JP2009097735A - Feed-water warming system and exhaust heat recovering boiler - Google Patents

Feed-water warming system and exhaust heat recovering boiler Download PDF

Info

Publication number
JP2009097735A
JP2009097735A JP2007267133A JP2007267133A JP2009097735A JP 2009097735 A JP2009097735 A JP 2009097735A JP 2007267133 A JP2007267133 A JP 2007267133A JP 2007267133 A JP2007267133 A JP 2007267133A JP 2009097735 A JP2009097735 A JP 2009097735A
Authority
JP
Japan
Prior art keywords
pressure
feed water
steam
feed
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007267133A
Other languages
Japanese (ja)
Inventor
Chikako Shibui
千佳子 渋井
Kenichi Imai
健一 今井
Shuichi Honma
秀一 本間
Hajime Shiomi
肇 塩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007267133A priority Critical patent/JP2009097735A/en
Publication of JP2009097735A publication Critical patent/JP2009097735A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a feed-water warming system and an exhaust heat recovering boiler, which minimize degradation in the heat efficiency of a plant. <P>SOLUTION: A feed-water heating means 25 for warming the feed-water by a heat source excluding an exhaust heat recovering boiler 1 itself, is disposed in an upstream water supply line 14 of the exhaust heat recovering boiler 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、排熱回収ボイラの給水を加温する給水加温システムおよび排熱回収ボイラ関する。   The present invention relates to a feed water heating system and a waste heat recovery boiler for heating the feed water of an exhaust heat recovery boiler.

近年、火力発電設備に対する高効率化のニーズは益々高まっており、ガスタービンの排ガスを利用して蒸気を発生する排熱回収ボイラは、ガスタービン燃焼温度の上昇化に伴い、排ガス温度も上昇し、より効率良く熱交換させ、蒸気を発生させることが求められている。   In recent years, there is an increasing need for higher efficiency for thermal power generation facilities, and exhaust heat recovery boilers that generate steam using exhaust gas from gas turbines have increased exhaust gas temperature as gas turbine combustion temperature has increased. Therefore, there is a demand for heat exchange to generate steam more efficiently.

図2は、従来の三圧式(複圧式)排熱回収ボイラ給水装置の系統図を示す。図2に示すように、三圧式排熱回収ボイラ1は、排ガスが導入される胴内に排ガスの上流側から下流側に向って順次に高圧蒸気過熱器2,高圧蒸発器3,中圧蒸気過熱器4,高圧節炭器5,中圧蒸発器6,中圧節炭器7,低圧蒸発器8および低圧節炭器9を配置した構成とされている。   FIG. 2 is a system diagram of a conventional three-pressure (multi-pressure) exhaust heat recovery boiler water supply apparatus. As shown in FIG. 2, the three-pressure exhaust heat recovery boiler 1 includes a high-pressure steam superheater 2, a high-pressure evaporator 3, and an intermediate-pressure steam sequentially from the upstream side to the downstream side of the exhaust gas in the cylinder into which the exhaust gas is introduced. The superheater 4, the high pressure economizer 5, the medium pressure evaporator 6, the medium pressure economizer 7, the low pressure evaporator 8, and the low pressure economizer 9 are arranged.

高圧蒸発器3は高圧ドラム10に、また中圧蒸発器6は中圧ドラム11に、さらに低圧蒸発器8は低圧ドラム12にそれぞれ連結されている。復水器13内の水は低圧給水管14を介して復水ポンプ15に導かれ、ここで昇圧された後、復水ポンプ出口逆止弁16を経て低圧節炭器9に導かれて昇温され、その後低圧ドラム12へ送水される。   The high-pressure evaporator 3 is connected to the high-pressure drum 10, the intermediate-pressure evaporator 6 is connected to the intermediate-pressure drum 11, and the low-pressure evaporator 8 is connected to the low-pressure drum 12. The water in the condenser 13 is led to a condensate pump 15 through a low-pressure feed pipe 14, and after being boosted here, the water is led to a low-pressure economizer 9 via a condensate pump outlet check valve 16. It is heated and then fed to the low-pressure drum 12.

一方、低圧給水管14は低圧節炭器9の出口側で分岐されて高中圧給水管17となり、この高中圧給水管17はさらに高圧給水管18と中圧給水管19とに分岐している。高圧給水管18を通る給水は、高圧給水ポンプ20および高圧節炭器5を介して高圧ドラム10へ送水される。同様に、中圧給水管19を通る給水は、中圧給水ポンプ21および中圧節炭器7を介して中圧ドラム11へ送水される。   On the other hand, the low pressure water supply pipe 14 is branched at the outlet side of the low pressure economizer 9 to become a high / medium pressure water supply pipe 17, and the high / medium pressure water supply pipe 17 is further branched into a high pressure water supply pipe 18 and an intermediate pressure water supply pipe 19. . The feed water that passes through the high-pressure feed pipe 18 is fed to the high-pressure drum 10 through the high-pressure feed pump 20 and the high-pressure economizer 5. Similarly, the water supplied through the intermediate pressure water supply pipe 19 is supplied to the intermediate pressure drum 11 via the intermediate pressure water supply pump 21 and the intermediate pressure economizer 7.

低圧節炭器9を通過する給水温度は低温であるので、節炭器9外面にガス中の水分あるいは腐食成分による伝熱管の低温腐食を防止するため、中圧給水の一部を再循環させている。すなわち、中圧給水の一部は中圧給水ポンプ21出口で分岐した給水再循環管22を経た後、温度調整弁である給水再循環調節弁23を介して低圧節炭器9入口の低温給水管14へ再循環され、低圧節炭器9に導かれる給水を加温している。この際、給水再循環水調節弁22の開度は低圧節炭器9の入口に設けられた温度コントローラ24に基づいて調整され、これにより低圧節炭器9へ導かれる給水温度が制御されている。
特開平7−225003号公報
Since the feed water temperature passing through the low pressure economizer 9 is low, a part of the medium pressure feed water is recirculated on the outer surface of the economizer 9 in order to prevent low temperature corrosion of the heat transfer tube due to moisture or corrosive components in the gas. ing. That is, a part of the medium-pressure feed water passes through a feed water recirculation pipe 22 branched at the outlet of the medium-pressure feed water pump 21 and then passes through a feed water recirculation control valve 23 which is a temperature control valve, so The feed water that is recirculated to the pipe 14 and led to the low-pressure economizer 9 is heated. At this time, the opening degree of the feed water recirculation water control valve 22 is adjusted based on a temperature controller 24 provided at the inlet of the low pressure economizer 9, thereby controlling the feed water temperature led to the low pressure economizer 9. Yes.
JP 7-225033 A

しかしながら、再循環させることにより、低圧ドラム12から発生する蒸気量は再循環させない場合と比較すると低減してしまう。それとともに、低圧蒸気タービンへの流入蒸気も減ってしまうことになり、出力低下につながる。   However, by recirculating, the amount of steam generated from the low-pressure drum 12 is reduced as compared with the case where recirculation is not performed. At the same time, the steam flowing into the low-pressure steam turbine is also reduced, leading to a reduction in output.

本発明の目的は、プラントの熱効率を極力低下させないことができる給水加温システムおよび排熱回収ボイラを得ることにある。   An object of the present invention is to obtain a feed water heating system and an exhaust heat recovery boiler that can reduce the thermal efficiency of a plant as much as possible.

上記目的を達成するために、本発明においては、ガスタービンからの排気ガスを導入し蒸気を発生させる排熱回収ボイラの上流の給水ラインに、排熱回収ボイラ自身以外の熱源で給水を加温する給水加熱手段を設けたことを特徴とする排熱回収ボイラの給水加温システム、およびこの給水加温システムを備えた排熱回収ボイラを提供する。   In order to achieve the above object, in the present invention, water is heated in a water supply line upstream of an exhaust heat recovery boiler that introduces exhaust gas from a gas turbine and generates steam by a heat source other than the exhaust heat recovery boiler itself. The present invention provides a feed water heating system for an exhaust heat recovery boiler, characterized in that a feed water heating means is provided, and a waste heat recovery boiler provided with the feed water heating system.

本発明によれば、ガスタービンからの排気ガスを導入し蒸気を発生させる排熱回収ボイラの上流の給水ラインに、排熱回収ボイラ自身以外の熱源で給水を加温する給水加熱手段を設けたので、プラント熱効率の低下を最小限とすることができる。   According to the present invention, the feed water heating means for heating the feed water with a heat source other than the exhaust heat recovery boiler is provided in the feed water line upstream of the exhaust heat recovery boiler that introduces exhaust gas from the gas turbine and generates steam. Therefore, a decrease in plant thermal efficiency can be minimized.

以下、本発明を実施するための最良の形態について図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は、第1の実施の形態に係る給水加温システムおよび排熱回収ボイラの系統図である。三圧式(複圧式)排熱回収ボイラ1は、排ガスが導入される胴内に排ガスの上流側から下流側に向って順次に高圧蒸気過熱器2,高圧蒸発器3,中圧蒸気過熱器4,高圧節炭器5,中圧蒸発器6,中圧節炭器7,低圧蒸発器8および低圧節炭器9が配置されている。   FIG. 1 is a system diagram of a feed water warming system and an exhaust heat recovery boiler according to the first embodiment. A three-pressure (multi-pressure) exhaust heat recovery boiler 1 is provided in a high-pressure steam superheater 2, a high-pressure evaporator 3, and a medium-pressure steam superheater 4 sequentially from the upstream side to the downstream side of the exhaust gas in the cylinder into which the exhaust gas is introduced. , A high-pressure economizer 5, an intermediate-pressure evaporator 6, an intermediate-pressure economizer 7, a low-pressure evaporator 8 and a low-pressure economizer 9 are arranged.

高圧蒸発器3は高圧ドラム10に、また中圧蒸発器6は中圧ドラム11に、さらに低圧蒸発器8は低圧ドラム12にそれぞれ連結されている。復水器13内の水が給水ラインである低圧給水管14を介して復水ポンプ15に導かれ、ここで昇圧された後、復水ポンプ出口逆止弁16を経て給水加熱手段である給水加熱器25で昇温され、低圧節炭器9に導かれる。   The high-pressure evaporator 3 is connected to the high-pressure drum 10, the intermediate-pressure evaporator 6 is connected to the intermediate-pressure drum 11, and the low-pressure evaporator 8 is connected to the low-pressure drum 12. The water in the condenser 13 is led to a condensate pump 15 through a low-pressure water supply pipe 14 that is a water supply line, and after the pressure is increased here, the water is supplied through a condensate pump outlet check valve 16 as water supply heating means. The temperature is raised by the heater 25 and led to the low pressure economizer 9.

低圧節炭器9で昇温された給水は、その後低圧ドラム12へ送水される。   The feed water heated by the low pressure economizer 9 is then sent to the low pressure drum 12.

一方、低圧給水管14は低圧節炭器9の出口側で分岐されて高中圧給水管17となり、この高中圧給水管17はさらに高圧給水管18と中圧給水管19とに分岐している。高圧給水管18を通る給水は、高圧給水ポンプ20および高圧節炭器5を介して高圧ドラム10へ送水される。同様に、中圧給水管19を通る給水は、中圧給水ポンプ21および中圧節炭器7を介して中圧ドラム11へ送水される。   On the other hand, the low pressure water supply pipe 14 is branched at the outlet side of the low pressure economizer 9 to become a high / medium pressure water supply pipe 17, and the high / medium pressure water supply pipe 17 is further branched into a high pressure water supply pipe 18 and an intermediate pressure water supply pipe 19. . The feed water that passes through the high-pressure feed pipe 18 is fed to the high-pressure drum 10 through the high-pressure feed pump 20 and the high-pressure economizer 5. Similarly, the water supplied through the intermediate pressure water supply pipe 19 is supplied to the intermediate pressure drum 11 via the intermediate pressure water supply pump 21 and the intermediate pressure economizer 7.

給水加熱器25には、その熱源として給水加温管27が接続されている。給水加温管27には給水加温調節弁26が設置されており、この給水加温調節弁26の開度は給水加熱器25の下流の低圧給水管14に設けられた温度コントローラ24に基づいて調整され、これにより低圧節炭器9へ導かれる給水温度が制御されている。   A feed water heating tube 27 is connected to the feed water heater 25 as a heat source. A feed water warming control valve 26 is installed in the feed water warming pipe 27, and the opening degree of the feed water warming control valve 26 is based on a temperature controller 24 provided in the low pressure water feed pipe 14 downstream of the feed water heater 25. Thus, the feed water temperature led to the low pressure economizer 9 is controlled.

この第1の実施の形態では、低圧給水管14に給水過熱器25を設置したので、中圧給水ポンプ21出口から分岐し、低圧節炭器9への給水昇温を目的とした、再循環系統が不要になるとともに、中圧給水ポンプ21の容量を減らすことができる。   In this first embodiment, since the feed water superheater 25 is installed in the low pressure feed water pipe 14, recirculation is performed for the purpose of raising the feed water temperature to the low pressure economizer 9 by branching from the outlet of the intermediate pressure feed water pump 21. A system becomes unnecessary, and the capacity of the medium pressure feed water pump 21 can be reduced.

給水加熱器25の熱源は、低圧蒸気タービンからの抽気蒸気を用いることができる。低圧蒸気タービンからの抽気蒸気を用いると、低圧蒸気タービン自体の出力は低減するが、再循環系統が不要になることより、低圧ドラムへの給水量が増え、プラント全体の効率は向上する。   The extraction steam from the low-pressure steam turbine can be used as the heat source of the feed water heater 25. When the extracted steam from the low-pressure steam turbine is used, the output of the low-pressure steam turbine itself is reduced. However, since the recirculation system is not required, the amount of water supplied to the low-pressure drum is increased, and the efficiency of the entire plant is improved.

また、給水加熱器25の熱源は、発電機冷却機から出た温水、タービン軸受冷却後の温水、蒸気タービン各所からのリーク蒸気を用いることもできる。リーク蒸気としては、たとえば、グランド蒸気(タービンの軸部分のシール蒸気)や主蒸気弁のリーク蒸気などがある。これらの温水やリーク蒸気は、復水器へなどへ戻されているが、給水加熱器25の熱源として用いることにより、プラント全体の効率は向上する。   Moreover, the heat source of the feed water heater 25 can also use hot water from the generator cooler, hot water after cooling the turbine bearing, and leak steam from various places in the steam turbine. Examples of the leak steam include ground steam (seal steam at the shaft portion of the turbine) and leak steam of the main steam valve. Although these warm water and leak steam are returned to the condenser, etc., the efficiency of the whole plant improves by using as a heat source of the feed water heater 25.

また、給水加熱器25の熱源は、低圧ドラム12から低圧タービンへ供給される蒸気の一部、すなわち、低圧タービンへのインダクション蒸気の一部を用いることができる。   Further, a part of steam supplied from the low-pressure drum 12 to the low-pressure turbine, that is, a part of induction steam to the low-pressure turbine can be used as the heat source of the feed water heater 25.

低圧タービンへのインダクション蒸気を用いると、低圧蒸気タービン自体の出力は低減するが、再循環系統が不要になるとともに、中圧給水ポンプ21の容量を減らすことができる。   When the induction steam to the low-pressure turbine is used, the output of the low-pressure steam turbine itself is reduced, but the recirculation system is not necessary and the capacity of the intermediate pressure feed water pump 21 can be reduced.

本発明の実施の形態は、これらに限定されることなく、例えば、給水加熱器25の熱源を組み合わせて用いてもよい。   Embodiment of this invention is not limited to these, For example, you may use combining the heat source of the feed water heater 25. FIG.

第1の実施の形態に係る給水加温システムおよび排熱回収ボイラの系統図System diagram of feed water heating system and exhaust heat recovery boiler according to the first embodiment 従来の給水加温システムおよび排熱回収ボイラの系統図System diagram of conventional feed water heating system and exhaust heat recovery boiler

符号の説明Explanation of symbols

1…三圧式排熱回収ボイラ、14…低圧給水管、25…給水加熱器。 DESCRIPTION OF SYMBOLS 1 ... Three-pressure type waste heat recovery boiler, 14 ... Low-pressure feed pipe, 25 ... Feed water heater.

Claims (3)

ガスタービンからの排気ガスを導入し蒸気を発生させる排熱回収ボイラの上流の給水ラインに、排熱回収ボイラ自身以外の熱源で給水を加温する給水加熱手段を設けたことを特徴とする排熱回収ボイラの給水加温システム。   A waste water heating means for heating the feed water with a heat source other than the exhaust heat recovery boiler itself is provided in the feed water line upstream of the exhaust heat recovery boiler that introduces exhaust gas from the gas turbine and generates steam. Heat recovery boiler feed water heating system. 前記給水加熱手段の熱源は、蒸気タービンからの抽気蒸気、発電機冷却機から出た温水、低圧タービンへのインダクション蒸気、タービン軸受冷却後の温水、蒸気タービン各所からのリーク蒸気のいずれかを用いることを特徴とする請求項1記載の給水加温システム。   As the heat source of the feed water heating means, one of extracted steam from a steam turbine, hot water from a generator cooler, induction steam to a low-pressure turbine, hot water after cooling a turbine bearing, and leak steam from various places in the steam turbine is used. The feed water heating system according to claim 1. 請求項1または2記載の給水加温システムを備えた排熱回収ボイラ。   An exhaust heat recovery boiler provided with the feed water warming system according to claim 1.
JP2007267133A 2007-10-12 2007-10-12 Feed-water warming system and exhaust heat recovering boiler Pending JP2009097735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007267133A JP2009097735A (en) 2007-10-12 2007-10-12 Feed-water warming system and exhaust heat recovering boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007267133A JP2009097735A (en) 2007-10-12 2007-10-12 Feed-water warming system and exhaust heat recovering boiler

Publications (1)

Publication Number Publication Date
JP2009097735A true JP2009097735A (en) 2009-05-07

Family

ID=40700911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007267133A Pending JP2009097735A (en) 2007-10-12 2007-10-12 Feed-water warming system and exhaust heat recovering boiler

Country Status (1)

Country Link
JP (1) JP2009097735A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172874A (en) * 2011-02-18 2012-09-10 Kobe Steel Ltd Hot water manufacturing supply unit
CN108105784A (en) * 2018-01-23 2018-06-01 天津城建大学 Burning power plant low temperature exhaust heat recovery system and method
CN109563746A (en) * 2016-08-04 2019-04-02 西门子股份公司 Power plant with hot memory
US10480411B2 (en) 2014-03-24 2019-11-19 Mitsubishi Hitachi Power Systems, Ltd. Waste heat recovery device, gas turbine plant provided with same, and waste heat recovery method
US10844753B2 (en) 2015-03-31 2020-11-24 Mitsubishi Hitachi Power Systems, Ltd. Boiler, steam-generating plant provided with same, and method for operating boiler

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220101U (en) * 1985-07-22 1987-02-06
JP2004036535A (en) * 2002-07-04 2004-02-05 Kansai Electric Power Co Inc:The Power plant main machine exhaust heat recovery system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220101U (en) * 1985-07-22 1987-02-06
JP2004036535A (en) * 2002-07-04 2004-02-05 Kansai Electric Power Co Inc:The Power plant main machine exhaust heat recovery system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172874A (en) * 2011-02-18 2012-09-10 Kobe Steel Ltd Hot water manufacturing supply unit
US10480411B2 (en) 2014-03-24 2019-11-19 Mitsubishi Hitachi Power Systems, Ltd. Waste heat recovery device, gas turbine plant provided with same, and waste heat recovery method
US10844753B2 (en) 2015-03-31 2020-11-24 Mitsubishi Hitachi Power Systems, Ltd. Boiler, steam-generating plant provided with same, and method for operating boiler
CN109563746A (en) * 2016-08-04 2019-04-02 西门子股份公司 Power plant with hot memory
JP2019527791A (en) * 2016-08-04 2019-10-03 シーメンス アクティエンゲゼルシャフト Power plant with thermal reservoir
US10794226B2 (en) 2016-08-04 2020-10-06 Siemens Aktiengesellschaft Power plant with heat reservoir
CN108105784A (en) * 2018-01-23 2018-06-01 天津城建大学 Burning power plant low temperature exhaust heat recovery system and method
CN108105784B (en) * 2018-01-23 2023-08-18 天津城建大学 Low-temperature waste heat recovery system and method for waste incineration power plant

Similar Documents

Publication Publication Date Title
JP4676284B2 (en) Waste heat recovery equipment for steam turbine plant
JP6245404B1 (en) Combustion equipment and power generation equipment
JP4554527B2 (en) Energy-saving equipment using waste heat
US8186142B2 (en) Systems and method for controlling stack temperature
RU2352859C2 (en) Steam generator on waste heat
CN101573511B (en) Steam power plant and method for increasing the steam mass flow of its high-pressure steam turbine
JP2011102540A (en) Steam turbine power generation facility and method of operating the same
JP2007205187A (en) Heat recovery system attached to boiler-steam turbine system
RU2014127721A (en) POWER PLANT WITH BUILT-IN PRELIMINARY HEATING OF FUEL GAS
US10288279B2 (en) Flue gas heat recovery integration
US8205451B2 (en) System and assemblies for pre-heating fuel in a combined cycle power plant
JP2011127786A (en) Combined cycle power generation facility and feed-water heating method thereof
KR101584418B1 (en) Boiler plant
KR20150050443A (en) Combined cycle power plant with improved efficiency
JP2015068314A (en) Fuel gas heating facility and combined cycle power generation plant
JP2012102711A (en) Temperature reducing device steam heat recovery facilities
JP2009097735A (en) Feed-water warming system and exhaust heat recovering boiler
JP7086523B2 (en) A combined cycle power plant and a method for operating this combined cycle power plant
JP5463313B2 (en) Thermal power plant
RU2252320C1 (en) Thermal power station
RU2420664C2 (en) Multi-mode heat extraction plant
JPH08312905A (en) Combined cycle power generating facility
JP4381242B2 (en) Marine steam turbine plant
RU2238414C1 (en) Method for regulating electric power of combined-cycle heating unit incorporating exhaust-heat boiler
EP2868872B1 (en) Feedwater preheating system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100415

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

RD04 Notification of resignation of power of attorney

Effective date: 20111205

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120323

A521 Written amendment

Effective date: 20120522

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120615

A521 Written amendment

Effective date: 20120808

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20121026

Free format text: JAPANESE INTERMEDIATE CODE: A02