JP2010060193A - Heat pump type hot water supply device - Google Patents

Heat pump type hot water supply device Download PDF

Info

Publication number
JP2010060193A
JP2010060193A JP2008225615A JP2008225615A JP2010060193A JP 2010060193 A JP2010060193 A JP 2010060193A JP 2008225615 A JP2008225615 A JP 2008225615A JP 2008225615 A JP2008225615 A JP 2008225615A JP 2010060193 A JP2010060193 A JP 2010060193A
Authority
JP
Japan
Prior art keywords
temperature
hot water
expansion valve
heat exchanger
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008225615A
Other languages
Japanese (ja)
Other versions
JP5139211B2 (en
Inventor
Motoi Abe
基 阿部
Takaaki Yachita
貴章 谷地田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2008225615A priority Critical patent/JP5139211B2/en
Publication of JP2010060193A publication Critical patent/JP2010060193A/en
Application granted granted Critical
Publication of JP5139211B2 publication Critical patent/JP5139211B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a compressor from abnormally stopping in high load in winter. <P>SOLUTION: A heat pump type hot water supply device includes a heat pump cycle 18 constituted by connecting the compressor 14, a water-refrigerant heat exchanger 15, an expansion valve 16 and an air heat exchanger 17, a discharge temperature sensor 20 detecting a temperature of the refrigerant discharged from the compressor 14, a heat exchange hot water supply pipe 6 connected with the water-refrigerant heat exchanger 15, a boiling-up temperature sensor 24 detecting a temperature of the heated hot water, and a control device 26 for controlling the opening/closing of the expansion valve 16 by applying a manipulated variable of the valve opening according to the temperature difference between the detection temperature of the discharge temperature sensor 20 and the prescribed target discharge temperature to the expansion valve 16 by every prescribed period, and increasing and decreasing the frequency of the compressor 14 so that the detection temperature of the boiling-up temperature sensor 24 reaches the desired boiling-up temperature. The control device 26 limits the manipulated variable to the closing direction of the expansion valve 16 in one period to be smaller than normal one when the opening of the expansion valve 16 is closed to be less than a specific value and the frequency of the compressor 14 is more than a prescribed frequency. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、給湯水を加熱するヒートポンプ式給湯装置に関するものである。   The present invention relates to a heat pump type hot water supply apparatus for heating hot water.

従来より、この種のヒートポンプ式給湯装置においては、特許文献1のように、圧縮機と水冷媒熱交換器と膨張弁と空気熱交換器を環状に接続したヒートポンプサイクルと、給湯用の湯を貯める貯湯タンクと、貯湯タンクと水冷媒熱交換器を循環ポンプを介して湯水が循環可能に接続する加熱循環回路と、前記圧縮機から吐出した冷媒温度を検出する吐出温度センサと、前記吐出温度センサの検出温度が目標値になるように前記膨張弁の開度を制御するようにしたものがあった。   Conventionally, in this type of heat pump type hot water supply apparatus, as disclosed in Patent Document 1, a heat pump cycle in which a compressor, a water-refrigerant heat exchanger, an expansion valve, and an air heat exchanger are annularly connected, and hot water for hot water supply are provided. A hot water storage tank for storing, a heating circulation circuit that connects the hot water storage tank and the water / refrigerant heat exchanger so that hot water can circulate through a circulation pump, a discharge temperature sensor that detects a refrigerant temperature discharged from the compressor, and the discharge temperature There is one in which the opening degree of the expansion valve is controlled so that the detected temperature of the sensor becomes a target value.

特開2005−16947号公報JP 2005-16947 A

ところが、この従来のヒートポンプ式給湯装置は、冬期には空気熱交換器での蒸発能力が小さいため、圧縮機回転数が高く、膨張弁開度が小さい状態で安定する傾向にあるが、積雪や着霜状況によって空気熱交換器の蒸発能力がさらに低下してしまうことがある。蒸発能力が低下すると、一定の加熱能力を保つように圧縮機の周波数が高くなって、吐出圧力が高圧となる。   However, this conventional heat pump type hot water supply apparatus has a tendency to stabilize in a state where the compressor rotation speed is high and the expansion valve opening is small because the evaporation capacity in the air heat exchanger is small in winter. Depending on the frosting condition, the evaporation capacity of the air heat exchanger may further decrease. When the evaporation capacity decreases, the frequency of the compressor increases so as to maintain a constant heating capacity, and the discharge pressure becomes high.

このような状況下において、吐出温度センサの検出温度が目標値から低下すると、膨張弁の開度を閉じる方向へ操作されるが、その操作量が大きい場合、圧縮機の吐出圧力が更に高圧となり、圧縮機の許容トルクを超える負荷が発生して圧縮機が脱調し異常停止してしまう可能性があった。   Under such circumstances, when the detected temperature of the discharge temperature sensor decreases from the target value, the expansion valve is operated to close the opening, but when the operation amount is large, the discharge pressure of the compressor becomes higher. There was a possibility that a load exceeding the allowable torque of the compressor would be generated, causing the compressor to step out and stop abnormally.

そこで、本発明は上記課題を解決するため、請求項1では、圧縮機と水冷媒熱交換器と膨張弁と空気熱交換器を環状に接続したヒートポンプサイクルと、前記圧縮機から吐出した冷媒温度を検出する吐出温度センサと、前記水冷媒熱交換器の水側に接続された熱交入水管および熱交出湯管と、前記熱交出湯管に設けられ前記水冷媒熱交換器で加熱された湯の温度を検出する沸き上げ温度センサと、前記吐出温度センサの検出温度と所定の目標吐出温度との温度差に応じた弁開度の操作量を所定の周期毎に前記膨張弁に与えて前記膨張弁を開閉制御すると共に、前記沸き上げ温度センサの検出温度が所望の沸き上げ温度になるように前記圧縮機の周波数を増減制御する制御装置とを備え、前記制御装置は、前記膨張弁の開度が一定以下に閉まっている状態で、かつ、前記圧縮機の周波数が所定周波数以上であると、一つの周期での前記膨張弁の閉方向への操作量を通常よりも小さく制限した。   Therefore, in order to solve the above problems, the present invention provides a heat pump cycle in which a compressor, a water refrigerant heat exchanger, an expansion valve, and an air heat exchanger are connected in an annular shape, and a refrigerant temperature discharged from the compressor. A discharge temperature sensor for detecting the heat, a heat exchange water pipe and a heat exchange hot water pipe connected to the water side of the water refrigerant heat exchanger, and a heat refrigerant hot water pipe provided in the heat exchange hot water pipe and heated by the water refrigerant heat exchanger A boiling temperature sensor for detecting the temperature of the heated hot water, and an operation amount of a valve opening corresponding to a temperature difference between a temperature detected by the discharge temperature sensor and a predetermined target discharge temperature to the expansion valve at predetermined intervals. And controlling the opening and closing of the expansion valve, and a control device for increasing and decreasing the frequency of the compressor so that the detected temperature of the boiling temperature sensor becomes a desired boiling temperature, the control device, Expansion valve opening closed below a certain level While there, and the frequency of the compressor When it is higher than a predetermined frequency, the operation amount of the closing direction of the expansion valve at one cycle was limited smaller than usual.

また、請求項2では、圧縮機と水冷媒熱交換器と膨張弁と空気熱交換器を環状に接続したヒートポンプサイクルと、前記圧縮機から吐出した冷媒温度を検出する吐出温度センサと、前記ヒートポンプサイクルの高圧側の圧力を検出する吐出圧力センサと、前記水冷媒熱交換器の水側に接続された熱交入水管および熱交出湯管と、前記熱交出湯管に設けられ前記水冷媒熱交換器で加熱された湯の温度を検出する沸き上げ温度センサと、前記吐出温度センサの検出温度と所定の目標吐出温度との温度差に応じた弁開度の操作量を所定の周期毎に前記膨張弁に与えて前記膨張弁を開閉制御すると共に、前記沸き上げ温度センサの検出温度が所望の沸き上げ温度になるように前記圧縮機の周波数を増減制御する制御装置とを備え、前記膨張弁の開度が一定以下に閉まっている状態で、かつ、前記吐出圧力センサで検出する吐出圧力が所定圧力以上であると、一つの周期での前記膨張弁の閉方向への操作量を通常よりも小さく制限した。   Further, in claim 2, a heat pump cycle in which a compressor, a water refrigerant heat exchanger, an expansion valve, and an air heat exchanger are connected in an annular shape, a discharge temperature sensor that detects a refrigerant temperature discharged from the compressor, and the heat pump A discharge pressure sensor for detecting the pressure on the high pressure side of the cycle, a heat input water pipe and a heat exchange hot water pipe connected to the water side of the water refrigerant heat exchanger, and the water provided in the heat exchange hot water pipe A boiling temperature sensor for detecting the temperature of hot water heated by the refrigerant heat exchanger, and an operation amount of a valve opening corresponding to a temperature difference between a detected temperature of the discharge temperature sensor and a predetermined target discharge temperature at a predetermined cycle A controller for increasing and decreasing the frequency of the compressor so that the detected temperature of the boiling temperature sensor becomes a desired boiling temperature, and is provided to the expansion valve every time to control the opening and closing of the expansion valve, The opening of the expansion valve is When the discharge pressure detected by the discharge pressure sensor is equal to or higher than a predetermined pressure, the operation amount in the closing direction of the expansion valve in one cycle is limited to be smaller than usual. .

また、請求項3では、圧縮機と水冷媒熱交換器と膨張弁と空気熱交換器を環状に接続したヒートポンプサイクルと、前記圧縮機から吐出した冷媒温度を検出する吐出温度センサと、外気温度を検出する外気温度センサと、前記水冷媒熱交換器の水側に接続された熱交入水管および熱交出湯管と、前記熱交出湯管に設けられ前記水冷媒熱交換器で加熱された湯の温度を検出する沸き上げ温度センサと、前記吐出温度センサの検出温度と所定の目標吐出温度との温度差に応じた弁開度の操作量を所定の周期毎に前記膨張弁に与えて前記膨張弁を開閉制御すると共に、前記沸き上げ温度センサの検出温度が所望の沸き上げ温度になるように前記圧縮機の周波数を増減制御する制御装置とを備え、前記膨張弁の開度が一定以下に閉まっている状態で、かつ、前記外気温度センサで検出する外気温度が所定外気温度以下であると、一つの周期での前記膨張弁の閉方向への操作量を通常よりも小さく制限した。   Further, in claim 3, a heat pump cycle in which a compressor, a water refrigerant heat exchanger, an expansion valve, and an air heat exchanger are connected in an annular shape, a discharge temperature sensor that detects a refrigerant temperature discharged from the compressor, and an outside air temperature An outside air temperature sensor for detecting water, a heat input water pipe and a heat exchange hot water pipe connected to the water side of the water refrigerant heat exchanger, and a heat exchange hot water pipe provided in the heat exchange hot water pipe and heated by the water refrigerant heat exchanger A boiling temperature sensor for detecting the temperature of the heated hot water, and an operation amount of a valve opening corresponding to a temperature difference between a temperature detected by the discharge temperature sensor and a predetermined target discharge temperature to the expansion valve at predetermined intervals. And a control device for increasing / decreasing the frequency of the compressor so that the detected temperature of the boiling temperature sensor becomes a desired boiling temperature. Is closed below a certain level, One, the outside air temperature detected by the outside air temperature sensor is not more than a predetermined outside air temperature, the amount of operation of the closing direction of the expansion valve at one cycle was limited smaller than usual.

また、請求項4では、圧縮機と水冷媒熱交換器と膨張弁と空気熱交換器を環状に接続したヒートポンプサイクルと、前記圧縮機から吐出した冷媒温度を検出する吐出温度センサと、前記水冷媒熱交換器の水側に接続された熱交入水管および熱交出湯管と、前記熱交出湯管に設けられ前記水冷媒熱交換器で加熱された湯の温度を検出する沸き上げ温度センサと、前記吐出温度センサの検出温度と所定の目標吐出温度との温度差に応じた弁開度の操作量を所定の周期毎に前記膨張弁に与えて前記膨張弁を開閉制御すると共に、前記沸き上げ温度センサの検出温度が所望の沸き上げ温度になるように前記圧縮機の周波数を増減制御する制御装置とを備え、前記膨張弁の開度が一定以下に閉まっている場合で、かつ、沸き上げ温度が所定温度以上であると、一つの周期での前記膨張弁の閉方向への操作量を通常よりも小さく制限した。   Moreover, in Claim 4, the heat pump cycle which connected the compressor, the water refrigerant | coolant heat exchanger, the expansion valve, and the air heat exchanger cyclically | annularly, the discharge temperature sensor which detects the refrigerant | coolant temperature discharged from the said compressor, and the said water A heat exchanger water pipe and a heat exchanger hot water pipe connected to the water side of the refrigerant heat exchanger, and a boiling point for detecting the temperature of the hot water provided in the heat exchanger hot water pipe and heated by the water refrigerant heat exchanger A temperature sensor and an opening / closing control of the expansion valve by giving an operation amount of a valve opening corresponding to a temperature difference between a detected temperature of the discharge temperature sensor and a predetermined target discharge temperature to the expansion valve every predetermined period A controller for increasing or decreasing the frequency of the compressor so that the detected temperature of the boiling temperature sensor becomes a desired boiling temperature, and when the opening of the expansion valve is closed below a certain level, And the boiling temperature is higher than the specified temperature When the operation amount of the closing direction of the expansion valve at one cycle was limited smaller than usual.

本発明によれば、冬期等における負荷が大きい状態においては、膨張弁開度の閉方向への操作量を小さく制限したので圧縮機のトルク増加が緩慢になり、圧縮機の許容トルクを超過して圧縮機が脱調し異常停止してしまうことを防止できると共に、膨張弁開度を閉方向のみに制限しているため、膨張弁を開方向へ操作する際には制限がなく、吐出温度が目標値を超過した場合にあっても、吐出温度を迅速に目標値へ戻すことができるものである。また、通常の負荷状態においては、膨張弁開度を通常に制御することで冷媒の吐出温度を迅速に目標値に到達させることができ、効率の良い運転を行うことができる。   According to the present invention, in a heavy load such as in winter, the operation amount in the closing direction of the expansion valve opening is limited to a small value, so that the increase in the torque of the compressor becomes slow and exceeds the allowable torque of the compressor. This prevents the compressor from stepping out and stops abnormally, and restricts the opening of the expansion valve only in the closing direction, so there is no restriction when operating the expansion valve in the opening direction. Even if the target value exceeds the target value, the discharge temperature can be quickly returned to the target value. In a normal load state, the discharge temperature of the refrigerant can be quickly reached the target value by normally controlling the opening degree of the expansion valve, and an efficient operation can be performed.

次に、本発明の一実施形態のヒートポンプ式給湯装置を図面に基づいて説明する。
図1に示すように、1は湯水を貯湯する貯湯タンク2を有した貯湯タンクユニット、3は貯湯タンク2内の湯水を加熱するヒートポンプ式加熱手段、4は前記貯湯タンク2の下部に接続された熱交入水管5および前記貯湯タンク2の上部に接続された熱交出湯管6よりなる加熱循環回路、7は前記貯湯タンク2の下部に接続され貯湯タンク2に水を給水する給水管、8は前記貯湯タンク2の上部に接続され貯湯されている高温水を出湯する出湯管である。
Next, a heat pump hot water supply apparatus according to an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, 1 is a hot water storage tank unit having a hot water storage tank 2 for storing hot water, 3 is a heat pump heating means for heating hot water in the hot water storage tank 2, and 4 is connected to the lower part of the hot water storage tank 2. A heat circulation circuit comprising a heat exchanger water pipe 5 and a heat exchanger hot water pipe 6 connected to the upper part of the hot water storage tank 2, and a water supply pipe 7 connected to the lower part of the hot water tank 2 for supplying water to the hot water tank 2 , 8 is a discharge pipe connected to the upper part of the hot water storage tank 2 for discharging hot water stored in the hot water.

9は給水管7から分岐された給水バイパス管、10は出湯管8からの湯と給水バイパス管9からの水を混合して給湯設定温度の湯とする混合弁、11は混合弁10で混合後の給湯温度を検出する給湯温度センサ、12は貯湯タンク2の側面上下にわたり複数設けられ、貯湯タンク2内の湯の温度を検出する貯湯温度センサ、13は前記貯湯タンクユニット1内の各センサの出力を受けて各機器の作動を制御する貯湯制御手段である。   9 is a water supply bypass pipe branched from the water supply pipe 7, 10 is a mixing valve that mixes hot water from the hot water discharge pipe 8 and water from the water supply bypass pipe 9 to make hot water at a hot water supply set temperature, and 11 is mixed by the mixing valve 10 A plurality of hot water supply temperature sensors 12 for detecting a hot water supply temperature later, a plurality of hot water storage temperature sensors 12 for detecting the temperature of hot water in the hot water storage tank 2, and a plurality of sensors 12 in the hot water storage tank unit 1. Is a hot water storage control means for controlling the operation of each device.

前記ヒートポンプ式加熱手段3は、冷媒を圧縮する圧縮機14と、高温高圧の冷媒と貯湯タンク2内の湯水とを熱交換する水冷媒熱交換器15と、水冷媒熱交換器15通過後の冷媒を減圧させる減圧器としての膨張弁16と、膨張弁16からの低温低圧の冷媒を蒸発させる蒸発器としての空気熱交換器17とを冷媒配管で環状に接続したヒートポンプサイクル18と、水冷媒熱交換器15の水側の加熱循環回路4途中に設けられて貯湯タンク2の湯水を循環させる加熱循環ポンプ19とから構成されている。ここで、前記水冷媒熱交換器15は冷媒の流動方向と被加熱水の流動方向が対向する対向流式の熱交換器で、前記膨張弁16はステッピングモータにより駆動されているものである。   The heat pump heating means 3 includes a compressor 14 that compresses refrigerant, a water refrigerant heat exchanger 15 that exchanges heat between the high-temperature and high-pressure refrigerant and hot water in the hot water storage tank 2, and a water refrigerant heat exchanger 15 that has passed through. A heat pump cycle 18 in which an expansion valve 16 serving as a decompressor for decompressing the refrigerant and an air heat exchanger 17 serving as an evaporator for evaporating the low-temperature and low-pressure refrigerant from the expansion valve 16 are annularly connected by a refrigerant pipe; A heating circulation pump 19 is provided in the middle of the heating circulation circuit 4 on the water side of the heat exchanger 15 to circulate hot water in the hot water storage tank 2. Here, the water-refrigerant heat exchanger 15 is a counter-flow heat exchanger in which the flow direction of the refrigerant and the flow direction of the water to be heated are opposed, and the expansion valve 16 is driven by a stepping motor.

20は圧縮機14と水冷媒熱交換器15との間に設けられ、冷媒の吐出温度を検出する吐出温度センサ、21は水冷媒熱交換器15と膨張弁16との間に設けられ、冷媒の水冷媒熱交換器15からの流出温度を検出する流出温度センサ、22は空気熱交換器17の空気入口側に設けられ、外気温度を検出する外気温度センサ、23は水冷媒熱交換器15の水側の入水温度を検出する入水温度センサ、24は水冷媒熱交換器15の水側の沸き上げ温度を検出する沸き上げ温度センサ、25はヒートポンプサイクル18の高圧側の圧力を検出する圧力センサである。   A discharge temperature sensor 20 is provided between the compressor 14 and the water refrigerant heat exchanger 15 to detect the discharge temperature of the refrigerant, and 21 is provided between the water refrigerant heat exchanger 15 and the expansion valve 16. An outflow temperature sensor for detecting an outflow temperature from the water refrigerant heat exchanger 15, 22 is provided on the air inlet side of the air heat exchanger 17, an outside air temperature sensor for detecting the outside air temperature, and 23 is a water refrigerant heat exchanger 15. The water temperature sensor detects the water temperature on the water side of the water refrigerant, 24 is a temperature sensor for detecting the water temperature of the water refrigerant heat exchanger 15, and 25 is a pressure for detecting the pressure on the high pressure side of the heat pump cycle 18. It is a sensor.

26は前記ヒートポンプ式加熱手段3内の各センサの出力を受けて各機器の作動を制御する加熱制御手段で、貯湯制御手段13と通信可能に接続され、貯湯制御手段13と連携してヒートポンプ式給湯装置を制御する制御装置を構成しているものである。   Reference numeral 26 denotes a heating control means for receiving the output of each sensor in the heat pump heating means 3 and controlling the operation of each device. The heating control means 26 is communicably connected to the hot water storage control means 13. This constitutes a control device for controlling the hot water supply device.

次に、この一実施形態の作動について説明する。
給湯を行う際は、ユーザーが蛇口(図示せず)を開くと、貯湯タンク2の下部の給水管7から市水が流入し、貯湯タンク2上部から深夜時間帯に沸き上げられて貯湯されている高温の湯が出湯管8へ出湯される。そして、出湯管8からの高温の湯と給水バイパス管9からの市水とが混合弁10で混合される。このとき、給湯温度センサ11で検出する混合後の給湯温度がリモートコントローラ(図示せず)等で設定された給湯設定温度になるように混合弁10の混合比率が調整され、給湯設定温度の湯が蛇口から給湯される。
Next, the operation of this embodiment will be described.
When hot water is supplied, when a user opens a faucet (not shown), city water flows from the water supply pipe 7 at the bottom of the hot water tank 2 and is boiled from the upper part of the hot water tank 2 at midnight and stored. The hot water that is present is poured into the tap pipe 8. Then, hot water from the hot water discharge pipe 8 and city water from the feed water bypass pipe 9 are mixed by the mixing valve 10. At this time, the mixing ratio of the mixing valve 10 is adjusted so that the hot water temperature after mixing detected by the hot water temperature sensor 11 becomes the hot water set temperature set by a remote controller (not shown) or the like. Hot water is supplied from the faucet.

深夜時間帯となると、貯湯制御手段13は貯湯タンク2内の湯水が所定の目標沸き上げ温度Tsetになるように沸き上げ運転を開始するよう加熱制御手段26へ沸き上げ開始命令を指示する。そして、加熱制御手段26は、圧縮機14と加熱循環ポンプ19を駆動開始すると共に、目標沸き上げ温度Tset+一定値を目標吐出温度TDとして設定し、吐出温度センサ20で検出する冷媒の吐出温度が目標吐出温度TDになるように膨張弁16の開度を制御する。そして、加熱循環ポンプ19の回転数が所定の回転数になるように制御すると同時に、沸き上げ温度センサ24で検出する水冷媒熱交換器15で加熱された湯の温度が目標沸き上げ温度Tsetとなるように圧縮機14の周波数をフィードバックして増減制御する。   In the midnight time zone, the hot water storage control means 13 instructs the heating control means 26 to start a boiling operation so as to start the boiling operation so that the hot water in the hot water storage tank 2 reaches a predetermined target boiling temperature Tset. Then, the heating control means 26 starts driving the compressor 14 and the heating circulation pump 19, sets the target boiling temperature Tset + a constant value as the target discharge temperature TD, and the discharge temperature of the refrigerant detected by the discharge temperature sensor 20 The opening degree of the expansion valve 16 is controlled so as to reach the target discharge temperature TD. And the temperature of the hot water heated by the water-refrigerant heat exchanger 15 detected by the boiling temperature sensor 24 is controlled to the target boiling temperature Tset at the same time as controlling the rotation number of the heating circulation pump 19 to a predetermined rotation number. Thus, the frequency of the compressor 14 is fed back and controlled to increase or decrease.

加熱制御手段26は沸き上げ温度センサ24で検出する沸き上げ温度が低下傾向となると、圧縮機14の周波数を増加させると同時に、冷媒吐出温度センサ20で検出する冷媒の吐出温度も低下傾向となっているため、膨張弁16を閉じる方向へ操作する。逆に沸き上げ温度が上昇傾向となると、圧縮機14の周波数を減少させると同時に、冷媒吐出温度センサ20で検出する冷媒の吐出温度も上昇傾向となっているため、膨張弁16を開く方向へ操作するものである。   When the boiling temperature detected by the boiling temperature sensor 24 tends to decrease, the heating control means 26 increases the frequency of the compressor 14 and at the same time the refrigerant discharge temperature detected by the refrigerant discharge temperature sensor 20 also decreases. Therefore, the expansion valve 16 is operated in the closing direction. Conversely, when the boiling temperature tends to increase, the frequency of the compressor 14 is decreased, and at the same time, the refrigerant discharge temperature detected by the refrigerant discharge temperature sensor 20 is also increasing, so that the expansion valve 16 is opened. To operate.

ここで、前記所定の目標沸き上げ温度Tsetは、過去の給湯量の最大値や平均値等の給湯実績から翌日の給湯量の予測量を確保できるように貯湯制御手段13によって算出されるもので、65℃から90℃の範囲で決定されるものである。   Here, the predetermined target boiling temperature Tset is calculated by the hot water storage control means 13 so as to ensure the predicted amount of the hot water supply amount on the next day from the actual hot water supply results such as the maximum value and the average value of the past hot water supply amount. The temperature is determined in the range of 65 ° C to 90 ° C.

そして、沸き上げ運転が進行していくと、貯湯タンク2の下部の水がヒートポンプ式加熱手段3へ循環され、貯湯タンク2の上部から目標沸き上げ温度Tsetに加熱された湯が積層状態に貯湯される。貯湯タンク2内に必要な湯量が沸き上げられたことを貯湯温度センサ12で検出するか、ヒートポンプ式加熱手段3の入水温度センサ23で検出する入水温度Twiが沸き上げし難い所定の高温度以上を検出するか、あるいは電力料金単価の安い深夜時間帯が終了した時点で、貯湯制御手段13は沸き上げ運転を停止するべく加熱制御手段26に停止指示を出し、加熱制御手段26は圧縮機14と加熱循環ポンプ19の運転を停止して、沸き上げ運転を終了する。   Then, as the boiling operation proceeds, the water in the lower part of the hot water storage tank 2 is circulated to the heat pump heating means 3, and the hot water heated from the upper part of the hot water storage tank 2 to the target boiling temperature Tset is stored in a stacked state. Is done. The hot water storage temperature sensor 12 detects that the required amount of hot water has been boiled in the hot water storage tank 2 or the incoming water temperature Twi detected by the incoming water temperature sensor 23 of the heat pump heating means 3 is higher than a predetermined high temperature that is difficult to boil up. Or the hot water storage control means 13 issues a stop instruction to the heating control means 26 to stop the heating operation, and the heating control means 26 And the operation of the heating circulation pump 19 is stopped, and the boiling operation is finished.

ここで、沸き上げ運転中の膨張弁16の制御について図2に基づいて詳細に説明すると、ステップS1で沸き上げ運転が開始され、ステップS2で膨張弁16のフィードバック制御を開始すると、加熱制御手段26は、一定の周期毎に目標吐出温度TDと吐出温度センサ20で検出する吐出温度との温度差を検出し、この温度差の大きさによって膨張弁16の操作量を+4pls〜−4plsの範囲で選択する(ステップS3)。なお、正号は膨張弁16を開方向へ駆動することを意味し、負号は閉方向へ駆動することを意味し、それぞれの数値が操作の絶対量を意味しているものである。   Here, the control of the expansion valve 16 during the boiling operation will be described in detail with reference to FIG. 2. When the boiling operation is started in step S1 and the feedback control of the expansion valve 16 is started in step S2, the heating control means is started. 26 detects a temperature difference between the target discharge temperature TD and the discharge temperature detected by the discharge temperature sensor 20 at regular intervals, and the amount of operation of the expansion valve 16 ranges from +4 pls to -4 pls depending on the magnitude of this temperature difference. (Step S3). The positive sign means that the expansion valve 16 is driven in the opening direction, and the negative sign means that the expansion valve 16 is driven in the closing direction, and each numerical value means the absolute amount of operation.

次に、ステップS4で、加熱制御手段26は、膨張弁16の開度が一定の開度以上に開けられているかどうか(一定の開度以下に閉じられているかどうか)を判断する。ここでは膨張弁16のステッピングモータに対し、全開位置あるいは全閉位置からどれだけ駆動したかを加熱制御手段26が積算記憶した値を用いて現在の膨張弁16の開度を判断するようにしている。一定の開度以上であれば、沸き上げの負荷が通常の範囲内にあると判断されるため、ステップS3で選択した膨張弁の操作量をそのまま決定し、ステップS5でこの操作量に従い膨張弁16を駆動し、再度ステップS3へ戻る。   Next, in step S4, the heating control means 26 determines whether or not the opening of the expansion valve 16 is opened above a certain opening (whether it is closed below a certain opening). Here, with respect to the stepping motor of the expansion valve 16, the current opening degree of the expansion valve 16 is determined by using the value accumulated and stored by the heating control means 26 from the fully open position or the fully closed position. Yes. If it is above a certain opening, it is determined that the boiling load is within the normal range. Therefore, the operation amount of the expansion valve selected in step S3 is determined as it is, and the expansion valve is determined in accordance with this operation amount in step S5. 16 is driven and it returns to step S3 again.

一方、ステップS4で、膨張弁16の開度が一定の開度以上に開けられていない場合(一定の開度以下に閉じられている場合)、次の4項目の条件の何れかを満たすかどうかを判断する(ステップS6)。
1.圧縮機14の駆動周波数が所定の高周波数以上であるか。
2.吐出圧力センサ25で検出する吐出圧力が所定の高圧力以上であるか。
3.外気温度が所定の低温度(例えば3℃以下)以下であるか。
4.目標沸き上げ温度が所定の高温度(例えば85℃)以上であるか。
On the other hand, if the opening degree of the expansion valve 16 is not opened above a certain opening degree (when it is closed below a certain opening degree) in step S4, whether any of the following four conditions are satisfied: It is determined whether or not (step S6).
1. Whether the drive frequency of the compressor 14 is equal to or higher than a predetermined high frequency.
2. Whether the discharge pressure detected by the discharge pressure sensor 25 is equal to or higher than a predetermined high pressure.
3. Whether the outside air temperature is lower than a predetermined low temperature (eg, 3 ° C. or lower).
4). Whether the target boiling temperature is equal to or higher than a predetermined high temperature (for example, 85 ° C.).

このステップS6で何れかの条件を満たす場合、何らかの原因によって沸き上げの負荷が過大になっていると判断し、ステップS3で選択した膨張弁16の操作量を−1pls以上に制限する(ステップS7)。そして、ステップS5でこの制限された操作量に従い膨張弁16を駆動し、再度ステップS3へ戻る。   If any of the conditions is satisfied in step S6, it is determined that the boiling load is excessive for some reason, and the operation amount of the expansion valve 16 selected in step S3 is limited to −1 pls or more (step S7). ). In step S5, the expansion valve 16 is driven according to the limited operation amount, and the process returns to step S3 again.

このように、冬期等の沸き上げの負荷が大きい状況で空気熱交換器17が積雪や着霜によって蒸発能力が低下しているような高負荷条件であっても、膨張弁16の閉方向への操作量が制限され膨張弁16が急激に閉じられることがないため、圧縮機14のトルク増加を緩慢にでき、圧縮機14の許容トルクを超過して圧縮機14が脱調し異常停止してしまうことを防止できる。   In this way, even in a high load condition where the evaporation capacity of the air heat exchanger 17 is reduced due to snow accumulation or frost formation under a heavy boiling load such as in winter, the expansion valve 16 is moved in the closing direction. Therefore, the increase in torque of the compressor 14 can be slowed down, exceeding the allowable torque of the compressor 14, and the compressor 14 will step out and stop abnormally. Can be prevented.

さらに、高負荷条件であっても、膨張弁16の開方向への操作量は制限していないため、吐出温度が目標値を超過した場合にあっても、吐出温度を迅速に目標値へ戻すことができるものである。   Further, since the operation amount in the opening direction of the expansion valve 16 is not limited even under high load conditions, the discharge temperature is quickly returned to the target value even when the discharge temperature exceeds the target value. It is something that can be done.

また、ステップS6の何れの条件も満たさなかった場合、膨張弁16の開度は一定以下に閉じられていても、全体として沸き上げの負荷が通常の範囲内にあると判断されるため、ステップS6でNoとなり、ステップS3で選択した膨張弁の操作量をそのまま決定し、ステップS5でこの操作量に従い膨張弁16を駆動し、再度ステップS3へ戻る。   If none of the conditions in step S6 is satisfied, it is determined that the boiling load is within the normal range as a whole even if the opening of the expansion valve 16 is closed below a certain level. No in S6, the operation amount of the expansion valve selected in Step S3 is determined as it is, the expansion valve 16 is driven in accordance with this operation amount in Step S5, and the process returns to Step S3 again.

また、通常の負荷状態においては、膨張弁開度を通常に制御することで冷媒の吐出温度を迅速に目標値に到達させることができ、効率の良い運転を行うことができる。   In a normal load state, the discharge temperature of the refrigerant can be quickly reached the target value by normally controlling the opening degree of the expansion valve, and an efficient operation can be performed.

本発明は、上記実施形態のみに限定されるものではなく、発明の趣旨を変更しない範囲で改変が可能なものであり、例えば、給水を水冷媒熱交換器で加熱して貯湯タンクを通過することなく直接給湯栓へ給湯する瞬間式ヒートポンプ給湯機にも適用可能である。また、上記の実施形態では貯湯タンクユニットとヒートポンプ式加熱手段を分離した構成としているが、一体とした構成としてもよく、その場合、貯湯制御手段と加熱制御手段も一体として構成してもよいものである。   The present invention is not limited to the above embodiment, and can be modified without departing from the spirit of the invention. For example, the feed water is heated by a water-refrigerant heat exchanger and passes through a hot water storage tank. The present invention can also be applied to an instantaneous heat pump water heater that directly supplies hot water to a hot water tap. In the above embodiment, the hot water storage tank unit and the heat pump heating means are separated from each other. However, the hot water storage tank unit and the heating control means may also be integrated. It is.

本発明の一実施形態のヒートポンプ式給湯装置のシステム図。The system diagram of the heat pump type hot water supply apparatus of one Embodiment of this invention. 同一実施形態の作動を説明するためのフローチャート。The flowchart for demonstrating the action | operation of the same embodiment.

符号の説明Explanation of symbols

5 熱交入水管
6 熱交出湯管
14 圧縮機
15 水冷媒熱交換器
16 膨張弁
17 空気熱交換器
18 ヒートポンプサイクル
20 吐出温度センサ
22 外気温度センサ
24 沸き上げ温度センサ
25 吐出圧力センサ
26 加熱制御手段(制御装置)
5 Heat Exchange Water Pipe 6 Heat Exchange Hot Water Pipe 14 Compressor 15 Water Refrigerant Heat Exchanger 16 Expansion Valve 17 Air Heat Exchanger 18 Heat Pump Cycle 20 Discharge Temperature Sensor 22 Outside Air Temperature Sensor 24 Boil Temperature Sensor 25 Discharge Pressure Sensor 26 Heating Control means (control device)

Claims (4)

圧縮機と水冷媒熱交換器と膨張弁と空気熱交換器を環状に接続したヒートポンプサイクルと、前記圧縮機から吐出した冷媒温度を検出する吐出温度センサと、前記水冷媒熱交換器の水側に接続された熱交入水管および熱交出湯管と、前記熱交出湯管に設けられ前記水冷媒熱交換器で加熱された湯の温度を検出する沸き上げ温度センサと、前記吐出温度センサの検出温度と所定の目標吐出温度との温度差に応じた弁開度の操作量を所定の周期毎に前記膨張弁に与えて前記膨張弁を開閉制御すると共に、前記沸き上げ温度センサの検出温度が所望の沸き上げ温度になるように前記圧縮機の周波数を増減制御する制御装置とを備え、前記制御装置は、前記膨張弁の開度が一定以下に閉まっている状態で、かつ、前記圧縮機の周波数が所定周波数以上であると、一つの周期での前記膨張弁の閉方向への操作量を通常よりも小さく制限したことを特徴とするヒートポンプ式給湯装置。 A heat pump cycle in which a compressor, a water-refrigerant heat exchanger, an expansion valve, and an air heat exchanger are annularly connected; a discharge temperature sensor that detects a refrigerant temperature discharged from the compressor; and a water side of the water-refrigerant heat exchanger A heat exchange water pipe and a heat exchange hot water pipe connected to each other, a boiling temperature sensor for detecting the temperature of hot water provided in the heat exchange hot water pipe and heated by the water refrigerant heat exchanger, and the discharge temperature The operation amount of the valve opening according to the temperature difference between the detected temperature of the sensor and a predetermined target discharge temperature is given to the expansion valve at predetermined intervals to control the opening and closing of the expansion valve, and the boiling temperature sensor A control device for increasing or decreasing the frequency of the compressor so that the detected temperature becomes a desired boiling temperature, the control device is in a state where the opening of the expansion valve is closed below a certain level, and The frequency of the compressor is equal to or higher than a predetermined frequency There the heat pump type hot water supply device being characterized in that limit smaller than normal amount of the operation to the closing direction of the expansion valve at one cycle. 圧縮機と水冷媒熱交換器と膨張弁と空気熱交換器を環状に接続したヒートポンプサイクルと、前記圧縮機から吐出した冷媒温度を検出する吐出温度センサと、前記ヒートポンプサイクルの高圧側の圧力を検出する吐出圧力センサと、前記水冷媒熱交換器の水側に接続された熱交入水管および熱交出湯管と、前記熱交出湯管に設けられ前記水冷媒熱交換器で加熱された湯の温度を検出する沸き上げ温度センサと、前記吐出温度センサの検出温度と所定の目標吐出温度との温度差に応じた弁開度の操作量を所定の周期毎に前記膨張弁に与えて前記膨張弁を開閉制御すると共に、前記沸き上げ温度センサの検出温度が所望の沸き上げ温度になるように前記圧縮機の周波数を増減制御する制御装置とを備え、前記膨張弁の開度が一定以下に閉まっている状態で、かつ、前記吐出圧力センサで検出する吐出圧力が所定圧力以上であると、一つの周期での前記膨張弁の閉方向への操作量を通常よりも小さく制限したことを特徴とするヒートポンプ式給湯装置。 A heat pump cycle in which a compressor, a water-refrigerant heat exchanger, an expansion valve, and an air heat exchanger are annularly connected; a discharge temperature sensor that detects a refrigerant temperature discharged from the compressor; and a pressure on a high-pressure side of the heat pump cycle. A discharge pressure sensor to be detected, a heat input water pipe and a heat exchange hot water pipe connected to the water side of the water refrigerant heat exchanger, and provided in the heat exchange hot water pipe are heated by the water refrigerant heat exchanger. A boiling temperature sensor for detecting the temperature of hot water, and an operation amount of a valve opening corresponding to a temperature difference between a detected temperature of the discharge temperature sensor and a predetermined target discharge temperature is given to the expansion valve at predetermined intervals. And a control device that controls the increase and decrease of the frequency of the compressor so that the detected temperature of the boiling temperature sensor becomes a desired boiling temperature. Closed below a certain level A heat pump characterized in that when the discharge pressure detected by the discharge pressure sensor is equal to or higher than a predetermined pressure, an operation amount in the closing direction of the expansion valve in one cycle is limited to be smaller than usual. Water heater. 圧縮機と水冷媒熱交換器と膨張弁と空気熱交換器を環状に接続したヒートポンプサイクルと、前記圧縮機から吐出した冷媒温度を検出する吐出温度センサと、外気温度を検出する外気温度センサと、前記水冷媒熱交換器の水側に接続された熱交入水管および熱交出湯管と、前記熱交出湯管に設けられ前記水冷媒熱交換器で加熱された湯の温度を検出する沸き上げ温度センサと、前記吐出温度センサの検出温度と所定の目標吐出温度との温度差に応じた弁開度の操作量を所定の周期毎に前記膨張弁に与えて前記膨張弁を開閉制御すると共に、前記沸き上げ温度センサの検出温度が所望の沸き上げ温度になるように前記圧縮機の周波数を増減制御する制御装置とを備え、前記膨張弁の開度が一定以下に閉まっている状態で、かつ、前記外気温度センサで検出する外気温度が所定外気温度以下であると、一つの周期での前記膨張弁の閉方向への操作量を通常よりも小さく制限したことを特徴とするヒートポンプ式給湯装置。 A heat pump cycle in which a compressor, a water-refrigerant heat exchanger, an expansion valve, and an air heat exchanger are annularly connected; a discharge temperature sensor that detects a refrigerant temperature discharged from the compressor; and an outside air temperature sensor that detects an outside air temperature; Detecting the temperature of the hot water supplied to the water side of the water refrigerant heat exchanger and the hot water outlet hot water pipe and the temperature of the hot water provided in the hot water hot water pipe and heated by the water refrigerant heat exchanger A boiling temperature sensor for controlling the opening of the valve, and an opening amount corresponding to a temperature difference between the detected temperature of the discharge temperature sensor and a predetermined target discharge temperature is given to the expansion valve at predetermined intervals to open and close the expansion valve And a control device that increases and decreases the frequency of the compressor so that the detected temperature of the boiling temperature sensor becomes a desired boiling temperature, and the opening of the expansion valve is closed below a certain level And the outside air temperature If the outside temperature detected by the sub is equal to or less than a predetermined outside air temperature, the heat pump type hot water supply device being characterized in that limit smaller than normal amount of the operation to the closing direction of the expansion valve at one cycle. 圧縮機と水冷媒熱交換器と膨張弁と空気熱交換器を環状に接続したヒートポンプサイクルと、前記圧縮機から吐出した冷媒温度を検出する吐出温度センサと、前記水冷媒熱交換器の水側に接続された熱交入水管および熱交出湯管と、前記熱交出湯管に設けられ前記水冷媒熱交換器で加熱された湯の温度を検出する沸き上げ温度センサと、前記吐出温度センサの検出温度と所定の目標吐出温度との温度差に応じた弁開度の操作量を所定の周期毎に前記膨張弁に与えて前記膨張弁を開閉制御すると共に、前記沸き上げ温度センサの検出温度が所望の沸き上げ温度になるように前記圧縮機の周波数を増減制御する制御装置とを備え、前記膨張弁の開度が一定以下に閉まっている場合で、かつ、沸き上げ温度が所定温度以上であると、一つの周期での前記膨張弁の閉方向への操作量を通常よりも小さく制限したことを特徴とするヒートポンプ式給湯装置。 A heat pump cycle in which a compressor, a water-refrigerant heat exchanger, an expansion valve, and an air heat exchanger are annularly connected; a discharge temperature sensor that detects a refrigerant temperature discharged from the compressor; and a water side of the water-refrigerant heat exchanger A heat exchange water pipe and a heat exchange hot water pipe connected to each other, a boiling temperature sensor for detecting the temperature of hot water provided in the heat exchange hot water pipe and heated by the water refrigerant heat exchanger, and the discharge temperature The operation amount of the valve opening according to the temperature difference between the detected temperature of the sensor and a predetermined target discharge temperature is given to the expansion valve at predetermined intervals to control the opening and closing of the expansion valve, and the boiling temperature sensor A controller for increasing or decreasing the frequency of the compressor so that the detected temperature becomes a desired boiling temperature, and when the opening of the expansion valve is closed below a certain level and the boiling temperature is predetermined If it is above the temperature, in one cycle Serial heat pump type hot water supply apparatus is characterized in that limit smaller than normal amount of the operation to the closing direction of the expansion valve.
JP2008225615A 2008-09-03 2008-09-03 Heat pump type water heater Active JP5139211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008225615A JP5139211B2 (en) 2008-09-03 2008-09-03 Heat pump type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008225615A JP5139211B2 (en) 2008-09-03 2008-09-03 Heat pump type water heater

Publications (2)

Publication Number Publication Date
JP2010060193A true JP2010060193A (en) 2010-03-18
JP5139211B2 JP5139211B2 (en) 2013-02-06

Family

ID=42187188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008225615A Active JP5139211B2 (en) 2008-09-03 2008-09-03 Heat pump type water heater

Country Status (1)

Country Link
JP (1) JP5139211B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032091A (en) * 2010-07-30 2012-02-16 Fujitsu General Ltd Heat pump cycle system
KR101465571B1 (en) * 2010-06-03 2014-11-26 히타치 어플라이언스 가부시키가이샤 Heat pump hot-water supply device
JP2016033429A (en) * 2014-07-31 2016-03-10 日立アプライアンス株式会社 Heat pump type water heater
JP2017075766A (en) * 2015-10-16 2017-04-20 ダイキン工業株式会社 Heat pump type heating device
CN112020580A (en) * 2018-02-23 2020-12-01 三星电子株式会社 Clothes dryer and control method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0996452A (en) * 1995-09-29 1997-04-08 Toshiba Corp Air conditioner
JP2004053118A (en) * 2002-07-19 2004-02-19 Matsushita Electric Ind Co Ltd Heat pump bath hot water supply device
JP2004218873A (en) * 2003-01-10 2004-08-05 Denso Corp Hot water storage-type hot water supply device
JP2005098530A (en) * 2003-09-22 2005-04-14 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP2005147607A (en) * 2003-11-19 2005-06-09 Matsushita Electric Ind Co Ltd Operation control method of heat pump device
JP2007198671A (en) * 2006-01-26 2007-08-09 Sanden Corp Water heater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0996452A (en) * 1995-09-29 1997-04-08 Toshiba Corp Air conditioner
JP2004053118A (en) * 2002-07-19 2004-02-19 Matsushita Electric Ind Co Ltd Heat pump bath hot water supply device
JP2004218873A (en) * 2003-01-10 2004-08-05 Denso Corp Hot water storage-type hot water supply device
JP2005098530A (en) * 2003-09-22 2005-04-14 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP2005147607A (en) * 2003-11-19 2005-06-09 Matsushita Electric Ind Co Ltd Operation control method of heat pump device
JP2007198671A (en) * 2006-01-26 2007-08-09 Sanden Corp Water heater

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101465571B1 (en) * 2010-06-03 2014-11-26 히타치 어플라이언스 가부시키가이샤 Heat pump hot-water supply device
JP2012032091A (en) * 2010-07-30 2012-02-16 Fujitsu General Ltd Heat pump cycle system
JP2016033429A (en) * 2014-07-31 2016-03-10 日立アプライアンス株式会社 Heat pump type water heater
JP2017075766A (en) * 2015-10-16 2017-04-20 ダイキン工業株式会社 Heat pump type heating device
CN112020580A (en) * 2018-02-23 2020-12-01 三星电子株式会社 Clothes dryer and control method thereof
CN112020580B (en) * 2018-02-23 2023-03-03 三星电子株式会社 Clothes dryer and control method thereof

Also Published As

Publication number Publication date
JP5139211B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5161008B2 (en) Heat pump type water heater
JP5139211B2 (en) Heat pump type water heater
JP2009150609A (en) Heat pump type water heater
JP5575049B2 (en) Heat pump water heater
JP6399113B2 (en) Heat supply system
JP4158694B2 (en) Hot water storage type heat pump water heater
JP4950004B2 (en) Heat pump type water heater
JP4277836B2 (en) Heat pump water heater
JP2007198637A (en) Heat pump type water heater
JP4389842B2 (en) Water heater
JP5502772B2 (en) Mixing valve controller
JP2009162415A (en) Hot water storage type water heater
JP5097054B2 (en) Heat pump water heater
JP6734450B2 (en) Heat pump water heater
JP2009287794A (en) Heat pump type water heater
JP3906857B2 (en) Heat pump water heater
JP6174482B2 (en) Hot water storage type heat pump water heater
JP5134446B2 (en) Heat pump type water heater
JP2011141069A (en) Bath device
JP3840456B2 (en) Heat pump water heater
JP2004205140A (en) Reheating device for bath
JP6060025B2 (en) Bath water heater
JP7544659B2 (en) Heat pump hot water supply system
JP5094217B2 (en) Heat pump water heater
JP2016008805A (en) Heat pump device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121115

R150 Certificate of patent or registration of utility model

Ref document number: 5139211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250