JP4823501B2 - Heat pump type heating device - Google Patents

Heat pump type heating device Download PDF

Info

Publication number
JP4823501B2
JP4823501B2 JP2004282309A JP2004282309A JP4823501B2 JP 4823501 B2 JP4823501 B2 JP 4823501B2 JP 2004282309 A JP2004282309 A JP 2004282309A JP 2004282309 A JP2004282309 A JP 2004282309A JP 4823501 B2 JP4823501 B2 JP 4823501B2
Authority
JP
Japan
Prior art keywords
fluid
heating
refrigerant
heat exchanger
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004282309A
Other languages
Japanese (ja)
Other versions
JP2006097930A (en
Inventor
丈二 黒木
進 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004282309A priority Critical patent/JP4823501B2/en
Publication of JP2006097930A publication Critical patent/JP2006097930A/en
Application granted granted Critical
Publication of JP4823501B2 publication Critical patent/JP4823501B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Description

本発明は、低温側の熱を高温側に移動させて流体を加熱する蒸気圧縮式のヒートポンプサイクルを用いた加熱装置に関するものであり、特に低圧側熱交換器の除霜運転に関するものであり、給湯装置や暖房装置などヒートポンプ式加熱装置で発生する温熱を利用する装置に適用して有効である。   The present invention relates to a heating apparatus using a vapor compression heat pump cycle that heats a fluid by moving heat on a low temperature side to a high temperature side, and particularly relates to a defrosting operation of a low pressure side heat exchanger, It is effective when applied to a device that uses the heat generated by a heat pump heating device such as a hot water supply device or a heating device.

図5・図6は、従来の技術に係るヒートポンプ式加熱装置100の模式図であり、給湯装置や暖房装置など主に温熱を利用する一般的な装置の熱源機として利用されている。そして、図5のヒートポンプ式加熱装置100において、低温となる低圧側熱交換器(冷媒蒸発器)40に発生した霜を除去する場合、つまり除霜運転時には、膨脹弁30を略全開として圧縮機10から高圧側熱交換器20を経て流出する高圧冷媒(ホットガス)を減圧することなく低圧側熱交換器40に導き、低圧側熱交換器40を加熱して徐霜している。   5 and 6 are schematic views of a heat pump type heating apparatus 100 according to the prior art, and are used as a heat source device of a general apparatus that mainly uses warm heat such as a hot water supply apparatus and a heating apparatus. In the heat pump type heating apparatus 100 of FIG. 5, when removing the frost generated in the low-pressure side heat exchanger (refrigerant evaporator) 40, which is at a low temperature, that is, during the defrosting operation, the expansion valve 30 is substantially fully opened. The high-pressure refrigerant (hot gas) flowing out from 10 through the high-pressure side heat exchanger 20 is guided to the low-pressure side heat exchanger 40 without reducing the pressure, and the low-pressure side heat exchanger 40 is heated and gradually frosted.

また、図6に示すヒートポンプ式加熱装置100において除霜運転をする場合には、膨脹弁30を閉じた状態でホットガスバイパス流路60を開閉弁61で開き、高圧側熱交換器20をバイパスさせて圧縮機10からのホットガスを低圧側熱交換器40に導き、低圧側熱交換器40を加熱して徐霜している。   When the defrosting operation is performed in the heat pump heating device 100 shown in FIG. 6, the hot gas bypass passage 60 is opened by the on-off valve 61 with the expansion valve 30 closed, and the high-pressure side heat exchanger 20 is bypassed. Thus, the hot gas from the compressor 10 is guided to the low-pressure side heat exchanger 40, and the low-pressure side heat exchanger 40 is heated and gradually frosted.

この他、除霜運転に関する従来技術として、特許文献1の貯湯式給湯器では、除霜運転中に水配管が凍結するのを防止するため、除霜運転に入る前に給湯用水加熱(凍結防止)運転を行い、水配管内の水温を上げた後に除霜運転に移行することが示されている。また、特許文献2の蒸気圧縮式冷凍機では、低圧側熱交換器と気液分離器とのそれぞれにホットガスを供給することで除霜運転時間の短縮を図ったものが示されている。
特開2003−139405号公報 特開2004−163084号公報
In addition, as a conventional technique related to the defrosting operation, in the hot water storage type water heater disclosed in Patent Document 1, water heating for hot water supply (prevention of freezing) is performed before entering the defrosting operation in order to prevent the water pipe from freezing during the defrosting operation. ) It is shown that the operation shifts to the defrosting operation after raising the water temperature in the water pipe. Moreover, in the vapor compression refrigerator of patent document 2, what shortened the defrost operation time is shown by supplying hot gas to each of a low pressure side heat exchanger and a gas-liquid separator.
JP 2003-139405 A JP 2004-163084 A

しかしながら、従来技術のヒートポンプ式加熱装置を貯湯式給湯装置に利用した場合、除霜運転中は給湯用水加熱を行わないため、上記したように除霜運転前に水配管内の給湯用水加熱(凍結防止)運転を行わなければならず、除霜のための時間が長くかかり、貯湯タンクへの沸き上げ時間が長くかかるという問題点がある。   However, when the heat pump type heating device of the prior art is used for the hot water storage type hot water supply device, the hot water supply water heating is not performed during the defrosting operation. (Prevention) The operation must be performed, and it takes a long time for defrosting, and there is a problem that it takes a long time to boil the hot water storage tank.

また、従来技術のヒートポンプ式加熱装置を床暖房などの暖房装置に利用した場合、除霜運転中はブライン加熱を行わないため、熱源水が途切れて暖房フィーリングが悪くなるという問題点がある。また、除霜運転終了後に再加熱を行う際、暖房立ち上がりに時間遅れを生じるという問題がある。本発明は、上記従来技術の問題点に鑑みて成されたものであり、その目的は、除霜運転と流体加熱運転とを並行して行うことのできるヒートポンプ式加熱装置を提供することにある。   Further, when the heat pump type heating device of the prior art is used for a heating device such as floor heating, since the brine heating is not performed during the defrosting operation, there is a problem that the heat source water is interrupted and the heating feeling is deteriorated. Moreover, when performing reheating after completion | finish of a defrost operation, there exists a problem that a time delay arises in heating start-up. The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a heat pump type heating apparatus capable of performing a defrosting operation and a fluid heating operation in parallel. .

本発明は上記目的を達成するために、下記の技術的手段を採用する。すなわち、請求項1に記載の発明では、低温側の熱を高温側に移動させて流体を加熱する蒸気圧縮式のヒートポンプサイクルを用いた加熱装置であり、冷媒を吸入圧縮する圧縮機(10)と、圧縮機(10)が吐出する高温高圧冷媒と被加熱流体とを熱交換させる高圧側熱交換器(20)と、高圧側熱交換器(20)から流出した冷媒を等エンタルピ的に減圧膨脹させるとともに、高圧側冷媒の圧力が所定範囲となるように、その絞り開度が可変制御される可変式減圧手段(30)と、可変式減圧手段(30)にて減圧された低圧冷媒を蒸発させる低圧側熱交換器(40)とを環状に接続した冷媒回路(R1)と、圧縮機(10)の吐出側と高圧側熱交換器(20)との間から分岐して、可変式減圧手段(30)と低圧側熱交換器(40)との間に接続したホットガスバイパス流路(60)と、ホットガスバイパス流路(60)の流通を制御する開閉手段(61)と、高圧側熱交換器(20)に接続され、被加熱流体が循環する流体回路(R2)と、流体回路(R2)に接続された貯湯タンク(70)もしくは暖房器具(90)と、貯湯タンク(70)もしくは暖房器具(90)をバイパスする流体短絡路(72)と、被加熱流体の流れを貯湯タンク(70)もしくは暖房器具(90)側か流体短絡路(72)側かに切り替える流路切換手段(73)と、被加熱流体の温度を検出する被加熱流体温度センサ(21)と、被加熱流体温度センサ(21)で検出される被加熱流体の温度に応じて流路切換手段(73)を制御する制御手段(200)とを有し、
制御手段(200)は、可変式減圧手段(30)と開閉手段(61)との開度を調節し、圧縮機の回転数を除霜運転と被加熱流体を加熱する流体加熱運転とで必要な熱量を発生させる回転数に制御して、ホットガスバイパス流路(60)を介して圧縮機(10)が吐出する高温高圧冷媒を低圧側熱交換器(40)に供給して低圧側熱交換器(40)に発生した霜を除去する除霜運転と、圧縮機(10)が吐出する高温高圧冷媒を高圧側熱交換器(20)に供給して流路切換手段(73)によって切換えられて流体短絡路(72)を流れている被加熱流体を加熱する流体加熱運転とを同時に行い、かつ、このときに可変式減圧手段(30)の絞り開度を調整して変化させることを特徴としている。
In order to achieve the above object, the present invention employs the following technical means. That is, according to the first aspect of the present invention, there is provided a heating device using a vapor compression heat pump cycle that heats the fluid by moving the heat on the low temperature side to the high temperature side, and the compressor (10) that sucks and compresses the refrigerant. And the high-pressure side heat exchanger (20) for exchanging heat between the high-temperature and high-pressure refrigerant discharged from the compressor (10) and the heated fluid, and the refrigerant flowing out from the high-pressure side heat exchanger (20) is decompressed in an enthalpy manner. The variable pressure reducing means (30) whose throttle opening is variably controlled so that the pressure of the high pressure refrigerant falls within a predetermined range, and the low pressure refrigerant decompressed by the variable pressure reducing means (30) are expanded. The refrigerant circuit (R1) in which the low-pressure side heat exchanger (40) to be evaporated is connected in a ring shape, and the discharge side of the compressor (10) and the high-pressure side heat exchanger (20) are branched from the variable circuit. Decompression means (30) and low pressure side heat exchanger (40); The hot gas bypass flow path (60) connected in between, the opening / closing means (61) for controlling the flow of the hot gas bypass flow path (60), and the high pressure side heat exchanger (20) A circulating fluid circuit (R2), a hot water storage tank (70) or a heating appliance (90) connected to the fluid circuit (R2), and a fluid short circuit (72) bypassing the hot water storage tank (70) or the heating appliance (90) ), Flow path switching means (73) for switching the flow of the heated fluid from the hot water storage tank (70) or the heating appliance (90) side to the fluid short circuit (72) side, and the temperature of the heated fluid to be detected. A heating fluid temperature sensor (21), and a control means (200) for controlling the flow path switching means (73) according to the temperature of the heated fluid detected by the heated fluid temperature sensor (21),
The control means (200) adjusts the opening degree of the variable pressure reducing means (30) and the opening / closing means (61), and the rotational speed of the compressor is necessary for the defrosting operation and the fluid heating operation for heating the fluid to be heated. The high-temperature and high-pressure refrigerant discharged from the compressor (10) through the hot gas bypass channel (60) is supplied to the low-pressure side heat exchanger (40) by controlling the rotation speed to generate a large amount of heat, and the low-pressure side heat is supplied. A defrosting operation for removing frost generated in the exchanger (40) and a high-temperature and high-pressure refrigerant discharged from the compressor (10) are supplied to the high-pressure side heat exchanger (20) and switched by the flow path switching means (73). It is to have the same time-line and a fluid heating operation for heating the heated fluid which fluid shorted path (72) flows, and, by adjusting the throttle opening of the variable pressure reducing means (30) changing at this time It is characterized by.

この請求項1に記載の発明によれば、例えば本発明のヒートポンプ式加熱装置(100)を貯湯式給湯装置に利用した場合、除霜運転中に給湯用水加熱を行うことができるため、除霜運転前に流体回路(R2)内の給湯用水加熱(凍結防止)運転を行う必要が無くなり、除霜のための時間が短くなり、貯湯タンク(70)への沸き上げ時間も短くすることができる。これにより、必要貯湯熱量の早期確保、およびランニングコストの低減が可能となる。   According to the first aspect of the present invention, for example, when the heat pump type heating device (100) of the present invention is used in a hot water storage type hot water supply device, water heating for hot water supply can be performed during the defrosting operation. There is no need to perform hot water supply water heating (freezing prevention) operation in the fluid circuit (R2) before operation, the time for defrosting is shortened, and the boiling time to the hot water storage tank (70) can be shortened. . As a result, it is possible to ensure the necessary amount of stored hot water at an early stage and reduce running costs.

また、本発明のヒートポンプ式加熱装置(100)を床暖房などの暖房装置に利用した場合、除霜運転中にブライン加熱を行うことができるため、熱源水が途切れて暖房フィーリングを悪くするということを防ぐことができる。また、除霜運転終了後の再加熱することがなくなるため、暖房立ち上がりに時間遅れを生じるという問題も無くすことができる。   Moreover, when the heat pump type heating device (100) of the present invention is used for a heating device such as floor heating, brine heating can be performed during the defrosting operation, so that the heat source water is interrupted and the heating feeling is deteriorated. Can be prevented. Moreover, since reheating after completion | finish of a defrost operation is lose | eliminated, the problem of producing time delay in heating start-up can also be eliminated.

また、請求項2に記載の発明では、請求項1に記載のヒートポンプ式加熱装置において、可変式減圧手段として、高圧側熱交換器(20)から流出した冷媒を等エントロピ的に減圧膨張させるノズル(80a)と、ノズル(80a)の絞り開度を可変する可変絞り機構(80d)とを有し、ノズル(80a)から噴射する高い速度の冷媒流により低圧側熱交換器(40)にて蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して圧縮機(10)の吸入圧を上昇させる可変式エジェクタ(80)を用い、圧縮機(10)の吐出側と高圧側熱交換器(20)との間から分岐して、気液分離手段(50)と低圧側熱交換器(40)との間に接続したホットガスバイパス流路(60)としていることを特徴としている。 Further, in the invention according to claim 2, in the heat pump type heating device according to claim 1, as a variable pressure reducing means, a nozzle for decompressing and expanding the refrigerant flowing out from the high pressure side heat exchanger (20) in an isentropic manner. (80a) and a variable throttle mechanism (80d) that varies the throttle opening of the nozzle (80a), and the low-pressure heat exchanger (40) uses a high-speed refrigerant flow injected from the nozzle (80a). A variable ejector (80) that sucks vaporized refrigerant and converts the expansion energy into pressure energy to increase the suction pressure of the compressor (10), and uses the discharge side and the high pressure side of the compressor (10). branched from between the heat exchanger (20), that it is a gas-liquid separating means (50) hot gas bypass passage connected between the low-pressure side heat exchanger (40) and (60) It is a feature.

この請求項2に記載の発明によれば、冷凍サイクルの低圧側を昇圧し、加熱能力を向上させるエジェクタ(80)を減圧手段として用いたエジェクタサイクルを使用することで、除霜運転と流体加熱運転とを同時に行ううえで、必要加熱能力の確保に有利となる。 According to the second aspect of the present invention, the defrosting operation and the fluid heating are performed by using the ejector cycle in which the low pressure side of the refrigeration cycle is pressurized and the ejector (80) for improving the heating capacity is used as the decompression means. It is advantageous for securing the necessary heating capacity when performing the operation at the same time.

また、請求項3に記載の発明では、請求項1またはに記載のヒートポンプ式加熱装置において、除霜と同時に行う流体加熱により、高圧側熱交換器(20)と貯湯タンク(70)もしくは暖房器具(90)とを接続する流体回路(R2)の凍結防止を行うことを特徴としている。 Further, in the invention according to claim 3, Oite the heat pump heating equipment according to claim 1 or 2, the fluid heating performed simultaneously with defrosting, the high-pressure side heat exchanger (20) and the hot water storage tank (70 ) Or the freezing of the fluid circuit (R2) connected to the heating appliance (90).

この請求項3に記載の発明によれば、例えば本発明のヒートポンプ式加熱装置(100)を貯湯式給湯装置に利用した場合、除霜運転中に給湯用水加熱を行うことができるため、高圧側熱交換器(20)と貯湯タンク(70)とを接続する流体回路(R2)の凍結防止に利用することができる。また、本発明のヒートポンプ式加熱装置(100)を床暖房などの暖房装置に利用した場合、除霜運転中にブライン加熱を行うことができるため、高圧側熱交換器(20)と暖房器具(90)とを接続する流体回路(R2)の凍結防止に利用することができる。   According to the third aspect of the present invention, for example, when the heat pump type heating device (100) of the present invention is used in a hot water storage type hot water supply device, hot water supply water heating can be performed during the defrosting operation. This can be used to prevent freezing of the fluid circuit (R2) connecting the heat exchanger (20) and the hot water storage tank (70). In addition, when the heat pump heating device (100) of the present invention is used for a heating device such as floor heating, brine heating can be performed during the defrosting operation, so that the high-pressure side heat exchanger (20) and the heating appliance ( 90) can be used to prevent freezing of the fluid circuit (R2).

また、請求項4に記載の発明では、請求項1ないし3のいずれかに記載のヒートポンプ式加熱装置において、制御手段(200)は、除霜と同時に行う流体加熱により流体回路(R2)の凍結防止を行う場合は、流体流れが流体短絡路(72)側となるよう流路切換手段(73)を制御することを特徴としている。 Further, in the invention according to claim 4, Oite to the heat pump type heating equipment according to any one of claims 1 to 3, the control means (200), the fluid circuit by fluid heating performing defrosting at the same time as ( When the anti-freezing of R2) is performed, the flow path switching means (73) is controlled so that the fluid flow is on the fluid short circuit (72) side.

この請求項4に記載の発明によれば、除霜運転中に流体回路(R2)の凍結防止のために加熱した低温度の水を、貯湯タンク(70)内に流入させて貯湯温度を乱すことを防ぐことができる。また、流体回路(R2)の凍結防止のために加熱した低温度のブラインを、暖房器具(90)内に流入させて暖房フィーリングを悪くするということを防ぐことができる。   According to the fourth aspect of the present invention, low temperature water heated to prevent freezing of the fluid circuit (R2) during the defrosting operation flows into the hot water storage tank (70) to disturb the hot water storage temperature. Can be prevented. Moreover, it can prevent that the low temperature brine heated in order to prevent freezing of a fluid circuit (R2) flows in into a heating appliance (90), and worsens a heating feeling.

また、請求項5に記載の発明では、請求項1ないし4のいずれかに記載のヒートポンプ式加熱装置において、除霜と同時に行う流体加熱により、高圧側熱交換器(20)と流体回路(R2)で接続された暖房器具(90)を用いて暖房を行うことを特徴としている。この請求項5に記載の発明によれば、熱源水が途切れることがなく、フィーリングの良い暖房を行うことができる。 Further, in the invention according to claim 5, Oite to the heat pump type heating equipment according to any one of claims 1 to 4, the fluid heating performed simultaneously with defrosting, the high-pressure side heat exchanger (20) fluid Heating is performed using the heating appliance (90) connected by the circuit (R2). According to the fifth aspect of the present invention, the heat source water is not interrupted, and heating with good feeling can be performed.

また、請求項6に記載の発明では、請求項1ないし5のいずれかに記載のヒートポンプ式加熱装置において、制御手段(200)は、除霜と流体加熱とを同時に行う場合、圧縮機(10)の回転数を除霜と流体加熱とで必要な熱量を発生させる回転数に制御することを特徴としている。この請求項6に記載の発明によれば、省エネルギーとすることができる。 Further, in the invention according to claim 6, Oite to the heat pump type heating equipment according to any one of claims 1 to 5, the control means (200), when performing defrosting fluid heated at the same time, compression The number of revolutions of the machine (10) is controlled to a number of revolutions that generates a necessary amount of heat by defrosting and fluid heating. According to the sixth aspect of the invention, it is possible to save energy.

また、請求項7に記載の発明では、請求項1ないしのいずれかに記載のヒートポンプ式加熱装置において、低温側の熱を高温側に移動させる場合には、圧縮機(10)の吐出圧を冷媒の臨界圧力以上とすることを特徴としている。この請求項7に記載の発明によれば、冷凍サイクルの高圧側で高温冷媒と熱交換し、被加熱流体の温度を高くすることが可能となるため、凍結防止運転の信頼性を向上させることができる。また、請求項8に記載の発明では、高圧側熱交換器(20)に流入する被加熱流体の温度を検出する入口側温度センサ(21)を有し、制御手段(200)は、入口側温度センサ(21)で検出される被加熱流体の温度に応じて流路切換手段(73)を制御することを特徴としている。ちなみに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。 Further, in the invention according to claim 7, in case of moving Oite to the heat pump type heating equipment of any crab of claims 1 to 6, the low-temperature side of the heat to the hot side, the compressor (10) The discharge pressure of the refrigerant is not less than the critical pressure of the refrigerant. According to the seventh aspect of the present invention, heat can be exchanged with the high-temperature refrigerant on the high-pressure side of the refrigeration cycle, and the temperature of the heated fluid can be increased. Can do. The invention according to claim 8 further includes an inlet side temperature sensor (21) for detecting the temperature of the fluid to be heated flowing into the high pressure side heat exchanger (20), and the control means (200) is provided on the inlet side. The flow path switching means (73) is controlled in accordance with the temperature of the heated fluid detected by the temperature sensor (21). Incidentally, the reference numerals in parentheses of the above means are examples showing the correspondence with the specific means described in the embodiments described later.

(第1実施形態)
以下、本発明の実施の形態について添付した図面を参照しながら詳細に説明する。図1の(a)は本発明の第1実施形態におけるヒートポンプ式加熱装置100の模式図であり、(b)は(a)のヒートポンプ式加熱装置100と貯湯タンク70との接続状態を示す外観模式図である。尚、本実施形態は、本発明に係るヒートポンプ式加熱装置を貯湯式給湯装置に適用したものである。
(First embodiment)
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1A is a schematic view of the heat pump heating device 100 according to the first embodiment of the present invention, and FIG. 1B is an external view showing a connection state between the heat pump heating device 100 of FIG. It is a schematic diagram. In this embodiment, the heat pump type heating device according to the present invention is applied to a hot water storage type hot water supply device.

本実施形態の貯湯式給湯装置は、蒸気圧縮式のヒートポンプサイクルを用いたヒートポンプ式加熱装置100にて、主に夜間で給湯用水を高温に沸き上げ、その高温水を貯湯タンク70に貯蔵しておき、必要時に貯湯タンク70内の高温水を用いて給湯を行うものである。   The hot water storage type hot water supply apparatus of the present embodiment is a heat pump type heating apparatus 100 that uses a vapor compression heat pump cycle, boiling hot water for hot water mainly at night and storing the high temperature water in a hot water storage tank 70. In addition, hot water is supplied using hot water in the hot water storage tank 70 when necessary.

ヒートポンプ式加熱装置100内は、大きく分けてヒートポンプサイクルの冷媒回路R1と、給湯関係の流体回路としての水回路R2とで構成されている。まず冷媒回路R1は、圧縮機10は冷媒を吸入圧縮するもので、本実施形態では電動モータと圧縮機構とが一体化された電動圧縮機を採用している。水冷媒熱交換器20は、被加熱流体である給湯用水と圧縮機10から吐出される高温・高圧冷媒とを熱交換して給湯用水を加熱する高圧側熱交換器である。   The inside of the heat pump type heating apparatus 100 is roughly composed of a refrigerant circuit R1 of a heat pump cycle and a water circuit R2 as a fluid circuit related to hot water supply. First, in the refrigerant circuit R1, the compressor 10 sucks and compresses the refrigerant, and in this embodiment, an electric compressor in which an electric motor and a compression mechanism are integrated is adopted. The water-refrigerant heat exchanger 20 is a high-pressure side heat exchanger that heats hot-water supply water by exchanging heat between hot-water supply water that is a fluid to be heated and high-temperature / high-pressure refrigerant discharged from the compressor 10.

本実施形態では、圧縮機10の吐出圧力を冷媒の臨界圧力以上として所望の温度を得ているので、水冷媒熱交換器20内で冷媒は、相変化して凝縮することなく温度を低下させながらエンタルピを低下させていく。ちなみに、本実施形態では、冷媒として二酸化炭素(CO)を採用している。 In this embodiment, since the desired pressure is obtained by setting the discharge pressure of the compressor 10 to be equal to or higher than the critical pressure of the refrigerant, the refrigerant in the water-refrigerant heat exchanger 20 reduces the temperature without causing phase change and condensation. While reducing enthalpy. Incidentally, in the present embodiment, carbon dioxide (CO 2 ) is adopted as the refrigerant.

可変式膨脹弁30は、水冷媒熱交換器20から流出した冷媒を等エンタルピ的に減圧膨脹させるとともに、その絞り開度を可変できる可変式減圧手段であり、本実施形態では、後述する制御装置(制御手段)200により高圧側冷媒の圧力が所定範囲となるように可変式膨脹弁30の絞り開度が可変制御されている。   The variable expansion valve 30 is a variable pressure reducing means that can decompress and expand the refrigerant flowing out of the water refrigerant heat exchanger 20 in an enthalpy manner and can vary the throttle opening. In this embodiment, a control device described later is provided. (Control means) The throttle opening degree of the variable expansion valve 30 is variably controlled by the control means 200 so that the pressure of the high-pressure side refrigerant falls within a predetermined range.

冷媒蒸発器40は、可変式膨脹弁30にて減圧された低圧冷媒を蒸発させる低温側熱交換器であり、アキュムレータ50は、圧縮機10の吸入側に設けられて流入する冷媒を気相冷媒と液相冷媒とに分離し、気相冷媒を圧縮機10に供給する気液分離手段である。尚、密度差により分離された冷凍機油を圧縮機10の吸入側に戻すための図示しないオイル戻し回路を有している。ちなみに冷凍機油とは、圧縮機10内の摺動部を潤滑するための潤滑油であり、ヒートポンプ式加熱装置では、通常、冷媒中に冷凍機油を混合することによって圧縮機10に供給している。   The refrigerant evaporator 40 is a low-temperature side heat exchanger that evaporates the low-pressure refrigerant decompressed by the variable expansion valve 30, and the accumulator 50 is provided on the suction side of the compressor 10 and converts the refrigerant that flows into the gas-phase refrigerant. And gas-liquid separation means for separating the gas-phase refrigerant into the compressor 10. Note that an oil return circuit (not shown) for returning the refrigeration oil separated by the density difference to the suction side of the compressor 10 is provided. Incidentally, the refrigeration oil is a lubricating oil for lubricating the sliding portion in the compressor 10, and in the heat pump heating device, the refrigeration oil is usually supplied to the compressor 10 by mixing the refrigerant oil in the refrigerant. .

これらの機器を環状に接続して冷凍サイクルの冷媒回路R1を形成している。また、ホットガスバイパス流路60は、圧縮機10の吐出側と水冷媒熱交換器20との間から分岐して、可変式膨脹弁30と冷媒蒸発器40との間に接続した冷媒通路であり、このホットガスバイパス流路60には、ホットガスバイパス流路60に流れ込む冷媒量を制御する開閉手段としての電磁開閉弁61が設けられており、この電磁開閉弁61は制御装置200により制御されている。   These devices are connected in a ring to form a refrigerant circuit R1 of the refrigeration cycle. The hot gas bypass passage 60 is a refrigerant passage that branches from between the discharge side of the compressor 10 and the water refrigerant heat exchanger 20 and is connected between the variable expansion valve 30 and the refrigerant evaporator 40. The hot gas bypass passage 60 is provided with an electromagnetic opening / closing valve 61 as an opening / closing means for controlling the amount of refrigerant flowing into the hot gas bypass passage 60. The electromagnetic opening / closing valve 61 is controlled by the control device 200. Has been.

給湯関係の水回路R2は、給湯用水の加熱手段である上記水冷媒熱交換器20の給湯用水通路と、給湯用水を循環させる循環ポンプ71と、給湯用水および高温水を貯留する貯湯タンク70とを環状に接続して構成される。循環ポンプ71は、貯湯タンク70内の下部に設けられた図示しない低温水流出部から冷水を水冷媒熱交換器20の給湯用水通路を通して貯湯タンク70の上部に設けられた図示しない高温水流入部から還流する様に水流を発生させる。   The hot water supply-related water circuit R2 includes a hot water supply water passage of the water refrigerant heat exchanger 20 that is a heating means for hot water supply water, a circulation pump 71 that circulates the hot water supply water, and a hot water storage tank 70 that stores hot water and high temperature water. Are connected in a ring shape. The circulation pump 71 has a hot water inflow portion (not shown) provided in the upper portion of the hot water storage tank 70 through a hot water supply passage of the water refrigerant heat exchanger 20 from a low temperature water outflow portion (not shown) provided in the lower portion of the hot water storage tank 70. A water stream is generated so as to recirculate from the water.

この循環ポンプ71は、内蔵するモータの回転数に応じて流水量を調節することができ、制御装置200により通電制御される。貯湯タンクは、耐蝕性に優れた金属製(例えばステンレス製)で断熱構造を有し、高温の給湯用水を長時間にわたって保温することができる。   The circulation pump 71 can adjust the amount of flowing water according to the number of rotations of a built-in motor, and is energized and controlled by the control device 200. The hot water storage tank is made of metal (for example, made of stainless steel) having excellent corrosion resistance and has a heat insulating structure, and can keep hot hot water for a long time.

また、本発明に係る構成として、水回路R2における貯湯タンク70の近傍側に、貯湯タンク70をバイパスさせて往復の水回路R2を短絡させる水短絡路(流体短絡路)72と、水の流れを貯湯タンク70側か水短絡路72側かに切り換える流路切換手段としての三方弁73を設けている。   Moreover, as a structure which concerns on this invention, the water short circuit (fluid short circuit) 72 which bypasses the hot water storage tank 70 and short-circuits the reciprocating water circuit R2 on the near side of the hot water storage tank 70 in the water circuit R2, and the flow of water A three-way valve 73 is provided as a flow path switching means for switching between the hot water storage tank 70 side and the water short circuit path 72 side.

制御装置200は、上述したヒートポンプサイクルの各冷凍機器を制御する制御手段であり、CPU・ROM・RAM・I/Oポートなどの機能を含んで構成され、それ自体は周知の構造を持つマイクロコンピュータを内蔵している。また、本貯湯式給湯装置のセンサ群として、水冷媒熱交換器20の出入口水温を検出する入口水温センサ21・出口水温センサ22、外気温度を検出する外気温センサ41、冷媒蒸発器40の出口冷媒温度を検出する出口冷媒温センサ42を備えている。   The control device 200 is a control means for controlling each refrigeration equipment of the heat pump cycle described above, and is configured to include functions such as a CPU, a ROM, a RAM, an I / O port, etc., and a microcomputer having a known structure per se. Built in. In addition, as a sensor group of the hot water storage type hot water supply apparatus, an inlet water temperature sensor 21 and an outlet water temperature sensor 22 that detect an inlet / outlet water temperature of the water refrigerant heat exchanger 20, an outside air temperature sensor 41 that detects an outside air temperature, and an outlet of the refrigerant evaporator 40. An outlet refrigerant temperature sensor 42 for detecting the refrigerant temperature is provided.

これらセンサ群からのセンサ信号は、図示しない入力回路(A/D変換回路)によってA/D変換された後に、制御装置200に入力されるように構成されていると共に、制御装置200からは圧縮機10・可変式膨脹弁30・電磁開閉弁61・循環ポンプ71・三方弁73などに制御出力を出すように構成されている。   The sensor signals from these sensor groups are configured to be input to the control device 200 after being A / D converted by an input circuit (A / D conversion circuit) (not shown), and compressed from the control device 200. It is configured to output a control output to the machine 10, the variable expansion valve 30, the electromagnetic on-off valve 61, the circulation pump 71, the three-way valve 73, and the like.

次に、本実施形態の作動概要を説明する。図2は、本発明のヒートポンプ式加熱装置100の制御装置200における全体制御のフローチャートである。本プログラムがスタートすると、先ずステップS10で給湯用水の加熱運転を開始する。次のステップS20では、除霜運転が必要か否かの判定を行う。   Next, an outline of the operation of this embodiment will be described. FIG. 2 is a flowchart of overall control in the control device 200 of the heat pump type heating device 100 of the present invention. When this program starts, first, heating operation of hot water is started in step S10. In the next step S20, it is determined whether or not a defrosting operation is necessary.

具体的な判定条件として、外気温センサ41で検出される外気温度が10℃以下であり、且つその外気温度と入口冷媒温センサ42で検出される冷媒蒸発器40の入口冷媒温度との温度差が10℃以上の場合は着霜する可能性があるため除霜運転要としている。その判定結果がYESで除霜運転要の場合はステップS30へ進む。   As a specific determination condition, the outside air temperature detected by the outside air temperature sensor 41 is 10 ° C. or less, and the temperature difference between the outside air temperature and the inlet refrigerant temperature of the refrigerant evaporator 40 detected by the inlet refrigerant temperature sensor 42. When the temperature is 10 ° C. or higher, defrosting operation is necessary because frost may form. If the determination result is YES and the defrosting operation is necessary, the process proceeds to step S30.

ステップS30では、三方弁73で水回路R2を短絡させたうえ循環ポンプ71を駆動させ、水冷媒熱交換器20で加熱した給湯用水を水回路R2に循環させて水回路R2の凍結防止運転を開始する。次のステップS40では電磁開閉弁61を開いてホットガスバイパス流路60から冷媒蒸発器40にホットガスを供給して除霜を開始する。   In step S30, the water circuit R2 is short-circuited by the three-way valve 73, the circulation pump 71 is driven, and hot water heated by the water-refrigerant heat exchanger 20 is circulated to the water circuit R2, thereby preventing the water circuit R2 from being frozen. Start. In the next step S40, the electromagnetic on-off valve 61 is opened, hot gas is supplied from the hot gas bypass passage 60 to the refrigerant evaporator 40, and defrosting is started.

次のステップS50では、凍結防止運転を終了しても良いか否かの判定を行う。具体的な判定条件として、凍結防止運転中に出入口水温センサ21・22で検出される水温が10℃以上となれば凍結防止運転は終了しても良いとしている。その判定結果がYESで凍結防止運転は終了しても良い場合はステップS60へと進み、凍結防止運転の終了処理を行ってからステップS70へ進む。また、ステップS50での判定結果がNOで凍結防止運転を終了できない場合は直接ステップS70へと進む。   In the next step S50, it is determined whether or not the freeze prevention operation may be terminated. As a specific determination condition, the freeze prevention operation may be terminated if the water temperature detected by the inlet / outlet water temperature sensors 21 and 22 during the freeze prevention operation becomes 10 ° C. or higher. If the determination result is YES and the freeze prevention operation may be terminated, the process proceeds to step S60, and after completion of the freeze prevention operation, the process proceeds to step S70. On the other hand, if the determination result in step S50 is NO and the freeze prevention operation cannot be terminated, the process proceeds directly to step S70.

ステップS70では、除霜運転を終了しても良いか否かの判定を行う。具体的な判定条件として、出口冷媒温センサ42で検出される冷媒温度が10℃以上となれば除霜運転は終了しても良いとしている。その判定結果がNOで除霜運転を終了できない場合はステップS40へと戻って除霜運転を続行するとともに、ステップS50とステップS70との判定を繰り返す。   In step S70, it is determined whether or not the defrosting operation may be terminated. As a specific determination condition, the defrosting operation may be terminated if the refrigerant temperature detected by the outlet refrigerant temperature sensor 42 is 10 ° C. or higher. If the determination result is NO and the defrosting operation cannot be completed, the process returns to step S40 to continue the defrosting operation, and the determinations of step S50 and step S70 are repeated.

また、ステップS70での判定結果がYESで除霜運転を終了しても良い場合はステップS80へと進み、除霜運転の終了処理を行ってからステップS10へと戻る。また、ステップS20での判定結果がNOで除霜運転不要の場合はステップS90へと進む。ステップS90では、加熱運転を終了しても良いか否かの判定を行う。具体的な判定条件として、貯湯タンク70の図示しない水温センサで検出される水温が沸き上げ終了の条件を満たした場合、加熱運転は終了しても良いこととなる。   Moreover, when the determination result in step S70 is YES and the defrosting operation may be terminated, the process proceeds to step S80, the defrosting operation end process is performed, and then the process returns to step S10. Moreover, when the determination result in step S20 is NO and the defrosting operation is unnecessary, the process proceeds to step S90. In step S90, it is determined whether or not the heating operation can be terminated. As a specific determination condition, when the water temperature detected by a water temperature sensor (not shown) of the hot water storage tank 70 satisfies the boiling end condition, the heating operation may be ended.

その判定結果がNOで加熱運転を終了できない場合はステップS10へと戻って加熱運転を続行するとともに、ステップS20とステップS90との判定を繰り返す。そして、ステップS90での判定結果がYESで加熱運転を終了しても良い場合はステップS100へ進んで加熱運転終了処理を行って本プログラムを終了し、再度起動されるのを待機することとなる。   If the determination result is NO and the heating operation cannot be completed, the process returns to step S10 to continue the heating operation, and the determinations of step S20 and step S90 are repeated. If the determination result in step S90 is YES and the heating operation may be terminated, the process proceeds to step S100 to perform the heating operation termination process, terminates the program, and waits for activation. .

次に、本実施形態の特徴とその効果について述べる。先ず、低温側の熱を高温側に移動させて流体を加熱する蒸気圧縮式のヒートポンプサイクルを用いた加熱装置であり、冷媒を吸入圧縮する圧縮機10と、圧縮機10が吐出する高温高圧冷媒と給湯用水とを熱交換させる水冷媒熱交換器20と、水冷媒熱交換器20から流出した冷媒を等エンタルピ的に減圧膨脹させるとともに、その絞り開度を可変できる可変式膨脹弁30と、可変式膨脹弁30にて減圧された低圧冷媒を蒸発させる冷媒蒸発器40とを環状に接続した冷媒回路R1と、圧縮機10の吐出側と水冷媒熱交換器20との間から分岐して、可変式膨脹弁30と冷媒蒸発器40との間に接続したホットガスバイパス流路60と、ホットガスバイパス流路60の流通を制御する電磁開閉弁61と、上記各機器の作動を制御する制御装置200とを有し、
制御装置200は、可変式膨脹弁30と電磁開閉弁61との開度を調節して、ホットガスバイパス流路60を介して圧縮機10が吐出する高温高圧冷媒を冷媒蒸発器40に供給して冷媒蒸発器40に発生した霜を除去する除霜運転と、圧縮機10が吐出する高温高圧冷媒を水冷媒熱交換器20に供給して流体を加熱する流体加熱運転とを同時に行うようになっている。
Next, features and effects of the present embodiment will be described. First, it is a heating device using a vapor compression heat pump cycle that heats a fluid by moving low-temperature heat to a high-temperature side, and includes a compressor 10 that sucks and compresses refrigerant, and a high-temperature and high-pressure refrigerant that the compressor 10 discharges. A water refrigerant heat exchanger 20 for exchanging heat with water for hot water supply, a variable expansion valve 30 for expanding the pressure of the refrigerant flowing out of the water refrigerant heat exchanger 20 in an enthalpy manner and varying the throttle opening, The refrigerant circuit R1 is connected to the refrigerant evaporator 40 that evaporates the low-pressure refrigerant depressurized by the variable expansion valve 30, and is branched from the discharge side of the compressor 10 and the water refrigerant heat exchanger 20. The hot gas bypass passage 60 connected between the variable expansion valve 30 and the refrigerant evaporator 40, the electromagnetic on-off valve 61 for controlling the flow of the hot gas bypass passage 60, and the operation of each of the above devices are controlled. Control device Has a 00 and,
The control device 200 adjusts the opening degrees of the variable expansion valve 30 and the electromagnetic on-off valve 61 and supplies the refrigerant evaporator 40 with the high-temperature and high-pressure refrigerant discharged from the compressor 10 via the hot gas bypass passage 60. The defrosting operation for removing the frost generated in the refrigerant evaporator 40 and the fluid heating operation for heating the fluid by supplying the high-temperature and high-pressure refrigerant discharged from the compressor 10 to the water refrigerant heat exchanger 20 are performed simultaneously. It has become.

これによれば、例えば本実施形態のようにヒートポンプ式加熱装置100を貯湯式給湯装置に利用した場合、除霜運転中に給湯用水加熱を行うことができるため、除霜運転前に水回路R2内の給湯用水加熱(凍結防止)運転を行う必要が無くなり、除霜のための時間が短くなり、貯湯タンク70への沸き上げ時間も短くすることができる。これにより、必要貯湯熱量の早期確保、およびランニングコストの低減が可能となる。   According to this, when the heat pump type heating device 100 is used for a hot water storage type hot water supply device as in the present embodiment, for example, water heating for hot water supply can be performed during the defrosting operation, so the water circuit R2 before the defrosting operation. It is no longer necessary to perform the hot water supply water heating (freezing prevention) operation, the time for defrosting is shortened, and the boiling time to the hot water storage tank 70 can be shortened. As a result, it is possible to ensure the necessary amount of stored hot water at an early stage and reduce running costs.

また、除霜と同時に行う給湯用水加熱により、水冷媒熱交換器20と貯湯タンク70とを接続する水回路R2の凍結防止を行っている。これによれば、例えば本実施形態のようにヒートポンプ式加熱装置100を貯湯式給湯装置に利用した場合、除霜運転中に給湯用水加熱を行うことができるため、水冷媒熱交換器20と貯湯タンク70とを接続する水回路R2の凍結防止に利用することができる。   Moreover, the water circuit R2 that connects the water-refrigerant heat exchanger 20 and the hot water storage tank 70 is prevented from freezing by water heating for hot water supply that is performed simultaneously with defrosting. According to this, when the heat pump type heating device 100 is used for a hot water storage type hot water supply device as in the present embodiment, for example, water heating for hot water supply can be performed during the defrosting operation. This can be used to prevent freezing of the water circuit R2 connected to the tank 70.

また、水回路R2において、貯湯タンク70の近傍側に、貯湯タンク70をバイパスさせて水回路R2を短絡させる水短絡路72と、流体の流れを貯湯タンク70側か水短絡路72側かに切り換える三方弁73を設けるとともに、制御装置200は、除霜と同時に行う給湯用水加熱により水回路R2の凍結防止を行う場合は、水流れが水短絡路72側となるよう三方弁73を制御する。これによれば、除霜運転中に水回路R2の凍結防止のために加熱した低温度の水を、貯湯タンク70内に流入させて貯湯温度を乱すことを防ぐことができる。   Further, in the water circuit R2, a water short circuit 72 that bypasses the hot water tank 70 and short-circuits the water circuit R2 near the hot water tank 70, and a fluid flow between the hot water tank 70 side and the water short circuit path 72 side. In addition to providing the three-way valve 73 for switching, the control device 200 controls the three-way valve 73 so that the water flow is on the water short-circuit path 72 side when the water circuit R2 is prevented from freezing by water heating for hot water supply performed simultaneously with defrosting. . According to this, it is possible to prevent the low temperature water heated to prevent freezing of the water circuit R2 during the defrosting operation from flowing into the hot water storage tank 70 and disturbing the hot water storage temperature.

また、制御装置200は、除霜と給湯用水加熱とを同時に行う場合、圧縮機10の回転数を除霜と給湯用水加熱とで必要な熱量を発生させる回転数に制御している。これによれば、省エネルギーとすることができる。また、低温側の熱を高温側に移動させる場合には、圧縮機10の吐出圧を冷媒の臨界圧力以上としている。これによれば、冷凍サイクルの高圧側で高温冷媒と熱交換し、給湯用水の温度を高くすることが可能となるため、凍結防止運転の信頼性を向上させることができる。   Moreover, when performing defrost and hot water supply water heating simultaneously, the control apparatus 200 is controlling the rotation speed of the compressor 10 to the rotation speed which generate | occur | produces a calorie | heat amount required by defrost and hot water supply water heating. According to this, energy saving can be achieved. Moreover, when moving the heat | fever of a low temperature side to a high temperature side, the discharge pressure of the compressor 10 is made more than the critical pressure of a refrigerant | coolant. According to this, heat can be exchanged with the high-temperature refrigerant on the high-pressure side of the refrigeration cycle, and the temperature of the hot water supply water can be increased, so that the reliability of the freeze prevention operation can be improved.

(第2実施形態)
図3は、本発明の第2実施形態におけるヒートポンプ式加熱装置100の模式図である。上述した第1実施形態と異なる特徴は、可変式減圧手段として可変式エジェクタ80を用いた可変式エジェクタサイクルとして構成している点である。この可変式エジェクタサイクルとは、水冷媒熱交換器20から流出した冷媒を等エントロピ的に減圧膨張させるノズル80aと、ノズル80aの絞り開度を可変する可変絞り機構80dとを有し、ノズル80aから噴射する高い速度の冷媒流により冷媒蒸発器40にて蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して圧縮機10の吸入圧を上昇させる可変式エジェクタ80を用いたヒートポンプ式加熱装置である。
(Second Embodiment)
FIG. 3 is a schematic diagram of a heat pump heating device 100 according to the second embodiment of the present invention. A feature different from the first embodiment described above is that a variable ejector cycle using a variable ejector 80 as a variable pressure reducing means is configured. This variable ejector cycle has a nozzle 80a that decompresses and expands the refrigerant flowing out of the water-refrigerant heat exchanger 20 in an isentropic manner, and a variable throttle mechanism 80d that changes the throttle opening of the nozzle 80a. A variable-type ejector 80 is used that sucks the gas-phase refrigerant evaporated in the refrigerant evaporator 40 by the high-speed refrigerant flow injected from the refrigerant and converts the expansion energy into pressure energy to increase the suction pressure of the compressor 10. It is a heat pump type heating device.

尚、本実施形態では、ノズル80aの絞り開度は、可変絞り機構80dにより高圧側冷媒の圧力が所定範囲となるように可変制御される。また、ノズル80aから噴射する駆動流と冷媒蒸発器40から吸引された吸引流とは、混合部80bで互いの運動量が保存されるように混合されて昇圧し、その後、冷媒通路断面積を徐々に拡大するディフューザ80cにて動圧が静圧に変換されて更に昇圧される。   In the present embodiment, the throttle opening degree of the nozzle 80a is variably controlled by the variable throttle mechanism 80d so that the pressure of the high-pressure side refrigerant falls within a predetermined range. Further, the driving flow ejected from the nozzle 80a and the suction flow sucked from the refrigerant evaporator 40 are mixed and pressurized in the mixing unit 80b so that the mutual momentum is preserved, and then the refrigerant passage sectional area is gradually increased. The dynamic pressure is converted into a static pressure by the diffuser 80c that expands to a static pressure and further increased.

尚、エジェクタサイクルでは、エジェクタ80のポンプ作用(JIS Z 8126 番号2.1.2.3など参照)により、アキュムレータ50→冷媒蒸発器40→エジェクタ80(混合部80b→ディフューザ80c)→アキュムレータ50の順に冷媒が循環し、圧縮機10のポンプ作用により、圧縮機10→水冷媒熱交換器20→エジェクタ80→アキュムレータ50→圧縮機10の順に冷媒が循環する。このため、アキュムレータ50は、エジェクタ80から流出した冷媒を気相冷媒と液相冷媒とに分離し、気相冷媒用出口が圧縮機10の吸引側に接続され、液相冷媒用出口が蒸発器40に接続されている。   In the ejector cycle, due to the pump action of the ejector 80 (see JIS Z 8126 number 2.1.2.3), the accumulator 50 → the refrigerant evaporator 40 → the ejector 80 (mixing unit 80b → diffuser 80c) → the accumulator 50 The refrigerant circulates in order, and the refrigerant circulates in the order of the compressor 10 → the water refrigerant heat exchanger 20 → the ejector 80 → the accumulator 50 → the compressor 10 by the pump action of the compressor 10. For this reason, the accumulator 50 separates the refrigerant flowing out from the ejector 80 into a gas phase refrigerant and a liquid phase refrigerant, the gas phase refrigerant outlet is connected to the suction side of the compressor 10, and the liquid phase refrigerant outlet is the evaporator. 40.

また、本実施形態の要部として、圧縮機10の吐出側と水冷媒熱交換器20との間から分岐して、アキュムレータ50と冷媒蒸発器40との間に接続したホットガスバイパス流路60と、そのホットガスバイパス流路60の流通を制御する開閉手段としての電磁開閉弁61が設けられており、この電磁開閉弁61は制御装置200により制御されている。次に、本実施形態の特徴とその効果について述べる。   Further, as a main part of the present embodiment, a hot gas bypass flow path 60 branched from between the discharge side of the compressor 10 and the water refrigerant heat exchanger 20 and connected between the accumulator 50 and the refrigerant evaporator 40. In addition, an electromagnetic opening / closing valve 61 is provided as an opening / closing means for controlling the flow of the hot gas bypass passage 60, and the electromagnetic opening / closing valve 61 is controlled by the control device 200. Next, features and effects of the present embodiment will be described.

低温側の熱を高温側に移動させて流体を加熱する蒸気圧縮式のヒートポンプサイクルを用いた加熱装置であり、冷媒を吸入圧縮する圧縮機10と、圧縮機10が吐出する高温高圧冷媒と給湯用水とを熱交換させる水冷媒熱交換器20と、低圧冷媒を蒸発させる冷媒蒸発器40と、水冷媒熱交換器20から流出した冷媒を等エントロピ的に減圧膨張させるノズル80aと、ノズル80aの絞り開度を可変する可変絞り機構80dとを有し、ノズル80aから噴射する高い速度の冷媒流により冷媒蒸発器40にて蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して圧縮機10の吸入圧を上昇させる可変式エジェクタ80と、可変式エジェクタ80から流出した冷媒を気相冷媒と液相冷媒とに分離し、気相冷媒を圧縮機10の吸引側に供給し、液相冷媒を冷媒蒸発器40に供給するアキュムレータ50と、圧縮機10の吐出側と水冷媒熱交換器20との間から分岐して、アキュムレータ50と冷媒蒸発器40との間に接続したホットガスバイパス流路60と、ホットガスバイパス流路60の流通を制御する電磁開閉弁61と、上記各機器の作動を制御する制御装置200とを有し、
制御装置200は、可変絞り機構80dと電磁開閉弁61との開度を調節して、ホットガスバイパス流路60を介して圧縮機10が吐出する高温高圧冷媒を冷媒蒸発器40に供給して冷媒蒸発器40に発生した霜を除去する除霜と、圧縮機10が吐出する高温高圧冷媒を水冷媒熱交換器20に供給して給湯用水を加熱する給湯用水加熱とを同時に行うようになっている。
A heating device using a vapor compression heat pump cycle that heats a fluid by moving low-temperature heat to a high-temperature side. The compressor 10 sucks and compresses refrigerant, the high-temperature and high-pressure refrigerant discharged from the compressor 10 and hot water supply. A water refrigerant heat exchanger 20 for exchanging heat with water, a refrigerant evaporator 40 for evaporating low-pressure refrigerant, a nozzle 80a for decompressing and expanding the refrigerant flowing out of the water-refrigerant heat exchanger 20 in an isentropic manner, and a nozzle 80a A variable throttle mechanism 80d that varies the throttle opening, and sucks the gas-phase refrigerant evaporated in the refrigerant evaporator 40 by the high-speed refrigerant flow injected from the nozzle 80a, and converts the expansion energy into pressure energy. The variable ejector 80 for increasing the suction pressure of the compressor 10 and the refrigerant flowing out of the variable ejector 80 are separated into a gas phase refrigerant and a liquid phase refrigerant, and the gas phase refrigerant is pressurized. The accumulator 50 is supplied to the suction side of the machine 10 and supplies liquid phase refrigerant to the refrigerant evaporator 40. The accumulator 50 and the refrigerant evaporate by branching between the discharge side of the compressor 10 and the water refrigerant heat exchanger 20. A hot gas bypass passage 60 connected to the vessel 40, an electromagnetic on-off valve 61 for controlling the flow of the hot gas bypass passage 60, and a control device 200 for controlling the operation of each device,
The control device 200 adjusts the opening degree of the variable throttle mechanism 80d and the electromagnetic opening / closing valve 61 to supply the refrigerant evaporator 40 with the high-temperature and high-pressure refrigerant discharged from the compressor 10 via the hot gas bypass passage 60. The defrosting for removing the frost generated in the refrigerant evaporator 40 and the hot water supply water heating for heating the hot water supply water by supplying the high-temperature and high-pressure refrigerant discharged from the compressor 10 to the water-refrigerant heat exchanger 20 are simultaneously performed. ing.

これによれば、例えば本実施形態のようにヒートポンプ式加熱装置100を貯湯式給湯装置に利用した場合、除霜運転中に給湯用水加熱を行うことができるため、除霜運転前に水回路R2内の給湯用水加熱(凍結防止)運転を行う必要が無くなり、除霜のための時間が短くなり、貯湯タンク70への沸き上げ時間も短くすることができる。これにより、必要貯湯熱量の早期確保、およびランニングコストの低減が可能となる。また、冷凍サイクルの低圧側を昇圧し、加熱能力を向上させるエジェクタ80を減圧手段として用いたエジェクタサイクルを使用することで、除霜運転と給湯用水加熱運転とを同時に行ううえで、必要加熱能力の確保に有利となる。   According to this, when the heat pump type heating device 100 is used for a hot water storage type hot water supply device as in the present embodiment, for example, water heating for hot water supply can be performed during the defrosting operation, so the water circuit R2 before the defrosting operation. It is no longer necessary to perform the hot water supply water heating (freezing prevention) operation, the time for defrosting is shortened, and the boiling time to the hot water storage tank 70 can be shortened. As a result, it is possible to ensure the necessary amount of stored hot water at an early stage and reduce running costs. Further, by using an ejector cycle in which the low pressure side of the refrigeration cycle is pressurized and the ejector 80 that improves the heating capacity is used as a pressure reducing means, the defrosting operation and the hot water supply water heating operation are simultaneously performed. It is advantageous for securing.

(第3実施形態)
図4は、本発明の第3実施形態におけるヒートポンプ式加熱装置100の模式図である。上述した第1実施形態と異なる点は、高圧側熱交換器をブライン(熱交換媒体)冷媒熱交換器20として貯湯タンク70の代わりに暖房器具としての床暖房パネル90を接続して暖房装置として構成している点である。
(Third embodiment)
FIG. 4 is a schematic diagram of a heat pump heating device 100 according to the third embodiment of the present invention. The difference from the first embodiment described above is that the high pressure side heat exchanger is a brine (heat exchange medium) refrigerant heat exchanger 20 and a floor heating panel 90 as a heating appliance is connected instead of the hot water storage tank 70 as a heating device. It is the point which constitutes.

本暖房装置は、大きく分けてブラインを加熱するヒートポンプ式加熱装置100と、床暖房パネル90へのブライン回路R2とで構成されている。床暖房パネル90は、住居居室の床板下に配置される配管パネルである。本実施形態ではブラインとして水を用いているが不凍液などであっても良い。そして、このような床暖房は、人体が直接床材に触れても快適な暖房感が得られるよう、ブラインを熱く感じない60℃程度の温度で供給し、冷たく感じない40℃程度の温度で戻ってくるよう、流量を制御装置200により通電制御される。   This heating device is mainly composed of a heat pump heating device 100 that heats brine and a brine circuit R2 to the floor heating panel 90. The floor heating panel 90 is a piping panel arranged under the floor board of a residential room. In this embodiment, water is used as the brine, but an antifreeze or the like may be used. And such floor heating supplies the brine at a temperature of about 60 ° C. that does not feel hot, and a temperature of about 40 ° C. that does not feel cold so that a comfortable heating feeling can be obtained even if the human body touches the floor material directly. The flow rate is energized and controlled by the control device 200 so as to return.

また、本発明に係る構成として、ブライン回路R2における床暖房パネル90の近傍側に、床暖房パネル90をバイパスさせて往復のブライン回路R2を短絡させるブライン短絡路(流体短絡路)72と、ブラインの流れを床暖房パネル90側かブライン短絡路72側かに切り換える流路切換手段としての三方弁73を設けている。   In addition, as a configuration according to the present invention, a brine short circuit (fluid short circuit) 72 that bypasses the floor heating panel 90 and short-circuits the reciprocating brine circuit R2 near the floor heating panel 90 in the brine circuit R2, and a brine Is provided with a three-way valve 73 as flow path switching means for switching the flow between the floor heating panel 90 side and the brine short circuit path 72 side.

次に、本実施形態の特徴とその効果について述べる。先ず、低温側の熱を高温側に移動させて流体を加熱する蒸気圧縮式のヒートポンプサイクルを用いた加熱装置であり、冷媒を吸入圧縮する圧縮機10と、圧縮機10が吐出する高温高圧冷媒とブラインとを熱交換させるブライン冷媒熱交換器20と、ブライン冷媒熱交換器20から流出した冷媒を等エンタルピ的に減圧膨脹させるとともに、その絞り開度を可変できる可変式膨脹弁30と、可変式膨脹弁30にて減圧された低圧冷媒を蒸発させる冷媒蒸発器40とを環状に接続した冷媒回路R1と、圧縮機10の吐出側とブライン冷媒熱交換器20との間から分岐して、可変式膨脹弁30と冷媒蒸発器40との間に接続したホットガスバイパス流路60と、ホットガスバイパス流路60の流通を制御する電磁開閉弁61と、上記各機器の作動を制御する制御装置200とを有し、
制御装置200は、可変式膨脹弁30と電磁開閉弁61との開度を調節して、ホットガスバイパス流路60を介して圧縮機10が吐出する高温高圧冷媒を冷媒蒸発器40に供給して冷媒蒸発器40に発生した霜を除去する除霜運転と、圧縮機10が吐出する高温高圧冷媒をブライン冷媒熱交換器20に供給してブラインを加熱するブライン加熱運転とを同時に行っている。
Next, features and effects of the present embodiment will be described. First, it is a heating device using a vapor compression heat pump cycle that heats a fluid by moving low-temperature heat to a high-temperature side, and includes a compressor 10 that sucks and compresses refrigerant, and a high-temperature and high-pressure refrigerant that the compressor 10 discharges. A brine refrigerant heat exchanger 20 for exchanging heat with the brine, a variable expansion valve 30 that can expand and decompress the refrigerant flowing out of the brine refrigerant heat exchanger 20 in an enthalpy manner, and a variable expansion valve 30. A refrigerant circuit R1 in which a refrigerant evaporator 40 that evaporates the low-pressure refrigerant decompressed by the expansion valve 30 is connected in a ring shape, and a branch from the discharge side of the compressor 10 and the brine refrigerant heat exchanger 20; A hot gas bypass passage 60 connected between the variable expansion valve 30 and the refrigerant evaporator 40, an electromagnetic on-off valve 61 for controlling the flow of the hot gas bypass passage 60, and the operation of each of the above devices And a control unit 200 for controlling,
The control device 200 adjusts the opening degrees of the variable expansion valve 30 and the electromagnetic on-off valve 61 and supplies the refrigerant evaporator 40 with the high-temperature and high-pressure refrigerant discharged from the compressor 10 via the hot gas bypass passage 60. The defrosting operation for removing frost generated in the refrigerant evaporator 40 and the brine heating operation for heating the brine by supplying the high-temperature and high-pressure refrigerant discharged from the compressor 10 to the brine refrigerant heat exchanger 20 are simultaneously performed. .

これによれば、例えば本実施形態のようにヒートポンプ式加熱装置100を床暖房などの暖房装置に利用した場合、除霜運転中にブライン加熱を行うことができるため、熱源水が途切れて暖房フィーリングを悪くするということを防ぐことができる。また、除霜運転終了後の再加熱することがなくなるため、暖房立ち上がりに時間遅れを生じるという問題も無くすことができる。   According to this, for example, when the heat pump type heating device 100 is used for a heating device such as floor heating as in the present embodiment, brine heating can be performed during the defrosting operation. It can prevent the ring from getting worse. Moreover, since reheating after completion | finish of a defrost operation is lose | eliminated, the problem of producing time delay in heating start-up can also be eliminated.

また、除霜と同時に行うブライン加熱により、ブライン冷媒熱交換器20と床暖房パネル90とを接続するブライン回路R2の凍結防止を行っている。これによれば、例えば本実施形態のヒートポンプ式加熱装置100を床暖房などの暖房装置に利用した場合、除霜運転中にブライン加熱を行うことができるため、ブライン冷媒熱交換器20と床暖房パネル90とを接続するブライン回路R2の凍結防止に利用することができる。   Further, the brine circuit R2 connecting the brine refrigerant heat exchanger 20 and the floor heating panel 90 is prevented from freezing by brine heating performed simultaneously with defrosting. According to this, when the heat pump heating device 100 of the present embodiment is used for a heating device such as floor heating, brine heating can be performed during the defrosting operation, so that the brine refrigerant heat exchanger 20 and the floor heating can be performed. This can be used to prevent the brine circuit R2 connected to the panel 90 from freezing.

また、ブライン回路R2において、床暖房パネル90の近傍側に、床暖房パネル90をバイパスさせてブライン回路R2を短絡させるブライン短絡路72と、ブラインの流れを床暖房パネル90側かブライン短絡路72側かに切り換える三方弁73を設けるとともに、制御装置200は、除霜と同時に行うブライン加熱によりブライン回路R2の凍結防止を行う場合は、ブライン流れがブライン短絡路72側となるよう三方弁73を制御するようにしている。   Moreover, in the brine circuit R2, the brine short circuit 72 which bypasses the floor heating panel 90 and short-circuits the brine circuit R2 in the vicinity side of the floor heating panel 90, and the flow of the brine is the floor heating panel 90 side or the brine short circuit 72. In addition to providing the three-way valve 73 that switches to the side, the control device 200 sets the three-way valve 73 so that the brine flow is on the side of the brine short circuit 72 when the brine circuit R2 is prevented from freezing by brine heating performed simultaneously with defrosting. I try to control it.

これによれば、除霜運転中にブライン回路R2の凍結防止のために加熱した低温度のブラインを、床暖房パネル90内に流入させて暖房フィーリングを悪くするということを防ぐことができる。また、除霜と同時に行うブライン加熱により、ブライン冷媒熱交換器20とブライン回路R2で接続された床暖房パネル90を用いて暖房を行っている。これによれば、熱源水が途切れることがなく、フィーリングの良い暖房を行うことができる。   According to this, it is possible to prevent the low-temperature brine heated to prevent the brine circuit R2 from being frozen during the defrosting operation from flowing into the floor heating panel 90 and deteriorating the heating feeling. Moreover, heating is performed using the floor heating panel 90 connected to the brine refrigerant heat exchanger 20 and the brine circuit R2 by brine heating performed simultaneously with defrosting. According to this, the heat source water is not interrupted, and heating with good feeling can be performed.

(その他の実施形態)
上述の実施形態において、ホットガスバイパス流路60を電磁開閉弁61によって開閉する例にあっては、電磁開閉弁61に代えてホットガスバイパス流路60と圧縮機10の吐出側とを接続する部位に三方弁を設けても良い。また、上述の実施形態では、冷媒を二酸化炭素として高圧側圧力を臨界圧力以上としたが、本発明はこれに限定されるものではない。また、上述の実施形態において、除霜運転開始の判定は、冷媒蒸発器40の出口冷媒温度に限らず、冷媒蒸発器40の入口冷媒温度を検出して判定するようにしても良い。
(Other embodiments)
In the above-described embodiment, in the example in which the hot gas bypass passage 60 is opened and closed by the electromagnetic on-off valve 61, the hot gas bypass passage 60 and the discharge side of the compressor 10 are connected instead of the electromagnetic on-off valve 61. A three-way valve may be provided at the site. In the above-described embodiment, the refrigerant is carbon dioxide and the high-pressure side pressure is set to be equal to or higher than the critical pressure. However, the present invention is not limited to this. In the above-described embodiment, the determination of the start of the defrosting operation is not limited to the outlet refrigerant temperature of the refrigerant evaporator 40, and may be made by detecting the inlet refrigerant temperature of the refrigerant evaporator 40.

また、上述の実施形態では、外気温度が10℃以下の場合であって、外気温度と蒸発器40から流出する冷媒温度との差が所定値以上となったときに、蒸発器40に霜が発生したものとみなして除霜運転を行ったが、本発明はこれに限定されるものではなく、例えばタイマー手段により所定時間毎に定期的に除霜運転を行うなどしても良い。また、上述の第3実施形態では、床暖房を例に本発明を説明したが、本発明はこれに限定されるものではなく、ブラインを加熱して利用する浴室乾燥やパネルヒータなどに用いても良い。   Further, in the above-described embodiment, when the outside air temperature is 10 ° C. or less and the difference between the outside air temperature and the refrigerant temperature flowing out of the evaporator 40 becomes a predetermined value or more, frost is generated in the evaporator 40. Although the defrosting operation was performed assuming that it occurred, the present invention is not limited to this. For example, the defrosting operation may be performed periodically every predetermined time by a timer means. Further, in the third embodiment described above, the present invention has been described by taking floor heating as an example, but the present invention is not limited to this, and is used for bathroom drying or panel heaters that are used by heating brine. Also good.

(a)は本発明の第1実施形態におけるヒートポンプ式加熱装置100の模式図であり、(b)は(a)のヒートポンプ式加熱装置100と貯湯タンク70との接続状態を示す外観模式図である。(A) is the schematic diagram of the heat pump type heating apparatus 100 in 1st Embodiment of this invention, (b) is an external appearance schematic diagram which shows the connection state of the heat pump type heating apparatus 100 and hot water storage tank 70 of (a). is there. 本発明のヒートポンプ式加熱装置100の制御装置200における全体制御のフローチャートである。It is a flowchart of the whole control in the control apparatus 200 of the heat pump type heating apparatus 100 of this invention. 本発明の第2実施形態におけるヒートポンプ式加熱装置100の模式図である。It is a schematic diagram of the heat pump type heating apparatus 100 in 2nd Embodiment of this invention. 本発明の第3実施形態におけるヒートポンプ式加熱装置100の模式図である。It is a schematic diagram of the heat pump type heating apparatus 100 in 3rd Embodiment of this invention. 従来の技術に係るヒートポンプ式加熱装置100の模式図である。It is a schematic diagram of the heat pump type heating apparatus 100 which concerns on the prior art. 従来の技術に係るヒートポンプ式加熱装置100の模式図である。It is a schematic diagram of the heat pump type heating apparatus 100 which concerns on the prior art.

符号の説明Explanation of symbols

10…圧縮機
20…水冷媒熱交換器、ブライン冷媒熱交換器(高圧側熱交換器)
30…可変式膨脹弁(可変式減圧手段)
40…冷媒蒸発器(低圧側熱交換器)
50…アキュムレータ(気液分離手段)
60…ホットガスバイパス流路
61…電磁開閉弁(開閉手段)
70…貯湯タンク
72…水短絡路、ブライン短絡路(流体短絡路)
73…三方弁(流路切換手段)
80…可変式エジェクタ
80a…ノズル
80d…可変絞り機構
90…床暖房パネル(暖房器具)
200…制御装置(制御手段)
R1…冷媒回路
R2…水回路、ブライン回路(流体回路)
10 ... Compressor 20 ... Water refrigerant heat exchanger, brine refrigerant heat exchanger (high pressure side heat exchanger)
30 ... Variable expansion valve (variable pressure reducing means)
40 ... Refrigerant evaporator (low pressure side heat exchanger)
50. Accumulator (gas-liquid separation means)
60 ... Hot gas bypass flow passage 61 ... Electromagnetic on-off valve (open / close means)
70 ... Hot water storage tank 72 ... Water short circuit, brine short circuit (fluid short circuit)
73. Three-way valve (flow path switching means)
80 ... Variable type ejector 80a ... Nozzle 80d ... Variable throttle mechanism 90 ... Floor heating panel (heating equipment)
200: Control device (control means)
R1 ... refrigerant circuit R2 ... water circuit, brine circuit (fluid circuit)

Claims (8)

低温側の熱を高温側に移動させて流体を加熱する蒸気圧縮式のヒートポンプサイクルを用いた加熱装置であり、
冷媒を吸入圧縮する圧縮機(10)と、
前記圧縮機(10)が吐出する高温高圧冷媒と被加熱流体とを熱交換させる高圧側熱交換器(20)と、
前記高圧側熱交換器(20)から流出した冷媒を等エンタルピ的に減圧膨脹させるとともに、高圧側冷媒の圧力が所定範囲となるように、その絞り開度が可変制御される可変式減圧手段(30)と、
前記可変式減圧手段(30)にて減圧された低圧冷媒を蒸発させる低圧側熱交換器(40)とを環状に接続した冷媒回路(R1)と、
前記圧縮機(10)の吐出側と前記高圧側熱交換器(20)との間から分岐して、前記可変式減圧手段(30)と前記低圧側熱交換器(40)との間に接続したホットガスバイパス流路(60)と、
前記ホットガスバイパス流路(60)の流通を制御する開閉手段(61)と、
前記高圧側熱交換器(20)に接続され、前記被加熱流体が循環する流体回路(R2)と、
前記流体回路(R2)に接続された貯湯タンク(70)もしくは暖房器具(90)と、
前記貯湯タンク(70)もしくは前記暖房器具(90)をバイパスする流体短絡路(72)と、
前記被加熱流体の流れを前記貯湯タンク(70)もしくは前記暖房器具(90)側か前記流体短絡路(72)側かに切り替える流路切換手段(73)と、
前記被加熱流体の温度を検出する被加熱流体温度センサ(21)と、
前記被加熱流体温度センサ(21)で検出される前記被加熱流体の温度に応じて前記流路切換手段(73)を制御する制御手段(200)とを有し、
前記制御手段(200)は、前記可変式減圧手段(30)と前記開閉手段(61)との開度を調節し、前記圧縮機の回転数を除霜運転と前記被加熱流体を加熱する流体加熱運転とで必要な熱量を発生させる回転数に制御して、前記ホットガスバイパス流路(60)を介して前記圧縮機(10)が吐出する高温高圧冷媒を前記低圧側熱交換器(40)に供給して前記低圧側熱交換器(40)に発生した霜を除去する除霜運転と、前記圧縮機(10)が吐出する高温高圧冷媒を前記高圧側熱交換器(20)に供給して前記流路切換手段(73)によって切換えられて前記流体短絡路(72)を流れている前記被加熱流体を加熱する流体加熱運転とを同時に行い、かつ、このときに前記可変式減圧手段(30)の前記絞り開度を調整して変化させることを特徴とするヒートポンプ式加熱装置。
It is a heating device using a vapor compression heat pump cycle that heats the fluid by moving the heat on the low temperature side to the high temperature side,
A compressor (10) for sucking and compressing refrigerant;
A high-pressure side heat exchanger (20) for exchanging heat between the high-temperature and high-pressure refrigerant discharged from the compressor (10) and the fluid to be heated;
A variable pressure reducing means that evacuates and expands the refrigerant that has flowed out of the high pressure side heat exchanger (20) in an enthalpy manner, and whose throttle opening is variably controlled so that the pressure of the high pressure side refrigerant falls within a predetermined range. 30),
A refrigerant circuit (R1) in which a low-pressure side heat exchanger (40) for evaporating the low-pressure refrigerant decompressed by the variable decompression means (30) is annularly connected;
Branched between the discharge side of the compressor (10) and the high-pressure side heat exchanger (20), and connected between the variable pressure reducing means (30) and the low-pressure side heat exchanger (40) A hot gas bypass channel (60),
Open / close means (61) for controlling the flow of the hot gas bypass flow path (60);
A fluid circuit (R2) connected to the high pressure side heat exchanger (20) and circulating the heated fluid;
A hot water storage tank (70) or a heating appliance (90) connected to the fluid circuit (R2);
A fluid short circuit (72) bypassing the hot water storage tank (70) or the heating appliance (90);
Channel switching means (73) for switching the flow of the heated fluid to the hot water storage tank (70) or the heating appliance (90) side or the fluid short circuit (72) side;
A heated fluid temperature sensor (21) for detecting the temperature of the heated fluid;
Control means (200) for controlling the flow path switching means (73) according to the temperature of the heated fluid detected by the heated fluid temperature sensor (21),
The control means (200) adjusts the degree of opening of the variable pressure reducing means (30) and the opening / closing means (61), and controls the number of revolutions of the compressor to defrost and heat the fluid to be heated. The high-temperature and high-pressure refrigerant discharged from the compressor (10) through the hot gas bypass channel (60) is controlled to a rotational speed that generates a necessary amount of heat during the heating operation, and the low-pressure side heat exchanger (40 ) To remove frost generated in the low-pressure side heat exchanger (40) and supply high-temperature and high-pressure refrigerant discharged from the compressor (10) to the high-pressure side heat exchanger (20). to have simultaneously a row and a fluid heating operation for heating the heated fluid flowing through the flow path wherein fluid shorting path is switched by the switching means (73) (72), and said variable vacuum in this case It is changed by adjusting the throttle opening of the means (30) The heat pump type heating apparatus according to claim and.
前記可変式減圧手段として、前記高圧側熱交換器(20)から流出した冷媒を等エントロピ的に減圧膨張させるノズル(80a)と、前記ノズル(80a)の絞り開度を可変する可変絞り機構(80d)とを有し、前記ノズル(80a)から噴射する高い速度の冷媒流により前記低圧側熱交換器(40)にて蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して前記圧縮機(10)の吸入圧を上昇させる可変式エジェクタ(80)を用い、
前記圧縮機(10)の吐出側と前記高圧側熱交換器(20)との間から分岐して、気液分離手段(50)と前記低圧側熱交換器(40)との間に接続したホットガスバイパス流路(60)としていることを特徴とする請求項1に記載のヒートポンプ式加熱装置。
As the variable pressure reducing means, a nozzle (80a) for decompressing and expanding the refrigerant flowing out from the high pressure side heat exchanger (20) in an isentropic manner, and a variable throttle mechanism for changing the throttle opening of the nozzle (80a) ( 80d), and sucks the vapor-phase refrigerant evaporated in the low-pressure heat exchanger (40) by the high-speed refrigerant flow injected from the nozzle (80a), and converts the expansion energy into pressure energy. Using a variable ejector (80) for increasing the suction pressure of the compressor (10),
Branched from between the discharge side of the compressor (10) and the high pressure side heat exchanger (20), and connected between the gas-liquid separation means (50) and the low pressure side heat exchanger (40). The heat pump heating device according to claim 1, wherein the hot gas bypass passage (60) is used.
除霜と同時に行う流体加熱により、前記高圧側熱交換器(20)と前記貯湯タンク(70)もしくは前記暖房器具(90)とを接続する前記流体回路(R2)の凍結防止を行うことを特徴とする請求項1または2に記載のヒートポンプ式加熱装置。   The fluid circuit (R2) connecting the high-pressure side heat exchanger (20) and the hot water storage tank (70) or the heating appliance (90) is prevented from freezing by fluid heating performed simultaneously with defrosting. The heat pump type heating apparatus according to claim 1 or 2. 前記制御手段(200)は、除霜と同時に行う流体加熱により前記流体回路(R2)の凍結防止を行う場合は、流体流れが前記流体短絡路(72)側となるよう前記流路切換手段(73)を制御することを特徴とする請求項1ないし3のいずれかに記載のヒートポンプ式加熱装置。   In the case where the fluid circuit (R2) is prevented from freezing by fluid heating performed simultaneously with defrosting, the control means (200) is configured to switch the flow path switching means (72) so that the fluid flow is on the fluid short circuit (72) side. 73). The heat pump type heating device according to any one of claims 1 to 3, wherein the heat pump type heating device is controlled. 除霜と同時に行う流体加熱により、前記高圧側熱交換器(20)と前記流体回路(R2)で接続された前記暖房器具(90)を用いて暖房を行うことを特徴とする請求項1ないし4のいずれかに記載のヒートポンプ式加熱装置。   Heating is performed using the heating appliance (90) connected to the high-pressure side heat exchanger (20) and the fluid circuit (R2) by fluid heating performed simultaneously with defrosting. The heat pump type heating apparatus according to any one of 4. 前記制御手段(200)は、除霜と流体加熱とを同時に行う場合、前記圧縮機(10)の回転数を除霜と流体加熱とで必要な熱量を発生させる回転数に制御することを特徴とする請求項1ないし5のいずれかに記載のヒートポンプ式加熱装置。   When the defrosting and fluid heating are performed simultaneously, the control means (200) controls the rotation speed of the compressor (10) to a rotation speed that generates a necessary amount of heat by defrosting and fluid heating. The heat pump type heating device according to any one of claims 1 to 5. 低温側の熱を高温側に移動させる場合には、前記圧縮機(10)の吐出圧を冷媒の臨界圧力以上とすることを特徴とする請求項1ないし6のいずれかに記載のヒートポンプ式加熱装置。   The heat pump heating according to any one of claims 1 to 6, wherein when the heat on the low temperature side is moved to the high temperature side, the discharge pressure of the compressor (10) is equal to or higher than the critical pressure of the refrigerant. apparatus. 前記高圧側熱交換器(20)に流入する前記被加熱流体の温度を検出する入口側温度センサ(21)を有し、前記制御手段(200)は、前記入口側温度センサ(21)で検出される前記被加熱流体の温度に応じて前記流路切換手段(73)を制御することを特徴とする請求項1ないし7のいずれかに記載のヒートポンプ式加熱装置。   It has an inlet side temperature sensor (21) for detecting the temperature of the heated fluid flowing into the high pressure side heat exchanger (20), and the control means (200) is detected by the inlet side temperature sensor (21). The heat pump heating device according to any one of claims 1 to 7, wherein the flow path switching means (73) is controlled in accordance with a temperature of the heated fluid to be heated.
JP2004282309A 2004-09-28 2004-09-28 Heat pump type heating device Expired - Fee Related JP4823501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004282309A JP4823501B2 (en) 2004-09-28 2004-09-28 Heat pump type heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004282309A JP4823501B2 (en) 2004-09-28 2004-09-28 Heat pump type heating device

Publications (2)

Publication Number Publication Date
JP2006097930A JP2006097930A (en) 2006-04-13
JP4823501B2 true JP4823501B2 (en) 2011-11-24

Family

ID=36237925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004282309A Expired - Fee Related JP4823501B2 (en) 2004-09-28 2004-09-28 Heat pump type heating device

Country Status (1)

Country Link
JP (1) JP4823501B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100464136C (en) * 2006-07-10 2009-02-25 陈志强 Heat pump heating system capable of improving heating effect in winter and special heating apparatus therefor
JP5109300B2 (en) * 2006-07-11 2012-12-26 株式会社デンソー Hot water storage hot water heater
KR101507438B1 (en) 2008-02-04 2015-03-31 엘지전자 주식회사 Heat pump heating apparatus and Control method of the same
JP5018725B2 (en) * 2008-04-18 2012-09-05 株式会社デンソー Ejector refrigeration cycle
DE112009000608B4 (en) 2008-04-18 2017-12-28 Denso Corporation An ejector-type refrigeration cycle device
JP5387235B2 (en) * 2009-08-28 2014-01-15 パナソニック株式会社 Heat pump type hot water heater
JP5682552B2 (en) * 2011-12-28 2015-03-11 ダイキン工業株式会社 Heat pump water heater
KR101504479B1 (en) * 2013-05-14 2015-03-20 주식회사 리윈 Heat pump with frost delaying function and two cycles system having thereof
KR101469459B1 (en) * 2014-07-01 2014-12-08 주식회사 신진에너텍 Heat pump system using complex heat sources and its controlling process
JP6551783B2 (en) * 2015-08-28 2019-07-31 株式会社ノーリツ Heat pump device and hot water supply device provided with the same
JP7013854B2 (en) * 2017-12-26 2022-02-01 株式会社ノーリツ Hot water storage and hot water supply device
JP7050516B2 (en) * 2018-02-15 2022-04-08 三菱電機株式会社 Water heater
JP7222744B2 (en) * 2019-02-08 2023-02-15 ダイキン工業株式会社 Refrigerators, cooling systems and heat source units for cooling systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300365A (en) * 1993-04-19 1994-10-28 Toshiba Corp Air conditioner
JP2003222391A (en) * 2002-01-29 2003-08-08 Daikin Ind Ltd Heat pump type water heater

Also Published As

Publication number Publication date
JP2006097930A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
AU740993B2 (en) Refrigerating apparatus
JP5011713B2 (en) Heat pump type water heater
JP4823501B2 (en) Heat pump type heating device
JP4539553B2 (en) Heat pump water heater
US20060266072A1 (en) Ejector and ejector cycle device
JP4738293B2 (en) Heat pump device and heat pump water heater
JP5939764B2 (en) Heat pump device and heat pump water heater
JP6463491B2 (en) Refrigeration cycle equipment
JP3901192B2 (en) Heat pump water heater
JP3659197B2 (en) Heat pump water heater
JP6057871B2 (en) Heat pump system and heat pump type water heater
JP3919736B2 (en) Start-up control device and start-up control method for heat pump water heater
JP4858399B2 (en) Refrigeration cycle
JP3737357B2 (en) Water heater
KR20050004015A (en) Vapor compression refrigerant cycle system
JP3700474B2 (en) Heat pump water heater
JP3835434B2 (en) Heat pump type water heater
JP3703995B2 (en) Heat pump water heater
JP3835431B2 (en) Vapor compression refrigerator
JP2004361046A (en) Heat pump hot water supply apparatus
JP4465986B2 (en) Heat pump type water heater
CN113498468B (en) Refrigeration cycle device
JP2009030905A (en) Heat pump type heating device
JP4179267B2 (en) Heat pump water heater
JP6588645B2 (en) Refrigeration cycle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100426

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees