JP2001141286A - Heat recovery generating system and method of its operation - Google Patents

Heat recovery generating system and method of its operation

Info

Publication number
JP2001141286A
JP2001141286A JP32364699A JP32364699A JP2001141286A JP 2001141286 A JP2001141286 A JP 2001141286A JP 32364699 A JP32364699 A JP 32364699A JP 32364699 A JP32364699 A JP 32364699A JP 2001141286 A JP2001141286 A JP 2001141286A
Authority
JP
Japan
Prior art keywords
steam
turbine
load
generator
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32364699A
Other languages
Japanese (ja)
Other versions
JP3527867B2 (en
Inventor
Takashi Morichi
隆 森知
Toshihiro Asanuma
俊浩 浅沼
Ryohei Minowa
良平 箕輪
Takeshi Kuwabara
健 桑原
Motohiro Kondo
元博 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Toyota Motor Corp
Original Assignee
Hitachi Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Toyota Motor Corp filed Critical Hitachi Ltd
Priority to JP32364699A priority Critical patent/JP3527867B2/en
Publication of JP2001141286A publication Critical patent/JP2001141286A/en
Application granted granted Critical
Publication of JP3527867B2 publication Critical patent/JP3527867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Abstract

PROBLEM TO BE SOLVED: To cope with both fluctuating cold load and power load, in a heat recovery generating system. SOLUTION: A generator 34 is connected to a gas turbine 32. An exhaust heat is generated from the gas turbine and the exhaust heat is guided to an exhaust heat recovery boiler 27 being a steam generating means. A condensing extraction steam turbine 1 is driven by steam generated by the boiler and a compressor 7 is driven by a power generated by the condensing extraction steam turbine. The compressor constitutes a turbo refrigerating machine A. A part of steam extracted from the condensing extraction steam turbine is used as a heating source for an absorption type refrigerating machine 14. A second generator 2 is situated between the condensing extraction steam turbine and the compressor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蒸気タービンを用
いて発電する熱回収発電システムおよびその運転方法に
係り、特に蒸気タービンを駆動する蒸気の一部を吸収式
冷凍機の加熱源に用いる熱回収発電システムおよびその
運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat recovery power generation system for generating power using a steam turbine and a method of operating the same, and more particularly to a heat recovery power generation system that uses a part of steam for driving a steam turbine as a heating source of an absorption refrigerator. The present invention relates to a recovery power generation system and an operation method thereof.

【0002】[0002]

【従来の技術】近年、エネルギ効率がよく、公害や都市
災害の防止に役立ち、都市景観の向上に貢献する等の利
点を地域冷暖房装置が有しているので、ウォーターフロ
ントとうに採用されている。特に、立地が制限される大
規模施設においては、電力需要と空調需要の双方を一つ
の設備で対応できるため、ますますその適用が広がって
いる。例えば、港湾部に建設される空港設備等において
は、空調設備が大規模になるので、吸収式冷凍機を有す
る熱回収発電システムを応用した地域冷暖房装置が用い
られる。
2. Description of the Related Art In recent years, district heating and cooling systems have advantages such as good energy efficiency, useful for preventing pollution and urban disasters, and contributing to improvement of cityscapes. In particular, in large-scale facilities where the location is restricted, since both power demand and air-conditioning demand can be handled by a single facility, the application thereof is spreading more and more. For example, in an airport facility or the like constructed in a harbor, a large-scale air-conditioning facility is used, and a district cooling / heating device using a heat recovery power generation system having an absorption refrigerator is used.

【0003】このような地域冷暖房装置の例として、ガ
スタービンの排熱を利用して蒸気タービンに接続された
発電機を駆動する熱回収型発電システムが、特開平5−2
40004号公報に記載されている。この公報に記載の発電
システムでは、ガスタービンの排熱を排熱ボイラに導
き、蒸気タービンを駆動するとともに、蒸気タービンか
ら流出した蒸気を吸収式冷凍機の加熱源に用いている。
As an example of such a district heating / cooling apparatus, a heat recovery type power generation system that drives a generator connected to a steam turbine using exhaust heat of a gas turbine is disclosed in Japanese Patent Laid-Open No. 5-2 / 1993.
No. 40004. In the power generation system described in this publication, the exhaust heat of the gas turbine is guided to an exhaust heat boiler to drive the steam turbine, and the steam flowing out of the steam turbine is used as a heating source of the absorption refrigerator.

【0004】また、ガスタービンの排ガスを吸収式冷温
水機の加熱源に用い、この吸収式冷温水機とターボ冷凍
機を有する蓄熱設備とを用いて、地域冷暖房すること
が、特開平7−43000号公報および特開平7−43001号公報
に記載されている。
Japanese Patent Application Laid-Open No. 7-1995 discloses that exhaust gas from a gas turbine is used as a heating source of an absorption chiller / heater, and district heating and cooling is performed using the absorption chiller / heater and a heat storage facility having a turbo chiller. No. 43000 and JP-A-7-43001.

【0005】[0005]

【発明が解決しようとする課題】上記特開平5−24004号
公報に記載のものは、確かにガスタービンの排熱を有効
に利用して発電容量を高めることが可能である。しか
し、発電需要と空調需要とを共に満足することが求めら
れる地域冷暖房等においては、発電需要と空調需要のそ
れぞれが無関係に変動する。そのため、この公報に記載
のものを用いると、発生蒸気量が変わらなければ、発電
能力を増大させると空調能力が低下する。個々に変動す
る発電需要と空調需要の双方を満足させるためには蒸気
量変化させればよいが、発生蒸気量は発電量により規定
されているので、発電需要と空調需要の双方を満足させ
るのが困難である。
The apparatus disclosed in Japanese Patent Laid-Open Publication No. Hei 5-24004 is capable of effectively increasing the power generation capacity by effectively using the exhaust heat of the gas turbine. However, in a district cooling and heating system or the like that is required to satisfy both the power generation demand and the air conditioning demand, each of the power generation demand and the air conditioning demand fluctuates independently. For this reason, when the one described in this publication is used, if the amount of generated steam does not change, the air-conditioning capacity decreases if the power generation capacity is increased. In order to satisfy both fluctuating power generation demand and air conditioning demand, it is sufficient to change the amount of steam.However, since the amount of generated steam is defined by the amount of power generation, it is necessary to satisfy both power generation demand and air conditioning demand. Is difficult.

【0006】また、特開平7−43000号公報及び特開平7
−43001号公報に記載のものは、空調負荷の変動に対し
て商用電力や蓄熱を用いて対応しているが、これらの付
加装置や付加機能により、装置が複雑になるとともにコ
ストの増大を招く恐れがある。
Further, Japanese Patent Application Laid-Open No. 7-43000 and
Although the device described in -43001 responds to fluctuations in the air-conditioning load by using commercial power and heat storage, these additional devices and functions increase the complexity of the device and increase the cost. There is fear.

【0007】本発明は蒸気従来技術の不具合に鑑みなさ
れたものであり、その目的は、熱回収発電システムにお
いて、変動する冷熱負荷と電力負荷の双方に対応可能と
することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the disadvantages of the conventional steam technology, and has as its object to make it possible to cope with both a fluctuating cooling load and an electric power load in a heat recovery power generation system.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明の第1の特徴は、発電機が接続されたガスター
ビンの排熱を用いて蒸気を発生する蒸気発生手段と、こ
の蒸気発生手段で発生した蒸気で駆動される抽気復水蒸
気タービンと、この抽気復水蒸気タービンが発生した動
力により駆動される圧縮機を有するターボ冷凍機と、抽
気復水蒸気タービンから抽気された蒸気を加熱源とする
吸収式冷凍機とを備えた熱回収発電システムにおいて、
抽気復水蒸気タービンと圧縮機との間に第2の発電機を
設けたものである。
A first feature of the present invention to achieve the above object is a steam generating means for generating steam by using exhaust heat of a gas turbine connected to a generator, A steam extraction turbine driven by steam generated by the generating means, a turbo refrigerator having a compressor driven by power generated by the steam extraction steam turbine, and a steam source extracted from the steam extraction steam turbine. In a heat recovery power generation system equipped with an absorption refrigerator
A second generator is provided between the bleed-back steam turbine and the compressor.

【0009】そして好ましくは、抽気復水蒸気タービン
と第2の発電機と圧縮機とを同一軸上に配置する。また
は、ターボ冷凍機の負荷を検出する手段と、この検出さ
れた負荷の大きさによりターボ冷凍機で発生する冷水の
出口温度を変化させる制御装置とを設ける。さらに、抽
気復水蒸気タービンの吐出蒸気を水に戻して蒸気発生手
段に供給する復水器を設け、この復水器に吸収式冷凍機
を冷却した冷却水を供給して吐出蒸気を冷却するもので
ある。
[0009] Preferably, the bleeding condensate steam turbine, the second generator and the compressor are arranged on the same axis. Alternatively, a means for detecting the load of the centrifugal chiller and a control device for changing the outlet temperature of the chilled water generated in the centrifugal chiller according to the magnitude of the detected load are provided. In addition, a condenser is provided for returning the steam discharged from the bleeding condensing steam turbine to water and supplying the steam to the steam generating means. It is.

【0010】上記目的を達成するための本発明の第2の
特徴は、第1の発電機が接続されたガスタービンの排熱
を用いて蒸気タービンを駆動することにより第2の発電
機で発電するとともにターボ冷凍機の圧縮機を駆動し、
蒸気タービンの作動蒸気の一部を抽気して吸収式冷凍機
の加熱源とする熱回収発電システムの運転方法におい
て、冷水負荷が大きいときは蒸気タービンからの抽気量
を増やして吸収式冷凍機の熱源として作動させ、電力負
荷が多くなったときには蒸気タービンからの抽気量を減
らして第2の発電機の発電量を増大させるものである。
そして好ましくは、冷水負荷と電力負荷の双方が低下し
たときには、ガスタービンの燃焼器に供給する蒸気量を
増大させるものである。
A second feature of the present invention to achieve the above object is that a steam turbine is driven by using exhaust heat of a gas turbine to which a first generator is connected, so that power is generated by a second generator. To drive the compressor of the turbo refrigerator,
In the operation method of the heat recovery power generation system in which a part of the working steam of the steam turbine is extracted and used as a heating source of the absorption refrigerator, when the load of the chilled water is large, the extraction amount of the steam turbine is increased to increase the absorption refrigerator. The steam generator is operated as a heat source, and when the power load increases, the amount of air extracted from the steam turbine is reduced to increase the amount of power generated by the second generator.
Preferably, when both the chilled water load and the electric power load decrease, the amount of steam supplied to the combustor of the gas turbine is increased.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施例を図面を用
いて説明する。図1に、本発明に係る熱回収発電システ
ムの一実施例のブロック図を示す。ガスタービン32で
発生した排ガスを排熱回収ボイラ27に導き、このボイ
ラで発生した蒸気で第2の発電機2及び圧縮式冷凍機Aの
圧縮機7を駆動している。そのため、抽気復水式蒸気タ
ービン1と発電機2とクラッチ3と圧縮式冷凍機Aの圧
縮機7を、図示しないカップリング等で接続して実質的
に同一軸4にし、一軸駆動している。ここで、圧縮式冷
凍機Aを年間を通じて運転するときには、クラッチ3を
省略可能である。その場合、設備費用を安くできる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a block diagram of one embodiment of the heat recovery power generation system according to the present invention. The exhaust gas generated by the gas turbine 32 is guided to the exhaust heat recovery boiler 27, and the steam generated by the boiler drives the second generator 2 and the compressor 7 of the compression refrigerator A. For this reason, the bleed condensing steam turbine 1, the generator 2, the clutch 3, and the compressor 7 of the compression refrigerator A are connected by a coupling (not shown) or the like so that they are substantially coaxial with each other and are driven uniaxially. . Here, when operating the compression refrigerator A throughout the year, the clutch 3 can be omitted. In that case, equipment costs can be reduced.

【0012】圧縮式冷凍機Aは、家庭用の空調機と同様
の冷凍サイクルを構成しており、圧縮機7と凝縮器9と
蒸発器12とそれぞれを接続する冷媒配管8、10、1
3と冷媒配管に介在する膨張弁11とを有している。蒸
発器12と圧縮機7とを接続する配管には、圧縮機吸込
容量を制御する吸込みベーン43が設けられている。こ
のベーン43には、制御装置Cにより制御されるベーン
駆動用アクチュエータ42が連結されている。凝縮器9
では、蒸発器12で奪われた熱が冷却水18に伝達され
る。
The compression refrigerating machine A constitutes a refrigerating cycle similar to a home air conditioner, and has refrigerant pipes 8, 10, 1 connecting the compressor 7, the condenser 9 and the evaporator 12, respectively.
3 and an expansion valve 11 interposed in the refrigerant pipe. A pipe connecting the evaporator 12 and the compressor 7 is provided with a suction vane 43 for controlling the compressor suction capacity. The vane 43 is connected to the vane driving actuator 42 controlled by the control device C. Condenser 9
Then, the heat taken by the evaporator 12 is transmitted to the cooling water 18.

【0013】熱需要先で暖められた冷水が内部を流通す
る冷水配管15は、圧縮式冷凍機Aの凝縮器12に接続
される。この凝縮器12で熱交換して冷却された冷水
は、冷水配管16を介して吸収式冷凍機14に導かれ、
吸収式冷凍機14でさらに冷却された後、冷水配管17
を経て熱需要先に供給される。
A chilled water pipe 15 through which chilled water heated in a heat demand destination flows is connected to the condenser 12 of the compression refrigerator A. The cold water cooled by the heat exchange in the condenser 12 is led to the absorption refrigerator 14 through the cold water pipe 16,
After being further cooled by the absorption refrigerator 14, the cold water piping 17
Is supplied to the heat demand destination.

【0014】抽気復水式蒸気タービン1の流路の途中か
ら抽気された蒸気は、蒸気配管6を介して吸収式冷凍機
14に流入する。このタービンから排出された排気は、
蒸気配管5を介して復水器22に導かれる。蒸気配管6
の蒸気は吸収式冷凍機14の加熱源として作用し、加熱
後は凝縮してドレーンとなる。このドレーンは、ドレー
ン配管24を介してホットウェルタンク25に流入す
る。
The steam extracted from the middle of the flow path of the bleed condensing steam turbine 1 flows into the absorption refrigerator 14 via the steam pipe 6. The exhaust from this turbine is
It is led to the condenser 22 through the steam pipe 5. Steam piping 6
Acts as a heating source of the absorption refrigerator 14, and after heating, condenses to form a drain. The drain flows into the hot well tank 25 via the drain pipe 24.

【0015】ガスタービン32の排気が導かれる蒸気供
給装置Bでは、復水器22で生じた凝縮水を加熱して蒸
気を発生する。この蒸気は、蒸気配管28を介して抽気
復水式蒸気タービン1に流入する。抽気復水式蒸気ター
ビン1の出力軸には発電機2と圧縮機7が接続されてお
り、この抽気復水式蒸気タービン1で発生した動力がこ
れらに伝達される。
In the steam supply device B to which the exhaust gas of the gas turbine 32 is guided, the condensed water generated in the condenser 22 is heated to generate steam. This steam flows into the bleed condensing steam turbine 1 via the steam pipe 28. The generator 2 and the compressor 7 are connected to the output shaft of the bleed condensing steam turbine 1, and the power generated in the bleed condensing steam turbine 1 is transmitted to them.

【0016】このように構成した熱回収発電システム
は、次のように運転される。電力負荷が大きい場合には
タービン1からの抽気を減らし、蒸気配管6から吸収式
冷凍機14に流入する蒸気量も減らす。これにより、吸
収式冷凍機14の負荷を少なくする。また、タービン排
気用の蒸気配管5を流れる排気を増やし、抽気復水式蒸
気タービン1の動力を増やす。このとき、圧縮式冷凍機
の入口ベーン43の開度を変化させて圧縮式冷凍機Aの
負荷を減少し、タービン1で発生した動力の大部分を発
電機2の電力負荷に用いる。圧縮機の負荷減少により蒸
気タービン1の回転数が増大する。発電機2は誘導発電
機であるから、回転数の増大に伴って発電機2の出力が
増大する。
The heat recovery power generation system configured as described above is operated as follows. When the power load is large, the amount of steam extracted from the turbine 1 is reduced, and the amount of steam flowing into the absorption refrigerator 14 from the steam pipe 6 is also reduced. Thus, the load on the absorption refrigerator 14 is reduced. Further, the amount of exhaust flowing through the steam pipe 5 for turbine exhaust is increased, and the power of the bleed condensing steam turbine 1 is increased. At this time, the load of the compression refrigerator A is reduced by changing the opening of the inlet vane 43 of the compression refrigerator, and most of the power generated in the turbine 1 is used as the power load of the generator 2. The rotation speed of the steam turbine 1 increases due to the decrease in the load on the compressor. Since the generator 2 is an induction generator, the output of the generator 2 increases as the rotation speed increases.

【0017】一方、冷水負荷が大きい場合には、抽気復
水式蒸気タービン1で発生した動力のほとんどを圧縮機
7の駆動に利用する。それとともに、タービン1からの
抽気を増やして、蒸気配管6から吸収式冷凍機14に導
かれる蒸気量を増やし、吸収式冷凍機14が大負荷に対
応できるようにする。冷水負荷を大きくしたので、第2
の発電機2から得られる電力は減少する。
On the other hand, when the chilled water load is large, most of the power generated in the bleed condensing steam turbine 1 is used for driving the compressor 7. At the same time, the amount of steam extracted from the turbine 1 is increased to increase the amount of steam guided from the steam pipe 6 to the absorption refrigerator 14 so that the absorption refrigerator 14 can cope with a large load. Since the cold water load was increased, the second
The power obtained from the generator 2 decreases.

【0018】このように、抽気復水式蒸気タービン1の
抽気量を増減させるだけで、発電機2の電力負荷と圧縮
式冷凍機Aと吸収式冷凍機14を組み合わせたトッピン
グシステムとしての冷水負荷の割合を任意に変化させる
ことができる。また、ボイラ27から蒸気配管28を経
由して抽気復水式蒸気タービン1に流入する蒸気量を増
減させれば、図2のハッチングで示した電力負荷と冷水
負荷の範囲内で、電力と冷水の両方を同時に供給でき
る。
As described above, the chilled water load as a topping system in which the power load of the generator 2 and the compression chiller A and the absorption chiller 14 are combined simply by increasing / decreasing the bleed amount of the bleed / condensing steam turbine 1. Can be arbitrarily changed. In addition, if the amount of steam flowing from the boiler 27 to the bleed condensing steam turbine 1 via the steam pipe 28 is increased or decreased, the electric power and the chilled water within the range of the power load and the chilled water load indicated by hatching in FIG. Can be supplied simultaneously.

【0019】冷水負荷が減少しても、圧縮式冷凍機Aの
冷水出口温度である冷水配管16の温度をできるだけ下
げるように制御する。これにより、圧縮式冷凍機Aと吸
収式冷凍機14の負荷の割合を、圧縮式冷凍機Aの方を
できるだけ大にでき、トッピングシステムの部分負荷効
率を向上できる。
Even if the load of the chilled water decreases, control is performed so that the temperature of the chilled water pipe 16, which is the chilled water outlet temperature of the compression refrigerator A, is reduced as much as possible. Thus, the load ratio between the compression refrigerator A and the absorption refrigerator 14 can be made as large as possible for the compression refrigerator A, and the partial load efficiency of the topping system can be improved.

【0020】冷水配管16に取り付けた冷水出口温度検
出器39が検出する温度を最小とするために、以下のよ
うに制御する。圧縮機の入口ベーン43は全開を基準に
する。需要先の要求温度よりも検出された冷水出口温度
が低くなると、温度検出器39の出力が入力される温度
調節計40は冷凍容量を減少させる信号を出力する。こ
の出力信号は制御用演算器41に入力され、制御用演算
器41はベーン43を閉じる信号をベーン駆動用アクチ
ュエータ42に出力する。
In order to minimize the temperature detected by the chilled water outlet temperature detector 39 attached to the chilled water pipe 16, the following control is performed. The compressor inlet vanes 43 are fully open. When the detected chilled water outlet temperature becomes lower than the demand temperature of the demand destination, the temperature controller 40 to which the output of the temperature detector 39 is input outputs a signal for reducing the refrigeration capacity. This output signal is input to the control computing unit 41, and the control computing unit 41 outputs a signal for closing the vane 43 to the vane driving actuator 42.

【0021】需要先の要求温度よりも吸収式冷凍機14
の冷水出口に設けられた冷水出口温度検出器44が検出
した温度が上昇すると、冷水出口温度検出器44の検出
信号が入力される温度調節計45は冷凍容量を増加させ
る信号を制御用演算器46に出力する。制御用演算器4
6はこの信号に基づいて、蒸気制御弁47に開指示を与
える。
The absorption chiller 14 is set at a temperature lower than the required temperature of the demand destination.
When the temperature detected by the chilled water outlet temperature detector 44 provided at the chilled water outlet rises, the temperature controller 45 to which the detection signal of the chilled water outlet temperature detector 44 is input, outputs a signal for increasing the refrigerating capacity to a control computing unit. Output to 46. Control computing unit 4
6 gives an instruction to open the steam control valve 47 based on this signal.

【0022】本実施例によれば、抽気復水式蒸気タービ
ン1の抽気流量を独立して変化させることができるの
で、圧縮式冷凍機Aと吸収式冷凍機14のそれぞれを最
低負荷で運転できる。その結果、トッピングシステムの
最低負荷を低下させることが可能になり、運用範囲が広
くなる。
According to this embodiment, since the extraction flow rate of the bleed condensing steam turbine 1 can be changed independently, each of the compression chiller A and the absorption chiller 14 can be operated at the minimum load. . As a result, the minimum load of the topping system can be reduced, and the operation range is widened.

【0023】圧縮式冷凍機Aの凝縮器9および吸収式冷
凍機の14の吸収器や凝縮器を流通する冷却水は、冷却
水ポンプにより冷却水配管18に送られる。この冷却水
は圧縮式冷凍機Aの凝縮器9において冷媒を冷却した
後、冷却水配管19を介して吸収式冷凍機14に送ら
れ、吸収式冷凍機14の冷媒を冷却する。その後、冷却
水配管20を介して復水器22に導かれ、抽気復水式蒸
気タービン1の排気を冷却して復水とする。このよう
に、冷却水はシリーズに流れており、冷却水の供給先か
らの往きの冷却水配管18の温度と復水器22から供給
先への戻りの冷却水配管21の温度との温度差を大きく
して、冷却水量を減らしている。その結果、冷却水ポン
プ36の動力を低減できる。
The cooling water flowing through the condenser 9 of the compression refrigerator A and the absorber or condenser of the absorption refrigerator 14 is sent to a cooling water pipe 18 by a cooling water pump. After cooling the refrigerant in the condenser 9 of the compression refrigerator A, the cooling water is sent to the absorption refrigerator 14 via the cooling water pipe 19 to cool the refrigerant in the absorption refrigerator 14. Thereafter, the exhaust gas is guided to the condenser 22 through the cooling water pipe 20, and the exhaust gas of the bleed condensate steam turbine 1 is cooled and condensed. As described above, the cooling water flows in the series, and the temperature difference between the temperature of the cooling water pipe 18 from the supply destination of the cooling water and the temperature of the cooling water pipe 21 returning from the condenser 22 to the supply destination. To reduce the amount of cooling water. As a result, the power of the cooling water pump 36 can be reduced.

【0024】なお、冷却水配管18から圧縮式冷凍機A
と吸収式冷凍機14に並行して冷却水を導くようにして
もよい。この場合、圧縮式冷凍機Aと吸収式冷凍機14
から戻る冷却水を復水器20に導くことにより、トッピ
ングシステムの効率を向上できる。
It should be noted that the compression refrigerator A
And cooling water may be guided in parallel to the absorption refrigerator 14. In this case, the compression refrigerator A and the absorption refrigerator 14
By guiding the cooling water returning from the condenser 20 to the condenser 20, the efficiency of the topping system can be improved.

【0025】蒸気発生源であるガスタービン排熱回収ボ
イラ27は、その発生蒸気を蒸気配管28により抽気復
水式蒸気タービン1へ供給する。これと共に、ガスター
ビンの排ガス中に含まれる窒素酸化物を低減するため及
びガスタービンの出力を増加させるために、蒸気配管2
9を経由してガスタービンの燃焼器35にも供給され
る。蒸気配管29から導かれた蒸気は燃焼器35内に噴
射される。その際、蒸気の噴射量を許容範囲で可変制御
する。
The gas turbine exhaust heat recovery boiler 27, which is a steam generating source, supplies the generated steam to the bleed condensing steam turbine 1 through a steam pipe 28. At the same time, in order to reduce nitrogen oxides contained in the exhaust gas of the gas turbine and to increase the output of the gas turbine, the steam pipe 2
9 and also supplied to the combustor 35 of the gas turbine. The steam guided from the steam pipe 29 is injected into the combustor 35. At this time, the steam injection amount is variably controlled within an allowable range.

【0026】ところで、冷水負荷及び電力負荷の両方が
低下した場合には、抽気復水式蒸気タービン1への供給
蒸気量を低減させて、圧縮式冷凍機Aと吸収式冷凍機1
4と発電機2のいずれの出力も調整する。このとき、排
熱回収ボイラ27で発生した余剰蒸気を、ガスタービン
側へ供給する。なお、燃焼器35への噴射蒸気量は、ガ
スタービンの発生窒素酸化物濃度が規制値を満足する蒸
気量を下限値とし、ガスタービンの圧縮機31がサージ
ングを起こさない蒸気量を上限値とする。
When both the chilled water load and the electric power load are reduced, the amount of steam supplied to the bleed condensing type steam turbine 1 is reduced, and the compression chiller A and the absorption chiller 1 are reduced.
4 and the output of the generator 2 are adjusted. At this time, excess steam generated in the exhaust heat recovery boiler 27 is supplied to the gas turbine side. The lower limit of the amount of steam injected into the combustor 35 is a steam amount at which the concentration of nitrogen oxides generated by the gas turbine satisfies the regulation value, and the upper limit is a steam amount at which the compressor 31 of the gas turbine does not cause surging. I do.

【0027】ガスタービンの出力と燃料消費量の関係を
図3に示す。添え字aは状態aを、添え字bは状態bを
示す。噴射蒸気量をS1からS2へ増加させると、ガスタ
ービンをタービン入口ガス温度一定で運転している状態
aでは、作動ガス質量が増加し、燃焼温度が低下する。
そこで、タービン入口ガス温度を維持するため、燃料消
費量がFa1からFa2へ増加するように制御する。その結
果、ガスタービンの出力はPa1からPa2へ増加する。こ
れに対して、ガスタービンの出力を一定にして運転して
いる状態bでは、作動ガス質量が増加すると出力が増加
するので、この増加分を相殺するために、燃料消費量を
b1からFb2へ減少させるように制御する。
FIG. 3 shows the relationship between the output of the gas turbine and the fuel consumption. The subscript a indicates the state a, and the subscript b indicates the state b. When the injection steam amount is increased from S 1 to S 2 , in a state a in which the gas turbine is operated at a constant turbine inlet gas temperature, the working gas mass increases and the combustion temperature decreases.
Therefore, in order to maintain the turbine inlet gas temperature, fuel consumption is controlled so as to increase the F a1 to F a2. As a result, the output of the gas turbine increases from P a1 to P a2. On the other hand, in the state b in which the output of the gas turbine is kept constant, the output increases as the working gas mass increases, and the fuel consumption is changed from F b1 to F b1 in order to offset this increase. Control to decrease to b2 .

【0028】上述したように本実施例によれば、冷水負
荷及び電力負荷の両方が減少しても、抽気復水式蒸気タ
ービンで出力を低減し、蒸気タービンで発生した余剰蒸
気を出力調整したガスタービンの燃焼器へ導くので、ガ
スタービンの燃料消費量を低減することができる。ま
た、ガスタービンの発生窒素酸化物を乾式燃焼方法で低
減したガスタービンでは、蒸気タービンで発生した蒸気
を燃料消費量の低減にのみ用いることができるので、噴
射蒸気量の下限側の制限が緩やかになり、噴射蒸気量の
可変幅を大きくできる。
As described above, according to this embodiment, even if both the chilled water load and the electric power load are reduced, the output is reduced by the bleed condensing steam turbine, and the output of the excess steam generated by the steam turbine is adjusted. Since the gas is guided to the combustor of the gas turbine, the fuel consumption of the gas turbine can be reduced. Further, in a gas turbine in which the nitrogen oxides generated by the gas turbine are reduced by a dry combustion method, the steam generated by the steam turbine can be used only for reducing the fuel consumption. And the variable width of the injected steam amount can be increased.

【0029】[0029]

【発明の効果】以上説明したように、本発明よれば、電
力と冷水を各々の負荷需要に応じて発生することが可能
であり、負荷需要に応じて高効率に熱回収発電システム
を運用できる。
As described above, according to the present invention, electric power and chilled water can be generated according to each load demand, and the heat recovery power generation system can be operated with high efficiency according to the load demand. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る熱回収発電システムの一実施例の
システムフロー図。
FIG. 1 is a system flow diagram of one embodiment of a heat recovery power generation system according to the present invention.

【図2】電力と冷水の供給範囲の説明図。FIG. 2 is an explanatory diagram of a supply range of electric power and cold water.

【図3】ガスタービンの燃料消費と出力を説明する図。FIG. 3 is a diagram illustrating fuel consumption and output of a gas turbine.

【符号の説明】[Explanation of symbols]

A…圧縮式冷凍機、B…蒸気供給装置、1…抽気復水式
蒸気タービン、2…発電機、3…クラッチ、4…軸、7
…圧縮機、9…凝縮器、12…蒸発器、14…吸収式冷
凍機、22…復水器、25…ホットウェルタンク、31
…圧縮機、32…タービン、34…発電機、35…燃焼
器、36…冷却水ポンプ、37…復水ポンプ、38…ボ
イラ給水ポンプ、39…冷水出口温度検出器、40…温
度調節計、41…制御用演算器、42…ベーン駆動用ア
クチュエータ、43…圧縮機のベーン、44…冷水出口
温度検出器、45…温度調節計、46…制御用演算器、
47…蒸気制御弁。
A: Compression refrigerator, B: Steam supply device, 1: Bleed condensing steam turbine, 2 ... Generator, 3 ... Clutch, 4 ... Shaft, 7
... compressor, 9 ... condenser, 12 ... evaporator, 14 ... absorption refrigerator, 22 ... condenser, 25 ... hot well tank, 31
... compressor, 32 ... turbine, 34 ... generator, 35 ... combustor, 36 ... cooling water pump, 37 ... condensate pump, 38 ... boiler feed water pump, 39 ... cold water outlet temperature detector, 40 ... temperature controller, 41: control arithmetic unit, 42: vane driving actuator, 43: compressor vane, 44: cold water outlet temperature detector, 45: temperature controller, 46: control arithmetic unit,
47 ... Steam control valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅沼 俊浩 茨城県土浦市神立町603番地 株式会社日 立製作所土浦事業所内 (72)発明者 箕輪 良平 茨城県土浦市神立町603番地 株式会社土 浦テクノロジー内 (72)発明者 桑原 健 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立事業所内 (72)発明者 近藤 元博 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 3G081 BA04 BB00 BC07 BD04 DA06 DA16 DA23 3L060 AA03 CC05 CC10 CC19 DD05 EE31 EE35  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshihiro Asanuma 603, Kandachi-cho, Tsuchiura-shi, Ibaraki Pref. In the Tsuchiura Works, Hitachi, Ltd. (72) Inventor Takeshi Kuwahara 3-1-1, Sachimachi, Hitachi City, Ibaraki Prefecture Inside Hitachi Works, Ltd.Hitachi Works (72) Inventor Motohiro Kondo 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation F term (reference) 3G081 BA04 BB00 BC07 BD04 DA06 DA16 DA23 3L060 AA03 CC05 CC10 CC19 DD05 EE31 EE35

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】発電機が接続されたガスタービンの排熱を
用いて蒸気を発生する蒸気発生手段と、この蒸気発生手
段で発生した蒸気で駆動される抽気復水蒸気タービン
と、この抽気復水蒸気タービンが発生した動力により駆
動される圧縮機を有するターボ冷凍機と、前記抽気復水
蒸気タービンから抽気された蒸気を加熱源とする吸収式
冷凍機とを備えた熱回収発電システムにおいて、 前記抽気復水蒸気タービンと前記圧縮機との間に第2の
発電機を設けたことを特徴とする熱回収発電システム。
1. A steam generating means for generating steam by using exhaust heat of a gas turbine connected to a power generator, an extraction steam recovery turbine driven by steam generated by the steam generation means, and an extraction steam recovery steam driven by the steam generated by the steam generation means. In a heat recovery and power generation system including a turbo chiller having a compressor driven by power generated by a turbine and an absorption chiller using steam extracted from the extraction steam recovery turbine as a heating source, A heat recovery power generation system comprising a second generator provided between a steam turbine and the compressor.
【請求項2】前記抽気復水蒸気タービンと前記第2の発
電機と前記圧縮機とを同一軸上に配置したことを特徴と
する請求項1に記載の熱回収発電システム。
2. The heat recovery and power generation system according to claim 1, wherein the extraction steam recovery turbine, the second generator, and the compressor are arranged on the same axis.
【請求項3】前記ターボ冷凍機の負荷を検出する手段
と、この検出された負荷の大きさによりターボ冷凍機で
発生する冷水の出口温度を変化させる制御装置とを設け
たことを特徴とする請求項1または2に記載の熱回収発
電システム。
3. The apparatus according to claim 1, further comprising means for detecting a load of said centrifugal chiller, and a control device for changing an outlet temperature of chilled water generated in said centrifugal chiller according to the detected magnitude of said load. The heat recovery power generation system according to claim 1.
【請求項4】前記抽気復水蒸気タービンの吐出蒸気を水
に戻して前記蒸気発生手段に供給する復水器を設け、こ
の復水器に前記吸収式冷凍機を冷却した冷却水を供給し
て前記吐出蒸気を冷却することを特徴とする請求項1ま
たは2に記載の熱回収発電システム。
4. A condenser for returning steam discharged from the extraction steam condensing steam turbine to water and supplying it to the steam generating means, and supplying cooling water for cooling the absorption refrigerator to the condenser. The heat recovery power generation system according to claim 1 or 2, wherein the discharged steam is cooled.
【請求項5】第1の発電機が接続されたガスタービンの
排熱を用いて蒸気タービンを駆動することにより第2の
発電機で発電するとともにターボ冷凍機の圧縮機を駆動
し、前記蒸気タービンの作動蒸気の一部を抽気して吸収
式冷凍機の加熱源とする熱回収発電システムの運転方法
において、 冷水負荷が大きいときは蒸気タービンからの抽気量を増
やして吸収式冷凍機の熱源として作動させ、電力負荷が
多くなったときには蒸気タービンからの抽気量を減らし
て第2の発電機の発電量を増大させることを特徴とする
熱回収発電システムの運転方法。
5. A steam turbine driven by using exhaust heat of a gas turbine connected to a first generator to generate electric power by a second generator and to drive a compressor of a turbo refrigerator, In the method of operating a heat recovery power generation system in which a part of the working steam of the turbine is extracted and used as a heating source for the absorption refrigerator, when the load of chilled water is large, the amount of extraction from the steam turbine is increased to increase the heat source of the absorption refrigerator. And operating the heat recovery power generation system when the power load increases, by reducing the amount of air extracted from the steam turbine to increase the amount of power generated by the second generator.
【請求項6】冷水負荷と電力負荷の双方が低下したとき
には、ガスタービンの燃焼器に供給する蒸気量を増大さ
せることを特徴とする請求項5に記載の熱回収発電シス
テムの運転方法。
6. The method according to claim 5, wherein when both the chilled water load and the electric power load decrease, the amount of steam supplied to the combustor of the gas turbine is increased.
JP32364699A 1999-11-15 1999-11-15 Heat recovery power generation system and operation method thereof Expired - Fee Related JP3527867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32364699A JP3527867B2 (en) 1999-11-15 1999-11-15 Heat recovery power generation system and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32364699A JP3527867B2 (en) 1999-11-15 1999-11-15 Heat recovery power generation system and operation method thereof

Publications (2)

Publication Number Publication Date
JP2001141286A true JP2001141286A (en) 2001-05-25
JP3527867B2 JP3527867B2 (en) 2004-05-17

Family

ID=18157051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32364699A Expired - Fee Related JP3527867B2 (en) 1999-11-15 1999-11-15 Heat recovery power generation system and operation method thereof

Country Status (1)

Country Link
JP (1) JP3527867B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064047A (en) * 2005-08-30 2007-03-15 Hitachi Eng Co Ltd Waste heat recovery facility for steam turbine plant
CN100362210C (en) * 2004-04-26 2008-01-16 株式会社电装 Fluid machine
JP2013217342A (en) * 2012-04-11 2013-10-24 Toshiba Corp Steam turbine plant and operation method thereof
CN106523050A (en) * 2016-12-16 2017-03-22 北京科技大学 Hybrid power circulating system, operating method of hybrid power circulating system and power generation system
JP2021050664A (en) * 2019-09-25 2021-04-01 メタウォーター株式会社 Co-generation system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100362210C (en) * 2004-04-26 2008-01-16 株式会社电装 Fluid machine
JP2007064047A (en) * 2005-08-30 2007-03-15 Hitachi Eng Co Ltd Waste heat recovery facility for steam turbine plant
JP4676284B2 (en) * 2005-08-30 2011-04-27 株式会社日立エンジニアリング・アンド・サービス Waste heat recovery equipment for steam turbine plant
JP2013217342A (en) * 2012-04-11 2013-10-24 Toshiba Corp Steam turbine plant and operation method thereof
CN106523050A (en) * 2016-12-16 2017-03-22 北京科技大学 Hybrid power circulating system, operating method of hybrid power circulating system and power generation system
JP2021050664A (en) * 2019-09-25 2021-04-01 メタウォーター株式会社 Co-generation system
JP7328101B2 (en) 2019-09-25 2023-08-16 メタウォーター株式会社 cogeneration system

Also Published As

Publication number Publication date
JP3527867B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
CN103443438B (en) The air-breathing cooling unit of fixing internal-combustion engine
KR20130032221A (en) Energy saving system of ship by using waste heat
JP2010054152A (en) Heat source system and its control method
CN107388644A (en) Frequency conversion water cooling cold group and its control method
JP2000304375A (en) Latent heat recovery type absorption water cooler heater
JP2001141286A (en) Heat recovery generating system and method of its operation
JPH11304274A (en) Waste heat utilized absorption type water cooling/ heating machine refrigerating machine
JP6486159B2 (en) Absorption refrigerator and control method thereof
JP2000241042A (en) Combined air conditioner
JP4152140B2 (en) Waste heat absorption refrigerator
CN211953310U (en) Energy-saving refrigerating system
JP6490924B2 (en) Cold source system
CN108638794B (en) Comprehensive system for utilizing waste heat of automobile exhaust
JP2878240B2 (en) Heat supply equipment
JP4308076B2 (en) Absorption refrigerator
CN220453826U (en) Rotary dehumidifier
JPH0854156A (en) Cooling and heating device utilizing exhaust heat of engine and operating method thereof
KR200305943Y1 (en) Absorption Cooling Machine
JP2004108605A (en) Ammonia absorption refrigerating machine
JPH0893553A (en) Control method and device for heat supply using cogeneration system
JP3434279B2 (en) Absorption refrigerator and how to start it
JPS5912843B2 (en) Heat recovery equipment in power generation equipment
JPH08233382A (en) Method and apparatus for controlling capacity of turbo-refrigerator
RU26249U1 (en) DEVICE FOR REGULATING THE AIR TEMPERATURE AT THE INPUT OF THE GAS-TURBINE INSTALLATION (OPTIONS)
JPS5832111Y2 (en) Safety device for exhaust gas absorption chiller

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees