JP2007064047A - Waste heat recovery facility for steam turbine plant - Google Patents
Waste heat recovery facility for steam turbine plant Download PDFInfo
- Publication number
- JP2007064047A JP2007064047A JP2005249078A JP2005249078A JP2007064047A JP 2007064047 A JP2007064047 A JP 2007064047A JP 2005249078 A JP2005249078 A JP 2005249078A JP 2005249078 A JP2005249078 A JP 2005249078A JP 2007064047 A JP2007064047 A JP 2007064047A
- Authority
- JP
- Japan
- Prior art keywords
- steam
- heat pump
- heat
- steam turbine
- condenser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/14—Combined heat and power generation [CHP]
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
本発明は、蒸気タービンプラントの廃熱回収設備に係り、特に復水器の循環系統内に複数台のヒートポンプを備えた蒸気タービンプラントの廃熱回収設備に関する。 The present invention relates to a waste heat recovery facility for a steam turbine plant, and more particularly to a waste heat recovery facility for a steam turbine plant provided with a plurality of heat pumps in a circulation system of a condenser.
火力発電設備や複合発電設備の廃熱をヒートポンプで回収し、蒸気タービンの復水やボイラの給水に熱回収することは従来から行われている。 Conventionally, waste heat from a thermal power generation facility and a combined power generation facility is recovered by a heat pump, and heat recovery is performed for steam turbine condensate and boiler feedwater.
廃熱を利用する例としては、ガスタービンと排熱回収ボイラと蒸気タービン、及びガスタービンと蒸気タービンのそれぞれに直結された発電機を備える複合発電設備で、廃熱の活用策としてターボ冷凍機と蒸気吸収式冷凍機を組合せることが提案されており、例えば特許文献1に記載されている。この特許文献1記載の例では、蒸気タービンと発電機の回転軸に、ターボ冷凍機を構成する圧縮機を直結させて駆動し、また蒸気タービンの抽気蒸気を、蒸気吸収式冷凍機の加熱源として利用し、利用後の排出凝縮水は、排熱回収ボイラの給水として再利用している。 Examples of using waste heat include a gas turbine, a waste heat recovery boiler, a steam turbine, and a combined power generation facility that includes a generator directly connected to each of the gas turbine and the steam turbine. And a vapor absorption refrigerator are proposed, for example, described in Patent Document 1. In the example described in Patent Document 1, a compressor that constitutes a turbo refrigerator is directly connected to a rotating shaft of a steam turbine and a generator, and the extracted steam of the steam turbine is used as a heating source for the steam absorption refrigerator. The exhaust condensate after use is reused as feed water for the exhaust heat recovery boiler.
一方、前記蒸気タービンの排気蒸気は、復水器にて凝縮した後、再び排熱回収ボイラの給水として循環しているが、復水器の冷却水は、冷却水ポンプによってターボ冷凍機から蒸気吸収式冷凍機及び復水器の順に直列に供給され、ターボ冷凍機から蒸気吸収式冷凍機の順に冷却された冷水は、需要家との間を循環する。 On the other hand, the exhaust steam of the steam turbine is condensed in the condenser and then circulated again as feed water for the exhaust heat recovery boiler. The condenser cooling water is steamed from the turbo refrigerator by a cooling water pump. The cold water that is supplied in series in the order of the absorption chiller and the condenser, and cooled in the order of the steam absorption chiller from the turbo chiller, circulates between consumers.
また、蒸気発電プラントの発電効率を向上させるため、蒸気タービンプラントに蒸気吸収式ヒートポンプを設けることが、特許文献2に記載されている。この例では、蒸気タービンの抽気蒸気を蒸気吸収式ヒートポンプの再生器に導入し、吸収液を加熱すると共に、蒸気タービンの低圧抽気又は蒸気タービン排気蒸気を、未利用エネルギーとして蒸気吸収式ヒートポンプの蒸発器に導入して冷媒を蒸発させている。この出力側は、蒸気吸収式ヒートポンプの吸収器と凝縮器にボイラ給水を導入し、加熱している。 Patent Document 2 describes that a steam absorption heat pump is provided in a steam turbine plant in order to improve the power generation efficiency of the steam power plant. In this example, the steam extracted from the steam turbine is introduced into the regenerator of the steam absorption heat pump to heat the absorption liquid, and the low pressure extraction steam from the steam turbine or the steam turbine exhaust steam is used as unused energy to evaporate the steam absorption heat pump. The refrigerant is evaporated by introducing it into the vessel. On the output side, boiler feed water is introduced into the absorber and condenser of the vapor absorption heat pump and heated.
更に、蒸気タービンプラントの廃熱を回収するため、蒸気吸収式ヒートポンプを単独で用いた例が、非特許文献1に記載されている。この事例では、石炭火力発電設備の脱硫装置の循環水へのボイラ排熱を吸熱源とし、発電用の蒸気タービンからの抽気蒸気を熱源とした蒸気吸収式ヒートポンプで駆動し、蒸気タービンプラントの脱気器入口の復水系統に熱回収している構成としている。 Furthermore, Non-Patent Document 1 describes an example in which a steam absorption heat pump is used alone to recover waste heat of a steam turbine plant. In this example, the steam exhaust heat pump is driven by a steam absorption heat pump that uses the boiler exhaust heat to the circulating water of the desulfurization unit of the coal-fired power generation facility as the heat sink, and the extracted steam from the steam turbine for power generation as the heat source. Heat is recovered in the condensate system at the air inlet.
蒸気タービンプラント外の需要家へ、冷水供給負荷と発電電力負荷の供給可能域を拡げる特許文献1に記載のシステムでは、電気と冷熱の両方を外部へ供給する熱電併給プラントである。即ち、発電出力に加え、外部に冷熱を供給するので、ガスタービンへの燃料供給量が同一の場合、ターボ冷凍機と蒸気吸収式冷凍機を稼働することにより、ガスタービン発電機と蒸気タービン発電機の電気出力は減少するシステムである。 The system described in Patent Document 1 that expands the supply area of the cold water supply load and the generated power load to consumers outside the steam turbine plant is a cogeneration plant that supplies both electricity and cold heat to the outside. In other words, in addition to the power generation output, cold heat is supplied to the outside, so if the fuel supply to the gas turbine is the same, operating the turbo chiller and the steam absorption chiller, the gas turbine generator and steam turbine power generation The machine's electrical output is a decreasing system.
また、ターボ冷凍機を構成する圧縮機の駆動用に発電機と直結の復水タービンを用い、復水タービンの抽気を蒸気吸収式冷凍機に利用する構造は、蒸気タービン及び発電機を新規に設計する場合は容易であるが、既設備の発電用蒸気タービンの軸に新たな機器を接続し駆動させることや、蒸気タービンに新たな抽気口を開けることになるので、蒸気タービンと発電機及び架台の大幅な改造を伴う問題がある。 In addition, a structure that uses a condensing turbine directly connected to a generator for driving a compressor that constitutes a turbo chiller, and uses the extraction air of the condensing turbine in a steam absorption refrigeration machine, a steam turbine and a generator are newly provided. Although it is easy to design, it is necessary to connect and drive new equipment to the shaft of the existing power generation steam turbine, and to open a new bleeder port in the steam turbine. There is a problem with significant remodeling of the gantry.
蒸気タービンプラントの未利用エネルギーを、蒸気吸収式ヒートポンプでボイラ給水に熱回収する特許文献2に記載の例では、蒸気吸収式ヒートポンプに導入される蒸気は、過熱飽和蒸気若しくは若干の過熱度を有する1.0MPa以下の蒸気であれば充分である。このため、蒸気タービンの抽気蒸気を使用し、蒸気吸収式ヒートポンプへ導入後に、蒸気は再生器から凝縮水クーラの順に熱交換した後、凝縮水となって装置外に排出されるので、十分に熱回収できないでいる。 In the example described in Patent Document 2 in which unused energy of a steam turbine plant is recovered in boiler feedwater by a steam absorption heat pump, the steam introduced into the steam absorption heat pump has superheated saturated steam or a slight degree of superheat. A vapor of 1.0 MPa or less is sufficient. For this reason, after using steam extracted from the steam turbine and introducing it into the steam absorption heat pump, the steam exchanges heat in the order from the regenerator to the condensate cooler, and then becomes condensed water and is discharged outside the device. Heat recovery is not possible.
更に、蒸気吸収式ヒートポンプを単独で用いて、蒸気タービンプラントへ廃熱を回収した非特許文献1の例でも、吸熱源がボイラ排ガス系の脱硫装置の循環水である点を除いては、蒸気タービンプラントへの廃熱回収構成が上記特許文献2と同じであるので、同様の問題がある。 Furthermore, even in the example of Non-Patent Document 1 in which waste heat is recovered to a steam turbine plant using a steam absorption heat pump alone, steam heat is not used except that the heat absorption source is circulating water of a desulfurization system for boiler exhaust gas. Since the configuration of waste heat recovery to the turbine plant is the same as that in Patent Document 2, there is a similar problem.
蒸気吸収式ヒートポンプは、ほぼ過熱飽和付近にある蒸気を導入し、その内部で凝縮水化して排出するので、その蒸発潜熱まで利用可能した蒸気の利用効率が高い装置と言える。また、蒸気吸収式ヒートポンプの型式にも依るが、一重効用型の蒸気吸収式ヒートポンプでは、放熱側では最大で20℃程度の常温水を90℃以上の温水にまで加熱することが可能であり、温度上昇幅、出力温度共に大きく取ることが可能である。ただし、蒸気側の交換熱量に対する出力側の熱量の比である成績係数は、蒸気吸収式ヒートポンプの場合、最大でも2.0前後である。 The steam absorption heat pump introduces steam in the vicinity of superheat saturation, condensates it inside, and discharges it, so it can be said that it is a device with high utilization efficiency of steam that can be used up to its latent heat of vaporization. In addition, although depending on the type of the vapor absorption heat pump, in the single effect type vapor absorption heat pump, it is possible to heat room temperature water of about 20 ° C. at the maximum to warm water of 90 ° C. or more on the heat dissipation side, Both the temperature rise and output temperature can be increased. However, the coefficient of performance, which is the ratio of the heat amount on the output side to the heat amount on the steam side, is about 2.0 at the maximum in the case of the vapor absorption heat pump.
これに対し、圧縮式ヒートポンプは、圧縮機の駆動機に蒸気タービンを用いる場合、背圧型、復水型蒸気タービンに係らず、蒸気の蒸発潜熱をほとんど利用できないので、蒸気吸収式ヒートポンプと比べ蒸気の利用効率は低くなる。また、圧縮式ヒートポンプは20℃程度の常温水を50℃程度にまでしか加熱できないので、温度上昇幅や出力温度共に蒸気吸収式ヒートポンプより小さくなる。しかし、圧縮式ヒートポンプの成績係数は、圧縮機の駆動力として投入されるエネルギーに対する出力側の熱エネルギーの比で表されるが、6.0程度あり、蒸気吸収式ヒートポンプと比べ吸熱源からの熱エネルギーの汲み上げ効率が約3倍ある。 On the other hand, in the case of using a steam turbine for the compressor drive, the compression heat pump can hardly use the latent heat of vaporization of steam regardless of the back pressure type or condensate type steam turbine. The utilization efficiency of is low. Further, since the compression heat pump can only heat room temperature water of about 20 ° C. to about 50 ° C., both the temperature rise width and the output temperature are smaller than those of the vapor absorption heat pump. However, the coefficient of performance of the compression heat pump is expressed by the ratio of the heat energy on the output side to the energy input as the driving force of the compressor, which is about 6.0, which is from the heat absorption source compared to the vapor absorption heat pump. The pumping efficiency of heat energy is about 3 times.
本発明の目的は、圧縮式ヒートポンプと蒸気吸収式ヒートポンプとを適切に用いて、未利用エネルギーの回収量を増加させると共に、回収効率を向上させる蒸気タービンプラントの廃熱回収設備を提供することにある。 An object of the present invention is to provide a waste heat recovery facility for a steam turbine plant that uses a compression heat pump and a steam absorption heat pump appropriately to increase the recovery amount of unused energy and improve the recovery efficiency. is there.
本発明では、蒸気発生装置から蒸気を供給する蒸気タービンと、前記蒸気タービンの排気側に備える復水器と、前記復水器の循環系統に蒸気発生装置への給水を加熱するヒートポンプとを備えた蒸気タービンプラントの廃熱回収設備を構成する際、前記ヒートポンプは、前記復水器の循環系統への廃熱を吸熱源とする少なくとも2台を設けると共に、前記ヒートポンプのうち1台ずつを圧縮式ヒートポンプと蒸気吸収式ヒートポンプとし、前記圧縮式ヒートポンプの圧縮機は、背圧式蒸気タービンを前記蒸気タービン側の蒸気源で駆動し、該駆動後の排気蒸気の一部又は全部を、前記蒸気吸収式ヒートポンプの蒸発器の熱源とするように構成したものである。 In the present invention, a steam turbine for supplying steam from a steam generator, a condenser provided on the exhaust side of the steam turbine, and a heat pump for heating water supplied to the steam generator in a circulation system of the condenser are provided. When the waste heat recovery equipment of the steam turbine plant is configured, the heat pump is provided with at least two heat sinks that use waste heat to the condenser circulation system and compresses one of the heat pumps. The compressor of the compression heat pump is a back pressure steam turbine driven by a steam source on the steam turbine side, and a part or all of the exhaust steam after the drive is absorbed by the steam. It is comprised so that it may become a heat source of the evaporator of a type | formula heat pump.
本発明のように蒸気タービンプラントの廃熱回収設備を構成すれば、蒸気吸収式ヒートポンプと圧縮式ヒートポンプの性能特性を生かすようにしたので、同一ヒートポンプのみを使用するのに比べて、利用できる未利用エネルギー回収量と回収効率の両方を向上させることができる。したがって、蒸気タービンプラントに回収できるため、数1000kW級の自家発電用の小型発電設備から、100万kW級の事業用の大型発電設備にまで広く適用できる。 If the waste heat recovery facility of the steam turbine plant is configured as in the present invention, the performance characteristics of the steam absorption heat pump and the compression heat pump are utilized, so that it can be used compared to using only the same heat pump. Both the amount of recovered energy and the recovery efficiency can be improved. Therefore, since it can be recovered in a steam turbine plant, it can be widely applied from a small power generation facility for private power generation of several thousand kW class to a large power generation facility for business use of 1 million kW class.
以下、本発明の蒸気タービンプラントの廃熱回収設備について、図1に示す実施例を用いて詳細に説明する。 Hereinafter, the waste heat recovery equipment of the steam turbine plant of the present invention will be described in detail using the embodiment shown in FIG.
本発明の図1の一実施例では、蒸気発生装置であるボイラ1で発生した蒸気は、主蒸気管2より主蒸気加減弁3を経て蒸気タービン4に至り、蒸気タービン4で仕事をして発電機5で発電を行った後、排気管6を通って復水器7に入る。蒸気は、復水器7で冷却されて凝縮水となり、蒸気タービン復水として冷却水の循環系統である復水配管10の復水ポンプ8で加圧され、順次グランド蒸気復水器9から脱気器11に送られ、加熱される。この加熱蒸気源は、グランド蒸気復水器9では蒸気タービン4のグランド蒸気、脱気器11では蒸気タービン4から抽気蒸気管27で抽気された蒸気である。
In the embodiment of FIG. 1 according to the present invention, steam generated in a boiler 1 which is a steam generating apparatus reaches a steam turbine 4 through a main
ボイラ給水は、脱気器11後のボイラ給水管12のボイラ給水ポンプ13で加圧され、高圧タービン4からの高圧抽気管26からの抽気蒸気により、高圧給水加熱器14で更に加温されて、ボイラ1に戻る。高圧給水加熱器14の蒸気凝縮水は、ドレン管16の高圧給水加熱器水位調節弁15を経て脱気器11に回収される。復水器冷却水は、冷却水ポンプ18により復水器7と冷却塔17の間を冷却水の循環系統である冷却水供給母管19と復水器冷却管24を循環しており、蒸気タービン4から復水器7へ廃熱された蒸気タービン排気蒸気の蒸発潜熱分が、復水器冷却水を加温し、その加温分の熱エネルギーは冷却塔17で蒸発させて大気に放熱している。失った冷却水は、冷却塔下部水槽21に自動的に補給が行われる。
The boiler feed water is pressurized by the
そして、本発明では、圧縮式ヒートポンプ22と一重効用蒸気吸収式ヒートポンプ23との異なる型式の各1台を少なくとも用い、設置している。これら両ヒートポンプ22、23への吸熱源水は、図の例では復水器7で蒸気タービン4の排気蒸気の蒸発潜熱と熱交換し、温度が上昇した後の復水器7出口の復水器冷却管24から吸熱源水供給管25を分岐し、その分岐管25に設けた吸熱源水供給ポンプ23Aを用いて、各ヒートポンプ22、23内部の構成機器の蒸発器51、53に並列に供給する。各ヒートポンプ22、23の蒸発器51、53からの戻り熱源水は、1本の吸熱源水戻り管20に合流後、冷却塔17の入口の復水器冷却水管24に合流させている。
In the present invention, at least one of the different types of the
各ヒートポンプ22、23への蒸気の供給系統は、例えば蒸気タービン4から高圧給水加熱器14への高圧抽気管26より蒸気管28を分岐し、背圧式蒸気タービン30を駆動する。この背圧式蒸気タービン30は、直結されている圧縮式ヒートポンプ22の圧縮機31を駆動し、圧縮機31は凝縮器35と膨張弁52と蒸発器51とで循環路を形成する。圧縮式ヒートポンプ22の入口の蒸気加減弁29により、圧縮式ヒートポンプ22の内部構成機器である凝縮器35の出口の水温を温度調節器49で検知し、この蒸気量を制御する。
In the steam supply system to each of the
上記した各ヒートポンプ22、23への供給蒸気は、蒸気タービン4の入口蒸気、抽気蒸気、排気蒸気の何れかから選択して用いられるように蒸気供給系統を構成する配管を設置し、使用することができる。
The supply steam to each of the
背圧式蒸気タービン30の排気蒸気は、他の一重効用蒸気吸収式ヒートポンプ23の加熱蒸気となって発生器32に導かれ、最終的にこの内部で凝縮水となり、ドレン管33を経て復水器6に回収される。ドレン排出弁34は、排出凝縮水が配管内部でフラッシュせぬように差圧設定される。
Exhaust steam from the back
背圧式蒸気タービン30の排気蒸気の温度は、一重効用蒸気吸収式のヒートポンプ23で必要とする以上の過熱度を有しているので、このヒートポンプ23の蒸気入口に、減温器58と温度検出器59を設け、ボイラ給水ポンプ13出口から取り出したボイラ給水を減温水として使用し、源温水管56に設ける入口蒸気温度調節弁57で、ヒートポンプ23の蒸気温度を一定温度に制御する。
The temperature of the exhaust steam of the back
また、蒸気圧力については、一重効用蒸気吸収式ヒートポンプ23を構成する凝縮器37の出口温度を、一重効用蒸気吸収式ヒートポンプ23の蒸気入口側に設けて凝縮器出口温度調節器50に応動する出口水温度制御弁43によって制御する。このため、一重効用蒸気吸収式ヒートポンプ23で蒸気が不足する場合は、一重効用蒸気吸収式ヒートポンプ23の入口蒸気管42に設置する圧力調節器38の指示値が、予め設定した圧力より下回った場合には、脱気器抽気管27から分岐したバックアップ系統40に設置の蒸気バックアップ弁41から蒸気を導入する。
As for the steam pressure, the outlet temperature of the
逆に、一重効用蒸気吸収式ヒートポンプ23の使用蒸気量が少なくなり、圧力調節器38の指示値が予め設定した圧力を上回った場合には、余剰蒸気排出系統38Aに設置の余剰蒸気排出弁39から蒸気を、復水器7に排出する構造とする。このバックアップ及び余剰蒸気排出系統によって、圧縮式ヒートポンプ22と一重効用蒸気吸収式ヒートポンプ23は、その両方又は1台が停止しても、運転している側のヒートポンプや蒸気タービンプラント全体の運転に支障をきたすことがなくなる。
Conversely, when the amount of steam used by the single-effect steam
一方、熱の回収先は、グランド蒸気復水器9の出口側である蒸気タービン4の復水配管10とし、上流側から圧縮式ヒートポンプ22、一重効用蒸気吸収式ヒートポンプ23の順に配置している。これにより、グランド蒸気復水器9を出た蒸気タービンの復水は、圧縮式ヒートポンプ22の構成機器である凝縮器35で加温され、次に一重効用蒸気吸収式ヒートポンプ23に送水され、この内部では吸収器36から凝縮器37を通って順次加温され、一重効用蒸気吸収式ヒートポンプ23を出た復水は、脱気器11に送られる。
復水配管10には、流量調節弁39、40Aを設け、これらによって圧縮式ヒートポンプ22を流れる蒸気タービン復水の通水流量比率の設定と、一重効用蒸気吸収式ヒートポンプ23を流れる蒸気タービン復水の通水流量比率の設定とが、それぞれ行われる。
On the other hand, the heat recovery destination is the
The
圧縮式ヒートポンプと蒸気吸収式ヒートポンプとは、蒸気の使用効率、出力温度幅、出力可能温度及び成績係数が異なる装置であり、相補的な関係にある。 The compression heat pump and the vapor absorption heat pump are devices having different use efficiency of steam, output temperature width, outputable temperature, and coefficient of performance, and have a complementary relationship.
本発明の例で蒸気側を考えると、蒸気吸収式ヒートポンプ23は、ほぼ過熱飽和付近にある蒸気を凝縮水化するまで熱交換するのに対し、圧縮式ヒートポンプ22の圧縮機を駆動する背圧式蒸気タービンでは過熱蒸気域で利用するので、蒸気吸収式ヒートポンプの性能を阻害することなく背圧式蒸気タービンの排気を蒸気吸収式ヒートポンプに利用することが可能である。
Considering the steam side in the example of the present invention, the steam
また、本発明の例で熱の回収先を考えると、蒸気吸収式ヒートポンプ23では、最大20℃の常温水を90℃程度まで昇温可能であるのに対し、圧縮式ヒートポンプ22では、20℃程度の常温水を50℃程度である。したがって、熱の回収先を考えた場合にも、圧縮式ヒートポンプ、蒸気吸収式ヒートポンプの順に熱回収するか、又は並列構成に熱回収することにより相互に支障なく熱回収を図ることが可能となる。
Considering the heat recovery destination in the example of the present invention, the vapor
別の実施例である図2に示す蒸気タービンプラントの廃熱回収設備は、発電用の主タービン4が発電プラント外への蒸気供給も行う抽気復水タービンの場合である。外部への蒸気供給は、脱気器抽気管27から分岐するプロセス蒸気管47から送られる。この蒸気圧力は、蒸気タービン4として予め設定してある範囲内であれば、抽気管27からの抽気流量の多少に係らず、蒸気タービン4の主蒸気加減弁3と抽気加減弁44により、発電機5の電気出力を一定に保ったままほぼ一定圧力に制御される。
The waste heat recovery facility of the steam turbine plant shown in FIG. 2 which is another embodiment is a case of a bleed condensate turbine in which the main turbine 4 for power generation also supplies steam to the outside of the power plant. The steam supply to the outside is sent from a
また、大量の蒸気が系外に送気されるので、補給水も多くなるが、このようなプラントの場合、補給水の持つ熱量を有効に生かすため、復水系統に復水タンク46を設け、補給水系統48に設けた復水タンク水位調節弁54で、復水タンク水位調節器55からの信号により、復水タンク46への補給水の量を調節する構成としている。復水タンク46は一般的に大気圧タンクであるので、その出口側には復水昇圧ポンプ45が設置され、復水昇圧ポンプ45で昇圧された復水が、脱気器11に送り込まれる。
In addition, since a large amount of steam is sent out of the system, the amount of makeup water increases, but in such a plant, a
この蒸気タービンプラントは、復水側の系統ではグランド蒸気復水器9の後流側に圧縮式ヒートポンプ22を設置し、加温後の復水は復水タンク46に入れる構造である。また、一重効用蒸気吸収式ヒートポンプ23は、復水タンク46の補給水系統48に設置し、この蒸気側の系統では、蒸気ドレン管33から復水タンク46に回収する構造である。
This steam turbine plant has a structure in which a
本発明では、蒸気吸収式ヒートポンプを復水タンク46への給水の循環系統となる補給水系統48に設置する代りに、復水昇圧ポンプ45の出口側の復水管に設置する場合も適用することができる。
In the present invention, instead of installing the steam absorption heat pump in the
また、圧縮式ヒートポンプ22を補給水系統48に設置し、二重効用蒸気吸収式ヒートポンプ23をグランド蒸気復水器9の出口側の復水管10に設置する構成にも適用できる。更に、圧縮式ヒートポンプ22と一重効用又は二重効用蒸気吸収式ヒートポンプ23との順に2台のヒートポンプを、直列に補給水系統48に構成したり、双方のヒートポンプ22、23を並列に設置して使用することもできる。
Further, the present invention can be applied to a configuration in which the
なお、図1及び図2に示す実施例では、どちらも一重効用蒸気吸収式ヒートポンプ22へのバックアップ蒸気源を、脱気器抽気蒸気管27から取るものとしたが、この蒸気源に限定されるものではなく、主蒸気管2や高圧給水加熱器抽気管26など、一重効用蒸気吸収式ヒートポンプ23の加熱蒸気源として供給可能な圧力を有する箇所からは抽気して使用可能である。また、一重効用蒸気吸収式ヒートポンプ23は、これに代えて二重効用蒸気式ヒートポンプを用いるのであっても、その蒸気及び凝縮水側の構成は同様である。
In the embodiment shown in FIG. 1 and FIG. 2, the backup steam source to the single effect steam
上記の各実施例では、余剰蒸気排出系統38の排出先を直接復水器7としているが、余剰蒸気排出系統38の熱量を回収可能な熱交換器がある場合には、その熱交換器に回収することもできる。
In each of the above embodiments, the discharge destination of the surplus
また更に、各実施例では、復水器7の冷却水を冷却塔17で冷却するとしているが、河川水や海水による直接冷却の場合も適用でき、河川水や海水による直接冷却の場合に、ヒートポンプの直接吸熱源水として導入に水質上問題があるときには、非接触式の熱交換器を間に入れ、間接的に吸熱源水を利用できる。
Furthermore, in each embodiment, the cooling water of the condenser 7 is cooled by the
ヒートポンプの吸熱源水は、タービンプラントに限るものではなく、ボイラプラントや系外の未利用エネルギーを利用することできる。また、蒸気タービンプラントのサイクルとして、図1及び図2に示す実施例では、発電用の蒸気タービン4を、非再熱型の復水タービンとしているが、再熱型の蒸気タービンでも用いることができる。 The heat source water of the heat pump is not limited to the turbine plant, but can use unused energy outside the boiler plant and the system. Further, as the cycle of the steam turbine plant, in the embodiment shown in FIGS. 1 and 2, the steam turbine 4 for power generation is a non-reheat type condensate turbine, but it can also be used in a reheat type steam turbine. it can.
更にまた、主タービンが背圧式の蒸気タービンの場合において、復水器が設置されていない場合についても、ヒートポンプの吸熱源となる廃熱源は、蒸気タービンプラントに限らず用いられ、熱の回収先は、補給水系統やボイラ給水系統としても本発明と同様の効果を得られる。 Furthermore, when the main turbine is a back-pressure steam turbine and the condenser is not installed, the waste heat source as the heat absorption source of the heat pump is not limited to the steam turbine plant, and the heat recovery destination The same effects as those of the present invention can be obtained as a make-up water system and a boiler water supply system.
各ヒートポンプ22、23の蒸気タービン復水系統側それぞれに再循環系統を設け、その出口や入口の温度制御を行うこともできるが、ヒートポンプのみならず熱交換器類について再循環流量制御による温度制御は一般的に行われており、簡単に適用できる。また、出入口に新たな水タンク類を追設することによる、過渡的な温度変化防止についても同様に適用できる。
Although it is possible to provide a recirculation system on the steam turbine condensate system side of each
蒸気タービンプラントの発電設備において、ヒートポンプで吸熱源から汲み上げた未利用の廃熱エネルギーを蒸気タービンの復水系統の昇温に利用し、設置するヒートポンプは圧縮式ヒートポンプと一重効用蒸気吸収式ヒートポンプの1台ずつとし、かつ圧縮式ヒートポンプの圧縮機駆動用の背圧式蒸気タービンの排気蒸気を、一重効用蒸気吸収式ヒートポンプで利用する場合について、以下その効果を具体的に説明する。 In a power generation facility of a steam turbine plant, unused waste heat energy pumped from a heat absorption source by a heat pump is used to raise the temperature of the condensing system of the steam turbine, and the installed heat pump is composed of a compression heat pump and a single effect steam absorption heat pump. In the case where the exhaust steam of the back pressure steam turbine for driving the compressor of the compression heat pump is used in a single effect steam absorption heat pump, the effect will be specifically described below.
まず、対象とする蒸気タービンプラントの発電設備での主タービンの入口蒸気条件を、3.9MPa、400℃とし、排気条件を−94.66kPa、復水器出口復水流量を30t/hと想定する。圧縮式ヒートポンプ用の背圧式蒸気タービンの駆動蒸気源には蒸気圧力、温度が1.2MPa、300℃のタービン抽気蒸気を用いるものとする。背圧式蒸気タービンの内部効率を50%とすると、その背圧が、0.4MPa時の排気温度は約240℃となる。この排気蒸気を5.0MPa、175℃のボイラ給水ポンプ出口水を用いて減温器で170℃まで減温し、0.4MPa、170℃の蒸気として一重効用蒸気吸収式ヒートポンプに使用する。使用する蒸気のヒートポンプ出口の蒸気凝縮水温度は90℃とする。 First, it is assumed that the inlet steam condition of the main turbine in the power generation facility of the target steam turbine plant is 3.9 MPa, 400 ° C., the exhaust condition is −94.66 kPa, and the condenser outlet condensate flow rate is 30 t / h. To do. As a driving steam source for a back pressure steam turbine for a compression heat pump, steam extraction steam having a steam pressure, a temperature of 1.2 MPa, and 300 ° C. is used. Assuming that the internal efficiency of the back pressure steam turbine is 50%, the exhaust temperature when the back pressure is 0.4 MPa is about 240 ° C. The exhaust steam is cooled down to 170 ° C. by a temperature reducer using the boiler feed pump outlet water at 5.0 MPa and 175 ° C., and used as a 0.4 MPa, 170 ° C. steam for a single effect steam absorption heat pump. The steam condensate temperature at the outlet of the heat pump used is 90 ° C.
各ヒートポンプの成績係数は、圧縮式ヒートポンプの成績係数、即ち圧縮機が受取った熱量に対するタービン復水系統への出熱量の比率は、圧縮式ヒートポンプとして一般的な値である6.0とし、蒸気タービン復水温度を45℃から10℃上げ、55℃とするものとする。また、一重効用蒸気吸収式ヒートポンプの成績係数は、1.7とし、こちらは圧縮式ヒートポンプで昇温した蒸気タービン復水を更に昇温するものとする。 The coefficient of performance of each heat pump is the coefficient of performance of the compression heat pump, that is, the ratio of the amount of heat output to the turbine condensate system with respect to the amount of heat received by the compressor is 6.0, which is a typical value for a compression heat pump. The turbine condensate temperature is increased from 45 ° C. by 10 ° C. to 55 ° C. The coefficient of performance of the single-effect steam absorption heat pump is 1.7, which further increases the temperature of the steam turbine condensate heated by the compression heat pump.
上記の条件から、圧縮式ヒートポンプにより吸熱源から蒸気タービン復水系統に汲み上げられる熱量は、30t/hの復水の温度を10℃上げるので、約350kWである。これに使用する背圧式蒸気タービンの動力は、圧縮式ヒートポンプの成績係数が6.0なので、6分の1の約58kWである。 From the above conditions, the amount of heat pumped from the heat absorption source to the steam turbine condensate system by the compression heat pump is about 350 kW because the temperature of 30 t / h condensate is raised by 10 ° C. The power of the back pressure steam turbine used for this is about 58 kW, which is 1/6 because the coefficient of performance of the compression heat pump is 6.0.
一方、一重効用蒸気吸収式ヒートポンプの入口蒸気流量は、背圧タービン出口の0.4MPa、240℃の蒸気を、5.0MPa、175℃の熱水で減温するので、減温水が加わり背圧タービン出口蒸気流量の7.4%増となる。この流量の蒸気が、一重効用蒸気吸収式ヒートポンプから90℃の凝縮水として排出されるので、蒸気側からの入熱量は、約1440kWとなる。今、成績係数が1.7の一重効用蒸気吸収式ヒートポンプを使用するので、復水系統への入熱量は1440kWの1.7倍となり、約2450kWとなる。 On the other hand, the inlet steam flow rate of the single-effect steam absorption heat pump is such that the steam at 0.4 MPa and 240 ° C. at the outlet of the back pressure turbine is reduced with hot water at 5.0 MPa and 175 ° C. This is a 7.4% increase in the steam flow at the turbine outlet. Since the steam at this flow rate is discharged from the single effect steam absorption heat pump as condensed water at 90 ° C., the heat input from the steam side is about 1440 kW. Now, since a single effect steam absorption heat pump with a coefficient of performance of 1.7 is used, the heat input to the condensate system is 1.7 times that of 1440 kW, which is about 2450 kW.
このことから、蒸気タービンの復水系統は、蒸気タービン抽気系統からの1498kWの入熱に対し、約2800kWの熱エネルギーを受取ることが可能となる。即ち、約1300kWの未利用エネルギーを汲み上げたことになる。 From this, the condensate system of the steam turbine can receive about 2800 kW of thermal energy for 1498 kW heat input from the steam turbine bleed system. That is, about 1300 kW of unused energy is pumped up.
この約1300kWという出力は、蒸気タービン発電設備の想定発電端出力である約8000kWの16%を越えるものであり、極めて有効な省エネルギー手段となる。 This output of about 1300 kW exceeds 16% of about 8000 kW, which is the assumed power generation end output of the steam turbine power generation facility, and is an extremely effective energy saving means.
1…ボイラ、2…主蒸気管、3…主蒸気加減弁、4…蒸気タービン、6…排気管、7…復水器、8…復水ポンプ、10…復水管、11…脱気器、12…給水管、13…ボイラ給水ポンプ、17…冷却塔、18…冷却水ポンプ、19…冷却水供給母管、20…吸熱源水戻り管、22…圧縮式ヒートポンプ、23…一重効用蒸気吸収式ヒートポンプ、24…復水器冷却管、25…吸熱源水供給管、26…高圧抽気管、27…抽気蒸気管、28…蒸気管、29…蒸気加減弁、30…背圧式蒸気タービン、31…圧縮機、32…発生器、35、37…凝縮器、36…吸収器、42…入口蒸気管、43…蒸気入口弁、44…抽気加減弁、46…復水タンク、47…プロセス蒸気管、48…補給水系統、51、53…蒸発器、52…膨張弁、56…減温水管、57…入口蒸気温度調節弁、58…減温器、59…温度検出器。
DESCRIPTION OF SYMBOLS 1 ... Boiler, 2 ... Main steam pipe, 3 ... Main steam control valve, 4 ... Steam turbine, 6 ... Exhaust pipe, 7 ... Condenser, 8 ... Condensate pump, 10 ... Condensate pipe, 11 ... Deaerator, DESCRIPTION OF
Claims (3)
2. The waste heat recovery facility for a steam turbine plant according to claim 1, wherein each of the heat pumps includes a compression heat pump and a steam absorption heat pump provided in parallel to a circulation system of water supply.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005249078A JP4676284B2 (en) | 2005-08-30 | 2005-08-30 | Waste heat recovery equipment for steam turbine plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005249078A JP4676284B2 (en) | 2005-08-30 | 2005-08-30 | Waste heat recovery equipment for steam turbine plant |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007064047A true JP2007064047A (en) | 2007-03-15 |
JP4676284B2 JP4676284B2 (en) | 2011-04-27 |
Family
ID=37926540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005249078A Expired - Fee Related JP4676284B2 (en) | 2005-08-30 | 2005-08-30 | Waste heat recovery equipment for steam turbine plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4676284B2 (en) |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009072731A (en) * | 2007-09-21 | 2009-04-09 | Chugoku Electric Power Co Inc:The | Coal thermal power generating system and method for reducing elution of chromium (vi) |
KR100900760B1 (en) * | 2008-02-27 | 2009-06-02 | 권태운 | A pumping device for collecting the condensed water |
WO2009105930A1 (en) * | 2008-02-28 | 2009-09-03 | 清华大学 | A kind of concentrated heat-supply system |
CN102278785A (en) * | 2011-06-25 | 2011-12-14 | 双良节能系统股份有限公司 | Energy-saving combined heat and power type heat supply system |
CN102331029A (en) * | 2011-07-27 | 2012-01-25 | 双良节能系统股份有限公司 | Water-water type heating system for recovering waste heat in absorption heat pumps in heat power plant |
CN102331028A (en) * | 2011-07-27 | 2012-01-25 | 双良节能系统股份有限公司 | Afterheat steam-water type heat supply system for recycling and absorption type heat pump of thermal power plant |
CN102338409A (en) * | 2011-07-16 | 2012-02-01 | 双良节能系统股份有限公司 | Composite heat supply system capable of recovering condensate waste heat of auxiliary machines of thermal power plant |
CN102338411A (en) * | 2011-07-16 | 2012-02-01 | 双良节能系统股份有限公司 | Double-water type heat supply system for recovering condensed waste heat of auxiliary steam turbine in thermal power plant |
CN102372329A (en) * | 2010-08-25 | 2012-03-14 | 益科博能源科技(上海)有限公司 | Multistage seawater desalting application system |
CN102943697A (en) * | 2012-08-15 | 2013-02-27 | 中能服(北京)节能投资有限公司 | Exhausted-steam and after-heat recovery device of wet-cold power plant and recovery method thereof |
JP2013217342A (en) * | 2012-04-11 | 2013-10-24 | Toshiba Corp | Steam turbine plant and operation method thereof |
JP2013231393A (en) * | 2012-04-27 | 2013-11-14 | Toshiba Corp | Steam turbine plant |
CN103629857A (en) * | 2013-12-04 | 2014-03-12 | 大连大学 | Heat and power cogeneration centralized heat supply system based on heat pump |
CN103629724A (en) * | 2013-12-04 | 2014-03-12 | 大连大学 | System for greatly reducing district heating temperature by cogeneration |
CN103775143A (en) * | 2013-04-11 | 2014-05-07 | 苟仲武 | Improved vacuum exhaust heat pump steam turbine generation system and generating method thereof |
KR101466254B1 (en) * | 2014-04-14 | 2014-12-02 | (주)네모파트너즈엔이씨 | The apparatus of heat pipe |
KR101559728B1 (en) | 2014-01-20 | 2015-10-13 | 지에스파워 주식회사 | Cogeneration Plant Cooling System |
CN105737230A (en) * | 2016-04-21 | 2016-07-06 | 陈熙荣 | Dual-source complementary multi-net linkage large-temperature-difference residual heat and waste heat energy central heating system |
CN105737131A (en) * | 2016-03-03 | 2016-07-06 | 陈克秀 | Multi-network linked waste heat energy centralized heating system |
JP2016524068A (en) * | 2013-05-23 | 2016-08-12 | ポスコ エナジー カンパニー リミテッド | Heating heat source or electric production system utilizing waste heat at medium and low temperatures, and control method thereof |
CN106437907A (en) * | 2016-08-16 | 2017-02-22 | 华电电力科学研究院 | Direct air cooling unit exhaust steam waste heat recovery device and method |
CN106437906A (en) * | 2016-08-16 | 2017-02-22 | 华电电力科学研究院 | Circulation water waste heat recycling device and method for indirect air cooling unit |
CN106523050A (en) * | 2016-12-16 | 2017-03-22 | 北京科技大学 | Hybrid power circulating system, operating method of hybrid power circulating system and power generation system |
CN107621002A (en) * | 2016-10-09 | 2018-01-23 | 燕山大学 | Utilize the step heating means and system of combined heat pump recovery exhaust steam of electric power plant waste heat |
CN107939464A (en) * | 2017-12-21 | 2018-04-20 | 西安热工研究院有限公司 | A kind of CHP Heating System and method of work based on absorption heat pump cycle |
CN108035779A (en) * | 2017-12-13 | 2018-05-15 | 联合瑞升(北京)科技有限公司 | A kind of water cooling Steam Turbine exhaust steam residual heat recycles heating system |
CN108458392A (en) * | 2018-05-11 | 2018-08-28 | 于恩英 | central heating system |
CN109237509A (en) * | 2018-08-30 | 2019-01-18 | 华电电力科学研究院有限公司 | A kind of method and device that indirect air cooling unit circulating water afterheat is recycled to boiler supply air system |
CN109681943A (en) * | 2018-12-24 | 2019-04-26 | 珠海格力电器股份有限公司 | Heating system |
CN110186218A (en) * | 2019-05-10 | 2019-08-30 | 华电电力科学研究院有限公司 | A kind of Direct Air-cooled Unit exhausted spare heat depth energy saving comprehensive utilization recyclable device and method |
CN111351252A (en) * | 2018-12-20 | 2020-06-30 | 大连民族大学 | Cogeneration method for power plant |
CN113188181A (en) * | 2021-03-29 | 2021-07-30 | 大唐七台河发电有限责任公司 | Heating drainage recovery device |
CN113375211A (en) * | 2021-06-28 | 2021-09-10 | 大唐环境产业集团股份有限公司 | Coal-fired unit heating system and operation method |
CN113417704A (en) * | 2021-06-21 | 2021-09-21 | 西安西热节能技术有限公司 | Combined heating system based on zero output of low-pressure cylinder |
CN115218552A (en) * | 2022-06-07 | 2022-10-21 | 国能宿州热电有限公司 | Cooling water, steam and compressed air triple supply system and control method thereof |
CN115247826A (en) * | 2022-07-25 | 2022-10-28 | 西安西热节能技术有限公司 | High back pressure heat supply unit thermodynamic system of coupling voltage compression heat pump |
KR20220154921A (en) * | 2021-05-14 | 2022-11-22 | 인하대학교 산학협력단 | Combined cycle power generation system |
CN115468333A (en) * | 2022-07-26 | 2022-12-13 | 华能国际电力股份有限公司上海石洞口第二电厂 | Thermal power plant frequency modulation system with steam pressure tank and heat pump |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102331024B (en) * | 2011-07-20 | 2013-03-27 | 双良节能系统股份有限公司 | Water-water type heating system of thermal power plant |
CN102331030A (en) * | 2011-08-13 | 2012-01-25 | 双良节能系统股份有限公司 | Heating system utilizing air-cooled waste heat of condensation in heat power plant |
CN103017237A (en) * | 2012-12-25 | 2013-04-03 | 浙江工商大学 | Condensation heat recycle and supply system of power plant |
CN103017236B (en) * | 2012-12-25 | 2015-08-05 | 浙江工商大学 | The power plant heat of condensation is recycled and heating system |
CN104481611A (en) * | 2014-12-26 | 2015-04-01 | 北京中科华誉能源技术发展有限责任公司 | Dead steam waste heat recovery system based on large temperature difference heat exchange technology |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6187908A (en) * | 1984-10-05 | 1986-05-06 | Mayekawa Mfg Co Ltd | Combined device of power generation, refrigeration, and heat pump cycle |
JP2001141286A (en) * | 1999-11-15 | 2001-05-25 | Hitachi Ltd | Heat recovery generating system and method of its operation |
-
2005
- 2005-08-30 JP JP2005249078A patent/JP4676284B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6187908A (en) * | 1984-10-05 | 1986-05-06 | Mayekawa Mfg Co Ltd | Combined device of power generation, refrigeration, and heat pump cycle |
JP2001141286A (en) * | 1999-11-15 | 2001-05-25 | Hitachi Ltd | Heat recovery generating system and method of its operation |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009072731A (en) * | 2007-09-21 | 2009-04-09 | Chugoku Electric Power Co Inc:The | Coal thermal power generating system and method for reducing elution of chromium (vi) |
KR100900760B1 (en) * | 2008-02-27 | 2009-06-02 | 권태운 | A pumping device for collecting the condensed water |
WO2009105930A1 (en) * | 2008-02-28 | 2009-09-03 | 清华大学 | A kind of concentrated heat-supply system |
CN102372329A (en) * | 2010-08-25 | 2012-03-14 | 益科博能源科技(上海)有限公司 | Multistage seawater desalting application system |
CN102278785A (en) * | 2011-06-25 | 2011-12-14 | 双良节能系统股份有限公司 | Energy-saving combined heat and power type heat supply system |
CN102338409B (en) * | 2011-07-16 | 2013-08-28 | 双良节能系统股份有限公司 | Composite heat supply system capable of recovering condensate waste heat of auxiliary machines of thermal power plant |
CN102338409A (en) * | 2011-07-16 | 2012-02-01 | 双良节能系统股份有限公司 | Composite heat supply system capable of recovering condensate waste heat of auxiliary machines of thermal power plant |
CN102338411A (en) * | 2011-07-16 | 2012-02-01 | 双良节能系统股份有限公司 | Double-water type heat supply system for recovering condensed waste heat of auxiliary steam turbine in thermal power plant |
CN102338411B (en) * | 2011-07-16 | 2013-05-01 | 双良节能系统股份有限公司 | Double-water type heat supply system for recovering condensed waste heat of auxiliary steam turbine in thermal power plant |
CN102331028A (en) * | 2011-07-27 | 2012-01-25 | 双良节能系统股份有限公司 | Afterheat steam-water type heat supply system for recycling and absorption type heat pump of thermal power plant |
CN102331029B (en) * | 2011-07-27 | 2013-03-27 | 双良节能系统股份有限公司 | Water-water type heating system for recovering waste heat in absorption heat pumps in heat power plant |
CN102331029A (en) * | 2011-07-27 | 2012-01-25 | 双良节能系统股份有限公司 | Water-water type heating system for recovering waste heat in absorption heat pumps in heat power plant |
JP2013217342A (en) * | 2012-04-11 | 2013-10-24 | Toshiba Corp | Steam turbine plant and operation method thereof |
JP2013231393A (en) * | 2012-04-27 | 2013-11-14 | Toshiba Corp | Steam turbine plant |
CN102943697A (en) * | 2012-08-15 | 2013-02-27 | 中能服(北京)节能投资有限公司 | Exhausted-steam and after-heat recovery device of wet-cold power plant and recovery method thereof |
CN103775143A (en) * | 2013-04-11 | 2014-05-07 | 苟仲武 | Improved vacuum exhaust heat pump steam turbine generation system and generating method thereof |
JP2016524068A (en) * | 2013-05-23 | 2016-08-12 | ポスコ エナジー カンパニー リミテッド | Heating heat source or electric production system utilizing waste heat at medium and low temperatures, and control method thereof |
CN103629724A (en) * | 2013-12-04 | 2014-03-12 | 大连大学 | System for greatly reducing district heating temperature by cogeneration |
CN103629724B (en) * | 2013-12-04 | 2015-12-30 | 大连大学 | Significantly reduce the system of cogeneration of heat and power central heating temperature |
CN103629857B (en) * | 2013-12-04 | 2016-03-02 | 大连大学 | Based on the thermal power cogeneration central heating system of heat pump |
CN103629857A (en) * | 2013-12-04 | 2014-03-12 | 大连大学 | Heat and power cogeneration centralized heat supply system based on heat pump |
KR101559728B1 (en) | 2014-01-20 | 2015-10-13 | 지에스파워 주식회사 | Cogeneration Plant Cooling System |
KR101466254B1 (en) * | 2014-04-14 | 2014-12-02 | (주)네모파트너즈엔이씨 | The apparatus of heat pipe |
CN105737131A (en) * | 2016-03-03 | 2016-07-06 | 陈克秀 | Multi-network linked waste heat energy centralized heating system |
CN105737230A (en) * | 2016-04-21 | 2016-07-06 | 陈熙荣 | Dual-source complementary multi-net linkage large-temperature-difference residual heat and waste heat energy central heating system |
CN106437907A (en) * | 2016-08-16 | 2017-02-22 | 华电电力科学研究院 | Direct air cooling unit exhaust steam waste heat recovery device and method |
CN106437906A (en) * | 2016-08-16 | 2017-02-22 | 华电电力科学研究院 | Circulation water waste heat recycling device and method for indirect air cooling unit |
CN106437907B (en) * | 2016-08-16 | 2018-08-07 | 华电电力科学研究院 | A kind of Direct Air-cooled Unit exhausted spare heat retracting device and method |
CN107621002A (en) * | 2016-10-09 | 2018-01-23 | 燕山大学 | Utilize the step heating means and system of combined heat pump recovery exhaust steam of electric power plant waste heat |
CN106523050A (en) * | 2016-12-16 | 2017-03-22 | 北京科技大学 | Hybrid power circulating system, operating method of hybrid power circulating system and power generation system |
CN108035779A (en) * | 2017-12-13 | 2018-05-15 | 联合瑞升(北京)科技有限公司 | A kind of water cooling Steam Turbine exhaust steam residual heat recycles heating system |
CN108035779B (en) * | 2017-12-13 | 2024-03-12 | 联合瑞升(北京)科技有限公司 | Waste steam and waste heat recovery heat supply system of water-cooling steam turbine unit |
CN107939464A (en) * | 2017-12-21 | 2018-04-20 | 西安热工研究院有限公司 | A kind of CHP Heating System and method of work based on absorption heat pump cycle |
CN107939464B (en) * | 2017-12-21 | 2024-03-01 | 西安热工研究院有限公司 | Combined heat and power generation heating system based on absorption heat pump cycle and working method |
CN108458392A (en) * | 2018-05-11 | 2018-08-28 | 于恩英 | central heating system |
WO2019214690A1 (en) * | 2018-05-11 | 2019-11-14 | Yu Enying | Central heating system |
CN109237509A (en) * | 2018-08-30 | 2019-01-18 | 华电电力科学研究院有限公司 | A kind of method and device that indirect air cooling unit circulating water afterheat is recycled to boiler supply air system |
CN111351252A (en) * | 2018-12-20 | 2020-06-30 | 大连民族大学 | Cogeneration method for power plant |
CN109681943A (en) * | 2018-12-24 | 2019-04-26 | 珠海格力电器股份有限公司 | Heating system |
CN110186218B (en) * | 2019-05-10 | 2023-11-28 | 华电电力科学研究院有限公司 | Deep energy-saving comprehensive utilization and recovery device and method for exhaust steam waste heat of direct air cooling unit |
CN110186218A (en) * | 2019-05-10 | 2019-08-30 | 华电电力科学研究院有限公司 | A kind of Direct Air-cooled Unit exhausted spare heat depth energy saving comprehensive utilization recyclable device and method |
CN113188181A (en) * | 2021-03-29 | 2021-07-30 | 大唐七台河发电有限责任公司 | Heating drainage recovery device |
KR20220154921A (en) * | 2021-05-14 | 2022-11-22 | 인하대학교 산학협력단 | Combined cycle power generation system |
KR102574462B1 (en) * | 2021-05-14 | 2023-09-04 | 인하대학교 산학협력단 | Combined cycle power generation system |
CN113417704A (en) * | 2021-06-21 | 2021-09-21 | 西安西热节能技术有限公司 | Combined heating system based on zero output of low-pressure cylinder |
CN113375211A (en) * | 2021-06-28 | 2021-09-10 | 大唐环境产业集团股份有限公司 | Coal-fired unit heating system and operation method |
CN115218552A (en) * | 2022-06-07 | 2022-10-21 | 国能宿州热电有限公司 | Cooling water, steam and compressed air triple supply system and control method thereof |
CN115247826A (en) * | 2022-07-25 | 2022-10-28 | 西安西热节能技术有限公司 | High back pressure heat supply unit thermodynamic system of coupling voltage compression heat pump |
CN115468333A (en) * | 2022-07-26 | 2022-12-13 | 华能国际电力股份有限公司上海石洞口第二电厂 | Thermal power plant frequency modulation system with steam pressure tank and heat pump |
Also Published As
Publication number | Publication date |
---|---|
JP4676284B2 (en) | 2011-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4676284B2 (en) | Waste heat recovery equipment for steam turbine plant | |
JP4972421B2 (en) | Heat pump steam / hot water generator | |
KR101295806B1 (en) | Combined cycle power plant utilizing absorption heat pump for improving generating efficiency, and method for controlling thereof | |
US9746191B2 (en) | System for producing heat source for heating or electricity using medium/low temperature waste heat, and method for controlling the same | |
JP4554527B2 (en) | Energy-saving equipment using waste heat | |
JP2007064050A (en) | Waste heat utilizing facility for steam turbine plant | |
JP4471992B2 (en) | Multi-source heat pump steam / hot water generator | |
JP2011196191A (en) | Exhaust heat recovery system | |
JP2006249942A (en) | Exhaust heat recovery system of reciprocation type internal combustion engine with supercharger | |
JP6021526B2 (en) | COOLING WATER SUPPLY SYSTEM AND BINARY POWER GENERATOR HAVING THE SAME | |
JP2008298406A (en) | Multiple heat pump-type steam-hot water generation device | |
KR20150138661A (en) | The Coolant Waste Heat Recovery of Coal Fired Power Plant and Control Method | |
KR101499810B1 (en) | Hybrid type condenser system | |
KR101386179B1 (en) | District heating water supply system for increasing gas turbin output by using heat pump | |
JP2010038159A (en) | System and method for use in combined cycle power plant or rankine cycle power plant using air-cooled steam condenser | |
JP2016151191A (en) | Power generation system | |
JP2009097735A (en) | Feed-water warming system and exhaust heat recovering boiler | |
JP4437987B2 (en) | Hot water circulation system | |
KR101103768B1 (en) | Electric Generating System Using Heat Pump Unit | |
CN108638794B (en) | Comprehensive system for utilizing waste heat of automobile exhaust | |
KR102021901B1 (en) | Supercritical CO2 generating system with parallel heater | |
CN111023617A (en) | Device and method for cooling dead steam cooling water based on refrigeration mode | |
KR102722307B1 (en) | Hybrid power generation system using low and diddle temperature waste heat | |
JPS5922043B2 (en) | Cold energy power generation plant | |
JP2002156493A (en) | Site heat supply equipment of nuclear power station |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20070213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070214 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070302 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070607 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100413 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100528 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100907 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101018 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110125 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110127 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140204 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4676284 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |