JPH0468263A - Refrigerating device - Google Patents

Refrigerating device

Info

Publication number
JPH0468263A
JPH0468263A JP17743490A JP17743490A JPH0468263A JP H0468263 A JPH0468263 A JP H0468263A JP 17743490 A JP17743490 A JP 17743490A JP 17743490 A JP17743490 A JP 17743490A JP H0468263 A JPH0468263 A JP H0468263A
Authority
JP
Japan
Prior art keywords
pressure
pressure side
evaporator
compressor
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17743490A
Other languages
Japanese (ja)
Inventor
Noboru Nakano
昇 中野
Koji Shigeta
茂田 孝治
Mitsugi Aoyama
貢 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Shimizu Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Shimizu Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Shimizu Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP17743490A priority Critical patent/JPH0468263A/en
Publication of JPH0468263A publication Critical patent/JPH0468263A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To prevent pressure decrease in the low pressure side and realize a stable running, even though a pressure should decrease in the high pressure side, by opening an electromagnetic valve and making a part of gas discharged from a compressor flow directly into an evaporator when a pressure in low pressure side becomes below a set value of a pressure detector in low pressure side. CONSTITUTION:Piping 2 which is used to connect a compressor 1 and an air-cooled condenser 3 and piping 8 which is used to connect a throttle device and an evaporator 9 are connected with piping 15 provided with an electromagnetic valve 14 in the middle way, and a part of a gas discharged from the compressor 1 is sent to the evaporator 9. When the temperature of cooled air decreases, the pressure in high pressure side can not be kept ever by stopping one of the condensers 4, 5, thereby the electromagnetic valve 14 is opened by the pressure detector 16 in the low pressure side under such running condition that the pressure in low pressure side decreases to the degree to freeze the evaporator 9. When the electromagnetic valve 14 is opened, a part of refrigerant gas discharged from the compressor 1 flows into an evaporator 9 through a pipe 15 and the electromagnetic valve 14. The refrigerant which flows through a throttle device 7 is reduced and the pressure in low pressure side is increased by the decrease in cooling capacity. The decrease in pressure loss of throttle device and the flowing of the gas with large entropy discharged from the compressor into the evaporator 9.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は凝縮器を冷却する熱媒体(空気、水等)の温度
が低下した場合、すなわち、冬期にも安定して運転を行
なう冷凍装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a refrigeration system that operates stably even when the temperature of a heat medium (air, water, etc.) that cools a condenser decreases, that is, even in winter. Regarding.

〔従来の技術〕[Conventional technology]

年間を通し冷却運転を行なう冷凍装置では、冬期凝縮器
冷却用熱媒体(空気、水等)の温度が低下すると冷凍サ
イクルの高圧側圧力が低下し、それに伴って、低圧側圧
力も下がるため高圧側圧力を維持することにより低圧側
圧力も維持すべく、熱媒の流量を減少させる次のような
方法をとっている。
In a refrigeration system that performs cooling operation throughout the year, when the temperature of the heat medium (air, water, etc.) for cooling the condenser decreases in winter, the pressure on the high pressure side of the refrigeration cycle decreases, and the pressure on the low pressure side also decreases, so the high pressure In order to maintain the low-pressure side pressure by maintaining the side pressure, the following method is used to reduce the flow rate of the heating medium.

すなわち、空冷式の冷凍装置では、凝縮器用送風装置の
回転数を低下させ、あるいは、複数個の送風装置をもつ
ものでは一部送風装置を停止する等の方法である。
That is, in an air-cooled refrigeration system, the rotational speed of the condenser blower is reduced, or in a system with a plurality of blowers, some of the blowers are stopped.

また、水冷式の冷凍装置では、凝縮器冷却水の流量を減
少する方法である。
In a water-cooled refrigeration system, this method involves reducing the flow rate of condenser cooling water.

なお、この種の装置に関連するものには、例えば、社団
法人日本冷凍協会綿、冷凍空調便覧基礎編新版(198
1年)第346頁から第349頁に挙げられている。
In addition, related to this type of equipment, for example, Japan Refrigeration Association Cotton, Refrigeration and Air Conditioning Handbook Basic Edition (198
1 year) listed on pages 346 to 349.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は高圧側圧力を維持することにより低圧側
圧力の低下を防止する方法であり、確実に高圧側圧力が
維持されれば問題ないが、例えば、空冷式凝縮器をもつ
冷凍装置では、厳寒期や、低温時の強風時には凝縮器用
送風装置を停止しても高圧側圧力が維持できない場合が
ある。また、水冷式凝縮器をもつ冷凍装置にあっても、
冷却水温度が極端に低い場合には同様である。このよう
に極端に高圧側圧力が低下すると絞り装置の能力が低下
するためそれに伴って低圧側圧力も低下し、特に蒸発器
で冷却される被冷却流体の温度が低い場合にはより一層
低圧側圧力が低下する。さらに、絞り装置として寸法、
形状固定のキャピラリチューブを用いる冷凍装置ではキ
ャピラリチューブの制御性に限界があり、この傾向が大
となる。
The above conventional technology is a method of preventing a drop in the pressure on the low pressure side by maintaining the pressure on the high pressure side, and there is no problem as long as the pressure on the high pressure side is maintained reliably. However, for example, in a refrigeration system with an air-cooled condenser, During extremely cold seasons or strong winds at low temperatures, the high-pressure side pressure may not be maintained even if the condenser blower is stopped. Also, even if the refrigeration equipment has a water-cooled condenser,
The same applies when the cooling water temperature is extremely low. If the pressure on the high-pressure side decreases extremely like this, the capacity of the throttling device decreases, and the pressure on the low-pressure side also decreases. Especially when the temperature of the cooled fluid cooled by the evaporator is low, the pressure on the low-pressure side decreases even more. Pressure decreases. In addition, the dimensions as a drawing device,
In a refrigeration system that uses a capillary tube with a fixed shape, there is a limit to the controllability of the capillary tube, and this tendency is exacerbated.

低圧側圧力の低下は蒸発器の蒸発温度の低下につながり
、空気を冷却する冷凍装置では、蒸発器への霜付の発生
、この霜付に起因する伝熱性能の低下によるより一層の
低圧側圧力の低下、さらに蒸発器の霜の生長、全面凍結
により運転不能となる。
A decrease in the pressure on the low pressure side leads to a decrease in the evaporation temperature of the evaporator, and in refrigeration equipment that cools air, frost buildup occurs on the evaporator, and the heat transfer performance decreases due to this frosting, which further increases the low pressure side pressure. Operation becomes impossible due to pressure drop, frost growth on the evaporator, and complete freezing.

また、水を冷却する冷凍装置では、水を冷却する蒸発器
伝熱管表面への水の凍結、この凍結による伝熱性能の低
下によるより一層の低圧側圧力の低下、さらに、蒸発器
の全面凍結を引き起こす。
In addition, in refrigeration equipment that cools water, water freezes on the surface of the evaporator heat transfer tube that cools the water, and this freezing reduces heat transfer performance, further reducing the low pressure side pressure, and furthermore, the evaporator completely freezes. cause.

本発明の目的は、高圧側圧力が低下する状態になっても
、低圧側圧力の低下を防ぎ、安定した運転を可能とする
ことにある。
An object of the present invention is to prevent the low pressure side pressure from decreasing even when the high pressure side pressure decreases, thereby enabling stable operation.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は運転中蒸発器が凍
結するような蒸発温度に相当する圧力まで低圧側圧力が
下がるような条件では圧縮機の吐出ガスの一部を、直接
、蒸発器入口に流入させる。
In order to achieve the above object, the present invention supplies a portion of the discharge gas of the compressor directly to the evaporator under conditions where the low pressure side pressure drops to a pressure corresponding to the evaporation temperature such as when the evaporator freezes during operation. Let it flow into the inlet.

具体的には蒸発器が凍結するような圧力まで低圧側圧力
が下がったことを低圧側圧力検出装置で検知し、圧縮機
の吐出ガスの一部を凝縮器、絞り装置をバイパスする電
磁弁を備えた配管の電磁弁を開くことにより、直接、蒸
発器に流入させる。
Specifically, a low-pressure side pressure detection device detects when the low-pressure side pressure has dropped to a pressure that would cause the evaporator to freeze, and a solenoid valve is installed to bypass a portion of the compressor discharge gas to the condenser and throttle device. By opening the solenoid valve of the provided piping, the water flows directly into the evaporator.

蒸発器が凍結するような低圧側圧力の低下は。A drop in pressure on the low side that would cause the evaporator to freeze.

高圧側圧力の極端な低下によるものであるため、低圧側
圧力検出装置の代りに高圧側圧力検出装置を使用し、高
圧側圧力の低下を高圧側圧力検出装置で検知し、電磁弁
を開くこともできる。
Since this is caused by an extreme drop in the pressure on the high pressure side, a high pressure side pressure detection device is used instead of the low pressure side pressure detection device, the drop in high pressure side pressure is detected by the high pressure side pressure detection device, and the solenoid valve is opened. You can also do it.

また、高圧側圧力の極端な低下は凝縮器冷却流体の厳寒
期等の温度低下によるものであるため、高圧側圧力検出
装置の代りに、空冷式凝縮器を備えるものでは凝縮器冷
却空気温度検出装置、水冷式凝縮器を備えるものでは凝
縮器冷却水入口温度検出装置に代えることもできる。
In addition, since the extreme drop in pressure on the high pressure side is due to the temperature drop of the condenser cooling fluid during extremely cold periods, in place of the high pressure side pressure detection device, in systems equipped with air-cooled condensers, condenser cooling air temperature detection is used. If the device is equipped with a water-cooled condenser, a condenser cooling water inlet temperature detection device may be used instead.

さらに、低圧側圧力検出装置と高圧側圧力検出装置、あ
るいは、高圧側圧力検出装置に代えた凝縮器冷却空気温
度検出装置、凝縮器冷却水入口温度検出装置の両者が共
に設定値に達したとき電磁弁を開とするように構成すれ
ば、より確実な制御ができる。
Furthermore, when both the low-pressure side pressure detection device and the high-pressure side pressure detection device, or the condenser cooling air temperature detection device and the condenser cooling water inlet temperature detection device that replaced the high-pressure side pressure detection device, both reach the set value. If the solenoid valve is configured to open, more reliable control can be achieved.

[作用〕 以上のように蒸発器が凍結するような圧力まで低圧側圧
力が下がっても、このとき圧縮機の吐出ガスの一部を凝
縮器、絞り装置をバイパスして直接蒸発器に流入させれ
ば、凝縮器、絞り装置を通る冷媒量がバイパス量だけ減
少することによる冷却能力の減少、絞り装置の圧力損失
の低下およびエンタルピ大の圧縮機吐出ガスの蒸発器へ
の流入口より低圧側圧力が上昇し、蒸発器の凍結を防ぐ
ことができる。
[Function] As described above, even if the low pressure side pressure drops to a pressure that freezes the evaporator, a portion of the discharged gas from the compressor bypasses the condenser and throttling device and flows directly into the evaporator. In this case, the amount of refrigerant passing through the condenser and throttle device is reduced by the bypass amount, resulting in a decrease in cooling capacity, a decrease in pressure loss in the throttle device, and a lower pressure side than the inlet of the compressor discharge gas, which has a large enthalpy, to the evaporator. The pressure increases and can prevent the evaporator from freezing.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。圧縮
機1より吐出された高温高圧の冷媒ガスは配管2を通り
空冷式凝縮器3に入る。空冷式凝縮器3に入った冷媒ガ
スは凝縮器送風装置4,5による空気で冷却され凝縮す
る。凝縮した液冷媒は配管6を通り絞り装置7で減圧さ
れ、配管8を通って蒸発器9の伝熱管lO内に入る。伝
熱管10に入った冷媒は水入口11より入り、水出口1
2よ、り出る水から熱を奪い、蒸発して蒸発器9より出
て配管13を通り圧縮機1に戻る。凝縮器送風装置4,
5は冷却空気の温度が下り、冷凍サイクルの高圧側圧力
が低下すると高圧側圧力を維持させるため、冷却空気温
度、または、高圧側圧力(図示せず)を検知し、その−
個を停止させる。
An embodiment of the present invention will be described below with reference to FIG. High-temperature, high-pressure refrigerant gas discharged from the compressor 1 passes through a pipe 2 and enters an air-cooled condenser 3. The refrigerant gas that has entered the air-cooled condenser 3 is cooled and condensed by air from the condenser blowers 4 and 5. The condensed liquid refrigerant passes through a pipe 6, is depressurized by a throttle device 7, passes through a pipe 8, and enters a heat transfer tube IO of an evaporator 9. The refrigerant that has entered the heat exchanger tube 10 enters through the water inlet 11 and then through the water outlet 1.
2, the water that comes out takes heat, evaporates, exits the evaporator 9, passes through the pipe 13, and returns to the compressor 1. Condenser blower device 4,
5 detects the cooling air temperature or the high pressure side pressure (not shown) in order to maintain the high pressure side pressure when the temperature of the cooling air decreases and the high pressure side pressure of the refrigeration cycle decreases.
stop the individual.

以上が従来実施されている冷凍サイクルである。The above is the conventional refrigeration cycle.

しかし、この冷凍サイクルでは厳寒期のような冷却空気
温度が低い場合、さらに強風時には、高圧側圧力を維持
できず、それに伴い低圧側圧力も低下する。低圧側圧力
の低下は蒸発器伝熱管10内の冷媒の蒸発温度の低下を
引き起す。この蒸発温度が低くなる1例えば、−10℃
程度(低圧側圧力で2.6kg/cdG )まで下がる
と蒸発器伝熱管10の水側表面が結氷する。このような
状態になると伝熱管10の伝熱性能が阻害され、さらに
低圧側圧力が低下し、それにより氷が生長し全面凍結、
蒸発器の損傷を引き起す。このため冷凍サイクルでは冷
却空気温度5℃程度までしか運転できないのが一般的で
ある。
However, in this refrigeration cycle, when the temperature of the cooling air is low, such as during a severe cold season, or when there is strong wind, the high pressure side pressure cannot be maintained, and the low pressure side pressure also decreases accordingly. A decrease in the pressure on the low pressure side causes a decrease in the evaporation temperature of the refrigerant in the evaporator heat transfer tube 10. This evaporation temperature becomes lower1, e.g. -10℃
When the pressure drops to a certain level (2.6 kg/cdG on the low pressure side), the water side surface of the evaporator heat transfer tube 10 freezes. In such a state, the heat transfer performance of the heat transfer tube 10 is inhibited, and the pressure on the low pressure side further decreases, which causes ice to grow and completely freeze.
causing damage to the evaporator. For this reason, the refrigeration cycle can generally only be operated up to a cooling air temperature of about 5°C.

本発明の冷凍サイクルは圧縮機1と空冷式凝縮器3を結
ぶ配管2と絞り装置7と蒸発器9を結ぶ配管8をその途
中に電磁弁14を備えた配管15で結び、圧縮機1の吐
出ガスの一部を蒸発器9に導くことができるようにした
In the refrigeration cycle of the present invention, a pipe 2 connecting a compressor 1 and an air-cooled condenser 3 and a pipe 8 connecting a throttle device 7 and an evaporator 9 are connected by a pipe 15 having a solenoid valve 14 in the middle. A part of the discharged gas can be guided to the evaporator 9.

冷却空気温度が下がり☆器送風装置4,5の一個を停止
しても高圧側圧力が維持できず、そのため低圧側圧力が
蒸発器を凍結させる圧力まで下がるような運転条件では
、低圧側圧力検出装置16により電磁弁14を開く。電
磁弁14を開くと圧縮機1より吐出した冷媒ガスは一部
が配管15゜電磁弁14を通り蒸発器9に流入する。
Under operating conditions where the cooling air temperature drops and the high-pressure side pressure cannot be maintained even if one of the blowers 4 and 5 is stopped, and therefore the low-pressure side pressure drops to a pressure that freezes the evaporator, the low-pressure side pressure is detected. Device 16 opens solenoid valve 14 . When the electromagnetic valve 14 is opened, a part of the refrigerant gas discharged from the compressor 1 passes through the pipe 15° and the electromagnetic valve 14 and flows into the evaporator 9.

このように構成すれば、空冷式凝縮器3.絞り装置7を
通る冷媒流量が少なくなることによる冷却能力の減少、
絞り装置の圧力損失の低下、および、エンタルピ大の圧
縮機吐出ガスの蒸発器9への流入により低圧側圧力が上
昇する。
With this configuration, the air-cooled condenser 3. A decrease in cooling capacity due to a decrease in the flow rate of refrigerant passing through the expansion device 7,
The pressure on the low pressure side increases due to the reduction in pressure loss of the throttle device and the flow of compressor discharge gas with a large enthalpy into the evaporator 9.

低圧側圧力の低下は高圧側圧力の低下に伴うものである
ため、第1図の低圧側圧力検出袋W116の代りに破線
で示す高圧側圧力検出装置17を用いることもできる。
Since the decrease in the pressure on the low pressure side is accompanied by the decrease in the pressure on the high pressure side, a high pressure side pressure detection device 17 shown by a broken line may be used instead of the low pressure side pressure detection bag W116 in FIG.

また、高圧側圧力の低下は冷却空気温度の低下によるも
のであるため、破線で示す冷却空気温度検出装置18を
用いることもできる。さらに、低圧側圧力検出装置16
と高圧側圧力検出装置17、または、冷却空気温度検出
装置18の両者が共に設定値に達した場合に電磁弁14
を開くように構成することもできる。
Further, since the decrease in the high pressure side pressure is due to a decrease in the cooling air temperature, a cooling air temperature detection device 18 shown by a broken line can also be used. Furthermore, the low pressure side pressure detection device 16
When both the high-pressure side pressure detection device 17 or the cooling air temperature detection device 18 reach the set value, the solenoid valve 14
It can also be configured to open.

尚、本実施例では水を冷却する蒸発器としたが、空気を
冷却する蒸発器を使用する場合も同様である。また、本
実施例では空冷式凝縮器を使用しているが水冷式凝縮器
を使用する場合、冷却空気温度検出装置の代りに凝縮器
入口冷却水温度検出装置を用いれば同様の効果がある。
In this embodiment, an evaporator for cooling water is used, but the same applies when an evaporator for cooling air is used. Further, although an air-cooled condenser is used in this embodiment, when a water-cooled condenser is used, the same effect can be obtained by using a condenser inlet cooling water temperature detection device instead of the cooling air temperature detection device.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように構成されているので、冬
期のように凝縮器を冷却する熱媒体(空気、水等)の温
度が低い条件で冷凍サイクルの高圧側圧力が下っても低
圧側圧力を蒸発器が凍結を起さぬ蒸発温度に相当する圧
力とすることができる。
Since the present invention is configured as described above, even if the pressure on the high pressure side of the refrigeration cycle drops under conditions such as winter when the temperature of the heat medium (air, water, etc.) that cools the condenser is low, the low pressure side The pressure may correspond to an evaporation temperature at which the evaporator does not freeze.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の冷凍サイクルの系後図であ
る。 1・・・圧縮機、2,6,8,13.15・・・配管、
3・・・空冷式凝縮器、4,5・・・凝縮器送風装置、
7・・・絞り装置、9・・・蒸発器、10・・・伝熱管
、11・・・水入口、12・・・水出口、14・・・電
磁弁、16・・・低圧側圧力検出装置、17・・・高圧
側圧力検出装置、18・・・冷却空気温度検出装置。
FIG. 1 is a system diagram of a refrigeration cycle according to an embodiment of the present invention. 1...Compressor, 2,6,8,13.15...Piping,
3...Air-cooled condenser, 4,5...Condenser blower device,
7... Throttle device, 9... Evaporator, 10... Heat transfer tube, 11... Water inlet, 12... Water outlet, 14... Solenoid valve, 16... Low pressure side pressure detection Device, 17... High pressure side pressure detection device, 18... Cooling air temperature detection device.

Claims (1)

【特許請求の範囲】[Claims] 1、冷凍サイクルの低圧側圧力検出装置と圧縮機の吐出
ガスの一部を凝縮器、絞り装置をバイパスして、直接、
蒸発器へ導く電磁弁を設けたバイパス配管を備え、低圧
側圧力が前記低圧側圧力検出装置の設定値以下になつた
場合、前記電磁弁を開き、前記圧縮機の吐出ガスの一部
を、直接、前記蒸発器に流入させることを特徴とする冷
凍装置。
1. The low-pressure side pressure detection device of the refrigeration cycle and a portion of the discharge gas of the compressor are directly routed by bypassing the condenser and expansion device.
A bypass pipe is provided with a solenoid valve leading to the evaporator, and when the low pressure side pressure becomes less than the set value of the low pressure side pressure detection device, the solenoid valve is opened and a part of the gas discharged from the compressor is A refrigeration system characterized in that the refrigeration system is made to flow directly into the evaporator.
JP17743490A 1990-07-06 1990-07-06 Refrigerating device Pending JPH0468263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17743490A JPH0468263A (en) 1990-07-06 1990-07-06 Refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17743490A JPH0468263A (en) 1990-07-06 1990-07-06 Refrigerating device

Publications (1)

Publication Number Publication Date
JPH0468263A true JPH0468263A (en) 1992-03-04

Family

ID=16030880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17743490A Pending JPH0468263A (en) 1990-07-06 1990-07-06 Refrigerating device

Country Status (1)

Country Link
JP (1) JPH0468263A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032091A (en) * 2010-07-30 2012-02-16 Fujitsu General Ltd Heat pump cycle system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032091A (en) * 2010-07-30 2012-02-16 Fujitsu General Ltd Heat pump cycle system

Similar Documents

Publication Publication Date Title
USRE39924E1 (en) Refrigeration system with modulated condensing loops
US7559207B2 (en) Method for refrigerant pressure control in refrigeration systems
US7028494B2 (en) Defrosting methodology for heat pump water heating system
JPS63140259A (en) Heat regenerating and supercooling device and method thereof
WO2006039042A2 (en) Cooling systems
CN107014019A (en) A kind of air-cooled single cooler group under low temperature environment
CN111121352A (en) Continuous defrosting refrigeration control system capable of reducing heat leakage
JPH074794A (en) Air-conditioning equipment
JPH0730979B2 (en) Air conditioner
JPH0468263A (en) Refrigerating device
CN211823307U (en) Continuous defrosting refrigeration control system capable of reducing heat leakage
JP2000179952A (en) Refrigeration cycle controller
KR100937202B1 (en) A refrigerator for dryer and cold store
CN206755456U (en) A kind of air-cooled single cooler group under low temperature environment
JPH1163709A (en) Air conditioner
CN111089395A (en) Method for defrosting evaporator by changing flow, computer readable storage medium and air conditioner
JP2523534B2 (en) Air conditioner
CN219243956U (en) Air conditioner
JPH1123111A (en) Freezing system and water cooling freezing apparatus for same system
JPS6217145B2 (en)
JP2007046860A (en) Ejector type refrigeration cycle
JP2001280768A (en) Refrigerator
CA2363288C (en) Refrigeration system with modulated condensing loops
KR20010095734A (en) Apparatus for control freezing in airconditioner
JPS6350629B2 (en)