3aを流れる冷媒の流れ方向と給湯水通路3bを流れる給湯用水の流れ方向とが対向するように構成されている。   The refrigerant compressor 2 includes a built-in drive motor and a high-pressure compressor that discharges the sucked gas refrigerant to a high pressure equal to or higher than the critical pressure, and these are housed in a sealed container. The energization is controlled by the control device 30 which is a control means of the entire device. The refrigerant water heat exchanger 3 heats hot water by exchanging heat between the high-temperature and high-pressure gas refrigerant boosted by the high-pressure compressor and the hot-water supply water. The hot-water supply passage 3b is adjacent to the high-pressure refrigerant passage 3a. The flow direction of the refrigerant flowing through the high-pressure refrigerant passage 3a is opposed to the flow direction of hot water flowing through the hot water supply passage 3b.

膨張弁4は、冷媒水熱交換器3と冷媒空気熱交換器5との間に設けられ、冷媒水熱交換器3で冷却された冷媒を高圧から低圧まで減圧して冷媒空気熱交換器5に供給する。また、この膨張弁4は、弁開度を電気的に調整可能な構成を有し、制御装置30により通電制御される。冷媒空気熱交換器5は、図示しない送風ファンによる送風を受けて、膨張弁4で減圧された冷媒を大気との熱交換によって蒸発させ、ガスとなった冷媒は先の冷媒圧縮機2に吸引される。   The expansion valve 4 is provided between the refrigerant water heat exchanger 3 and the refrigerant air heat exchanger 5, and depressurizes the refrigerant cooled by the refrigerant water heat exchanger 3 from high pressure to low pressure. To supply. The expansion valve 4 has a configuration in which the valve opening degree can be electrically adjusted, and is energized and controlled by the control device 30. The refrigerant air heat exchanger 5 receives air blown by a blower fan (not shown), evaporates the refrigerant decompressed by the expansion valve 4 by heat exchange with the atmosphere, and the refrigerant that has become a gas is sucked into the refrigerant compressor 2. Is done.

給湯関係の給湯水加熱回路K1は、給湯用水の加熱手段である上記冷媒水熱交換器3の給湯水通路3bと、給湯用水を循環させる給湯水循環ポンプ6と、給湯用水を貯留する貯湯タンク7とを環状に接続して構成される。給湯水循環ポンプ6は、図1に示すように、貯湯タンク7内の下部に設けられた低温水流出入部7bから冷水を冷媒水熱交換器3の給湯水通路3bを通して貯湯タンク7の上部に設けられた温水流出入部7cから還流する様に水流を発生させる。この給湯水循環ポンプ6は、内蔵するモータの回転数に応じて流水量を調節することができ、制御装置30により通電制御される。   A hot water supply heating circuit K1 related to hot water supply includes a hot water supply passage 3b of the refrigerant water heat exchanger 3 serving as heating means for hot water supply, a hot water circulation pump 6 for circulating hot water, and a hot water storage tank 7 for storing hot water. Are connected in a ring shape. As shown in FIG. 1, the hot water circulating pump 6 is provided with cold water from the low temperature water inflow / outflow portion 7 b provided at the lower part of the hot water tank 7 through the hot water passage 3 b of the refrigerant water heat exchanger 3 and at the upper part of the hot water tank 7. A water flow is generated so as to recirculate from the warm water inflow / outflow portion 7c. The hot water circulation pump 6 can adjust the amount of flowing water according to the number of rotations of a built-in motor, and is energized and controlled by the control device 30.

貯湯タンク7は、耐蝕性に優れた金属製(例えばステンレス製)で断熱構造を有し、高温の給湯用水を長時間にわたって保温することができる。貯湯タンク7に貯留された給湯用水は、出湯時に低温水混合手段である給湯混合弁13で、貯湯タンク7上部の高温水流出部7fからの高温水と水道からの冷水とを混合して温度調節した後、主に台所や風呂などに給湯される。尚、給湯混合弁13も制御装置30により通電制御される。   The hot water storage tank 7 is made of metal (for example, made of stainless steel) excellent in corrosion resistance and has a heat insulating structure, and can keep hot hot water for a long time. The hot water supply water stored in the hot water storage tank 7 is mixed with hot water from the high temperature water outflow part 7f above the hot water storage tank 7 and cold water from the water supply by the hot water supply mixing valve 13 which is a low temperature water mixing means when the hot water is discharged. After adjustment, hot water is supplied mainly to kitchens and baths. The hot water mixing valve 13 is also energized and controlled by the control device 30.

次に、床暖房ユニット1cであるが、大きく分けてブラインを加熱するブライン加熱回路K2と、床暖器10へのブライン循環回路Bjとで構成されている。まず、ブラインを加熱するブライン加熱回路K2は、ブラインの加熱手段である水ブライン熱交換器8と、熱源水を循環させる給湯用循環ポンプ9と、高温水を貯留する先の貯湯タンク7とを環状に接続して構成される。   Next, although it is the floor heating unit 1c, it is comprised roughly by the brine heating circuit K2 which heats a brine, and the brine circulation circuit Bj to the floor warmer 10. FIG. First, a brine heating circuit K2 for heating brine includes a water brine heat exchanger 8 that is a heating means for brine, a hot water supply circulation pump 9 that circulates heat source water, and a hot water storage tank 7 that stores high-temperature water. It is configured by connecting in a ring.

水ブライン熱交換器8は、貯湯タンク7に貯留された高温水とブラインとを熱交換してブラインを加熱するもので、高温水通路8aに隣接してブライン通路8bが設けられ、その高温水通路8aを流れる温水の流れ方向とブライン通路8bを流れるブラインの流れ方向とが対向するように構成されている。   The water brine heat exchanger 8 heats the brine by exchanging the high temperature water stored in the hot water storage tank 7 and the brine, and a brine passage 8b is provided adjacent to the high temperature water passage 8a. The flow direction of the hot water flowing through the passage 8a and the flow direction of the brine flowing through the brine passage 8b are configured to face each other.

そして、本実施形態の要部として、水ブライン熱交換器8の上流側、特に貯湯タンク7の上部側となる部位(接続部)Aにて、給湯水加熱回路K1とブライン加熱回路K2とを
接続して連通させている。熱源水循環ポンプ9は、図1に示すように、貯湯タンク7内の上部に設けられた先の温水流出入部7cから高温水を水ブライン熱交換器8の高温水通路8aを通して貯湯タンク7の下方部に設けられた中温水流入部7eから還流する様に水流を発生させる。この熱源水循環ポンプ9は、内蔵するモータの回転数に応じて流水量を調節することができ、制御装置30により通電制御される。
And as the principal part of this embodiment, in the site | part (connection part) A which becomes the upper stream side of the water brine heat exchanger 8, especially the upper part of the hot water storage tank 7, the hot water supply heating circuit K1 and the brine heating circuit K2 are provided. Connect and communicate. As shown in FIG. 1, the heat source water circulation pump 9 is arranged below the hot water tank 7 through the hot water passage 8 a of the water brine heat exchanger 8 through the hot water inflow / outflow portion 7 c provided in the upper part of the hot water tank 7. A water flow is generated so as to recirculate from an intermediate temperature water inflow portion 7e provided in the portion. The heat source water circulation pump 9 can adjust the amount of flowing water according to the number of rotations of a built-in motor, and is energized and controlled by the control device 30.

また、床暖器10へのブライン循環回路Bjは、ブラインの加熱手段である上記水ブライン熱交換器8のブライン通路8bと、本実施例では暖房器として床暖房パネル10と、ブラインを循環させるブライン用循環ポンプ11とを環状に接続して構成される。床暖房パネル10は、住居居室の床板下に配置される配管パネルである。   Further, the brine circulation circuit Bj to the floor warmer 10 circulates the brine in the brine passage 8b of the water-brine heat exchanger 8, which is a heating means of the brine, and the floor heating panel 10 as a heater in this embodiment. The brine circulation pump 11 is connected in a ring shape. The floor heating panel 10 is a piping panel arranged below the floor board of a residential room.

また、ブライン用循環ポンプ11は、内蔵するモータの回転数に応じて循環させるブラインの流量を調節することができる。そして、このような床暖房は、人体が直接床材に触れても快適な暖房感が得られるよう、ブラインを熱く感じない60℃程度の温度で供給し、冷たく感じない40℃程度の温度で戻ってくるよう、流量を制御装置30により通電制御される。   Moreover, the circulation pump 11 for brine can adjust the flow volume of the brine circulated according to the rotation speed of the built-in motor. And such floor heating supplies the brine at a temperature of about 60 ° C. that does not feel hot, and a temperature of about 40 ° C. that does not feel cold so that a comfortable heating feeling can be obtained even if the human body touches the floor material directly. The flow rate is controlled by the control device 30 so as to return.

本貯湯式給湯暖房装置1の作動としては、周知のヒートポンプサイクルと給湯水加熱回路K1とを用いた貯湯運転と、周知のブライン加熱回路K2とブライン循環回路Bjとを用いた暖房運転以外に、本実施形態での特徴的な作動として沸き上げ暖房運転がある。これは、状況に応じて給湯水加熱回路K1で沸き上げた温水を先の接続部Aを介してブライン加熱回路K2へ直接循環させて暖房を行うものである。   The operation of the hot water storage hot water heater 1 is not limited to a hot water storage operation using a known heat pump cycle and a hot water heating circuit K1, and a heating operation using a known brine heating circuit K2 and a brine circulation circuit Bj. There is boiling heating operation as a characteristic operation in the present embodiment. According to the situation, the hot water boiled in the hot water supply heating circuit K1 is directly circulated to the brine heating circuit K2 through the previous connection portion A to perform heating.

これは、給湯水加熱回路K1の給湯水循環ポンプ6とブライン加熱回路K2の熱源水循環ポンプ9とで流量を略同等とすることにより、給湯水加熱回路K1で沸き上げた温水が貯湯タンク7をバイパスして、ほぼそのままブライン加熱回路K2へ流すことができる。これによりヒートポンプ熱源機1aでは、暖房に適した低い温度で沸き上げを行うことができるため、COPが向上する。   This is because the hot water boiled in the hot water heating circuit K1 bypasses the hot water tank 7 by making the flow rates substantially equal between the hot water circulation pump 6 of the hot water heating circuit K1 and the heat source water circulation pump 9 of the brine heating circuit K2. As a result, it can flow almost directly to the brine heating circuit K2. Thereby, in the heat pump heat source machine 1a, since it can boil at the low temperature suitable for heating, COP improves.

図7は、制御装置30における制御の一例を示すフローチャートである。ステップS1で直接暖房沸き上げを行うのか否かを判定し、その判定結果がYESで直接暖房沸き上げを行う場合はステップS2へ進み、ヒートポンプ熱源機1aでの沸き上げ熱量を暖房必要熱量に変更して運転を行い、ステップS1での判定結果がNOで直接暖房沸き上げを行わない通常沸き上げの場合はステップS3へ進み、ヒートポンプ熱源機1aでの沸き上げ熱量を通常の定格熱量に変更して運転を行うものである。   FIG. 7 is a flowchart illustrating an example of control in the control device 30. In step S1, it is determined whether or not direct heating and heating are performed. If the determination result is YES and direct heating and heating is performed, the process proceeds to step S2, and the amount of heating in the heat pump heat source unit 1a is changed to the amount of heat required for heating. If the result of determination in step S1 is NO and normal boiling is not performed, the process proceeds to step S3, and the amount of heating in the heat pump heat source unit 1a is changed to the normal rated heat amount. Driving.

ここで、本実施形態での特徴と、その効果についてまとめると、水ブライン熱交換器8よりも上流側において給湯水加熱回路K1とブライン加熱回路K2とを接続している。これによれば、貯湯タンク7を介さないで(つまり、貯湯タンク7内の貯湯と関係なく)直接ヒートポンプ熱源機1aで沸き上げた温水を暖房側へ供給することができるようになり、暖房で必要とする低い温度(40℃〜60℃程度)で沸き上げることができるようになることから、ヒートポンプ熱源機1aのCOPを向上させることができる。   Here, when the characteristics in this embodiment and the effects thereof are summarized, the hot water supply heating circuit K1 and the brine heating circuit K2 are connected upstream of the water brine heat exchanger 8. According to this, it becomes possible to supply hot water boiled directly by the heat pump heat source unit 1a to the heating side without passing through the hot water storage tank 7 (that is, regardless of the hot water storage in the hot water storage tank 7). Since it becomes possible to boil at a required low temperature (about 40 ° C. to 60 ° C.), the COP of the heat pump heat source apparatus 1a can be improved.

また、ヒートポンプ熱源機1aから貯湯タンク7へ貯湯する場合のヒートポンプ熱源機1aでの沸き上げ熱量に対し、ヒートポンプ熱源機1aから直接ブライン加熱回路K2へ温水を供給する場合のヒートポンプ熱源機1aでの沸き上げ熱量を低く制御するようにしている。これによれば、給湯および暖房への利用が両方可能な貯湯タンク7内への蓄熱する沸き上げ熱量は高くし、直接ブライン加熱回路K2へヒートポンプ熱源機1aからの湯を供給する場合は、暖房に消費される熱量程度に低くすることで、貯湯タンク7内へ無駄な熱量を入れることなく、残湯による二度沸かしによるCOP低下を防ぐ事ができる。   Moreover, in the heat pump heat source unit 1a when supplying hot water directly from the heat pump heat source unit 1a to the brine heating circuit K2 with respect to the amount of heat generated in the heat pump heat source unit 1a when the hot water is stored in the hot water storage tank 7 from the heat pump heat source unit 1a. The boiling heat amount is controlled to be low. According to this, when the amount of boiling heat to be stored in the hot water storage tank 7 that can be used for both hot water supply and heating is increased, and the hot water from the heat pump heat source unit 1a is directly supplied to the brine heating circuit K2, heating is performed. By reducing the amount of heat consumed to about 10%, it is possible to prevent the COP from being lowered by boiling twice with the remaining hot water without putting unnecessary heat into the hot water storage tank 7.

(第2実施形態)
図2は、本発明の第2実施形態における貯湯式給湯暖房装置の構成を示す模式図である。上述した第1実施形態と異なる特徴は、給湯水加熱回路K1で沸き上げた温水がブライン加熱回路K2へと循環する流量を調整する第1の流量調整手段14を有している。本実施形態では流量調整手段14として比例弁を用いていずれかの経路と他の2経路との連通割合を可変するとともに、給湯水加熱回路K1の給湯水循環ポンプ6とブライン加熱回路K2の熱源水循環ポンプ9との流量をコントロールすることにより、貯湯タンク7の上部へ貯湯しながら暖房を行ったり、貯湯タンク7の上部から高温水を補充しながら暖房を行ったりができるようになっている。
(Second Embodiment)
FIG. 2 is a schematic diagram illustrating a configuration of a hot water storage type hot water supply / room heating apparatus according to a second embodiment of the present invention. A feature different from the first embodiment described above is that there is a first flow rate adjusting means 14 that adjusts the flow rate at which the hot water boiled up in the hot water supply heating circuit K1 circulates to the brine heating circuit K2. In this embodiment, a proportional valve is used as the flow rate adjusting means 14 to change the communication ratio between one of the paths and the other two paths, and the hot water circulation pump 6 of the hot water heating circuit K1 and the heat source water circulation of the brine heating circuit K2. By controlling the flow rate with the pump 9, heating can be performed while storing hot water in the upper part of the hot water storage tank 7, and heating can be performed while replenishing high-temperature water from the upper part of the hot water storage tank 7.

但し、流量調節手段として(1)給湯水加熱回路K1と温水流出入部7c(2)温水流出入部7cとブライン加熱回路K2(3)給湯水加熱回路K1とブライン加熱回路K2との連通をそれぞれ切り換えることのできる切換弁14を用いても良い。これによれば、ヒートポンプ熱源機1aから貯湯タンク7へ高温水を貯湯するときに不要なブライン加熱回路K2側に高温水が流れたり、貯湯タンク7の高温水をブライン加熱回路K2に流しているときにヒートポンプ熱源機1a側から冷水を吸引したりすることを防ぐことができる。   However, as a flow rate adjusting means, (1) hot water supply heating circuit K1 and warm water inflow / outflow part 7c (2) hot water outflow inflow / inflow part 7c and brine heating circuit K2 (3) communication between hot water supply water heating circuit K1 and brine heating circuit K2 are switched. A switching valve 14 that can be used may be used. According to this, when storing high temperature water from the heat pump heat source device 1a to the hot water storage tank 7, high temperature water flows to the side of the brine heating circuit K2, which is unnecessary, or high temperature water from the hot water storage tank 7 is flowing to the brine heating circuit K2. Sometimes, it is possible to prevent cold water from being sucked from the heat pump heat source unit 1a side.

(第3実施形態)
図3は、本発明の第3実施形態における貯湯式給湯暖房装置の構成を示す模式図である。上述の実施形態と異なる特徴は、第1の流量調整手段14と上流側のヒートポンプ熱源機1aとの間の給湯水加熱回路K1と貯湯タンク7の上部とを連通させたバイパス流路15、もしくは第1の流量調整手段14と下流側の水ブライン熱交換器8との間のブライン加熱回路K2と貯湯タンク7の上部とを連通させたバイパス流路15のいずれかを設けている。尚、図示しないが、流量調節手段14と下流側の水ブライン熱交換器8との間のブライン加熱回路K2と貯湯タンク7の上部とを連通させたバイパス流路15を設けた構成であっても良い。
(Third embodiment)
Drawing 3 is a mimetic diagram showing the composition of the hot water storage type hot-water supply heating device in a 3rd embodiment of the present invention. A feature different from the above-described embodiment is that the hot water supply heating circuit K1 between the first flow rate adjusting means 14 and the upstream heat pump heat source unit 1a communicates with the upper part of the hot water storage tank 7, or One of the bypass flow paths 15 is provided in which the brine heating circuit K2 between the first flow rate adjusting means 14 and the downstream water brine heat exchanger 8 and the upper part of the hot water storage tank 7 communicate with each other. Although not shown in the figure, a bypass flow path 15 is provided in which the brine heating circuit K2 between the flow rate adjusting means 14 and the downstream water brine heat exchanger 8 and the upper part of the hot water storage tank 7 communicate with each other. Also good.

これによれば、給湯水加熱回路K1とブライン加熱回路K2とで流量に差を設けても、その流量差をバイパス流路15で吸収することができる。例えば給湯水加熱回路K1の流量>ブライン加熱回路K2の流量であれば、その流量差分をバイパス流路15から貯湯タンク7の上部へ貯湯しながら暖房を行うこともでき、給湯水加熱回路K1の流量<ブライン加熱回路K2の流量であればその流量差分、貯湯タンク7の上部からバイパス流路15を介して高温水を補充しながら暖房を行うこともできるようになる。   According to this, even if there is a difference in flow rate between the hot water heating circuit K1 and the brine heating circuit K2, the flow rate difference can be absorbed by the bypass flow path 15. For example, if the flow rate of the hot water heating circuit K1> the flow rate of the brine heating circuit K2, heating can be performed while hot water is stored from the bypass flow path 15 to the upper part of the hot water storage tank 7, and the hot water heating circuit K1 If the flow rate <the flow rate of the brine heating circuit K2, the difference between the flow rates, heating can be performed while replenishing high temperature water from the upper part of the hot water storage tank 7 via the bypass passage 15.

(第4実施形態)
図4は、本発明の第4実施形態における貯湯式給湯暖房装置の構成を示す模式図である。上述の実施形態と異なる特徴は、給湯水加熱回路K1とブライン加熱回路K2とを接続した部位Aと上流側のヒートポンプ熱源機1aとの間の給湯水加熱回路K1から貯湯タンク7の中間部7gへ分岐させた分岐流路16を設けると共に、その分岐部に沸き上げ流路切換手段17を配設し、制御装置30は状況に応じて沸き上げ流路切換手段17を制御するようにしている。
(Fourth embodiment)
FIG. 4 is a schematic diagram showing a configuration of a hot water storage type hot water supply / room heating apparatus according to a fourth embodiment of the present invention. A feature different from the above-described embodiment is that an intermediate portion 7g of the hot water storage tank 7 from the hot water heating circuit K1 between the portion A connecting the hot water heating circuit K1 and the brine heating circuit K2 and the upstream heat pump heat source unit 1a. A branch flow path 16 is provided, and a boiling flow path switching means 17 is provided at the branch portion. The control device 30 controls the boiling flow path switching means 17 according to the situation. .

尚、沸き上げ流路切換手段17は比例弁であっても切換弁であっても良い。これによれば、ヒートポンプ熱源機1aが低温で沸き上げているときで暖房での使用温水量が少ない場合など、過剰となった低温沸き上げ温水を中温水として貯湯タンク7の中間部7gに溜めることができる。   The boiling flow path switching means 17 may be a proportional valve or a switching valve. According to this, when the heat pump heat source unit 1a is boiling at a low temperature and the amount of hot water used for heating is small, excess low-temperature boiling hot water is stored in the intermediate portion 7g of the hot water storage tank 7 as intermediate temperature water. be able to.

(第5実施形態)
図5は、本発明の第5実施形態における貯湯式給湯暖房装置の構成を示す模式図である。上述の実施形態と異なる特徴は、中温水取り出し経路18と、その中温水取り出し経路18から取り出した中温水と貯湯タンク7の上部から取り出した高温水とを混合して給湯設定温度よりも所定温度以上高い温度に調節する中温水混合手段としての中温水混合弁12とを有し、その中温水混合弁12から流出する温水と給水路から供給される低温水とを低温水混合手段としての給湯混合弁13にて混合して給湯設定温度に調節する貯湯式給湯暖房装置において、先の分岐流路16を中温水取り出し経路18に接続している。
(Fifth embodiment)
FIG. 5 is a schematic diagram showing a configuration of a hot water storage type hot water supply / room heating device according to a fifth embodiment of the present invention. A feature different from the above-described embodiment is that the medium-temperature water take-out path 18, the medium-temperature water taken out from the medium-temperature water take-out path 18 and high-temperature water taken out from the upper part of the hot water storage tank 7 are mixed to have a predetermined temperature higher than the preset hot water supply temperature. The hot water supply valve as the low temperature water mixing means includes the intermediate temperature water mixing valve 12 as the intermediate temperature water mixing means for adjusting the temperature to a high temperature, and the hot water flowing out from the intermediate temperature water mixing valve 12 and the low temperature water supplied from the water supply channel. In the hot water storage type hot water supply and heating apparatus that is mixed by the mixing valve 13 and adjusted to the hot water supply set temperature, the previous branch flow path 16 is connected to the intermediate hot water take-out path 18.

これは、周知の中温水取り出しがあるものにおいてはその中温水取り出し経路18を用いて中温水の注入も行うようにするものである。配管経路を兼用した構成となるため貯湯タンク7の接続孔を増やすこともなく、簡易でコストを抑えることができる。また、貯湯タンク7の放熱ロスも抑えることができる。   In this case, in the case where there is a known medium-temperature water extraction, the intermediate-temperature water is also injected using the medium-temperature water extraction path 18. Since it becomes the structure which shared the piping path, it does not increase the connection hole of the hot water storage tank 7, and can suppress cost simply. Moreover, the heat loss of the hot water storage tank 7 can also be suppressed.

(第6実施形態)
図6は、本発明の第6実施形態における貯湯式給湯暖房装置の構成を示す模式図である。上述の実施形態と異なる特徴は、給湯水加熱回路K1とブライン加熱回路K2とを接続した部位Aよりも上流側において、ヒートポンプ熱源機1aとの間の給湯水加熱回路K1から分岐させた分岐流路16と、分岐流路16に流入する温水の流量と部位A側へと流れる温水の流量とを調整する第2の流量調整手段19とを有している。尚、第2の流量調整手段19は比例弁であっても切換弁であっても良い。これによれば、第2の流量調整手段19で暖房へ回す温水量と貯湯タンク7内へ注入する温水量とを調整することができる。
(Sixth embodiment)
FIG. 6 is a schematic diagram illustrating a configuration of a hot water storage type hot water supply / room heating device according to a sixth embodiment of the present invention. A feature different from the above-described embodiment is that the branched flow branched from the hot water heating circuit K1 between the heat pump heat source unit 1a on the upstream side of the portion A where the hot water heating circuit K1 and the brine heating circuit K2 are connected. The passage 16 and the second flow rate adjusting means 19 for adjusting the flow rate of the hot water flowing into the branch flow channel 16 and the flow rate of the hot water flowing toward the portion A side are provided. The second flow rate adjusting means 19 may be a proportional valve or a switching valve. According to this, the amount of hot water turned to heating by the second flow rate adjusting means 19 and the amount of hot water injected into the hot water storage tank 7 can be adjusted.

また、分岐流路16と貯湯タンク7の中間部7gとを接続する第1流路31と、分岐流路16と貯湯タンク7の下方部7iとを接続する第2流路32とを有し、第2の流量調整手段19は、分岐流路16から第1流路31へと流入する温水の流量および分岐流路16から第2の流路31へと流入する温水の流量を調整するようにしている。これによれば、貯湯タンク7内の残湯状況に応じて、中温水の注入位置を変えることができる。   Moreover, it has the 1st flow path 31 which connects the branch flow path 16 and the intermediate part 7g of the hot water storage tank 7, and the 2nd flow path 32 which connects the branch flow path 16 and the lower part 7i of the hot water storage tank 7. The second flow rate adjusting means 19 adjusts the flow rate of hot water flowing from the branch flow channel 16 to the first flow channel 31 and the flow rate of hot water flowing from the branch flow channel 16 to the second flow channel 31. I have to. According to this, according to the remaining hot water situation in the hot water storage tank 7, the injection position of the medium temperature water can be changed.

(第7実施形態)
図7は、本発明の第7実施形態における貯湯式給湯暖房装置の構成を示す模式図である。上述の実施形態と異なる特徴は、貯湯タンク7の下部側にて給湯水加熱回路K1とブライン加熱回路K2とを接続して連通させたバイパス流路20を設けると共に、制御装置30は、状況に応じてブライン加熱回路K2で熱交換を終えた温水をバイパス流路20を介して給湯水加熱回路K1へ循環させるようにしている。これによれば、貯湯タンク7内に不要な中温水を注入することが防げるため、残湯を増やしたり2度沸かししたりすることによるCOPの悪化を防ぐことができる。
(Seventh embodiment)
FIG. 7 is a schematic diagram illustrating a configuration of a hot water storage type hot water supply / room heating device according to a seventh embodiment of the present invention. A feature different from the above-described embodiment is that a bypass channel 20 is provided on the lower side of the hot water storage tank 7 to connect the hot water heating circuit K1 and the brine heating circuit K2 and communicate with each other. Accordingly, the hot water having been subjected to heat exchange in the brine heating circuit K2 is circulated to the hot water supply water heating circuit K1 via the bypass flow path 20. According to this, since it is possible to prevent unnecessary medium temperature water from being poured into the hot water storage tank 7, it is possible to prevent the deterioration of COP caused by increasing the remaining hot water or boiling it twice.

また、ブライン加熱回路K2から給湯水加熱回路K1へ温水を供給する場合のヒートポンプ熱源機1aでの沸き上げ熱量は、貯湯タンク7へ蓄熱する場合のヒートポンプ熱源機1aでの沸き上げ熱量よりも低く制御するようにしている。作動としては第1実施形態での図7のフローチャートと同様になる。これによれば、暖房で消費される熱量以上の熱量を貯湯タンク7へ蓄熱することが少なくなるため、残湯によるCOP低下を防ぐことができる。   In addition, when the hot water is supplied from the brine heating circuit K2 to the hot water supply heating circuit K1, the amount of heating in the heat pump heat source unit 1a is lower than the amount of heating in the heat pump heat source unit 1a when storing heat in the hot water storage tank 7. I try to control it. The operation is the same as the flowchart of FIG. 7 in the first embodiment. According to this, since the amount of heat more than the amount of heat consumed by heating is less likely to be stored in the hot water storage tank 7, it is possible to prevent a COP decrease due to the remaining hot water.

(第8実施形態)
図9は、本発明の第8実施形態における貯湯式給湯暖房装置の構成を示す模式図である。上述の実施形態と異なる特徴は、先のバイパス流路20のいずれか一端側、もしくは両端の接続部に流量調節手段21を配設すると共に、制御装置30は状況に応じて流量調節手段21を制御するようにしている。尚、この流量調節手段21は比例弁であっても切換弁であっても良い。これによれば、貯湯タンク7の下部に不要な中温水が流入したり、貯湯タンク7の下部から不要に冷水を吸引したりすることを防ぐことができる。
(Eighth embodiment)
FIG. 9 is a schematic diagram showing a configuration of a hot water storage type hot water supply / room heating device according to an eighth embodiment of the present invention. A feature different from the above-described embodiment is that the flow rate adjusting means 21 is disposed on one end side or both ends of the bypass flow path 20, and the control device 30 sets the flow rate adjusting means 21 according to the situation. I try to control it. The flow rate adjusting means 21 may be a proportional valve or a switching valve. According to this, it is possible to prevent unnecessary middle temperature water from flowing into the lower part of the hot water storage tank 7 and unnecessary suction of cold water from the lower part of the hot water storage tank 7.

(第9実施形態)
図10は、本発明の第9実施形態における貯湯式給湯暖房装置の構成を示す模式図である。上述の実施形態と異なる特徴は、給湯水加熱回路K1とブライン加熱回路K2とを接続して連通させた接続部Bを設けると共に、この接続部Bに流量調節手段21を配設し、制御装置30は状況に応じて流量調節手段21を制御するようにしている。
(Ninth embodiment)
FIG. 10 is a schematic diagram illustrating a configuration of a hot water storage type hot water supply / room heating device according to a ninth embodiment of the present invention. A feature different from the above-described embodiment is that a connecting portion B is provided in which the hot water heating circuit K1 and the brine heating circuit K2 are connected and communicated, and the flow rate adjusting means 21 is disposed in the connecting portion B, and the control device 30 controls the flow rate adjusting means 21 according to the situation.

本実施形態では流量調節手段として、いずれかの経路と他の2経路との連通割合を可変できる比例弁21を用いると共に、給湯水加熱回路K1の給湯水循環ポンプ6とブライン加熱回路K2の熱源水循環ポンプ9との流量をコントロールすることにより、中温水をヒートポンプ熱源機1aへ供給しながら、貯湯タンク7の下部へ中温水を戻したり、貯湯タンク7の下部から冷水を流出させたりができるようになっている。   In this embodiment, a proportional valve 21 that can change the communication ratio between one of the two paths and the other two paths is used as the flow rate adjusting means, and the hot water circulation pump 6 of the hot water heating circuit K1 and the heat source water circulation of the brine heating circuit K2 are used. By controlling the flow rate with the pump 9, the medium temperature water can be returned to the lower part of the hot water storage tank 7 and the cold water can be discharged from the lower part of the hot water storage tank 7 while supplying the intermediate temperature water to the heat pump heat source unit 1 a. It has become.

但し、流量調節手段として1)ブライン加熱回路K2と低温水流出入部7b2)低温水流出入部7bと給湯水加熱回路K13)ブライン加熱回路K2と給湯水加熱回路K1との連通をそれぞれ切り換えることのできる切換弁21を用いても良い。これによれば、構成が簡素になることよりコストを抑えることができる。   However, as the flow rate adjusting means, 1) the brine heating circuit K2 and the low temperature water inflow / outflow portion 7b2) the low temperature water outflow inflow portion 7b and the hot water heating circuit K13), the communication between the brine heating circuit K2 and the hot water heating circuit K1 can be switched respectively. A switching valve 21 may be used. According to this, cost can be held down because the configuration is simplified.

(その他の実施形態)
上述の実施形態では、給湯用水を加熱するヒートポンプサイクルにCO冷媒を用いた超臨界ヒートポンプサイクルを用いているが、本発明は上述した実施形態に限定されるものではなく、例えばフロン冷媒を用いたヒートポンプサイクルなどであっても良い。また、冷媒減圧手段として膨張弁を用いているが、エジェクタをはじめとする他の冷媒減圧手段を用いたヒートポンプサイクルであっても良い。
(Other embodiments)
In the above-described embodiment, the supercritical heat pump cycle using the CO 2 refrigerant is used for the heat pump cycle for heating the hot water supply water. However, the present invention is not limited to the above-described embodiment. It may be a heat pump cycle. Moreover, although the expansion valve is used as the refrigerant pressure reducing means, a heat pump cycle using other refrigerant pressure reducing means such as an ejector may be used.

また、ブライン循環回路Bjに一つの床暖房装置10を接続しているが、接続する暖房器の種類や数などの構成は異なるものであっても良い。また、各実施形態は組み合わせて構成しても良い。また、制御装置30として、冷媒回路Rと、給湯水加熱回路K1・ブライン加熱回路K2・ブライン循環回路Bjとを個別に制御する制御装置としても良い。   Moreover, although one floor heating apparatus 10 is connected to the brine circulation circuit Bj, the configuration such as the type and number of heaters to be connected may be different. Moreover, you may comprise each embodiment combining. The control device 30 may be a control device that individually controls the refrigerant circuit R, the hot water supply heating circuit K1, the brine heating circuit K2, and the brine circulation circuit Bj.

本発明の第1実施形態における貯湯式給湯暖房装置1の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the hot water storage type hot-water supply and heating apparatus 1 in 1st Embodiment of this invention. 本発明の第2実施形態における貯湯式給湯暖房装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the hot water storage type hot water supply and heating apparatus in 2nd Embodiment of this invention. 本発明の第3実施形態における貯湯式給湯暖房装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the hot water storage type hot-water supply heating apparatus in 3rd Embodiment of this invention. 本発明の第4実施形態における貯湯式給湯暖房装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the hot water storage type hot-water supply and heating apparatus in 4th Embodiment of this invention. 本発明の第5実施形態における貯湯式給湯暖房装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the hot water storage type hot-water supply heating apparatus in 5th Embodiment of this invention. 本発明の第6実施形態における貯湯式給湯暖房装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the hot water storage type hot-water supply heating apparatus in 6th Embodiment of this invention. 制御装置30における制御の一例を示すフローチャートである。3 is a flowchart illustrating an example of control in a control device 30. 本発明の第7実施形態における貯湯式給湯暖房装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the hot water storage type hot-water supply heating apparatus in 7th Embodiment of this invention. 本発明の第8実施形態における貯湯式給湯暖房装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the hot water storage type hot-water supply heating apparatus in 8th Embodiment of this invention. 本発明の第9実施形態における貯湯式給湯暖房装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the hot water storage type hot-water supply heating apparatus in 9th Embodiment of this invention. 従来の貯湯式給湯暖房装置1の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the conventional hot water storage type hot-water supply and heating apparatus. ヒートポンプ熱源機1aにおける沸き上げ温度と成績係数(COP)との関係を示すグラフである。It is a graph which shows the relationship between the boiling temperature and coefficient of performance (COP) in the heat pump heat source machine 1a.

符号の説明Explanation of symbols

1a…ヒートポンプ熱源機
2…冷媒圧縮機
3…冷媒水熱交換器
4…膨張弁(冷媒減圧手段)
5…冷媒空気熱交換器
7…貯湯タンク
7g…中間部
7i…下方部
8…水ブライン熱交換器
10…床暖房装置(暖房器)
12…中温水混合弁(中温水混合手段)
13…給湯混合弁(低温水混合手段)
14…比例弁、切換弁(流量調節手段)
15…バイパス流路
16…分岐流路
17…比例弁、切換弁(沸き上げ流路切換手段)
18…中温水取り出し経路
19…比例弁、切換弁(流量調節手段)
20…バイパス流路
21…比例弁、切換弁(流量調節手段)
30…制御装置(制御手段)
31…第1流路
33…第2流路
A…接続部(部位)
B…接続部(部位)
Bj…ブライン循環回路
K1…給湯水加熱回路
K2…ブライン加熱回路
R…冷媒回路
DESCRIPTION OF SYMBOLS 1a ... Heat pump heat source machine 2 ... Refrigerant compressor 3 ... Refrigerant water heat exchanger 4 ... Expansion valve (refrigerant decompression means)
DESCRIPTION OF SYMBOLS 5 ... Refrigerant air heat exchanger 7 ... Hot water storage tank 7g ... Middle part 7i ... Lower part 8 ... Water brine heat exchanger 10 ... Floor heater (heater)
12 ... Medium warm water mixing valve (medium warm water mixing means)
13 ... Hot water mixing valve (low-temperature water mixing means)
14 ... Proportional valve, switching valve (flow rate adjusting means)
DESCRIPTION OF SYMBOLS 15 ... Bypass flow path 16 ... Branch flow path 17 ... Proportional valve, switching valve (boiling flow path switching means)
18 ... Medium hot water extraction path 19 ... Proportional valve, switching valve (flow rate adjusting means)
20 ... Bypass flow path 21 ... Proportional valve, switching valve (flow rate adjusting means)
30 ... Control device (control means)
31 ... 1st flow path 33 ... 2nd flow path A ... Connection part (part)
B ... Connection part (part)
Bj ... Brine circulation circuit K1 ... Hot water heating circuit K2 ... Brine heating circuit R ... Refrigerant circuit

Claims (12)

給湯用の高温水を貯湯する貯湯タンク(7)と、
冷媒圧縮機(2)・冷媒水熱交換器(3)・冷媒減圧手段(4)および冷媒空気熱交換器(5)を有する冷媒回路(R)を備えたヒートポンプ熱源機(1a)と、
前記貯湯タンク(7)の下部から取り出した低温水を前記ヒートポンプ熱源機(1a)によって沸き上げ、その沸き上げた高温水を前記貯湯タンク(7)の上部に戻す給湯水加熱回路(K1)と、
高温水を1次側に流通させて2次側のブラインを加熱する水ブライン熱交換器(8)と、
前記貯湯タンク(7)の上部から取り出した高温水を前記水ブライン熱交換器(8)に流通させた後、前記貯湯タンク(7)の下部に戻すブライン加熱回路(K2)と、
前記水ブライン熱交換器(8)にて加熱されたブラインを暖房器(10)との間で循環させるブライン循環回路(Bj)とを備えた貯湯式給湯暖房装置において、
前記水ブライン熱交換器(8)よりも上流側において前記給湯水加熱回路(K1)と前記ブライン加熱回路(K2)とを接続したことを特徴とする貯湯式給湯暖房装置。
A hot water storage tank (7) for storing hot water for hot water supply;
A heat pump heat source machine (1a) comprising a refrigerant circuit (R) having a refrigerant compressor (2), a refrigerant water heat exchanger (3), a refrigerant decompression means (4) and a refrigerant air heat exchanger (5);
A hot water heating circuit (K1) for boiling low temperature water taken out from the lower part of the hot water storage tank (7) by the heat pump heat source unit (1a) and returning the heated hot water to the upper part of the hot water storage tank (7); ,
A water brine heat exchanger (8) for circulating hot water to the primary side to heat the secondary brine;
A brine heating circuit (K2) for returning the hot water taken out from the upper part of the hot water storage tank (7) to the lower part of the hot water storage tank (7) after passing through the water brine heat exchanger (8);
In the hot water storage hot water supply / heater device comprising a brine circulation circuit (Bj) for circulating the brine heated in the water brine heat exchanger (8) between the heater (10),
The hot water storage type hot water supply and heating device, wherein the hot water supply water heating circuit (K1) and the brine heating circuit (K2) are connected upstream of the water brine heat exchanger (8).
前記給湯水加熱回路(K1)で沸き上げた温水が前記ブライン加熱回路(K2)へと循環する流量を調整する第1の流量調整手段(14)を有することを特徴とする請求項1記載の貯湯式暖房装置。   The first flow rate adjusting means (14) for adjusting a flow rate at which the hot water boiled in the hot water heating circuit (K1) is circulated to the brine heating circuit (K2). Hot water storage heater. 前記第1の流量調整手段(14)と上流側の前記ヒートポンプ熱源機(1a)との間の前記給湯水加熱回路(K1)と前記貯湯タンク(7)の上部とを連通させたバイパス流路(15)、もしくは前記第1の流量調整手段(14)と下流側の前記水ブライン熱交換器(8)との間の前記ブライン加熱回路(K2)と前記貯湯タンク(7)の上部とを連通させたバイパス流路(15)のいずれかを設けたことを特徴とする請求項2に記載の貯湯式給湯暖房装置。   A bypass flow path in which the hot water supply heating circuit (K1) between the first flow rate adjusting means (14) and the upstream heat pump heat source unit (1a) communicates with the upper part of the hot water storage tank (7). (15), or the brine heating circuit (K2) between the first flow rate adjusting means (14) and the downstream water brine heat exchanger (8) and the upper part of the hot water storage tank (7). The hot water storage type hot water supply and heating device according to claim 2, wherein any one of the bypass flow paths (15) communicated with each other is provided. 前記給湯水加熱回路(K1)と前記ブライン加熱回路(K2)とを接続した部位(A)と上流側の前記ヒートポンプ熱源機(1a)との間の前記給湯水加熱回路(K1)から前記貯湯タンク(7)の中間部(7g)へ分岐させた分岐流路(16)を設けると共に、その分岐部に沸き上げ流路切換手段(17)を配設し、前記制御手段(30)は状況に応じて前記沸き上げ流路切換手段(17)を制御することを特徴とする請求項1ないし3のうちのいずれか1つに記載の貯湯式給湯暖房装置。   From the hot water supply heating circuit (K1) between the portion (A) connecting the hot water supply heating circuit (K1) and the brine heating circuit (K2) and the heat pump heat source machine (1a) on the upstream side, the hot water storage A branch flow path (16) branched to the intermediate part (7g) of the tank (7) is provided, and a boiling flow path switching means (17) is disposed at the branch part, and the control means (30) The hot water storage type hot water supply and heating device according to any one of claims 1 to 3, wherein the boiling flow path switching means (17) is controlled according to the control. 中温水取り出し経路(18)と、前記中温水取り出し経路(18)から取り出した中温水と前記貯湯タンク(7)の上部から取り出した高温水とを混合して給湯設定温度よりも所定温度以上高い温度に調節する中温水混合手段(12)とを有し、前記中温水混合手段(12)から流出する温水と給水路から供給される低温水とを低温水混合手段(13)にて混合して給湯設定温度に調節する貯湯式給湯暖房装置において、
前記分岐流路(16)を前記中温水取り出し経路(18)に接続したことを特徴とする請求項4に記載の貯湯式給湯暖房装置。
A medium temperature water take-out path (18), medium temperature water taken out from the medium temperature water take-out path (18) and hot water taken out from the upper part of the hot water storage tank (7) are mixed to be higher than a preset temperature by a predetermined temperature. Medium temperature water mixing means (12) for adjusting the temperature, and hot water flowing out from the medium temperature water mixing means (12) and low temperature water supplied from the water supply channel are mixed by the low temperature water mixing means (13). In hot water storage hot water heaters that adjust to the hot water set temperature,
The hot water storage type hot water supply and heating device according to claim 4, wherein the branch flow path (16) is connected to the intermediate hot water extraction path (18).
前記給湯水加熱回路(K1)と前記ブライン加熱回路(K2)とを接続した部位(A)よりも上流側において、前記ヒートポンプ熱源機(1a)との間の前記給湯水加熱回路(K1)から分岐させた分岐流路(16)と、
前記分岐流路(16)に流入する温水の流量と前記部位(A)側へと流れる温水の流量とを調整する第2の流量調整手段(19)とを有することを特徴とする請求項1ないし5の何れか1つに記載の貯湯式給湯暖房装置。
From the hot water supply heating circuit (K1) to the heat pump heat source unit (1a) on the upstream side of the portion (A) where the hot water supply heating circuit (K1) and the brine heating circuit (K2) are connected. A branched flow path (16) branched;
The second flow rate adjusting means (19) for adjusting the flow rate of the hot water flowing into the branch flow path (16) and the flow rate of the hot water flowing toward the part (A) side. The hot water storage type hot-water supply / heating device according to any one of 5 to 5.
前記分岐流路(16)と前記貯湯タンク(7)の中間部(7g)とを接続する第1流路(31)と、
前記分岐流路(16)と前記貯湯タンク(7)の下方部(7i)とを接続する第2流路(32)とを有し、
前記第2の流量調整手段(19)は、前記分岐流路(16)から前記第1流路(31)へと流入する温水の流量および前記分岐流路(16)から前記第2の流路(31)へと流入する温水の流量を調整することを特徴とする請求項6に記載の貯湯式給湯暖房装置。
A first flow path (31) connecting the branch flow path (16) and an intermediate part (7g) of the hot water storage tank (7);
A second flow path (32) connecting the branch flow path (16) and a lower part (7i) of the hot water storage tank (7);
The second flow rate adjusting means (19) includes a flow rate of hot water flowing from the branch channel (16) to the first channel (31) and the second channel from the branch channel (16). The hot water storage hot-water heater according to claim 6, wherein the flow rate of the hot water flowing into (31) is adjusted.
前記ヒートポンプ熱源機(1a)から前記貯湯タンク(7)へ貯湯する場合の前記ヒートポンプ熱源機(1a)での沸き上げ熱量に対し、前記ヒートポンプ熱源機(1a)から直接前記ブライン加熱回路(K2)へ温水を供給する場合の前記ヒートポンプ熱源機(1a)での沸き上げ熱量を低く制御することを特徴とする請求項1ないし請求項7のいずれか1つに記載の貯湯式給湯暖房装置。   The brine heating circuit (K2) directly from the heat pump heat source unit (1a) with respect to the amount of boiling heat in the heat pump heat source unit (1a) when hot water is stored from the heat pump heat source unit (1a) to the hot water storage tank (7). The hot water storage type hot water supply and heating device according to any one of claims 1 to 7, wherein the amount of heat generated in the heat pump heat source unit (1a) when hot water is supplied to the hot water is controlled to be low. 給湯用の高温水を貯湯する貯湯タンク(7)と、
冷媒圧縮機(2)・冷媒水熱交換器(3)・冷媒減圧手段(4)および冷媒空気熱交換器(5)を有する冷媒回路(R)を備えたヒートポンプ熱源機(1a)と、
前記貯湯タンク(7)の下部から取り出した低温水を前記ヒートポンプ熱源機(1a)によって沸き上げ、その沸き上げた高温水を前記貯湯タンク(7)の上部に戻す給湯水加熱回路(K1)と、
高温水を1次側に流通させて2次側のブラインを加熱する水ブライン熱交換器(8)と、
前記貯湯タンク(7)の上部から取り出した高温水を前記水ブライン熱交換器(8)に流通させた後、前記貯湯タンク(7)の下部に戻すブライン加熱回路(K2)と、
前記水ブライン熱交換器(8)にて加熱されたブラインを暖房器(10)との間で循環させるブライン循環回路(Bj)と、
前記冷媒回路(R)・前記給湯水加熱回路(K1)・前記ブライン加熱回路(K2)および前記ブライン循環回路(Bj)の循環を制御する制御手段(30)とを備えた貯湯式給湯暖房装置において、
前記貯湯タンク(7)の下部側にて前記給湯水加熱回路(K1)と前記ブライン加熱回路(K2)とを接続して連通させたバイパス流路(20)を設けると共に、
前記制御手段(30)は、状況に応じて前記ブライン加熱回路(K2)で熱交換を終えた温水を前記バイパス流路(20)を介して前記給湯水加熱回路(K1)へ循環させることを特徴とする貯湯式給湯暖房装置。
A hot water storage tank (7) for storing hot water for hot water supply;
A heat pump heat source machine (1a) comprising a refrigerant circuit (R) having a refrigerant compressor (2), a refrigerant water heat exchanger (3), a refrigerant decompression means (4) and a refrigerant air heat exchanger (5);
A hot water heating circuit (K1) for boiling low temperature water taken out from the lower part of the hot water storage tank (7) by the heat pump heat source unit (1a) and returning the heated hot water to the upper part of the hot water storage tank (7); ,
A water brine heat exchanger (8) for circulating hot water to the primary side to heat the secondary brine;
A brine heating circuit (K2) for returning the hot water taken out from the upper part of the hot water storage tank (7) to the lower part of the hot water storage tank (7) after passing through the water brine heat exchanger (8);
A brine circulation circuit (Bj) for circulating the brine heated in the water brine heat exchanger (8) to and from the heater (10);
A hot water storage type hot water supply and heating apparatus comprising: the refrigerant circuit (R), the hot water supply water heating circuit (K1), the brine heating circuit (K2), and a control means (30) for controlling circulation of the brine circulation circuit (Bj). In
While providing a bypass flow path (20) connecting the hot water supply heating circuit (K1) and the brine heating circuit (K2) in communication with each other on the lower side of the hot water storage tank (7),
The control means (30) circulates the hot water having been subjected to heat exchange in the brine heating circuit (K2) according to the situation to the hot water supply heating circuit (K1) through the bypass channel (20). A hot water storage / heating system featuring hot water storage.
前記バイパス流路(20)のいずれか一端側、もしくは両端の接続部に流量調節手段(21)を配設すると共に、前記制御手段(30)は状況に応じて前記流量調節手段(21)を制御することを特徴とする請求項9に記載の貯湯式給湯暖房装置。   The flow rate adjusting means (21) is disposed at one end side or both ends of the bypass flow path (20), and the control means (30) sets the flow rate adjusting means (21) according to the situation. It controls, The hot water storage type hot-water supply heating apparatus of Claim 9 characterized by the above-mentioned. 前記給湯水加熱回路(K1)と前記ブライン加熱回路(K2)とを接続して連通させた部位(B)を設けると共に、前記部位(B)に流量調節手段(21)を配設し、前記制御手段(30)は状況に応じて前記流量調節手段(21)を制御することを特徴とする請求項9に記載の貯湯式給湯暖房装置。   A portion (B) that connects and communicates with the hot water heating circuit (K1) and the brine heating circuit (K2) is provided, and a flow rate adjusting means (21) is disposed in the portion (B), The hot water storage hot water heater according to claim 9, wherein the control means (30) controls the flow rate adjusting means (21) according to the situation. 前記ブライン加熱回路(K2)から前記給湯水加熱回路(K1)へ温水を供給する場合の前記ヒートポンプ熱源機(1a)での沸き上げ熱量は、前記貯湯タンク(7)へ蓄熱する場合の前記ヒートポンプ熱源機(1a)での沸き上げ熱量よりも低く制御することを特徴とする請求項9ないし請求項11のいずれか1つに記載の貯湯式給湯暖房装置。   When the hot water is supplied from the brine heating circuit (K2) to the hot water supply water heating circuit (K1), the amount of heat generated in the heat pump heat source unit (1a) is the heat pump in the case where heat is stored in the hot water storage tank (7). The hot water storage type hot water supply / room heating apparatus according to any one of claims 9 to 11, wherein the amount of heat generated by the heat source unit (1a) is controlled to be lower.
JP2004253424A 2004-08-31 2004-08-31 Hot water storage hot water heater Expired - Fee Related JP4238801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004253424A JP4238801B2 (en) 2004-08-31 2004-08-31 Hot water storage hot water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004253424A JP4238801B2 (en) 2004-08-31 2004-08-31 Hot water storage hot water heater

Publications (2)

Publication Number Publication Date
JP2006071151A true JP2006071151A (en) 2006-03-16
JP4238801B2 JP4238801B2 (en) 2009-03-18

Family

ID=36151974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004253424A Expired - Fee Related JP4238801B2 (en) 2004-08-31 2004-08-31 Hot water storage hot water heater

Country Status (1)

Country Link
JP (1) JP4238801B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020100A (en) * 2006-07-11 2008-01-31 Denso Corp Hot water storage type hot water supply heating device
JP2008032291A (en) * 2006-07-27 2008-02-14 Denso Corp Heat pump type hot water supply heating device
JP2008138925A (en) * 2006-12-01 2008-06-19 Hitachi Appliances Inc Heat pump water heater
JP2008286508A (en) * 2007-05-21 2008-11-27 Denso Corp Storage type hotwater supply heating device
US20130145786A1 (en) * 2010-09-21 2013-06-13 Mitsubishi Electric Corporation Cooling and hot water supply system and cooling and hot water supply method
JP2014222120A (en) * 2013-05-13 2014-11-27 東芝キヤリア株式会社 Heat pump water heater
JP2015087054A (en) * 2013-10-30 2015-05-07 株式会社デンソー Hot water supply device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020100A (en) * 2006-07-11 2008-01-31 Denso Corp Hot water storage type hot water supply heating device
JP2008032291A (en) * 2006-07-27 2008-02-14 Denso Corp Heat pump type hot water supply heating device
JP2008138925A (en) * 2006-12-01 2008-06-19 Hitachi Appliances Inc Heat pump water heater
JP2008286508A (en) * 2007-05-21 2008-11-27 Denso Corp Storage type hotwater supply heating device
US20130145786A1 (en) * 2010-09-21 2013-06-13 Mitsubishi Electric Corporation Cooling and hot water supply system and cooling and hot water supply method
US9651267B2 (en) * 2010-09-21 2017-05-16 Mitsubishi Electric Corporation Cooling and hot water supply system and cooling and hot water supply method
JP2014222120A (en) * 2013-05-13 2014-11-27 東芝キヤリア株式会社 Heat pump water heater
JP2015087054A (en) * 2013-10-30 2015-05-07 株式会社デンソー Hot water supply device

Also Published As

Publication number Publication date
JP4238801B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
KR100524578B1 (en) Heat pump type hot water supply heater
JP4407643B2 (en) Hot water storage water heater
JP5245217B2 (en) Hot water storage hot water heater
JP4238801B2 (en) Hot water storage hot water heater
JP4231863B2 (en) Heat pump water heater bathroom heating dryer
JP4726573B2 (en) Heat pump hot water floor heater
JP4062930B2 (en) Multi-function water heater
JP3900098B2 (en) Water heater
JP4290115B2 (en) Hot water storage hot water heater
JP4502020B2 (en) Heating and hot water supply equipment
JP4750834B2 (en) Hot water storage hot water heater
JP2016125726A (en) Thermal apparatus
JP2009097826A (en) Heat pump hot water supply device
JP3842170B2 (en) Heat pump water heater
JP3888117B2 (en) Hot water storage water heater
JP2009264716A (en) Heat pump hot water system
JP2008286508A (en) Storage type hotwater supply heating device
JP4790538B2 (en) Hot water storage hot water heater
JP4101190B2 (en) Hot water storage water heater
JP2004232912A (en) Heat pump water heater
JP2004278987A (en) Heat pump type water heater
JP2014156986A (en) Heating system
JP5741256B2 (en) Hot water storage water heater
JP2004205116A (en) Cold/hot water generator and its control method
JP2007333335A (en) Hot water storage type hot water supply heating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees