JP2007198671A - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP2007198671A
JP2007198671A JP2006017618A JP2006017618A JP2007198671A JP 2007198671 A JP2007198671 A JP 2007198671A JP 2006017618 A JP2006017618 A JP 2006017618A JP 2006017618 A JP2006017618 A JP 2006017618A JP 2007198671 A JP2007198671 A JP 2007198671A
Authority
JP
Japan
Prior art keywords
water
temperature
heat exchanger
valve
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006017618A
Other languages
Japanese (ja)
Inventor
Isao Kato
功 加藤
Hideyasu Kamioka
秀康 上岡
Hirotaka Kado
浩隆 門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2006017618A priority Critical patent/JP2007198671A/en
Publication of JP2007198671A publication Critical patent/JP2007198671A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water heater capable of improving a coefficient of the performance (COP) of a heat pump by lowering a water temperature even if the temperature of water (water supply temperature) distributed to a water heat exchanger of the heat pump is high. <P>SOLUTION: A supply water temperature Tw is detected by a supply water temperature sensor 20 when operating the heat pump HP, a first valve 13 is closed, and a second valve 14 is opened to distribute all of the water taken out of a hot water storage tank 6 by the operation of a water supply pump 8 from the downstream side of a water supply pipe conduit 7 to a bypass pipe conduit 12, when the detected supply water temperature Tw is over a prescribed temperature upper limit value Tws, and the water (water of temperature lower than non-cooled water) after cooled by the heat exchanging portion 12a of the bypass pipe conduit 12 is distributed to the water heat exchanger 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ヒートポンプを熱源とした給湯装置に関する。   The present invention relates to a hot water supply apparatus using a heat pump as a heat source.

この種の給湯装置は、圧縮機,水熱交換器,膨張弁及び空気熱交換器を少なくとも有するヒートポンプと、貯湯タンクと、給水ポンプとを備えている。ヒートポンプの水熱交換器は冷媒と水との間で熱交換を行うためのもので、該水熱交換器の入水口は給水ポンプを介して貯湯タンクの下部に接続され、出湯口は貯湯タンクの上部に接続されている。   This type of hot water supply apparatus includes a heat pump having at least a compressor, a water heat exchanger, an expansion valve, and an air heat exchanger, a hot water storage tank, and a water supply pump. The water heat exchanger of the heat pump is for exchanging heat between the refrigerant and water, the water inlet of the water heat exchanger is connected to the lower part of the hot water storage tank via the water supply pump, and the hot water outlet is the hot water storage tank Connected to the top of the.

この給湯装置は、ヒートポンプを運転し、且つ、給水ポンプを運転させて貯湯タンク内の水をヒートポンプの水熱交換器に送り込むことにより、該水を冷媒熱によって加熱して加熱後の湯を貯湯タンクに送り込むことができる。貯湯タンクには満水状態で所定量の湯または湯及び水が貯留されるため、貯湯タンク内の湯がその上部に接続された管路を通じて取り出されると、取り出された湯量に相当する量の水(水道水)が貯湯タンクの下部に接続された管路を通じて該貯湯タンク内に取り込まれる。   This hot water supply device operates a heat pump and operates a water supply pump to send water in a hot water storage tank to a water heat exchanger of the heat pump, thereby heating the water with refrigerant heat to store hot water after heating. Can be sent to the tank. Since a predetermined amount of hot water or hot water and water is stored in the hot water storage tank when the hot water in the hot water storage tank is taken out through a pipe connected to the upper part of the hot water tank, an amount of water corresponding to the amount of hot water taken out is stored. (Tap water) is taken into the hot water storage tank through a pipe line connected to the lower part of the hot water storage tank.

前記ヒートポンプには一般に回転数制御可能な圧縮機と開度制御可能な電子式の膨張弁が用いられており、圧縮機からの冷媒の吐出温度,外気温度,水熱交換器への入水温度及び水熱交換器からの出湯温度等に基づいて圧縮機の回転数や膨張弁の開度を可変することによって該ヒートポンプの能力調整が行われている。
特許第3601369号公報
The heat pump generally uses a compressor whose rotation speed can be controlled and an electronic expansion valve whose opening degree can be controlled. The refrigerant discharge temperature from the compressor, the outside air temperature, the water inlet temperature to the water heat exchanger, and The capacity adjustment of the heat pump is performed by varying the rotation speed of the compressor and the opening of the expansion valve based on the temperature of the hot water from the water heat exchanger.
Japanese Patent No. 3601369

前記給湯装置は、貯湯タンクから湯を取り出すと該取出量に相当する水(水道水)が貯湯タンクに取り込まれ、該水が貯湯タンク内から引き出されヒートポンプの水熱交換器で加熱されて貯湯タンクに送り込まれる仕組みになっている。要するに、ヒートポンプの水熱交換器に送り込まれる水の温度は、貯湯タンクに取り込まれる水(水道水)の温度に左右される。   When the hot water is taken out from the hot water storage tank, the water (tap water) corresponding to the amount taken out is taken into the hot water storage tank, and the water is drawn out from the hot water storage tank and heated by the water heat exchanger of the heat pump. It is structured to be sent to the tank. In short, the temperature of the water fed into the water heat exchanger of the heat pump depends on the temperature of the water (tap water) taken into the hot water storage tank.

ヒートポンプの水熱交換器に送り込まれる水の温度(入水温度)は、該ヒートポンプの成績係数(COP)を考えれば温度上限値≧入水温度であることが望ましい。しかし、水(水道水)の温度は季節や設置環境等によって変化するため、水熱交換器への入水温度を常に上限値≧入水温度とすることは実際上で不可能であり、水熱交換器への入水温度が上限値を超えた場合には水加熱に必要なエンタルピが不足してヒートポンプの成績係数(COP)が低下してしまう。   The temperature of the water fed into the water heat exchanger of the heat pump (incoming water temperature) is preferably the upper limit temperature ≧ the incoming water temperature, considering the coefficient of performance (COP) of the heat pump. However, since the temperature of the water (tap water) varies depending on the season and installation environment, it is actually impossible to set the temperature of water entering the water heat exchanger to the upper limit value ≥ the water temperature. When the temperature of water entering the vessel exceeds the upper limit, the enthalpy required for water heating is insufficient and the coefficient of performance (COP) of the heat pump is lowered.

本発明は前記事情に鑑みて創作されたもので、その目的とするところは、ヒートポンプの水熱交換器に送り込まれる水の温度(入水温度)が高い場合でも該水の温度を低下させることによってヒートポンプの成績係数(COP)を向上できる給湯装置を提供することにある。   The present invention was created in view of the above circumstances, and the object of the present invention is to reduce the temperature of the water fed to the water heat exchanger of the heat pump even when the temperature of the water (incoming water temperature) is high. An object of the present invention is to provide a hot water supply device capable of improving the coefficient of performance (COP) of a heat pump.

前記目的を達成するため、本発明は、圧縮機,水熱交換器,膨張弁及び空気熱交換器を少なくとも有するヒートポンプと、入水管路を介してその下部を水熱交換器の入水口に接続され、且つ、出湯管路を介してその上部を水熱交換器の出湯口に接続された貯湯タンクと、貯湯タンク内の水を水熱交換器の入水口に送り込み、且つ、水熱交換器で加熱された後の湯を出湯口から貯湯タンク内に送り込むための給水ポンプと、一端を入水管路の上流側に接続され、且つ、他端を入水管路の下流側に接続され、貯湯タンクから入水管路に送りこまれた水の温度を低下させて温度低下後の水を入水管路に戻すためのバイパス管路とを備える、ことをその特徴とする。   In order to achieve the above object, the present invention connects a heat pump having at least a compressor, a water heat exchanger, an expansion valve, and an air heat exchanger, and a lower portion thereof to a water inlet of the water heat exchanger via a water inlet line. And a hot water storage tank whose upper portion is connected to the hot water outlet of the water heat exchanger via the hot water outlet pipe, and water in the hot water tank is sent to the water inlet of the water heat exchanger, and the water heat exchanger A hot water pump for feeding hot water after being heated in the hot water storage tank from the hot water outlet, and one end connected to the upstream side of the water inlet pipe and the other end connected to the downstream side of the water inlet pipe. It is characterized by comprising a bypass line for lowering the temperature of the water sent from the tank to the water inlet line and returning the water after the temperature reduction to the water inlet line.

この給湯装置によれば、給水ポンプの運転によって貯湯タンク内から引き出された水の全てを入水管路を通じて水熱交換器に送り込むと水加熱に必要なエンタルピが不足してヒートポンプの成績係数(COP)が低下してしまう場合でも、バイパス管路を利用して水熱交換器に送り込まれる入水温度を低下させることによってヒートポンプの成績係数(COP)を向上させることができる。   According to this hot water supply apparatus, when all of the water drawn from the hot water storage tank by the operation of the water supply pump is sent to the water heat exchanger through the water inlet pipe, the enthalpy required for water heating is insufficient and the coefficient of performance (COP of the heat pump) ) May decrease, the coefficient of performance (COP) of the heat pump can be improved by lowering the incoming water temperature fed into the hydrothermal exchanger using the bypass line.

本発明によれば、ヒートポンプの水熱交換器に送り込まれる水の温度(入水温度)が高い場合でも該水の温度を低下させることによってヒートポンプの成績係数(COP)を向上できる。   According to the present invention, the coefficient of performance (COP) of the heat pump can be improved by lowering the temperature of the water fed to the water heat exchanger of the heat pump even when the temperature of the water (incoming water temperature) is high.

本発明の前記目的とそれ以外の目的と、構成特徴と、作用効果は、以下の説明と添付図面によって明らかとなる。   The above object and other objects, structural features, and operational effects of the present invention will become apparent from the following description and the accompanying drawings.

[第1実施形態]
図1〜図3は本発明の第1実施形態を示す。図1は給湯装置の回路構成図、図2は図1に示した給湯装置の制御系図、図3は入水温度制御に係るフローチャートである。
[First Embodiment]
1 to 3 show a first embodiment of the present invention. 1 is a circuit configuration diagram of a hot water supply apparatus, FIG. 2 is a control system diagram of the hot water supply apparatus shown in FIG. 1, and FIG. 3 is a flowchart relating to incoming water temperature control.

まず、図1を参照して、給湯装置の回路構成について説明する。図中のHPはヒートポンプ、6は貯湯タンク、7は入水管路、8が給水ポンプ、9は出湯管路、10が水取込管路、11は湯取出管路、12はバイパス管路、13は第1バルブ、14は第2バルブ、15は逆流防止バルブである。   First, the circuit configuration of the hot water supply apparatus will be described with reference to FIG. In the figure, HP is a heat pump, 6 is a hot water storage tank, 7 is a water inlet line, 8 is a water supply pump, 9 is a hot water outlet line, 10 is a water intake line, 11 is a hot water outlet line, 12 is a bypass line, Reference numeral 13 is a first valve, 14 is a second valve, and 15 is a backflow prevention valve.

ヒートポンプHPは、回転数制御可能な能力可変型の圧縮機1と、冷媒と水との間で熱交換を行う水熱交換器2と、開度制御可能な電子式の膨張弁3と、空気熱交換器4と、空気熱交換器用の送風機5とを少なくとも有し、冷媒として炭酸ガス(CO2 )を使用している。 The heat pump HP includes a variable capacity compressor 1 capable of controlling the number of revolutions, a water heat exchanger 2 that performs heat exchange between the refrigerant and water, an electronic expansion valve 3 that can control the opening degree, and air. It has at least a heat exchanger 4 and a blower 5 for an air heat exchanger, and uses carbon dioxide (CO 2 ) as a refrigerant.

また、圧縮機1の吐出口(符号無し)またはその近傍には該圧縮機1からの冷媒の吐出温度Tdを検出するための吐出温度センサ16が設けられ、空気熱交換器4またはその近傍には外気温度Taを検出するための外気温度センサ17が設けられ、水熱交換器2の入水口2aまたはその近傍には該水熱交換器2への入水温度Twiを検出するための入水温度センサ18が設けられ、水熱交換器2の出湯口2bまたはその近傍には該水熱交換器12からの出湯温度Twoを検出するための出湯温度センサ19が設けられている。   A discharge temperature sensor 16 for detecting the refrigerant discharge temperature Td from the compressor 1 is provided at or near the discharge port (no symbol) of the compressor 1, and the air heat exchanger 4 or the vicinity thereof. Is provided with an outside air temperature sensor 17 for detecting the outside air temperature Ta, and a water inlet temperature sensor for detecting the water inlet temperature Twi to the water heat exchanger 2 at or near the water inlet 2a of the water heat exchanger 2. 18 and a hot water temperature sensor 19 for detecting the hot water temperature Two from the water heat exchanger 12 is provided at or near the hot water outlet 2b of the water heat exchanger 2.

貯湯タンク6は所定量の湯または湯及び水を満水状態で貯留する。入水管路7はその一端を貯湯タンク6の下部に接続され、他端を熱交換器2の入水口2aに接続されている。給水ポンプ8は入水管路7の貯湯タンク近傍位置に設けられている。出湯管路9はその一端を熱交換器2の出湯口2bに接続され、他端を貯湯タンク6の上部に接続されている。水取込管路10は貯湯タンク6内に水(水道水)を取り込むためのもので、湯取出管路11は貯湯タンク6内の湯を取り出すためのものである。   The hot water storage tank 6 stores a predetermined amount of hot water or hot water and water in a full state. One end of the water inlet pipe 7 is connected to the lower part of the hot water storage tank 6, and the other end is connected to the water inlet 2 a of the heat exchanger 2. The water supply pump 8 is provided in the vicinity of the hot water storage tank in the water inlet pipe 7. One end of the hot water outlet 9 is connected to the hot water outlet 2 b of the heat exchanger 2, and the other end is connected to the upper part of the hot water storage tank 6. The water intake conduit 10 is for taking water (tap water) into the hot water storage tank 6, and the hot water extraction conduit 11 is for taking out hot water in the hot water storage tank 6.

バイパス管路12は一端を入水管路7の上流側(給水ポンプ8よりも下流側)に接続され、且つ、他端を入水管路の下流側に接続されている。このバイパス管路12は空気熱交換器4の風向下流側に設置された熱交換部12aを有し、図示例では該熱交換部12aが空気熱交換器4と送風機5との間に配置されている。   One end of the bypass pipe 12 is connected to the upstream side of the water inlet pipe 7 (downstream side of the water supply pump 8), and the other end is connected to the downstream side of the water inlet pipe. This bypass pipe 12 has a heat exchanging part 12a installed on the downstream side of the air heat exchanger 4 in the wind direction, and in the illustrated example, the heat exchanging part 12a is arranged between the air heat exchanger 4 and the blower 5. ing.

第1バルブ13は電磁式開閉弁から成り、入水管路7におけるバイパス管路12の一端接続位置と他端接続位置との間に設けられている。第2バルブ14は電磁式開閉弁から成り、バイパス管路12の上流側に設けられている。この第1バルブ13及び第2バルブ14は、貯湯タンク6から水熱交換器2の入水口2aに至る水の流路を「入水管路7のみを経由した流路」と「入水管路7,バイパス管路12及び入水管路7を順に経由した流路」の何れか一方に切り換える手段を構成している。   The first valve 13 is composed of an electromagnetic on-off valve, and is provided between the one end connection position and the other end connection position of the bypass pipe 12 in the water inlet pipe 7. The second valve 14 is composed of an electromagnetic on-off valve and is provided on the upstream side of the bypass conduit 12. The first valve 13 and the second valve 14 are water passages from the hot water storage tank 6 to the water inlet 2 a of the water heat exchanger 2, “flow passages only through the water intake conduit 7” and “water intake conduit 7. , Means for switching to any one of “a flow path sequentially passing through the bypass conduit 12 and the water inlet conduit 7”.

逆流防止バルブ15は逆止弁から成り、バイパス管路12の下流側に設けられている。この逆流防止バルブ15はバイパス管路12における水の流れを一端接続箇所から他端接続箇所に向かう方向に規定する役目を果たす。   The backflow prevention valve 15 includes a check valve and is provided on the downstream side of the bypass conduit 12. The backflow prevention valve 15 serves to regulate the flow of water in the bypass conduit 12 in a direction from one end connection location to the other end connection location.

また、入水管路7における給水ポンプ8とバイパス管路12の一端接続箇所との間には貯湯タンク6から入水管路7に送り込まれる水の温度(給水温度)Twを検出するための給水温度センサ20が設けられている。   In addition, a water supply temperature for detecting a temperature (water supply temperature) Tw of water fed from the hot water storage tank 6 to the water inlet pipe 7 between the water supply pump 8 in the water inlet pipe 7 and one end connection portion of the bypass pipe 12. A sensor 20 is provided.

図1に示した給湯装置では、ヒートポンプHPを運転し、且つ、給水ポンプ8を運転させて貯湯タンク6内の水をヒートポンプHPの水熱交換器2に送り込むことにより、該水を冷媒熱によって加熱して加熱後の湯を貯湯タンク6に送り込むことができる。   In the hot water supply apparatus shown in FIG. 1, the heat pump HP is operated, and the water supply pump 8 is operated to feed the water in the hot water storage tank 6 into the water heat exchanger 2 of the heat pump HP, whereby the water is generated by the refrigerant heat. The heated hot water can be fed into the hot water storage tank 6.

次に、図2を参照して、図1に示した給湯装置の制御系について説明する。図中の21は主制御回路、22は圧縮機駆動回路、23は膨張弁駆動回路、24は送風機駆動回路、25はポンプ駆動回路、26はバルブ駆動回路、27は出湯温度設定器である。   Next, the control system of the hot water supply apparatus shown in FIG. 1 will be described with reference to FIG. In the figure, 21 is a main control circuit, 22 is a compressor drive circuit, 23 is an expansion valve drive circuit, 24 is a blower drive circuit, 25 is a pump drive circuit, 26 is a valve drive circuit, and 27 is a tapping temperature setting device.

主制御回路21はマイクロコンピュータ構成で、そのメモリには、前記の吐出温度Td,外気温度Ta,入水温度Twi,出湯温度Two及び設定出湯温度Swoに適宜基づいて圧縮機1の回転数や膨張弁3の開度を可変しながらヒートポンプHPの運転制御(能力調整を含む)行うためのプログラムと、後述の入水温度制御を行うためのプログラムと、各制御に必要なデータ等が格納されている。主制御回路21には、吐出温度センサ16,外気温度センサ17,入水温度センサ18,出湯温度センサ19及び給水温度センサ20からの検出信号と、出湯温度設定器27で設定された出湯温度(設定出湯温度)Swoに係わる信号が入力される。   The main control circuit 21 has a microcomputer configuration, and the memory includes its discharge temperature Td, outside air temperature Ta, incoming water temperature Twi, outgoing hot water temperature Two, and preset hot water temperature Swo, and the rotation speed and expansion valve of the compressor 1 as appropriate. A program for performing operation control (including capacity adjustment) of the heat pump HP while varying the opening degree of 3, a program for performing incoming water temperature control described later, data necessary for each control, and the like are stored. In the main control circuit 21, detection signals from the discharge temperature sensor 16, the outside air temperature sensor 17, the incoming water temperature sensor 18, the outgoing hot water temperature sensor 19 and the feed water temperature sensor 20, and the hot water temperature set by the hot water temperature setting device 27 (setting) A signal related to the tapping temperature) Swo is input.

圧縮機駆動回路22は、主制御回路21から制御信号に基づいて、設定された目標回転数に応じた駆動信号を圧縮機動作用のモータ1aに送出する。膨張弁駆動回路23は、主制御回路21からの信号に基づいて、設定された開度変化量に応じた駆動信号を膨張弁動作用のモータ3aに送出する。送風機駆動回路24は、主制御回路21からの信号に基づいて、所定の駆動信号を送風機動作用のモータ5aに送出する。ポンプ駆動回路25は、主制御回路21からの信号に基づいて、設定された回転数に応じた駆動信号をポンプ動作用のモータ8aに送出する。バルブ駆動回路26は、主制御回路21からの信号に基づいて、所定の開信号または閉信号を第1バルブ動作用のソレノイド13aと第2バルブ動作用のソレノイド14aにそれぞれ送出する。   Based on the control signal from the main control circuit 21, the compressor drive circuit 22 sends a drive signal corresponding to the set target rotational speed to the motor 1a for compressor operation. Based on the signal from the main control circuit 21, the expansion valve drive circuit 23 sends a drive signal corresponding to the set opening change amount to the expansion valve operating motor 3a. The blower drive circuit 24 sends a predetermined drive signal to the blower operation motor 5a based on the signal from the main control circuit 21. Based on the signal from the main control circuit 21, the pump drive circuit 25 sends a drive signal corresponding to the set rotational speed to the pump operation motor 8a. Based on the signal from the main control circuit 21, the valve drive circuit 26 sends a predetermined open signal or close signal to the first valve operating solenoid 13a and the second valve operating solenoid 14a, respectively.

次に、図3を参照して、図1に示した給湯装置で実行される入水温度制御法について説明する。   Next, with reference to FIG. 3, the incoming water temperature control method executed by the hot water supply apparatus shown in FIG. 1 will be described.

ヒートポンプHPの運転開始時は第1バルブ13は開いていて第2バルブ14は閉じている(図3のステップST1参照)。このバルブ開閉状態では、貯湯タンク6から水熱交換器2の入水口2aに至る水の流路として「入水管路7のみを経由した流路」が選択されるため、給水ポンプ8の運転によって貯湯タンク6内から引き出された水の全てが入水管路7を通じて水熱交換器2に送り込まれ、該水は冷媒熱によって加熱されて加熱後の湯が出湯管路9を通じて貯湯タンク6に送り込まれる。   At the start of operation of the heat pump HP, the first valve 13 is open and the second valve 14 is closed (see step ST1 in FIG. 3). In this valve open / closed state, a “flow path that passes only through the water intake pipe 7” is selected as the water flow path from the hot water storage tank 6 to the water inlet 2a of the water heat exchanger 2; All of the water drawn from the hot water storage tank 6 is sent to the water heat exchanger 2 through the incoming water line 7, and the water is heated by the refrigerant heat, and the heated hot water is sent to the hot water storage tank 6 through the hot water outlet line 9. It is.

ヒートポンプHPの運転開始後は給水温度センサ20によって給水温度Twを検出し、検出された給水温度Twが所定の温度上限値Twsを越えているか否を判別する(図3のステップST2参照)。給水温度Twが所定の温度上限値Tws以下のときにはステップST1におけるバルブ開閉状態が維持される。   After starting the operation of the heat pump HP, the feed water temperature sensor 20 detects the feed water temperature Tw, and determines whether or not the detected feed water temperature Tw exceeds a predetermined temperature upper limit value Tws (see step ST2 in FIG. 3). When the feed water temperature Tw is equal to or lower than a predetermined temperature upper limit value Tws, the valve open / closed state in step ST1 is maintained.

ステップST2で給水温度Twが所定の温度上限値Twsを越えていると判別されたときには、第1バルブ13を閉じて第2バルブ14を開く(図3のステップST3参照)。このバルブ開閉状態では、貯湯タンク6から水熱交換器2の入水口2aに至る水の流路として「入水管路7,バイパス管路12及び入水管路7を順に経由した流路」が選択されるため、給水ポンプ8の運転によって貯湯タンク6内から引き出された水の全てが入水管路7の下流側からバイパス管路12に送り込まれ該バイパス管路12から入水管路7の下流側に戻される。バイパス管路12は空気熱交換器4の風向下流側に設置された熱交換部12aを有していて該バイパス管路12に送り込まれた水の温度は熱交換部12aにおける放熱によって低下するため、入水管路7の下流側には温度低下後の水が戻されて、非冷却の水よりも低温度の水が水熱交換器2に送り込まれる。   When it is determined in step ST2 that the feed water temperature Tw exceeds the predetermined temperature upper limit value Tws, the first valve 13 is closed and the second valve 14 is opened (see step ST3 in FIG. 3). In this valve open / closed state, the “flow path that passes through the water intake line 7, the bypass line 12, and the water intake line 7 in order” is selected as the water flow path from the hot water storage tank 6 to the water inlet 2 a of the water heat exchanger 2. Therefore, all of the water drawn from the hot water storage tank 6 by the operation of the water supply pump 8 is sent from the downstream side of the water inlet pipe 7 to the bypass pipe 12 and from the bypass pipe 12 to the downstream side of the water inlet pipe 7. Returned to The bypass pipe 12 has a heat exchanging part 12a installed on the downstream side of the air direction of the air heat exchanger 4, and the temperature of the water fed into the bypass pipe 12 is lowered by heat radiation in the heat exchanging part 12a. The water after the temperature drop is returned to the downstream side of the water inlet pipe 7, and water having a temperature lower than that of uncooled water is sent to the water heat exchanger 2.

例えば、ヒートポンプHPの能力調整で対応可能な給水温度Twの温度上限値Twsが15℃で、給水温度Twが15℃を越えているために水加熱に必要なエンタルピが不足してヒートポンプの成績係数(COP)が低下してしまう場合でも、バイパス管路12を利用して水熱交換器2に送り込まれる入水温度Twiを低下させることによってヒートポンプの成績係数(COP)を向上させることができる。空気熱交換器4の風向下流側に設置された熱交換部12aにはそれ相当の冷却作用が期待できることから、給水温度Twが高くなり易い夏期や設置環境等にあっても水熱交換器2に送り込まれる入水温度Twiを温度上限値Tws以下に低下させることは充分に可能である。また、バイパス管路12の熱交換部12aにおける放熱量を該熱交換部12aの形態によって可変することにより、水熱交換器2に送り込まれる入水温度Twiの低下量を調節することも可能である。   For example, the temperature upper limit value Tws of the feed water temperature Tw that can be handled by adjusting the capacity of the heat pump HP is 15 ° C., and the feed water temperature Tw exceeds 15 ° C. Even when (COP) decreases, the coefficient of performance (COP) of the heat pump can be improved by reducing the incoming water temperature Twi fed into the hydrothermal exchanger 2 using the bypass pipe 12. The heat exchange section 12a installed on the downstream side of the air heat exchanger 4 in the wind direction can be expected to have a corresponding cooling effect, so that the water heat exchanger 2 can be used even in the summer or installation environment where the feed water temperature Tw tends to be high. It is sufficiently possible to lower the incoming water temperature Twi fed to the temperature to the temperature upper limit value Tws or less. It is also possible to adjust the amount of decrease in the incoming water temperature Twi fed into the water heat exchanger 2 by varying the amount of heat released in the heat exchange part 12a of the bypass pipe 12 according to the form of the heat exchange part 12a. .

この後は給水温度センサ20によって検出された給水温度Twが所定の温度上限値Tws以下になったか否を判別する(図3のステップST4参照)。ステップST4で給水温度Twが所定の温度上限値Tws以下であると判別されたときには、ステップST1に移行して再び第1バルブ13を開けて第2バルブ14を閉じ、以後は前記同様の入水温度制御を行う。   Thereafter, it is determined whether or not the feed water temperature Tw detected by the feed water temperature sensor 20 has become equal to or lower than a predetermined temperature upper limit value Tws (see step ST4 in FIG. 3). When it is determined in step ST4 that the feed water temperature Tw is equal to or lower than the predetermined temperature upper limit value Tws, the process proceeds to step ST1, where the first valve 13 is opened again and the second valve 14 is closed. Take control.

第1実施形態によれば、ヒートポンプHPの運転時には給水温度センサ20によって給水温度Twを検出し、検出された給水温度Twが所定の温度上限値Twsを越えているときには、第1バルブ13を閉じて第2バルブ14を開いて給水ポンプ8の運転によって貯湯タンク6内から引き出された水の全てを入水管路7の下流側からバイパス管路12に送り込み、該バイパス管路12の熱交換部12aで冷却された後の水(非冷却の水よりも低温度の水)を水熱交換器2に送り込むようにしている。   According to the first embodiment, during operation of the heat pump HP, the feed water temperature sensor 20 detects the feed water temperature Tw, and when the detected feed water temperature Tw exceeds the predetermined temperature upper limit value Tws, the first valve 13 is closed. Then, the second valve 14 is opened and all of the water drawn from the hot water storage tank 6 by the operation of the water supply pump 8 is sent to the bypass line 12 from the downstream side of the water inlet line 7, and the heat exchange part of the bypass line 12 The water after being cooled at 12a (water having a temperature lower than that of uncooled water) is fed into the water heat exchanger 2.

依って、給水ポンプ8の運転によって貯湯タンク6内から引き出された水の全てを入水管路7を通じて水熱交換器2に送り込むと水加熱に必要なエンタルピが不足してヒートポンプの成績係数(COP)が低下してしまう場合でも、バイパス管路12を利用して水熱交換器2に送り込まれる入水温度Twiを低下させることによってヒートポンプの成績係数(COP)を向上させることができる。   Therefore, if all the water drawn from the hot water storage tank 6 by the operation of the water supply pump 8 is sent to the water heat exchanger 2 through the water inlet pipe 7, the enthalpy necessary for water heating is insufficient and the coefficient of performance (COP of the heat pump) ) Is lowered, the coefficient of performance (COP) of the heat pump can be improved by lowering the incoming water temperature Twi fed into the water heat exchanger 2 using the bypass pipe 12.

尚、第1実施形態では、貯湯タンク6から水熱交換器2の入水口2aに至る水の流路を「入水管路7のみを経由した流路」と「入水管路7,バイパス管路12及び入水管路7を順に経由した流路」の何れか一方に切り換える手段として第1バルブ13及び第2バルブ14を示したが、図4に示すように、該手段は、入水管路7におけるバイパス管路12の一端接続位置に設けた流路切換バルブ28で構成してもよい。この流路切換バルブ28は電磁式三方切換弁から成り、バルブ駆動回路26により前記ステップST1で流路切換バルブ28を入水管7側(実線参照)に切り換えることによって「水管路7のみを経由した流路」を選択でき、且つ、前記ステップST3で流路切換バルブ28をバイパス管路12側(破線参照)に切り換えることによって「入水管路7,バイパス管路12及び入水管路7を順に経由した流路」を選択することができる。   In the first embodiment, the water flow path from the hot water storage tank 6 to the water inlet 2a of the water heat exchanger 2 is referred to as “flow path only through the water intake line 7” and “water intake line 7 and bypass line. As shown in FIG. 4, the first valve 13 and the second valve 14 are shown as means for switching to any one of “a flow path that sequentially passes 12 and the water inlet pipe 7”. Alternatively, a flow path switching valve 28 provided at one end connection position of the bypass pipe line 12 may be used. The flow path switching valve 28 is composed of an electromagnetic three-way switching valve. By switching the flow path switching valve 28 to the inlet pipe 7 side (see the solid line) in the step ST1 by the valve drive circuit 26, “only through the water pipeline 7 is passed. “Flow path” can be selected, and the flow path switching valve 28 is switched to the bypass pipe line 12 side (see the broken line) in step ST3, thereby sequentially passing through the “water inlet pipe line 7, the bypass pipe line 12, and the water inlet pipe line 7”. Can be selected.

[第2実施形態]
図5〜図7は本発明の第2実施形態を示す。図5は給湯装置の回路構成図、図6は図5に示した給湯装置の制御系図、図7は入水温度制御に係るフローチャートである。
[Second Embodiment]
5 to 7 show a second embodiment of the present invention. 5 is a circuit configuration diagram of the hot water supply apparatus, FIG. 6 is a control system diagram of the hot water supply apparatus shown in FIG. 5, and FIG. 7 is a flowchart relating to incoming water temperature control.

第2実施形態が前記第1実施形態と異なる点は、入水管路7から第1バルブ13を排除した点と、バルブ駆動回路26によって第2バルブ動作用のモータ14aのみを駆動するようにした点と、給水温度センサ20によって検出された給水温度Twに基づいて第2バルブ14のみの開閉を制御するようにした点にある。他の構成は第1実施形態と同じであるので同一符号を示しその説明を省略する。   The second embodiment is different from the first embodiment in that the first valve 13 is excluded from the water inlet pipe 7 and only the second valve operating motor 14a is driven by the valve drive circuit 26. And the opening and closing of only the second valve 14 is controlled based on the feed water temperature Tw detected by the feed water temperature sensor 20. Since other configurations are the same as those of the first embodiment, the same reference numerals are used and the description thereof is omitted.

ここで、図7を参照して、図5に示した給湯装置で実行される入水温度制御法について説明する。   Here, with reference to FIG. 7, the incoming water temperature control method performed with the hot-water supply apparatus shown in FIG. 5 will be described.

ヒートポンプHPの運転開始時は第2バルブ14は閉じている(図7のステップSE1参照)。このバルブ開閉状態では、貯湯タンク6から水熱交換器2の入水口2aに至る水の流路として「入水管路7のみを経由した流路」が選択されるため、給水ポンプ8の運転によって貯湯タンク6内から引き出された水の全てが入水管路7を通じて水熱交換器2に送り込まれる。水熱交換器2に送り込まれた水は冷媒熱によって加熱されて加熱後の湯が出湯管路9を通じて貯湯タンク6に送り込まれる。   At the start of operation of the heat pump HP, the second valve 14 is closed (see step SE1 in FIG. 7). In this valve open / closed state, a “flow path that passes only through the water intake pipe 7” is selected as the water flow path from the hot water storage tank 6 to the water inlet 2a of the water heat exchanger 2; All of the water drawn from the hot water storage tank 6 is sent to the water heat exchanger 2 through the water inlet pipe 7. The water sent to the water heat exchanger 2 is heated by the refrigerant heat, and the heated hot water is sent to the hot water storage tank 6 through the hot water discharge pipe 9.

ヒートポンプHPの運転開始後は給水温度センサ20によって給水温度Twを検出し、検出された給水温度Twが所定の温度上限値Twsを越えているか否を判別する(図7のステップSE2参照)。給水温度Twが所定の温度上限値Tws以下のときにはステップSE1におけるバルブ開閉状態が維持される。   After the operation of the heat pump HP is started, the feed water temperature Tw is detected by the feed water temperature sensor 20, and it is determined whether or not the detected feed water temperature Tw exceeds a predetermined temperature upper limit value Tws (see step SE2 in FIG. 7). When the feed water temperature Tw is equal to or lower than the predetermined temperature upper limit value Tws, the valve open / closed state in step SE1 is maintained.

ステップSE2で給水温度Twが所定の温度上限値Twsを越えていると判別されたときには、第2バルブ14を開く(図7のステップSE3参照)。このバルブ開閉状態では、貯湯タンク6から水熱交換器2の入水口2aに至る水の流路として「入水管路7のみを経由した流路」と「入水管路7,バイパス管路12及び入水管路7を順に経由した流路」の両方が選択されるため、給水ポンプ8の運転によって貯湯タンク6内から引き出された水の一部が入水管路7を通じて水熱交換器2に送り込まれ、且つ、残部が入水管路7の下流側からバイパス管路12に送り込まれ該バイパス管路12から入水管路7の下流側に戻される。バイパス管路12は空気熱交換器4の風向下流側に設置された熱交換部12aを有していて該バイパス管路12に送り込まれた水の温度は熱交換部12aにおける放熱によって低下するため、入水管路7の下流側には温度低下後の水が戻されて非冷却の水と合流し、非冷却の水よりも低温度の水(合流水)が水熱交換器2に送り込まれる。   When it is determined in step SE2 that the feed water temperature Tw exceeds the predetermined temperature upper limit value Tws, the second valve 14 is opened (see step SE3 in FIG. 7). In this valve open / closed state, as a water flow path from the hot water storage tank 6 to the water inlet 2 a of the water heat exchanger 2, “a flow path only through the water intake line 7” and “a water intake line 7, a bypass line 12, and Since both of “the flow path sequentially passing through the water inlet pipe 7” are selected, a part of the water drawn from the hot water storage tank 6 by the operation of the water supply pump 8 is sent to the water heat exchanger 2 through the water inlet pipe 7. In addition, the remaining portion is fed into the bypass conduit 12 from the downstream side of the water inlet conduit 7 and returned from the bypass conduit 12 to the downstream side of the water inlet conduit 7. The bypass pipe 12 has a heat exchanging part 12a installed on the downstream side of the air direction of the air heat exchanger 4, and the temperature of the water fed into the bypass pipe 12 is lowered by heat radiation in the heat exchanging part 12a. The water after the temperature drop is returned to the downstream side of the inlet pipe 7 and merges with the uncooled water, and the water having a lower temperature than the uncooled water (joined water) is sent to the water heat exchanger 2. .

例えば、ヒートポンプHPの能力調整で対応可能な給水温度Twの温度上限値Twsが15℃で、給水温度Twが15℃を越えているために水加熱に必要なエンタルピが不足してヒートポンプの成績係数(COP)が低下してしまう場合でも、バイパス管路12を利用して水熱交換器2に送り込まれる入水温度Twiを低下させることによってヒートポンプの成績係数(COP)を向上させることができる。空気熱交換器4の風向下流側に設置された熱交換部12aにはそれ相当の冷却作用が期待できることから、給水温度Twが高くなり易い夏期や設置環境等にあっても水熱交換器2に送り込まれる入水温度Twiを温度上限値Tws以下に低下させることは充分に可能である。また、「入水管路7のみを経由した流路」と「入水管路7,バイパス管路12及び入水管路7を順に経由した流路」にそれぞれ流れ込む水量の比率を分流箇所等で可変することにより、合流後に水熱交換器2に送り込まれる水の温度低下量を調節することも可能である。   For example, the temperature upper limit value Tws of the feed water temperature Tw that can be handled by adjusting the capacity of the heat pump HP is 15 ° C., and the feed water temperature Tw exceeds 15 ° C. Even when (COP) is lowered, the coefficient of performance (COP) of the heat pump can be improved by lowering the incoming water temperature Twi fed into the water heat exchanger 2 using the bypass pipe 12. The heat exchange section 12a installed on the downstream side of the air heat exchanger 4 in the wind direction can be expected to have a corresponding cooling effect, so that the water heat exchanger 2 can be used even in the summer or installation environment where the feed water temperature Tw tends to be high. It is sufficiently possible to lower the incoming water temperature Twi fed to the temperature to the temperature upper limit value Tws or less. Further, the ratio of the amount of water flowing into the “flow path that passes only through the water inlet pipe 7” and “the flow path that passes through the water inlet pipe 7, the bypass pipe 12, and the water inlet pipe 7 in order” is varied at the branching point or the like. Thereby, it is also possible to adjust the temperature drop amount of the water sent to the water heat exchanger 2 after joining.

この後は給水温度センサ20によって検出された給水温度Twが所定の温度上限値Tws以下になったか否を判別する(図7のステップSE4参照)。ステップSE4で給水温度Twが所定の温度上限値Tws以下であると判別されたときには、ステップSE1に移行して再び第2バルブ14を閉じ、以後は前記同様の入水温度制御を行う。   Thereafter, it is determined whether or not the feed water temperature Tw detected by the feed water temperature sensor 20 has become equal to or lower than a predetermined temperature upper limit value Tws (see step SE4 in FIG. 7). If it is determined in step SE4 that the feed water temperature Tw is equal to or lower than the predetermined temperature upper limit value Tws, the process proceeds to step SE1 to close the second valve 14 again, and thereafter, the same incoming water temperature control is performed.

第2実施形態によれば、ヒートポンプHPの運転時には給水温度センサ20によって給水温度Twを検出し、検出された給水温度Twが所定の温度上限値Twsを越えているときには、給水ポンプ8の運転によって貯湯タンク6内から引き出された水の一部を入水管路7を通じて水熱交換器2に送り込み、且つ、残部を入水管路7の下流側からバイパス管路12に送り込んで該バイパス管路12で冷却された後の水を非冷却の水と合流させて、非冷却の水よりも低温度の水(合流水)を水熱交換器2に送り込むようにしている。   According to the second embodiment, during operation of the heat pump HP, the feed water temperature sensor 20 detects the feed water temperature Tw, and when the detected feed water temperature Tw exceeds the predetermined temperature upper limit value Tws, the feed water pump 8 is operated. A part of the water drawn out from the hot water storage tank 6 is sent to the water heat exchanger 2 through the inlet pipe 7, and the remaining part is sent from the downstream side of the inlet pipe 7 to the bypass pipe 12. The water that has been cooled in step 1 is combined with uncooled water, and water having a temperature lower than that of uncooled water (joined water) is sent to the water heat exchanger 2.

依って、給水ポンプ8の運転によって貯湯タンク6内から引き出された水の全てを入水管路7を通じて水熱交換器2に送り込むと水加熱に必要なエンタルピが不足してヒートポンプの成績係数(COP)が低下してしまう場合でも、バイパス管路12を利用して水熱交換器2に送り込まれる入水温度Twiを低下させることによってヒートポンプの成績係数(COP)を向上させることができる。   Therefore, if all the water drawn from the hot water storage tank 6 by the operation of the water supply pump 8 is sent to the water heat exchanger 2 through the water inlet pipe 7, the enthalpy necessary for water heating is insufficient and the coefficient of performance (COP of the heat pump) ) Is lowered, the coefficient of performance (COP) of the heat pump can be improved by lowering the incoming water temperature Twi fed into the water heat exchanger 2 using the bypass pipe 12.

また、「入水管路7のみを経由した流路」と「入水管路7,バイパス管路12及び入水管路7を順に経由した流路」にそれぞれ流れ込む水量の比率を分流箇所等で可変することにより、バイパス管路12による水の温度低下量及び合流後に水熱交換器2に送り込まれる水の温度低下量を調節することができる。   Further, the ratio of the amount of water flowing into the “flow path that passes only through the water inlet pipe 7” and “the flow path that passes through the water inlet pipe 7, the bypass pipe 12, and the water inlet pipe 7 in order” is varied at the branching point or the like. Thereby, the temperature fall amount of the water by the bypass line 12 and the temperature fall amount of the water sent to the water heat exchanger 2 after joining can be adjusted.

[第3実施形態]
図8は本発明の第3実施形態を示す。図5は給湯装置の回路構成図、図6は図5に示した給湯装置の制御系図、図7は入水温度制御に係るフローチャートである。
[Third Embodiment]
FIG. 8 shows a third embodiment of the present invention. 5 is a circuit configuration diagram of the hot water supply apparatus, FIG. 6 is a control system diagram of the hot water supply apparatus shown in FIG. 5, and FIG. 7 is a flowchart relating to incoming water temperature control.

第3実施形態が前記第1実施形態と異なる点は、入水管路7から第1バルブ13を排除した点と、バイパス管路12から第2バルブ14を排除した点と、貯湯タンク6から入水管路7に送り込まれる水の温度(給水温度)Twを検出するための給水温度センサ20を排除した点と、制御系(図示省略)からバルブ駆動回路26を排除した点にある。他の構成は第1実施形態と同じであるので同一符号を示しその説明を省略する。   The third embodiment is different from the first embodiment in that the first valve 13 is excluded from the inlet pipe 7, the second valve 14 is excluded from the bypass pipe 12, and the hot water storage tank 6 is used. That is, the water supply temperature sensor 20 for detecting the temperature (water supply temperature) Tw of the water fed into the water pipe 7 is excluded, and the valve drive circuit 26 is excluded from the control system (not shown). Since other configurations are the same as those of the first embodiment, the same reference numerals are used and the description thereof is omitted.

ここで、図8に示した給湯装置で実行される入水温度制御法について説明する。   Here, the incoming water temperature control method executed by the hot water supply apparatus shown in FIG. 8 will be described.

図8に示した給湯装置は第1,第2実施形態のような流路切換用バルブを有しないため、貯湯タンク6から水熱交換器2の入水口2aに至る水の流路として「入水管路7のみを経由した流路」と「入水管路7,バイパス管路12及び入水管路7を順に経由した流路」の両方が常に選択されていることになる。   Since the hot water supply apparatus shown in FIG. 8 does not have the flow path switching valve as in the first and second embodiments, the water flow path from the hot water storage tank 6 to the water inlet 2a of the water heat exchanger 2 is “input”. Both “the flow path passing only through the water conduit 7” and “the flow path passing through the water inlet conduit 7, the bypass conduit 12, and the water intake conduit 7” are always selected.

そのため、ヒートポンプHPの運転時には、給水ポンプ8の運転によって貯湯タンク6内から引き出された水の一部が入水管路7を通じて水熱交換器2に送り込まれ、且つ、残部が入水管路7の下流側からバイパス管路12に送り込まれ該バイパス管路12から入水管路7の下流側に戻される。バイパス管路12は空気熱交換器4の風向下流側に設置された熱交換部12aを有していて該バイパス管路12に送り込まれた水の温度は熱交換部12aにおける放熱によって低下するため、入水管路7の下流側には温度低下後の水が戻されて非冷却の水と合流し、非冷却の水よりも低温度の水(合流水)が水熱交換器2に送り込まれる。   Therefore, at the time of operation of the heat pump HP, a part of the water drawn out from the hot water storage tank 6 by the operation of the water supply pump 8 is sent to the water heat exchanger 2 through the water inlet conduit 7, and the rest is the water inlet conduit 7. It is sent from the downstream side to the bypass conduit 12 and returned from the bypass conduit 12 to the downstream side of the water inlet conduit 7. The bypass pipe 12 has a heat exchanging part 12a installed on the downstream side of the air direction of the air heat exchanger 4, and the temperature of the water fed into the bypass pipe 12 is lowered by heat radiation in the heat exchanging part 12a. The water after the temperature drop is returned to the downstream side of the inlet pipe 7 and merges with the uncooled water, and the water having a lower temperature than the uncooled water (joined water) is sent to the water heat exchanger 2. .

例えば、ヒートポンプHPの能力調整で対応可能な給水温度Twの温度上限値Twsが15℃で、給水温度Twが15℃を越えているために水加熱に必要なエンタルピが不足してヒートポンプの成績係数(COP)が低下してしまう場合でも、バイパス管路12を利用して水熱交換器2に送り込まれる入水温度Twiを低下させることによってヒートポンプの成績係数(COP)を向上させることができる。空気熱交換器4の風向下流側に設置された熱交換部12aにはそれ相当の冷却作用が期待できることから、給水温度Twが高くなり易い夏期や設置環境等にあっても水熱交換器2に送り込まれる入水温度Twiを温度上限値Tws以下に低下させることは充分に可能である。また、「入水管路7のみを経由した流路」と「入水管路7,バイパス管路12及び入水管路7を順に経由した流路」にそれぞれ流れ込む水量の比率を分流箇所等で可変することにより、合流後に水熱交換器2に送り込まれる水の温度低下量を調節することも可能である。   For example, the temperature upper limit value Tws of the feed water temperature Tw that can be handled by adjusting the capacity of the heat pump HP is 15 ° C., and the feed water temperature Tw exceeds 15 ° C. Even when (COP) is lowered, the coefficient of performance (COP) of the heat pump can be improved by lowering the incoming water temperature Twi fed into the water heat exchanger 2 using the bypass pipe 12. The heat exchange section 12a installed on the downstream side of the air heat exchanger 4 in the wind direction can be expected to have a corresponding cooling effect, so that the water heat exchanger 2 can be used even in the summer or installation environment where the feed water temperature Tw tends to be high. It is sufficiently possible to lower the incoming water temperature Twi fed to the temperature to the temperature upper limit value Tws or less. Further, the ratio of the amount of water flowing into the “flow path that passes only through the water inlet pipe 7” and “the flow path that passes through the water inlet pipe 7, the bypass pipe 12, and the water inlet pipe 7 in order” is varied at the branching point or the like. Thereby, it is also possible to adjust the temperature drop amount of the water sent to the water heat exchanger 2 after joining.

第3実施形態によれば、ヒートポンプHPの運転時には、給水ポンプ8の運転によって貯湯タンク6内から引き出された水の一部を入水管路7を通じて水熱交換器2に送り込み、且つ、残部を入水管路7の下流側からバイパス管路12に送り込んで該バイパス管路12で冷却された後の水を非冷却の水と合流させて、非冷却の水よりも低温度の水(合流水)を水熱交換器2に送り込むようにしている。   According to the third embodiment, at the time of operation of the heat pump HP, a part of the water drawn from the hot water storage tank 6 by the operation of the feed water pump 8 is sent to the water heat exchanger 2 through the water inlet pipe 7 and the remaining part is discharged. Water that has been sent from the downstream side of the inlet pipe 7 to the bypass pipe 12 and cooled by the bypass pipe 12 is merged with uncooled water, so that water at a lower temperature than the uncooled water (combined water) ) Is fed into the water heat exchanger 2.

依って、給水ポンプ8の運転によって貯湯タンク6内から引き出された水の全てを入水管路7を通じて水熱交換器2に送り込むと水加熱に必要なエンタルピが不足してヒートポンプの成績係数(COP)が低下してしまう場合でも、バイパス管路12を利用して水熱交換器2に送り込まれる入水温度Twiを低下させることによってヒートポンプの成績係数(COP)を向上させることができる。   Therefore, if all the water drawn from the hot water storage tank 6 by the operation of the water supply pump 8 is sent to the water heat exchanger 2 through the water inlet pipe 7, the enthalpy necessary for water heating is insufficient and the coefficient of performance (COP of the heat pump) ) Is lowered, the coefficient of performance (COP) of the heat pump can be improved by lowering the incoming water temperature Twi fed into the water heat exchanger 2 using the bypass pipe 12.

また、「入水管路7のみを経由した流路」と「入水管路7,バイパス管路12及び入水管路7を順に経由した流路」にそれぞれ流れ込む水量の比率を分流箇所等で可変することにより、バイパス管路12による水の温度低下量及び合流後に水熱交換器2に送り込まれる水の温度低下量を調節することができる。   Further, the ratio of the amount of water flowing into the “flow path that passes only through the water inlet pipe 7” and “the flow path that passes through the water inlet pipe 7, the bypass pipe 12, and the water inlet pipe 7 in order” is varied at the branching point or the like. Thereby, the temperature fall amount of the water by the bypass line 12 and the temperature fall amount of the water sent to the water heat exchanger 2 after joining can be adjusted.

さらに、第1,第2実施形態のような流路切換用バルブを要しないので、バルブ及びバルブ駆動回路を不要して回路構成を簡略化できると共に入水温度制御に係るプログラム及び該プログラムに基づく一連の処理を不要にできる。   Further, since the flow path switching valve as in the first and second embodiments is not required, the circuit configuration can be simplified by eliminating the valve and the valve driving circuit, and the program for controlling the incoming water temperature and the series based on the program Can be made unnecessary.

本発明の第1実施形態を示す給湯装置の回路構成図である。It is a circuit block diagram of the hot water supply apparatus which shows 1st Embodiment of this invention. 図1に示した給湯装置の制御系図である。FIG. 2 is a control system diagram of the hot water supply device shown in FIG. 1. 入水温度制御に係るフローチャートである。It is a flowchart which concerns on incoming water temperature control. 第1実施形態の部分変形例を示す回路構成図である。It is a circuit block diagram which shows the partial modification of 1st Embodiment. 本発明の第2実施形態を示す給湯装置の回路構成図である。It is a circuit block diagram of the hot water supply apparatus which shows 2nd Embodiment of this invention. 図5に示した給湯装置の制御系図である。FIG. 6 is a control system diagram of the water heater shown in FIG. 5. 入水温度制御に係るフローチャートである。It is a flowchart which concerns on incoming water temperature control. 本発明の第3実施形態を示す給湯装置の回路構成図である。It is a circuit block diagram of the hot water supply apparatus which shows 3rd Embodiment of this invention.

符号の説明Explanation of symbols

HP…ヒートポンプ、1…圧縮機、2…水熱交換器、2a…入水口、2b…出湯口、3膨張弁、4…空気熱交換器、6…貯湯タンク、7…入水管路、8…給水ポンプ、9…出湯管路、12…バイパス管路、12a…熱交換部、13…第1バルブ、14…第2バルブ、15…逆流防止バルブ、20…給水温度センサ、21…主制御回路、22…圧縮機駆動回路、23…膨張弁駆動回路、25…ポンプ駆動回路、26…バルブ駆動回路、28…流路切換バルブ。   HP ... heat pump, 1 ... compressor, 2 ... water heat exchanger, 2a ... water inlet, 2b ... outlet port, 3 expansion valve, 4 ... air heat exchanger, 6 ... hot water storage tank, 7 ... water inlet line, 8 ... Water supply pump, 9 ... Hot water supply line, 12 ... Bypass line, 12a ... Heat exchange section, 13 ... First valve, 14 ... Second valve, 15 ... Backflow prevention valve, 20 ... Feed water temperature sensor, 21 ... Main control circuit , 22: compressor driving circuit, 23: expansion valve driving circuit, 25: pump driving circuit, 26: valve driving circuit, 28: flow path switching valve.

Claims (5)

圧縮機,水熱交換器,膨張弁及び空気熱交換器を少なくとも有するヒートポンプと、
入水管路を介してその下部を水熱交換器の入水口に接続され、且つ、出湯管路を介してその上部を水熱交換器の出湯口に接続された貯湯タンクと、
貯湯タンク内の水を水熱交換器の入水口に送り込み、且つ、水熱交換器で加熱された後の湯を出湯口から貯湯タンク内に送り込むための給水ポンプと、
一端を入水管路の上流側に接続され、且つ、他端を入水管路の下流側に接続され、貯湯タンクから入水管路に送りこまれた水の温度を低下させて温度低下後の水を入水管路に戻すためのバイパス管路とを備える、
ことを特徴とする給湯装置。
A heat pump having at least a compressor, a water heat exchanger, an expansion valve and an air heat exchanger;
A hot water storage tank whose lower part is connected to the water inlet of the water heat exchanger via the water inlet pipe and whose upper part is connected to the outlet of the water heat exchanger via the hot water outlet;
A water supply pump for sending the water in the hot water storage tank to the water inlet of the water heat exchanger, and for sending the hot water heated by the water heat exchanger from the hot water outlet into the hot water storage tank;
One end is connected to the upstream side of the water inlet pipe, and the other end is connected to the downstream side of the water inlet pipe. The temperature of the water sent from the hot water storage tank to the water inlet pipe is lowered to reduce the temperature of the water. A bypass line for returning to the water intake line,
A water heater characterized by that.
バイパス管路は、空気熱交換器の風向下流側に設置された熱交換部と、バイパス管路における水の流れを一端接続箇所から他端接続箇所に向かう方向に規定する逆流防止バルブとを有する、
ことを特徴とする請求項1に記載の給湯装置。
The bypass pipe has a heat exchange section installed on the downstream side of the air direction of the air heat exchanger, and a backflow prevention valve that regulates the flow of water in the bypass pipe in a direction from one end connection location to the other end connection location. ,
The hot water supply apparatus according to claim 1.
バイパス管路に設けられたバルブと、
貯湯タンクから入水管路に送り込まれる水の温度を検出するための給水温度センサと、
給水温度が所定の温度上限値以下のときにバルブを閉じ、給水温度が所定の温度上限値を超えたときにバルブを開くバルブ制御手段とをさらに備える、
ことを特徴とする請求項1または2に記載の給湯装置。
A valve provided in the bypass line;
A water supply temperature sensor for detecting the temperature of the water sent from the hot water storage tank to the inlet pipe,
Valve control means for closing the valve when the feed water temperature is equal to or lower than a predetermined temperature upper limit value and opening the valve when the feed water temperature exceeds the predetermined temperature upper limit value;
The hot-water supply apparatus of Claim 1 or 2 characterized by the above-mentioned.
貯湯タンクから水熱交換器の入水口に至る水の流路を入水管路のみを経由した流路と入水管路,バイパス管路及び入水管路を順に経由した流路の何れか一方に切り換える流路切換手段と、
貯湯タンクから入水管路に送り込まれる水の温度を検出するための給水温度センサと、
給水温度が所定の温度上限値以下のときに貯湯タンクから水熱交換器の入水口に至る水の流路を入水管路のみを経由した流路に切り換え、給水温度が所定の温度上限値を超えたときに貯湯タンクから水熱交換器の入水口に至る水の流路を入水管路,バイパス管路及び入水管路を順に経由した流路に切り換える流路制御手段とをさらに備える、
バルブ制御手段とをさらに備える、
ことを特徴とする請求項1または2に記載の給湯装置。
Switch the flow path of water from the hot water storage tank to the inlet of the water heat exchanger to one of the flow path passing through the water intake pipe only, or the flow path passing through the water intake pipe, the bypass pipe, and the water intake pipe in order. Flow path switching means;
A water supply temperature sensor for detecting the temperature of the water sent from the hot water storage tank to the inlet pipe,
When the feed water temperature is less than or equal to the predetermined upper temperature limit, the water flow path from the hot water storage tank to the water heat exchanger inlet is switched to a flow path that passes only the water intake pipe, and the feed water temperature reaches the predetermined upper temperature limit. A flow path control means for switching the flow path of the water from the hot water storage tank to the water inlet of the water heat exchanger when it exceeds the flow path through the water intake line, the bypass line, and the water intake line in order.
Further comprising valve control means,
The hot-water supply apparatus of Claim 1 or 2 characterized by the above-mentioned.
流路切換手段は、入水管路におけるバイパス管路の一端接続位置と他端接続位置との間に設けられた第1バルブと、バイパス管路に設けられた第2バルブとから成り、
流路制御手段は、給水温度が所定の温度上限値以下のときに第1バルブを開き、且つ、第2バルブを閉じ、給水温度が所定の温度上限値を超えたときに第1バルブを閉じ、且つ、第2バルブを開く、
ことを特徴とする請求項4に記載の給湯装置。
The flow path switching means comprises a first valve provided between one end connection position and the other end connection position of the bypass pipe in the water inlet pipe, and a second valve provided in the bypass pipe,
The flow path control means opens the first valve when the feed water temperature is equal to or lower than a predetermined temperature upper limit value, closes the second valve, and closes the first valve when the feed water temperature exceeds the predetermined temperature upper limit value. And opening the second valve,
The hot water supply apparatus according to claim 4.
JP2006017618A 2006-01-26 2006-01-26 Water heater Pending JP2007198671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006017618A JP2007198671A (en) 2006-01-26 2006-01-26 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006017618A JP2007198671A (en) 2006-01-26 2006-01-26 Water heater

Publications (1)

Publication Number Publication Date
JP2007198671A true JP2007198671A (en) 2007-08-09

Family

ID=38453440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006017618A Pending JP2007198671A (en) 2006-01-26 2006-01-26 Water heater

Country Status (1)

Country Link
JP (1) JP2007198671A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060193A (en) * 2008-09-03 2010-03-18 Corona Corp Heat pump type hot water supply device
JP2011089722A (en) * 2009-10-23 2011-05-06 Kawasaki Thermal Engineering Co Ltd Method and device for refrigeration/air conditioning
JP2013088037A (en) * 2011-10-19 2013-05-13 Hitachi Appliances Inc Heat pump water heater

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269813A (en) * 2002-03-18 2003-09-25 Toto Ltd Heat pump system
JP2004211986A (en) * 2003-01-06 2004-07-29 Matsushita Electric Ind Co Ltd Heat pump hot water feeding system
JP3601369B2 (en) * 1999-09-03 2004-12-15 ダイキン工業株式会社 Water heater
JP2005083659A (en) * 2003-09-09 2005-03-31 Matsushita Electric Ind Co Ltd Water heater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3601369B2 (en) * 1999-09-03 2004-12-15 ダイキン工業株式会社 Water heater
JP2003269813A (en) * 2002-03-18 2003-09-25 Toto Ltd Heat pump system
JP2004211986A (en) * 2003-01-06 2004-07-29 Matsushita Electric Ind Co Ltd Heat pump hot water feeding system
JP2005083659A (en) * 2003-09-09 2005-03-31 Matsushita Electric Ind Co Ltd Water heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060193A (en) * 2008-09-03 2010-03-18 Corona Corp Heat pump type hot water supply device
JP2011089722A (en) * 2009-10-23 2011-05-06 Kawasaki Thermal Engineering Co Ltd Method and device for refrigeration/air conditioning
JP2013088037A (en) * 2011-10-19 2013-05-13 Hitachi Appliances Inc Heat pump water heater

Similar Documents

Publication Publication Date Title
JP4059616B2 (en) Heat pump water heater
JP4622990B2 (en) Air conditioner
JP6728535B2 (en) Heat pump water heater with cooling function
JP6703468B2 (en) Air conditioner with hot water supply function
JP2013119954A (en) Heat pump hot water heater
JP2003185307A (en) Control apparatus of air conditioner
JP2007155299A (en) Air conditioner
JP5082865B2 (en) Heat pump device, hot water supply device including the same, and control device therefor
JP5515568B2 (en) Heat pump cycle equipment
JP2007198671A (en) Water heater
JP2008196794A (en) Heat pump hot water supply cooling/heating apparatus
JP2018063090A (en) Heat pump water heater with cooling/heating function
JP6675961B2 (en) Heat pump water heater with cooling function
JP4622988B2 (en) Air conditioner
JP2001041573A (en) Hot-water supplier
JP4939799B2 (en) Air conditioner
JP2021055931A (en) Heat pump cycle device
JP2006003077A (en) Heat pump type hot water supply apparatus
JP6679461B2 (en) Heat pump water heater with heating function
JP4867925B2 (en) Heat pump type water heater
JP2008039335A (en) Heat pump defrosting circuit, heat pump water heater, and defrosting method for heat pump water heater
JP2009287794A (en) Heat pump type water heater
JP2007247985A (en) Heat pump hot water supply system
JP7293661B2 (en) Heat pump water heater and controller
JP5901312B2 (en) Hot water storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110421