JP4622988B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4622988B2
JP4622988B2 JP2006301168A JP2006301168A JP4622988B2 JP 4622988 B2 JP4622988 B2 JP 4622988B2 JP 2006301168 A JP2006301168 A JP 2006301168A JP 2006301168 A JP2006301168 A JP 2006301168A JP 4622988 B2 JP4622988 B2 JP 4622988B2
Authority
JP
Japan
Prior art keywords
compressor
heat exchanger
rotation speed
way valve
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006301168A
Other languages
Japanese (ja)
Other versions
JP2008116155A (en
Inventor
宏司 前川
雅也 太田
寛幸 大門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006301168A priority Critical patent/JP4622988B2/en
Publication of JP2008116155A publication Critical patent/JP2008116155A/en
Application granted granted Critical
Publication of JP4622988B2 publication Critical patent/JP4622988B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、暖房を継続しながら室外熱交換器に付着した霜を除霜する除霜運転を行う空気調和機に関するものである。   The present invention relates to an air conditioner that performs a defrosting operation for defrosting frost attached to an outdoor heat exchanger while continuing heating.

従来、暖房継続しながら除霜運転する空気調和機として、以下の発明がある。   Conventionally, there are the following inventions as an air conditioner that performs a defrosting operation while continuing heating.

図1に示すように、圧縮機、四方弁、室内熱交換器、減圧器、室外熱交換器を冷媒回路で連結したヒートポンプ式冷凍サイクルと、この冷凍サイクルに連結された前記室内熱交換器と前記減圧器の間と前記四方弁と前記室外熱交換器の間を連結する第1のバイパス回路を設け、前記第1のバイパス回路に第1の二方弁及び冷媒加熱器を設け、さらに前記冷凍サイクルに連結された前記四方弁と前記室内熱交換器の間と、前記減圧器と前記室外熱交換器の間を連結する第2のバイパス回路を設け、前記第2のバイパス回路に第2の二方弁を設け、前記室外熱交換器の除霜を行う際、前記第1のバイパス回路の二方弁を開放して冷媒加熱器で加熱された冷媒を前記圧縮機の吸入側に流す第1のバイパス運転の後で一定時間後に、前記第2のバイパス回路の二方弁を開放して前記室外熱交換器に冷媒を通過させる第2のバイパス運転を行うことを特徴とするものであり、この構成をなすことにより暖房運転を継続しながら、除霜を実施することができる(例えば、特許文献1参照)。そしてこの応用技術として、除霜を行う前に冷媒加熱器の発熱部に通電して、冷媒加熱器に蓄熱させてから、前記第1のバイパス回路の第1の二方弁を開放して冷媒加熱器で加熱された冷媒を前記圧縮機の吸入側に流す方法があり、この技術を用いる場合、図5の従来技術の制御のタイムチャートに示すように前記冷媒加熱器の発熱部に通電するステップ3の前に、運転電流制御値を小さくして圧縮機回転数を強制的に低下させてから冷媒加熱器の発熱部に通電するステップ2を設けることで、電流容量の範囲内で冷媒加熱器に通電させるように工夫された技術が搭載されており、これらの技術は広く利用されている。
特開2006−132729号公報
As shown in FIG. 1, a heat pump refrigeration cycle in which a compressor, a four-way valve, an indoor heat exchanger, a decompressor, and an outdoor heat exchanger are connected by a refrigerant circuit, and the indoor heat exchanger connected to the refrigeration cycle, A first bypass circuit that connects between the pressure reducer, the four-way valve, and the outdoor heat exchanger is provided; a first two-way valve and a refrigerant heater are provided in the first bypass circuit; and A second bypass circuit is provided to connect the four-way valve and the indoor heat exchanger connected to the refrigeration cycle, and between the pressure reducer and the outdoor heat exchanger, and the second bypass circuit includes a second bypass circuit. When the defrosting of the outdoor heat exchanger is performed, the two-way valve of the first bypass circuit is opened and the refrigerant heated by the refrigerant heater is allowed to flow to the suction side of the compressor After a predetermined time after the first bypass operation, the second bypasser A second bypass operation for opening the two-way valve of the circuit and allowing the refrigerant to pass through the outdoor heat exchanger is performed, and defrosting while continuing the heating operation by making this configuration (For example, refer patent document 1). And as this applied technology, before defrosting, the heat generating part of the refrigerant heater is energized to store heat in the refrigerant heater, and then the first two-way valve of the first bypass circuit is opened to produce the refrigerant. There is a method of flowing the refrigerant heated by the heater to the suction side of the compressor, and when this technique is used, the heating part of the refrigerant heater is energized as shown in the time chart of the control of the prior art in FIG. Before step 3, by providing step 2 in which the operating current control value is reduced to forcibly reduce the compressor rotational speed and then the heat generating portion of the refrigerant heater is energized, the refrigerant is heated within the current capacity range. The technology devised to energize the device is installed, and these technologies are widely used.
JP 2006-132729 A

しかしながら従来技術において、冷媒加熱器の発熱部に通電する前に運転電流制御値を小さくして圧縮機回転数を強制的に低下させる場合、圧縮機の回転数が急激に変化することで、圧縮機駆動制御面で不安定になり、最悪の場合には脱調現象が起きて圧縮機運転停止してしまうという課題を有していた。   However, in the prior art, when the operating current control value is reduced to forcibly reduce the compressor rotational speed before energizing the heat generating part of the refrigerant heater, the compressor rotational speed changes suddenly, thereby reducing the compression. The machine drive control surface becomes unstable, and in the worst case, a step-out phenomenon occurs and the compressor operation is stopped.

この課題を解決するには、圧縮機駆動制御において、負荷急変時にも追従出来る制御を搭載すればよいが、その場合制御が複雑になり、また冷凍サイクル容量が変われば、それに伴って駆動制御もチューニングし直す必要があり、その結果ソフト開発の工数が増えてしまうという課題も有していた。   In order to solve this problem, it is only necessary to install a control that can follow the compressor drive control even when the load suddenly changes. In this case, the control becomes complicated, and if the refrigeration cycle capacity is changed, the drive control is also performed accordingly. There was a problem that it was necessary to re-tune, and as a result, the man-hours for software development increased.

本発明は、従来技術の有するこのような問題点に鑑みてなされたもので、ソフト開発の工数を増やさずに、圧縮機駆動制御面で安定した空気調和機の運転制御方法を提供することを目的としている。   The present invention has been made in view of such problems of the prior art, and provides an air conditioner operation control method that is stable on the compressor drive control surface without increasing the number of steps for software development. It is aimed.

上記目的を達成するために、本発明の空気調和機は、回転数が可変可能な圧縮機と、四方弁、室内熱交換器、減圧器、室外熱交換器を冷媒回路で連結したヒートポンプ式冷凍サイクルと、この冷凍サイクルに連結された前記室内熱交換器と前記減圧器の間と前記四方弁と前記室外熱交換器の間を連結する第1のバイパス回路を設け、前記第1のバイパス回
路に第1の二方弁及び冷媒加熱器を設け、さらに前記四方弁と前記室内熱交換器の間および前記減圧器と前記室外熱交換器の間を連結する第2のバイパス回路を設け、前記第2のバイパス回路には、前記四方弁側から第2の二方弁、逆止弁の順で配置し、前記逆止弁は前記第2の二方弁側からの冷媒のみが流れるように配置し、前記室外熱交換器の除霜を行う前に、前記冷媒加熱器の発熱部に通電して、冷媒加熱器に蓄熱させてから、前記第1のバイパス回路の第1の二方弁を開放して冷媒加熱器で加熱された冷媒を前記圧縮機の吸入側に流す第1のバイパス運転と、前記第2のバイパス回路の第2の二方弁を開放して前記室外熱交換器に冷媒を通過させる第2のバイパス運転を行う空気調和装置であって、前記圧縮機の回転数を所定の回転数に変更させる圧縮機回転数変更手段と、前記圧縮機の回転数を変更させる時間を決定し出力する圧縮機回転数変更制御時間決定出力手段と、前記圧縮機の回転数を読み取り出力する圧縮機回転数読取出力手段と、前記室内熱交換器の吸い込み口に室内温度を読み取り出力する室内温度読取出力手段と、前記室外熱交換器の吸い込み口に室外温度を読み取り出力する室外温度読取出力手段とを備え、前記圧縮機回転数変更手段と、前記圧縮機回転数変更制御時間決定出力手段からの出力により、前記冷媒加熱器の発熱部への通電を行う前に、圧縮機の回転数をある所定時間の間、ある所定の回転数に変更させるとともに、前記圧縮機回転数読取出力手段からの出力および前記室内温度読取出力手段と前記室外温度読取出力手段からの出力により、圧縮機の回転数を変更させる前記所定の時間を変化させる構成とし、その所定時間の変化は前記室外温度読取出力手段からの出力がある値より低い場合は所定時間が短くなる方向に補正する空気調和機としたものである。
In order to achieve the above object, an air conditioner of the present invention is a heat pump type refrigeration in which a compressor having a variable rotation speed , a four-way valve, an indoor heat exchanger, a decompressor, and an outdoor heat exchanger are connected by a refrigerant circuit. A first bypass circuit that connects the cycle, the indoor heat exchanger connected to the refrigeration cycle and the decompressor, and the four-way valve and the outdoor heat exchanger, the first bypass circuit in the first two-way valve and a refrigerant heater provided further provided a second bypass circuit for connecting the said four-way valve and between the pressure reducer of the indoor heat exchanger of said outdoor heat exchanger, the The second bypass circuit is arranged in the order of the second two-way valve and the check valve from the four-way valve side so that only the refrigerant from the second two-way valve side flows through the check valve. Arrange and heat the refrigerant heater before defrosting the outdoor heat exchanger First, the refrigerant heater stores heat, the first two-way valve of the first bypass circuit is opened, and the refrigerant heated by the refrigerant heater flows to the suction side of the compressor. An air conditioner for performing the bypass operation of the compressor and the second bypass operation of opening the second two-way valve of the second bypass circuit and allowing the refrigerant to pass through the outdoor heat exchanger, Compressor rotation speed change means for changing the rotation speed to a predetermined rotation speed, compressor rotation speed change control time determination output means for determining and outputting a time for changing the rotation speed of the compressor, and rotation of the compressor Compressor rotation speed reading output means for reading and outputting the number, indoor temperature reading output means for reading and outputting the room temperature to the suction port of the indoor heat exchanger, and reading and output of the outdoor temperature to the suction port of the outdoor heat exchanger Outdoor temperature reading output means The provided, and the compressor rotational speed changing means, the output from the compressor rotational speed change control time determining output means, before the power supply to the heat generating portion of the refrigerant heater, is the rotational speed of the compressor The rotation speed of the compressor is changed to a predetermined rotation speed for a predetermined time, and output from the compressor rotation speed reading output means and outputs from the indoor temperature reading output means and the outdoor temperature reading output means. The air conditioner is configured to change the predetermined time to change the predetermined time, and when the output from the outdoor temperature reading output means is lower than a certain value, the air conditioner corrects the predetermined time to be shorter. It is.

上記手段を用いることにより、ソフト開発の工数を掛けず従来制御のままで、安定した圧縮機駆動制御にすることができる。   By using the above means, it is possible to achieve stable compressor drive control while maintaining the conventional control without taking the effort of software development.

さらに、本発明の空気調和機の運転制御方法は、圧縮機回転数、室内、室外温度、読み取りながら、前記圧縮機の回転数を変更させる時間を変化させることを特徴とするものである。   Furthermore, the operation control method for an air conditioner according to the present invention is characterized in that the time for changing the rotational speed of the compressor is changed while reading the rotational speed of the compressor, the indoor and outdoor temperatures.

上記手段を用いることにより、空気調和機の運転負荷に応じた最適な時間だけ圧縮機の回転数を変更させるため、負荷毎の最適な時間での運転制御をすることができる。   By using the above means, the rotation speed of the compressor is changed for an optimum time according to the operation load of the air conditioner, so that the operation can be controlled at the optimum time for each load.

本発明の空気調和機は、暖房を継続しながら室外熱交換器に付着した霜を除霜する除霜運転を行う空気調和機について、ソフト開発の工数を掛けず安定した圧縮機駆動制御を行うことができる。 The air conditioner according to the present invention performs stable compressor drive control without requiring software development for an air conditioner that performs a defrosting operation for defrosting frost adhering to an outdoor heat exchanger while continuing heating. be able to.

第1の発明は、回転数が可変可能な圧縮機と、四方弁、室内熱交換器、減圧器、室外熱交換器を冷媒回路で連結したヒートポンプ式冷凍サイクルと、この冷凍サイクルに連結された前記室内熱交換器と前記減圧器の間および前記四方弁と前記室外熱交換器の間を連結する第1のバイパス回路を設け、前記第1のバイパス回路に第1の二方弁及び冷媒加熱器を設け、さらに前記四方弁と前記室内熱交換器の間と前記減圧器と前記室外熱交換器の間を連結する第2のバイパス回路を設け、前記第2のバイパス回路には、前記四方弁側から第2の二方弁、逆止弁の順で配置し、前記逆止弁は前記第2の二方弁側からの冷媒のみが流れるように配置し、前記室外熱交換器の除霜を行う前に、前記冷媒加熱器の発熱部に通電して、冷媒加熱器に蓄熱させてから、前記第1のバイパス回路の第1の二方弁を開放して冷媒加熱器で加熱された冷媒を前記圧縮機の吸入側に流す第1のバイパス運転と、前記第2のバイパス回路の第2の二方弁を開放して前記室外熱交換器に冷媒を通過させる第2のバイパス運転を行う空気調和装置であって、前記圧縮機の回転数を所定の回転数に変更させる圧縮機回転数変更手段と、前記圧縮機の回転数を変更させる時間を決定し出力する
圧縮機回転数変更制御時間決定出力手段と、前記圧縮機の回転数を読み取り出力する圧縮機回転数読取出力手段と、前記室内熱交換器の吸い込み口に室内温度を読み取り出力する室内温度読取出力手段と、前記室外熱交換器の吸い込み口に室外温度を読み取り出力する室外温度読取出力手段とを備え、前記圧縮機回転数変更手段と、前記圧縮機回転数変更制御時間決定出力手段からの出力により、前記冷媒加熱器の発熱部への通電を行う前に、圧縮機の回転数をある所定時間の間、ある所定の回転数に変更させるとともに、前記圧縮機回転数読取出力手段からの出力および前記室内温度読取出力手段と前記室外温度読取出力手段からの出力により、圧縮機の回転数を変更させる前記所定の時間を変化させる構成とし、その所定時間の変化は前記室外温度読取出力手段からの出力がある値より低い場合は所定時間が短くなる方向に補正する構成としたものであり、ソフト開発の工数を掛けず従来制御のままで、安定した圧縮機駆動制御にすることができる。
The first invention is a compressor having a variable rotation speed , a heat pump refrigeration cycle in which a four-way valve, an indoor heat exchanger, a decompressor, and an outdoor heat exchanger are connected by a refrigerant circuit, and the refrigeration cycle. a first bypass circuit for connecting between said outdoor heat exchanger and between the four-way valve of the pressure reducer and the indoor heat exchanger provided, the first two-way valve and the refrigerant heated in the first bypass circuit And a second bypass circuit for connecting the four-way valve and the indoor heat exchanger and between the pressure reducer and the outdoor heat exchanger, and the second bypass circuit includes the four-way valve. The second two-way valve and the check valve are arranged in this order from the valve side, the check valve is arranged so that only the refrigerant from the second two-way valve side flows, and the outdoor heat exchanger is removed. Before frosting, energize the heat generating part of the refrigerant heater to store heat in the refrigerant heater. From the first bypass operation of opening the first two-way valve of the first bypass circuit and flowing the refrigerant heated by the refrigerant heater to the suction side of the compressor, An air conditioner that performs a second bypass operation of opening a second two-way valve and allowing a refrigerant to pass through the outdoor heat exchanger, wherein the compressor changes the rotational speed of the compressor to a predetermined rotational speed. Rotation speed changing means, compressor rotation speed change control time determination output means for determining and outputting a time for changing the rotation speed of the compressor, and compressor rotation speed reading output means for reading and outputting the rotation speed of the compressor And an indoor temperature reading output means for reading and outputting the indoor temperature at the suction port of the indoor heat exchanger, and an outdoor temperature reading output means for reading and outputting the outdoor temperature at the suction port of the outdoor heat exchanger, Machine speed change means The compressor rotational speed is set to a predetermined rotational speed for a predetermined time before energizing the heat generating portion of the refrigerant heater by the output from the compressor rotational speed change control time determination output means. And changing the predetermined time for changing the rotation speed of the compressor by the output from the compressor rotation speed reading output means and the outputs from the indoor temperature reading output means and the outdoor temperature reading output means. The change in the predetermined time is configured to correct the direction so that the predetermined time becomes shorter when the output from the outdoor temperature reading output means is lower than a certain value . As a result, stable compressor drive control can be achieved.

また、この発明は、圧縮機回転数、室内、室外温度、読み取りながら、前記圧縮機の回転数を変更させる時間を変化させることを特徴とする構成をなすことにより、空気調和機の運転負荷に応じた最適な時間だけ圧縮機の回転数を変更させるため、負荷毎の最適な時間での運転制御をすることができる。 In addition, the present invention increases the operating load of the air conditioner by making a configuration in which the time for changing the rotation speed of the compressor is changed while reading the rotation speed of the compressor, the indoor and outdoor temperatures, and reading. Since the number of rotations of the compressor is changed for the optimal time according to the operation, it is possible to control the operation at the optimal time for each load.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態)
図1は、本発明の実施の形態における空気調和機の構成図、図2に制御のブロック線図、図3に制御のフローチャート、そして図4に制御のタイムチャートを示す。
(Embodiment)
FIG. 1 is a configuration diagram of an air conditioner according to an embodiment of the present invention, FIG. 2 is a control block diagram, FIG. 3 is a control flowchart, and FIG. 4 is a control time chart.

図1において、室外機20には、回転数が可変可能な圧縮機1、四方弁2、減圧器4、室外熱交換器5、第1のバイパス回路6、第1のバイパス回路の第1の二方弁7、冷媒加熱器8、第2のバイパス回路9、第2のバイパス回路の第2の二方弁10、逆止弁11、冷媒加熱ヒータ13、冷媒通過管部14、蓄熱部15、室外送風機19、室外熱交換器の通風経路の風上側に室外温度センサ21が配設されている。室内機18には、室内熱交換器3、室内送風機17および室内熱交換器の通風経路の風上側に室内温度センサ22が配設されている。ここでの減圧器4は、電磁膨張弁でもよい。   In FIG. 1, an outdoor unit 20 includes a compressor 1, a four-way valve 2, a pressure reducer 4, an outdoor heat exchanger 5, a first bypass circuit 6, and a first bypass circuit that can change the number of rotations. Two-way valve 7, refrigerant heater 8, second bypass circuit 9, second two-way valve 10 in the second bypass circuit, check valve 11, refrigerant heater 13, refrigerant passage pipe section 14, heat storage section 15 An outdoor temperature sensor 21 is disposed on the upwind side of the ventilation path of the outdoor fan 19 and the outdoor heat exchanger. In the indoor unit 18, an indoor temperature sensor 22 is disposed on the windward side of the ventilation path of the indoor heat exchanger 3, the indoor blower 17, and the indoor heat exchanger. The decompressor 4 here may be an electromagnetic expansion valve.

次に図2、3、4を用いて、制御の流れを示す。   Next, the flow of control will be described with reference to FIGS.

空気調和機が暖房運転し室外熱交換機5に霜が付き、全体が着霜になる頃除霜開始信号が発信され、それを受信するとステップ0からステップ1に移行し除霜制御が開始される(S301)。   When the air conditioner is heated and frost is formed on the outdoor heat exchanger 5 and the whole becomes frosted, a defrost start signal is transmitted. When the defrost start signal is received, the process moves from step 0 to step 1 and defrost control is started. (S301).

マイコン23内の演算部で圧縮機回転数変更制御時間決定出力手段より圧縮機回転数を変更する時間taを演算し(S305)、圧縮機回転数を変更する時間ta(=t0)を決定し(S306)、圧縮機回転数変更手段により圧縮機低速回転設定への変更をta時間だけ行う(S307)。この場合圧縮機の回転数は、圧縮機駆動制御として最適な回転数変化速度にて動作させているため、圧縮機駆動性において安定に動作させることが出来る。   The calculation unit in the microcomputer 23 calculates the time ta for changing the compressor speed from the compressor speed change control time determination output means (S305), and determines the time ta (= t0) for changing the compressor speed. (S306) The change to the compressor low-speed rotation setting is performed by the compressor rotation speed changing means for ta time (S307). In this case, since the rotational speed of the compressor is operated at an optimal rotational speed change speed as compressor drive control, the compressor can be stably operated in terms of drive performance.

なお変更時間taが過ぎれば、ステップ2へ移行するのだが、圧縮機回転数の設定値に関しては、冷凍サイクルの最大負荷時において、ステップ2以降の冷媒加熱器通電時の電流相当分の回転数を差し引いて設定しており、圧縮機回転数変更時間taに関しては、圧縮機最大回転数から設定回転数への変化速度時間より設定しているため、ステップ2移行時には圧縮機回転数が設定回転数まで下がっているため、回転数が急変せずに安定した圧
縮機駆動制御が実現できる。
If the change time ta has passed, the process proceeds to step 2, but with regard to the set value of the compressor rotation speed, the rotation speed corresponding to the current when the refrigerant heater is energized after step 2 at the maximum load of the refrigeration cycle. Since the compressor rotation speed change time ta is set based on the change speed time from the compressor maximum rotation speed to the set rotation speed, the compressor rotation speed is set to the set rotation at step 2 Since the rotational speed is reduced to a certain number, stable compressor drive control can be realized without a sudden change in the rotational speed.

さらに、マイコン24内で圧縮機回転数読取出力手段より圧縮機回転数fを検出し(S302)、室内温度読取出力手段より室内温度Tinを検出し(S303)、室外温度読取出力手段より室外温度Toutを検出(S304)、これらf、Tin、Toutの値を演算部に読み取り、ある所定の条件を満たした場合は、圧縮機回転数変更時間taに補正値を加えて(ta=t0+(+a−b+c))(S305)、圧縮機回転数を変更する時間時間taを決定し(S306)、圧縮機回転数変更手段により圧縮機低速回転設定への変更をta時間だけ行う(S307)。これにより、空気調和機の運転負荷に応じた最適な時間で圧縮機回転数の設定を変更することができ、負荷毎の最適な時間での運転制御をすることができる。   Further, in the microcomputer 24, the compressor rotational speed f is detected by the compressor rotational speed reading output means (S302), the indoor temperature Tin is detected by the indoor temperature reading output means (S303), and the outdoor temperature is read by the outdoor temperature reading output means. Tout is detected (S304), and the values of f, Tin, and Tout are read by the calculation unit, and when a predetermined condition is satisfied, a correction value is added to the compressor rotation speed change time ta (ta = t0 + (+ a -B + c)) (S305), the time ta for changing the compressor rotational speed is determined (S306), and the compressor rotational speed changing means is changed to the compressor low speed rotation setting for the ta time (S307). Thereby, the setting of the rotation speed of the compressor can be changed in an optimum time according to the operation load of the air conditioner, and the operation can be controlled in the optimum time for each load.

本発明にかかる空気調和の構成図It illustrates the construction of an air conditioner according to the present invention 本発明にかかる制御ブロック図Control block diagram according to the present invention 本発明にかかる実施の形態のフローチャートThe flowchart of embodiment concerning this invention 本発明にかかる実施の形態のタイムチャートTime chart of embodiment according to the present invention 従来例の空気調和機の運転制御方法のタイムチャートTime chart of conventional air conditioner operation control method

1 圧縮機
2 四方弁
3 室内熱交換器
4 減圧器
5 室外熱交換器
6 第1のバイパス回路
7 第1の二方弁
8 加熱器
9 第2のバイパス回路
10 第2の二方弁
11 逆止弁
12 冷媒加熱用減圧器
13 加熱器ヒータ
14 冷媒通過管部
15 蓄熱部
17 室内送風機
18 室内機
19 室外送風機
20 室外機
21 室外温度センサ
22 室内温度センサ
23 マイコン
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Indoor heat exchanger 4 Pressure reducer 5 Outdoor heat exchanger 6 1st bypass circuit 7 1st two-way valve 8 Heater 9 2nd bypass circuit 10 2nd two-way valve 11 Reverse Stop valve 12 Refrigerant heating decompressor 13 Heater heater 14 Refrigerant passage tube 15 Thermal storage unit 17 Indoor fan 18 Indoor unit 19 Outdoor fan 20 Outdoor unit 21 Outdoor temperature sensor 22 Indoor temperature sensor 23 Microcomputer

Claims (1)

回転数が可変可能な圧縮機と、四方弁、室内熱交換器、減圧器、室外熱交換器を冷媒回路で連結したヒートポンプ式冷凍サイクルと、この冷凍サイクルに連結された前記室内熱交換器と前記減圧器の間と前記四方弁と前記室外熱交換器の間を連結する第1のバイパス回路を設け、前記第1のバイパス回路に第1の二方弁及び冷媒加熱器を設け、さらに前記四方弁と前記室内熱交換器の間と前記減圧器と前記室外熱交換器の間を連結する第2のバイパス回路を設け、前記第2のバイパス回路には、前記四方弁側から第2の二方弁、逆止弁の順で配置し、前記逆止弁は前記第2の二方弁側からの冷媒のみが流れるように配置し、前記室外熱交換器の除霜を行う前に、前記冷媒加熱器の発熱部に通電して、冷媒加熱器に蓄熱させてから、前記第1のバイパス回路の第1の二方弁を開放して冷媒加熱器で加熱された冷媒を前記圧縮機の吸入側に流す第1のバイパス運転と、前記第2のバイパス回路の第2の二方弁を開放して前記室外熱交換器に冷媒を通過させる第2のバイパス運転を行う空気調和装置であって、前記圧縮機の回転数を所定の回転数に変更させる圧縮機回転数変更手段と、前記圧縮機の回転数を変更させる時間を決定し出力する圧縮機回転数変更制御時間決定出力手段と、前記圧縮機の回転数を読み取り出力する圧縮機回転数読取出力手段と、前記室内熱交換器の吸い込み口に室内温度を読み取り出力する室内温度読取出力手段と、前記室外熱交換器の吸い込み口に室外温度を読み取り出力する室外温度読取出力手段とを備え、前記圧縮機回転数変更手段と、前記圧縮機回転数変更制御時間決定出力手段からの出力により、前記冷媒加熱器の発熱部への通電を行う前に、圧縮機の回転数をある所定時間の間、ある所定の回転数に変更させるとともに、前記圧縮機回転数読取出力手段からの出力および前記室内温度読取出力手段と前記室外温度読取出力手段からの出力により、圧縮機の回転数を変更させる前記所定の時間を変化させる構成とし、その所定時間の変化は前記室外温度読取出力手段からの出力がある値より低い場合は所定時間が短くなる方向に補正する空気調和機。 A compressor having a variable speed, a heat pump refrigeration cycle in which a four-way valve, an indoor heat exchanger, a decompressor, and an outdoor heat exchanger are connected by a refrigerant circuit, and the indoor heat exchanger connected to the refrigeration cycle A first bypass circuit that connects between the pressure reducer, the four-way valve, and the outdoor heat exchanger is provided; a first two-way valve and a refrigerant heater are provided in the first bypass circuit; and A second bypass circuit is provided to connect between the four-way valve and the indoor heat exchanger, and between the pressure reducer and the outdoor heat exchanger, and the second bypass circuit includes a second bypass circuit from the four-way valve side. Arranged in the order of two-way valve and check valve, the check valve is arranged so that only the refrigerant from the second two-way valve side flows, before defrosting the outdoor heat exchanger, After energizing the heat generating part of the refrigerant heater to store heat in the refrigerant heater, the first A first bypass operation in which the first two-way valve of the bypass circuit is opened and the refrigerant heated by the refrigerant heater flows to the suction side of the compressor; and the second two-way valve of the second bypass circuit An air conditioner that performs a second bypass operation of opening the refrigerant and allowing the refrigerant to pass through the outdoor heat exchanger, the compressor rotation speed changing means for changing the rotation speed of the compressor to a predetermined rotation speed, and Compressor rotation speed change control time determination output means for determining and outputting time for changing the rotation speed of the compressor, compressor rotation speed reading output means for reading and outputting the rotation speed of the compressor, and the indoor heat exchange An indoor temperature reading output means for reading and outputting the indoor temperature at the suction port of the compressor ; and an outdoor temperature reading output means for reading and outputting the outdoor temperature at the suction opening of the outdoor heat exchanger, the compressor rotation speed changing means; The compressor rotation The output from the change control time determining output means, before the power supply to the heat generating portion of the refrigerant heater during a predetermined certain rotational speed of the compressor time, causes changes to a predetermined rotational speed, said compressor The predetermined time for changing the rotation speed of the compressor is changed by the output from the machine rotation speed reading output means and the outputs from the indoor temperature reading output means and the outdoor temperature reading output means, and the predetermined time is changed. An air conditioner that corrects the change in a direction that shortens the predetermined time when the output from the outdoor temperature reading output means is lower than a certain value.
JP2006301168A 2006-11-07 2006-11-07 Air conditioner Active JP4622988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006301168A JP4622988B2 (en) 2006-11-07 2006-11-07 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006301168A JP4622988B2 (en) 2006-11-07 2006-11-07 Air conditioner

Publications (2)

Publication Number Publication Date
JP2008116155A JP2008116155A (en) 2008-05-22
JP4622988B2 true JP4622988B2 (en) 2011-02-02

Family

ID=39502223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006301168A Active JP4622988B2 (en) 2006-11-07 2006-11-07 Air conditioner

Country Status (1)

Country Link
JP (1) JP4622988B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5195543B2 (en) * 2009-03-12 2013-05-08 パナソニック株式会社 Control method of air conditioner
JP2011021806A (en) * 2009-07-15 2011-02-03 Fujitsu General Ltd Water-cooled heat pump heat source device
JP5745637B2 (en) * 2011-10-04 2015-07-08 三菱電機株式会社 Refrigeration cycle equipment
CN106247686B (en) * 2016-08-16 2019-03-08 广东美的暖通设备有限公司 Method for controlling oil return, oil return control device and the air conditioner of air conditioner
JP6714471B2 (en) * 2016-08-26 2020-06-24 シャープ株式会社 Air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184376U (en) * 1986-05-15 1987-11-24
JPS6314061A (en) * 1986-07-02 1988-01-21 三洋電機株式会社 Air conditioner
JPH0378497A (en) * 1989-08-17 1991-04-03 Fujitsu General Ltd Inverter controlling method
JPH0510567A (en) * 1991-07-05 1993-01-19 Toshiba Corp Air conditioning controller
JPH09318205A (en) * 1996-05-27 1997-12-12 Mitsubishi Heavy Ind Ltd Refrigerating device
JP2006105560A (en) * 2004-10-08 2006-04-20 Matsushita Electric Ind Co Ltd Air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184376U (en) * 1986-05-15 1987-11-24
JPS6314061A (en) * 1986-07-02 1988-01-21 三洋電機株式会社 Air conditioner
JPH0378497A (en) * 1989-08-17 1991-04-03 Fujitsu General Ltd Inverter controlling method
JPH0510567A (en) * 1991-07-05 1993-01-19 Toshiba Corp Air conditioning controller
JPH09318205A (en) * 1996-05-27 1997-12-12 Mitsubishi Heavy Ind Ltd Refrigerating device
JP2006105560A (en) * 2004-10-08 2006-04-20 Matsushita Electric Ind Co Ltd Air conditioner

Also Published As

Publication number Publication date
JP2008116155A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
US9074787B2 (en) Operation controller for compressor and air conditioner having the same
JP4654828B2 (en) Air conditioner
JP4836212B2 (en) Air conditioner
JP4622990B2 (en) Air conditioner
JP2007051825A (en) Air-conditioner
JP2007183020A (en) Capacity variable air conditioner
JP2007040658A (en) Air conditioner
JP2006105560A (en) Air conditioner
JP4622988B2 (en) Air conditioner
JP2009109165A (en) Operation control method of air conditioner
JP2007155299A (en) Air conditioner
JP2018063094A (en) Air conditioner with hot water supply function
JP2006145204A (en) Air conditioner
JP4959297B2 (en) Multi-type air conditioner
JP6672619B2 (en) Air conditioning system
JP6578695B2 (en) Air conditioner
JP2011202845A (en) Air conditioner
JP2006234295A (en) Multiple air conditioner
JP4830399B2 (en) Air conditioner
JP4274886B2 (en) Heat pump air conditioner
JP4802602B2 (en) Air conditioner
US20160320099A1 (en) Indoor unit of air conditioner
JP5516332B2 (en) Heat pump type hot water heater
JP4605161B2 (en) Air conditioner
JP2009204225A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090608

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R151 Written notification of patent or utility model registration

Ref document number: 4622988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3